XMC1300 AB-Step

 Microcontroller Series for Industrial ApplicationsXMC1000 Family

ARM ${ }^{\circledR}$ Cortex $^{\circledR}$-M0
32-bit processor core

Data Sheet
v2.0 2017-10

Edition 2017-10

Published by
Infineon Technologies AG
81726 Munich, Germany
© 2017 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

XMC1300 AB-Step Microcontroller Series for Industrial Applications

XMC1000 Family

ARM ${ }^{\circledR}$ Cortex $^{\circledR}$-M0
32-bit processor core

Data Sheet
V2.0 2017-10

XMC1300 AB-Step XMC1000 Family

XMC1300 Data Sheet

Revision History: V2.0 2017-10
Previous Version: V1.9 2017-03

Page	Subjects
Page 10,	Add marking option for XMC1302-T28X0032, XMC1302-T28X0064,
Page 13	XMC1302-T28X0128, XMC1302-T28X0200.

Trademarks

C166 ${ }^{\text {TM }}$, TriCore ${ }^{\text {TM }}$, XMC $^{\text {TM }}$ and DAVE ${ }^{\text {TM }}$ are trademarks of Infineon Technologies AG. ARM ${ }^{\circledR}$, ARM Powered ${ }^{\circledR}$ and AMBA $^{\circledR}$ are registered trademarks of ARM, Limited.
Cortex ${ }^{\text {TM }}$, CoreSight ${ }^{\text {TM }}$, ETM $^{\text {™ }}$, Embedded Trace Macrocell ${ }^{\text {TM }}$ and Embedded Trace Buffer ${ }^{\top \mathrm{M}}$ are trademarks of ARM, Limited.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Table of Contents

1 Summary of Features 8
1.1 Ordering Information 10
1.2 Device Types 10
1.3 Device Type Features 12
1.4 Chip Identification Number 13
2 General Device Information 16
2.1 Logic Symbols 16
2.2 Pin Configuration and Definition 18
2.2.1 Package Pin Summary 22
2.2.2 Port I/O Function Description 25
2.2.3 Hardware Controlled I/O Function Description 27
3 Electrical Parameters 33
3.1 General Parameters 33
3.1.1 Parameter Interpretation 33
3.1.2 Absolute Maximum Ratings 34
3.1.3 Pin Reliability in Overload 35
3.1.4 Operating Conditions 37
3.2 DC Parameters 38
3.2.1 Input/Output Characteristics 38
3.2.2 Analog to Digital Converters (ADC) 42
3.2.3 Out of Range Comparator (ORC) Characteristics 46
3.2.4 Analog Comparator Characteristics 48
3.2.5 Temperature Sensor Characteristics 49
3.2.6 Power Supply Current 50
3.2.7 Flash Memory Parameters 55
3.3 AC Parameters 56
3.3.1 Testing Waveforms 56
3.3.2 Power-Up and Supply Monitoring Characteristics 57
3.3.3 On-Chip Oscillator Characteristics 59
3.3.4 Serial Wire Debug Port (SW-DP) Timing 61
3.3.5 SPD Timing Requirements 62
3.3.6 Peripheral Timings 63
3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing 63
3.3.6.2 Inter-IC (IIC) Interface Timing 66
3.3.6.3 Inter-IC Sound (IIS) Interface Timing 68
4 Package and Reliability 70
4.1 Package Parameters 70
4.1.1 Thermal Considerations 70
4.2 Package Outlines 725 Quality Declaration77

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC1300 series devices.
The document describes the characteristics of a superset of the XMC1300 series devices. For simplicity, the various device types are referred to by the collective term XMC1300 throughout this document.

XMC1000 Family User Documentation

The set of user documentation includes:

- Reference Manual
- decribes the functionality of the superset of devices.
- Data Sheets
- list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
- list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.
Please refer to http://www.infineon.com/xmc1000 to get access to the latest versions of those documents.

Summary of Features

1 Summary of Features

The XMC1300 devices are members of the XMC1000 Family of microcontrollers based on the ARM Cortex-M0 processor core. The XMC1300 series addresses the real-time control needs of motor control, digital power conversion. It also features peripherals for LED Lighting applications.

Figure $1 \quad$ System Block Diagram

CPU Subsystem

- CPU Core
- High-performance 32-bit ARM Cortex-M0 CPU
- Most 16-bit Thumb and subset of 32-bit Thumb2 instruction set
- Single cycle 32-bit hardware multiplier
- System timer (SysTick) for Operating System support
- Ultra low power consumption
- Nested Vectored Interrupt Controller (NVIC)
- Event Request Unit (ERU) for processing of external and internal service requests
- MATH Co-processor (MATH)
- CORDIC unit for trigonometric calculation
- division unit

On-Chip Memories

- 8 kbytes on-chip ROM
- 16 kbytes on-chip high-speed SRAM
- up to 200 kbytes on-chip Flash program and data memory

Communication Peripherals

- Two Universal Serial Interface Channels (USIC), usable as UART, double-SPI, quad-SPI, IIC, IIS and LIN interfaces

Analog Frontend Peripherals

- A/D Converters
- up to 12 analog input pins
- 2 sample and hold stages with 8 analog input channels each
- fast 12-bit analog to digital converter with adjustable gain
- Up to 8 channels of out of range comparators (ORC)
- Up to 3 fast analog comparators (ACMP)
- Temperature Sensor (TSE)

Industrial Control Peripherals

- Capture/Compare Units 4 (CCU4) as general purpose timers
- Capture/Compare Units 8 (CCU8) for motor control and power conversion
- Position Interfaces (POSIF) for hall and quadrature encoders and motor positioning
- Brightness and Colour Control Unit (BCCU), for LED color and dimming application

System Control

- Window Watchdog Timer (WDT) for safety sensitive applications
- Real Time Clock module with alarm support (RTC)
- System Control Unit (SCU) for system configuration and control
- Pseudo random number generator (PRNG) for fast random data generation

Input/Output Lines

- Tri-stated in input mode
- Push/pull or open drain output mode
- Configurable pad hysteresis

On-Chip Debug Support

- Support for debug features: 4 breakpoints, 2 watchpoints
- Various interfaces: ARM serial wire debug (SWD), single pin debug (SPD)

1.1 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC1<DDD>-<Z><PPP><T><FFFF>" identifies:

- <DDD> the derivatives function set
- <Z> the package variant
- T: TSSOP
- Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
- F: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- X: $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$
- <FFFF> the Flash memory size.

For ordering codes for the XMC1300 please contact your sales representative or local distributor.
This document describes several derivatives of the XMC1300 series, some descriptions may not apply to a specific product. Please see Table 1.
For simplicity the term XMC1300 is used for all derivatives throughout this document.

1.2 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 1 Synopsis of XMC1300 Device Types

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1301-T016F0008	PG-TSSOP-16-8	8	16
XMC1301-T016F0016	PG-TSSOP-16-8	16	16
XMC1301-T016F0032	PG-TSSOP-16-8	32	16
XMC1301-T016X0008	PG-TSSOP-16-8	8	16
XMC1301-T016X0016	PG-TSSOP-16-8	16	16
XMC1302-T016X0008	PG-TSSOP-16-8	8	16

Table 1 Synopsis of XMC1300 Device Types (cont'd)

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1302-T016X0016	PG-TSSOP-16-8	16	16
XMC1302-T016X0032	PG-TSSOP-16-8	32	16
XMC1302-T028X0016	PG-TSSOP-28-8	16	16
XMC1302-T028X0032	PG-TSSOP-28-8	32	16
XMC1302-T028X0064	PG-TSSOP-28-8	64	16
XMC1302-T028X0128	PG-TSSOP-28-8	128	16
XMC1302-T028X0200	PG-TSSOP-28-8	200	16
XMC1301-T038F0008	PG-TSSOP-38-9	8	16
XMC1301-T038F0016	PG-TSSOP-38-9	16	16
XMC1301-T038F0032	PG-TSSOP-38-9	32	16
XMC1301-T038X0032	PG-TSSOP-38-9	32	16
XMC1301-T038F0064	PG-TSSOP-38-9	64	16
XMC1302-T038X0016	PG-TSSOP-38-9	16	16
XMC1302-T038X0032	PG-TSSOP-38-9	32	16
XMC1302-T038X0064	PG-TSSOP-38-9	64	16
XMC1302-T038X0128	PG-TSSOP-38-9	128	16
XMC1302-T038X0200	PG-TSSOP-38-9	200	16
XMC1301-Q024F0008	PG-VQFN-24-19	8	16
XMC1301-Q024F0016	PG-VQFN-24-19	16	16
XMC1302-Q024F0016	PG-VQFN-24-19	16	16
XMC1302-Q024F0032	PG-VQFN-24-19	32	16
XMC1302-Q024F0064	PG-VQFN-24-19	64	16
XMC1302-Q024X0016	PG-VQFN-24-19	16	16
XMC1302-Q024X0032	PG-VQFN-24-19	32	16
XMC1302-Q024X0064	PG-VQFN-24-19	64	16
XMC1301-Q040F0008	PG-VQFN-40-13	8	16
XMC1301-Q040F0016	PG-VQFN-40-13	16	16
XMC1301-Q040F0032	PG-VQFN-40-13	32	16
XMC1302-Q040X0016	PG-VQFN-40-13	16	16
XMC1302-Q040X0032	PG-VQFN-40-13	32	16

Table 1 Synopsis of XMC1300 Device Types (cont'd)

Derivative	Package	Flash Kbytes	SRAM Kbytes
XMC1302-Q040X0064	PG-VQFN-40-13	64	16
XMC1302-Q040X0128	PG-VQFN-40-13	128	16
XMC1302-Q040X0200	PG-VQFN-40-13	200	16

1.3 Device Type Features

The following table lists the available features per device type.
Table $2 \quad$ Features of XMC1300 Device Types ${ }^{1)}$

Derivative	ADC channel	ACMP	BCCU	MATH
XMC1301-T016	11	2	-	-
XMC1302-T016	11	2	1	1
XMC1302-T028	14	3	1	1
XMC1301-T038	16	3	-	-
XMC1302-T038	16	3	1	1
XMC1301-Q024	13	3	-	-
XMC1302-Q024	13	3	1	1
XMC1301-Q040	16	3	-	-
XMC1302-Q040	16	3	1	1

1) Features that are not included in this table are available in all the derivatives

Table 3 ADC Channels ${ }^{1)}$

Package	VADC0 G0	VADC0 G1
PG-TSSOP-16	CH0..CH5	CH0..CH4
PG-TSSOP-28	CH0..CH7	CH0 .. CH4, CH7
PG-TSSOP-38	CH0..CH7	CH0..CH7
PG-VQFN-24	CH0..CH7	CH0..CH4
PG-VQFN-40	$\mathrm{CH} 0 . . \mathrm{CH} 7$	$\mathrm{CH} 0 . . \mathrm{CH} 7$

[^0]
1.4 Chip Identification Number

The Chip Identification Number allows software to identify the marking. It is a 8 words value with the most significant 7 words stored in Flash configuration sector 0 (CSO) at address location : 10000 F00 ${ }_{H}(\mathrm{MSB})-10000 \mathrm{~F} 1 \mathrm{~B}_{\mathrm{H}}$ (LSB). The least significant word and most significant word of the Chip Identification Number are the value of registers DBGROMID and IDCHIP, respectively.

Table $4 \quad$ XMC1300 Chip Identification Number

Derivative	Value	Marking
XMC1301-T016F0008	00013032 01CF00FF 00001FF7 0000100F 00000 C 000000100000003000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-T016F0016	00013032 01CF00FF 00001FF7 0000100F 00000 C 000000100000005000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-T016F0032	00013032 01CF00FF 00001FF7 0000100F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-T016X0008	00013033 01CF00FF 00001FF7 0000100F 00000 C 000000100000003000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-T016X0016	00013033 01CF00FF 00001FF7 0000100F 00000 C 000000100000005000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T016X0008	00013033 01FF00FF 00001FF7 0000900F 00000C00 0000100000003000 201ED083 $_{H}$	AB
XMC1302-T016X0016	00013033 01FF00FF 00001FF7 0000900F 00000 C 000000100000005000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T016X0032	00013033 01FF00FF 00001FF7 0000900F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T028X0016	00013023 01FF00FF 00001FF7 0000900F 00000C00 0000100000005000 201ED083 $_{H}$	AB
XMC1302-T028X0032	00013023 01FF00FF 00001FF7 0000900F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T028X0064	00013023 01FF00FF 00001FF7 0000900F 00000 C 000000100000011000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T028X0128	$0001302301 F F 00 F F 00001 F F 70000900 \mathrm{~F}$ 00000 C 000000100000021000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T028X0200	00013023 01FF00FF 00001FF7 0000900F 00000 C 000000100000033000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-T038F0008	00013012 01CF00FF 00001FF7 0000100F 00000 C 000000100000003000 201ED083 $_{\mathrm{H}}$	AB

Table $4 \quad$ XMC1300 Chip Identification Number (cont'd)

Derivative	Value	Marking
XMC1301-T038F0016	00013012 01CF00FF 00001FF7 0000100F 00000C00 0000100000005000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-T038F0032	00013012 01CF00FF 00001FF7 0000100F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-T038X0032	00013013 01CF00FF 00001FF7 0000100F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-T038F0064	00013012 01CF00FF 00001FF7 0000100F 00000 C 000000100000011000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T038X0016	00013013 01FF00FF 00001FF7 0000900F 00000C00 0000100000005000 201ED083 $_{H}$	AB
XMC1302-T038X0032	00013013 01FF00FF 00001FF7 0000900F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T038X0064	00013013 01FF00FF 00001FF7 0000900F 00000 C 000000100000011000 201ED083 $_{\text {H }}$	AB
XMC1302-T038X0128	00013013 01FF00FF 00001FF7 0000900F 00000 C 000000100000021000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-T038X0200	00013013 01FF00FF 00001FF7 0000900F 00000C00 0000100000033000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-Q024F0008	00013062 01CF00FF 00001FF7 0000100F 00000 C 000000100000003000 201ED083 $_{\mathrm{H}}$	$A B$
XMC1301-Q024F0016	00013062 01CF00FF 00001FF7 0000100F 00000C00 0000100000005000 201ED083 $_{H}$	AB
XMC1302-Q024F0016	00013062 01FF00FF 00001FF7 0000900F 00000 C 000000100000005000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q024F0032	00013062 01FF00FF 00001FF7 0000900F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q024F0064	00013062 01FF00FF 00001FF7 0000900F 00000C00 0000100000011000 201ED083 $_{H}$	AB
XMC1302-Q024X0016	00013063 01FF00FF 00001FF7 0000900F 00000 C 000000100000005000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q024X0032	00013063 01FF00FF 00001FF7 0000900F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q024X0064	00013063 01FF00FF 00001FF7 0000900F 00000 C 000000100000011000 201ED083 $_{\mathrm{H}}$	AB

XMC1300 AB-Step XMC1000 Family

Summary of Features

Table $4 \quad$ XMC1300 Chip Identification Number (cont'd)

Derivative	Value	Marking
XMC1301-Q040F0008	00013042 01CF00FF 00001FF7 0000100F 00000 C 000000100000003000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-Q040F0016	00013042 01CF00FF 00001FF7 0000100F 00000 C 000000100000005000 201ED083 $_{\mathrm{H}}$	AB
XMC1301-Q040F0032	00013042 01CF00FF 00001FF7 0000100F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q040X0016	00013043 01FF00FF 00001FF7 0000900F 00000 C 000000100000005000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q040X0032	00013043 01FFOOFF 00001FF7 0000900F 00000 C 000000100000009000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q040X0064	00013043 01FFOOFF 00001FF7 0000900F 00000 C 000000100000011000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q040X0128	00013043 01FFOOFF 00001FF7 0000900F 00000 C 000000100000021000 201ED083 $_{\mathrm{H}}$	AB
XMC1302-Q040X0200	00013043 01FF00FF 00001FF7 0000900F 00000 C 000000100000033000 201ED083 $_{\mathrm{H}}$	AB

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols

Figure $2 \quad$ XMC1300 Logic Symbol for TSSOP-38, TSSOP-28 and TSSOP-16

Figure $3 \quad$ XMC1300 Logic Symbol for VQFN-24 and VQFN-40

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the different packages.

Figure $4 \quad$ XMC1300 PG-TSSOP-38 Pin Configuration (top view)

XMC1300 AB-Step XMC1000 Family

General Device Information

Figure $5 \quad$ XMC1300 PG-TSSOP-28 Pin Configuration (top view)

Figure $6 \quad$ XMC1300 PG-TSSOP-16 Pin Configuration (top view)

XMC1300 AB-Step XMC1000 Family

General Device Information

Figure $7 \quad$ XMC1300 PG-VQFN-24 Pin Configuration (top view)

Figure $8 \quad$ XMC1300 PG-VQFN-40 Pin Configuration (top view)

2.2.1 Package Pin Summary

The following general building block is used to describe each pin:
Table $5 \quad$ Package Pin Mapping Description

Function	Package A	Package B	\ldots	Pad Type
Px.y	N	N		Pad Class

The table is sorted by the "Function" column, starting with the regular Port pins (Px.y), followed by the supply pins.
The following columns, titled with the supported package variants, lists the package pin number to which the respective function is mapped in that package.
The "Pad Type" indicates the employed pad type:

- STD_INOUT(standard bi-directional pads)
- STD_INOUT/AN (standard bi-directional pads with analog input)
- High Current (high current bi-directional pads)
- STD_IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameters.

Table $6 \quad$ Package Pin Mapping

Function	VQFN $\mathbf{4 0}$	TSSOP $\mathbf{3 8}$	TSSOP $\mathbf{2 8}$	VQFN $\mathbf{2 4}$	TSSOP $\mathbf{1 6}$	Pad Type	Notes
P0.0	23	17	13	15	7	STD_IN OUT	
P0.1	24	18	-	-	-	STD_IN OUT	
P0.2	25	19	-	-	-	STD_IN OUT	
P0.3	26	20	-	-	-	STD_IN OUT	
P0.4	27	21	14	-	-	STD_IN OUT	
P0.5	28	22	15	16	8	STD_IN OUT	
P0.6	29	23	16	17	9	STD_IN OUT	

General Device Information
Table 6 Package Pin Mapping (cont'd)

Function	$\begin{aligned} & \text { VQFN } \\ & 40 \end{aligned}$	$\begin{aligned} & \text { TSSOP } \\ & 38 \end{aligned}$	$\begin{aligned} & \text { TSSOP } \\ & 28 \end{aligned}$	$\begin{aligned} & \text { VQFN } \\ & 24 \end{aligned}$	$\begin{aligned} & \text { TSSOP } \\ & 16 \end{aligned}$	Pad Type	Notes
P0.7	30	24	17	18	10	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P0.8	33	27	18	19	11	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P0.9	34	28	19	20	12	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P0.10	35	29	20	-	-	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P0.11	36	30	-	-	-	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P0.12	37	31	21	21	-	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P0.13	38	32	22	22	-	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P0.14	39	33	23	23	13	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P0.15	40	34	24	24	14	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P1.0	22	16	12	14	-	High Current	
P1.1	21	15	11	13	-	High Current	
P1.2	20	14	10	12	-	High Current	
P1.3	19	13	9	11	-	High Current	
P1.4	18	12	-	-	-	High Current	
P1.5	17	11	-	-	-	High Current	
P1.6	16	-	-	-	-	$\begin{aligned} & \text { STD_IN } \\ & \text { OUT } \end{aligned}$	
P2.0	1	35	25	1	15	STD_IN OUT/AN	

General Device Information
Table 6 Package Pin Mapping (cont'd)

Function	VQFN $\mathbf{4 0}$	TSSOP $\mathbf{3 8}$	TSSOP $\mathbf{2 8}$	VQFN $\mathbf{2 4}$	TSSOP $\mathbf{1 6}$	Pad Type	Notes
P2.1	2	36	26	2	-	STD_IN OUT/AN	
P2.2	3	37	27	3	-	STD_IN/ AN	
P2.3	4	38	-	-	-	STD_IN/ AN	
P2.4	5	1	-	-	-	STD_IN/ AN	
P2.5	6	2	28	-	-	STD_IN/ AN	
P2.6	7	3	1	4	16	STD_IN/ AN	
P2.7	8	4	2	5	1	STD_IN/ AN	
P2.8	9	5	3	5	1	STD_IN/ AN	
P2.9	10	6	4	6	2	STD_IN/ AN	
P2.10	11	7	5	7	3	STD_IN OUT/AN	
P2.11	12	8	6	8	4	STD_IN OUT/AN	
VSS	13	9	7	9	5	Power	Supply GND, ADC reference GND
VDD	14	10	8	10	6	Power	Supply VDD, ADC reference voltage/ ORC reference voltage
	15	10	8	10	6	Power	When VDD is supplied, VDDP has to be supplied with the same voltage.

General Device Information
Table 6 Package Pin Mapping (cont'd)
\(\left.$$
\begin{array}{l|l|l|l|l|l|l|l}\hline \text { Function } & \begin{array}{lll|l|l}\text { VQFN } \\
\mathbf{4 0}\end{array} & \begin{array}{l}\text { TSSOP } \\
\mathbf{3 8}\end{array} & \begin{array}{l}\text { TSSOP } \\
\mathbf{2 8}\end{array} & \begin{array}{l}\text { VQFN } \\
\mathbf{2 4}\end{array} & \begin{array}{l}\text { TSSOP } \\
\mathbf{1 6}\end{array} & \begin{array}{l}\text { Pad } \\
\text { Type }\end{array} & \text { Notes } \\
\hline \text { VSSP } & 31 & 25 & - & - & - & \text { Power } & \text { I/O port ground } \\
\hline \text { VDDP } & 32 & 26 & - & - & - & \text { Power } & \text { I/O port supply } \\
\hline \text { VSSP } & \begin{array}{l}\text { Exp. } \\
\text { Pad }\end{array} & - & - & \begin{array}{l}\text { Exp. } \\
\text { Pad }\end{array} & - & \text { Power } & \begin{array}{l}\text { Exposed Die } \\
\text { Pad } \\
\text { The exposed die } \\
\text { pad is connected } \\
\text { internally to } \\
\text { VSSP. For proper } \\
\text { operation, it is } \\
\text { mandatory to } \\
\text { connect the } \\
\text { exposed pad to } \\
\text { the board ground. }\end{array}
$$

For thermal

aspects, please

refer to the\end{array}\right]\)| Package and |
| :--- |
| Reliability |
| chapter. |

2.2.2 Port I/O Function Description

The following general building block is used to describe the I/O functions of each PORT pin:

Table $7 \quad$ Port I/O Function Description

Function	Outputs			Inputs
	ALT1	ALTn	Input	Input
P0.0		MODA.OUT	MODC.INA	
Pn.y	MODA.OUT		MODA.INA	MODC.INB

Figure 9 Simplified Port Structure
Pn.y is the port pin name, defining the control and data bits/registers associated with it. As GPIO, the port is under software control. Its input value is read via Pn_IN.y, Pn_OUT defines the output value.
Up to seven alternate output functions (ALT1/2/3/4/5/6/7) can be mapped to a single port pin, selected by Pn_IOCR.PC. The output value is directly driven by the respective module, with the pin characteristics controlled by the port registers (within the limits of the connected pad).
The port pin input can be connected to multiple peripherals. Most peripherals have an input multiplexer to select between different possible input sources.
The input path is also active while the pin is configured as output. This allows to feedback an output to on-chip resources without wasting an additional external pin.
Please refer to the Port I/O Functions table for the complete Port I/O function mapping.

2.2.3 Hardware Controlled I/O Function Description

The following general building block is used to describe the hardware I/O and pull control functions of each PORT pin:

Table 8 Hardware Controlled I/O Function Description

Function	Outputs	Inputs	Pull Control	
	HWO0	HWIO	HW0_PD	HW0_PU
P0.0	MODB.OUT	MODB.INA		
Pn.y			MODC.OUT	MODC.OUT

By Pn_HWSEL, it is possible to select between different hardware "masters" (HWO0/HWIO, HWO1/HWI1). The selected peripheral can take control of the pin(s). Hardware control overrules settings in the respective port pin registers. Additional hardware signals HW0_PD/HW1_PD and HW0_PU/HW1_PU controlled by the peripherals can be used to control the pull devices of the pin.
Please refer to the Hardware Controlled I/O Functions table for the complete hardware I/O and pull control function mapping.

XMC1300 AB-Step
XMC1000 Family
Port I/O Functions

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input									
P0.0	ERUO. PDOUTO		ERUO. GOUTO	$\begin{aligned} & \text { CCU40. } \\ & \text { OUT0 } \end{aligned}$	CCU80. OUT00	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.SELO } \\ & 0 \end{aligned}$	BCCUO. TRAPINB	$\begin{aligned} & \text { CCU40. } \\ & \text { INOC } \end{aligned}$			$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX2A } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX2A } \end{aligned}$				
P0.1	ERUO. PDOUT1		ERUO. GOUT1	$\begin{aligned} & \text { CCU40. } \\ & \text { OUT1 } \end{aligned}$	CCU80. OUT01	BCCU0. OUT8	SCU. VDROP		$\begin{aligned} & \text { CCU40. } \\ & \text { IN1C } \end{aligned}$								
P0.2	ERUO. PDOUT2		$\begin{aligned} & \text { ERUO. } \\ & \text { GOUT2 } \end{aligned}$	$\begin{aligned} & \text { CCU40. } \\ & \text { OUT2 } \end{aligned}$	$\begin{aligned} & \text { CCU80. } \\ & \text { OUT02 } \end{aligned}$	$\begin{aligned} & \text { VADC0. } \\ & \text { EMUX02 } \end{aligned}$	$\begin{array}{\|l} \text { CCU80. } \\ \text { OUT10 } \end{array}$		$\begin{aligned} & \text { CCU40. } \\ & \text { IN2C } \end{aligned}$								
P0.3	ERUO. PDOUT3		$\begin{aligned} & \text { ERUO. } \\ & \text { GOUT3 } \end{aligned}$	$\begin{aligned} & \text { CCU40. } \\ & \text { OUT3 } \end{aligned}$	CCU80. OUT03	VADC0. EMUX01	CCU80. OUT11		$\begin{aligned} & \text { CCU40. } \\ & \text { IN3C } \end{aligned}$								
P0.4	BCCUO. OUTO			$\begin{aligned} & \text { CCU40. } \\ & \text { OUT1 } \end{aligned}$	$\begin{aligned} & \text { CCU80. } \\ & \text { OUT13 } \end{aligned}$	VADCO. EMUX00	WWDT. SERVICE _OUT		CCU80. INOB								
P0.5	BCCUO. OUT1			$\begin{aligned} & \text { CCU40. } \\ & \text { OUT0 } \end{aligned}$	$\begin{array}{\|l} \hline \text { CCU80. } \\ \text { OUT12 } \\ \hline \end{array}$	ACMP2. OUT	CCU80. OUT01		$\begin{array}{\|l} \hline \text { CCU80. } \\ \text { IN1B } \\ \hline \end{array}$								
P0.6	BCCUO. OUT2			$\begin{aligned} & \text { CCU40. } \\ & \text { OUTO } \end{aligned}$	$\begin{aligned} & \text { CCU80. } \\ & \text { OUT11 } \end{aligned}$	USICO_C H1.MCLK OUT	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DOUT } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { CCU4O. } \\ & \text { INOB } \end{aligned}$			$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DXOC } \end{aligned}$					
P0.7	BCCUO. OUT3			$\begin{aligned} & \text { CCU40. } \\ & \text { OUT1 } \end{aligned}$	CCU80. OUT10	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SCLK } \\ & \text { OUT } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DOUT } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { CCU40. } \\ & \text { IN1B } \end{aligned}$			$\begin{aligned} & \text { USICOCC } \\ & \text { HO.DX1C } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DXŌD } \end{aligned}$	USICO_C H1.DX1C			
P0.8	BCCUO. OUT4			$\begin{aligned} & \text { CCU40. } \\ & \text { OUT2 } \end{aligned}$	$\begin{aligned} & \text { CCU80. } \\ & \text { OUT20 } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SCLK } \\ & \text { OUT } \end{aligned}$	USICO_C H1.SCLK OUT		$\begin{aligned} & \text { CCU40. } \\ & \text { IN2B } \end{aligned}$			$\begin{array}{\|l} \text { USICO_C } \\ \text { HO.DX1B } \end{array}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX1B } \end{aligned}$				
P0.9	BCCUO. OUT5			$\begin{aligned} & \text { CCU40. } \\ & \text { OUT3 } \end{aligned}$	CCU80. OUT21	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.SELO } \\ & 0 \end{aligned}$		$\begin{aligned} & \text { CCU40. } \\ & \text { IN3B } \end{aligned}$			$\left\lvert\, \begin{aligned} & \text { USICO_C } \\ & \text { HO.DX2B } \end{aligned}\right.$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX2B } \end{aligned}$				
P0.10	BCCUO. OUT6			ACMPO. OUT	$\begin{aligned} & \text { CCU80. } \\ & \text { OUT22 } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 1 \end{aligned}$	USICO_C H1.SELO 1		$\begin{aligned} & \text { CCU80. } \\ & \text { IN2B } \end{aligned}$			$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX2C } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX2C } \end{aligned}$				
P0.11	BCCUO. OUT7			USICO_C HO.MCLK OUT	$\begin{array}{\|l} \mid \text { CCU80. } \\ \text { OUT23 } \end{array}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.SELO } \\ & 2 \end{aligned}$					$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX2D } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX2D } \end{aligned}$				
P0.12	BCCUO. OUT6				$\begin{aligned} & \text { CCU80. } \\ & \text { OUT33 } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { CCU80. } \\ & \text { OUT20 } \end{aligned}$	BCCUO. TRAPINA	$\begin{aligned} & \text { CCU4O. } \\ & \text { INOA } \end{aligned}$	$\begin{aligned} & \text { CCU40. } \\ & \text { IN1A } \end{aligned}$	$\begin{aligned} & \text { CCU40. } \\ & \text { IN2A } \end{aligned}$	$\begin{aligned} & \text { CCU40. } \\ & \text { IN3A } \end{aligned}$	$\begin{aligned} & \text { CCU80. } \\ & \text { INOA } \end{aligned}$	$\begin{array}{\|l} \text { CCU80. } \\ \text { IN1A } \end{array}$	$\begin{aligned} & \text { CCU80. } \\ & \text { IN2A } \end{aligned}$	$\begin{aligned} & \text { CCU80. } \\ & \text { IN3A } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX2E } \end{aligned}$
P0.13	WWDT. SERVICE _OUT				$\begin{array}{\|l} \mid \text { CCU80. } \\ \text { OUT32 } \end{array}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 4 \end{aligned}$	$\begin{array}{\|l} \text { CCU80. } \\ \text { OUT21 } \end{array}$		$\begin{aligned} & \text { CCU80. } \\ & \text { IN3B } \end{aligned}$	$\begin{aligned} & \text { POSIFO. } \\ & \text { INOB } \end{aligned}$		$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX2F } \end{aligned}$					

Port I/O Functions (cont'd)

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input									
P0.14	BCCUO. OUT7				CCU80. OUT31	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DOUT } \\ & 0 \end{aligned}$	USICO_C HO.SCLK OUT			$\begin{aligned} & \text { POSIFO. } \\ & \text { IN1B } \end{aligned}$		$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DXOA } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX1A } \end{aligned}$				
P0.15	BCCUO. OUT8				$\begin{aligned} & \text { CCU80. } \\ & \text { OUT30. } \end{aligned}$	USICO_C HO.DOUT 0	USICO_C H1.MCLK OUT			$\begin{aligned} & \text { POSIFO. } \\ & \text { IN2B } \end{aligned}$		$\begin{array}{\|l} \text { USICO_C } \\ \text { HO.DXOB } \end{array}$					
P1.0	BCCUO. OUTO	CCU40. OUTO			CCU80. OUT00	ACMP1. OUT	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DOUT } \\ & 0 \end{aligned}$			$\begin{aligned} & \text { POSIFO. } \\ & \text { IN2A } \end{aligned}$		$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DXOC } \end{aligned}$					
P1.1	VADC0. EMUX00	$\begin{aligned} & \text { CCU40. } \\ & \text { OUT1 } \end{aligned}$			$\begin{aligned} & \text { CCU80. } \\ & \text { OUT01 } \end{aligned}$	USICO_C HO.DOUT 0	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.SELO } \\ & 0 \end{aligned}$			$\begin{aligned} & \text { POSIFO. } \\ & \text { IN1A } \end{aligned}$		$\begin{array}{\|l} \text { USICO_C } \\ \text { HO.DXOD } \end{array}$	$\left\lvert\, \begin{aligned} & \text { USICO_C } \\ & \text { HO.DX1D } \end{aligned}\right.$	$\begin{array}{\|l} \text { USICO_C } \\ \text { H1.DX2E } \end{array}$			
P1.2	VADCO. EMUX01	CCU40. OUT2			CCU80. OUT10	ACMP2. OUT	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DOUT } \\ & 0 \end{aligned}$			$\begin{aligned} & \text { POSIFO. } \\ & \text { INOA } \end{aligned}$		$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX0B } \end{aligned}$					
P1.3	VADC0. EMUX02	$\begin{aligned} & \text { CCU40. } \\ & \text { OUT3 } \end{aligned}$			$\begin{aligned} & \text { CCU80. } \\ & \text { OUT11 } \end{aligned}$	USICO_C H1.SCLK OUT	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DOUT } \\ & 0 \end{aligned}$					$\begin{array}{\|l} \text { USICO_C } \\ \text { H1.DXOA } \end{array}$	$\begin{aligned} & \text { USIC0_C } \\ & \text { H1.DX1A } \end{aligned}$				
P1.4	VADC0. EMUX10	USICO_C H1.SCLK OUT			$\begin{aligned} & \text { CCU80. } \\ & \text { OUT20 } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.SELO } \\ & 1 \end{aligned}$					$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX5E } \end{aligned}$	$\begin{aligned} & \text { USIC0_C } \\ & \text { H1.DX5E } \end{aligned}$				
P1.5	VADCO. EMUX11	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DOUT } \\ & 0 \end{aligned}$		BCCUO. OUT1	$\begin{aligned} & \text { CCU80. } \\ & \text { OUT21 } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.SELO } \\ & 2 \end{aligned}$					$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX5F } \end{aligned}$					
P1.6	VADC0. EMUX12	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DOUT } \\ & 0 \end{aligned}$		USICO_C HO.SCLK OUT	BCCUO. OUT2	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.SELO } \\ & 2 \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.SELO } \\ & 3 \end{aligned}$			$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX5F } \end{aligned}$							
P2.0	ERUO. PDOUT3	CCU40. OUTO	ERUO. GOUT3		$\begin{aligned} & \text { CCU80. } \\ & \text { OUT20 } \end{aligned}$	USICO_C HO.DOUT 0	USICO_C HO.SCLK OUT		VADC0. GOCH5		$\begin{array}{\|l} \text { ERUO.OB } \\ 0 \end{array}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DXOE } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX1E } \end{aligned}$	$\begin{array}{\|l} \text { USICO_C } \\ \text { H1.DX2F } \end{array}$			
P2.1	ERUO. PDOUT2	CCU40. OUT1	ERUO. GOUT2		CCU80. OUT21	USICO_C HO.DOUT 0	USICO_C H1.SCLK OUT	$\begin{aligned} & \text { ACMP2.I } \\ & \mathrm{NP} \end{aligned}$	VADC0. GOCH6		$\begin{aligned} & \text { ERU0.1B } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DXOF } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX3A } \end{aligned}$	$\begin{array}{\|l} \text { USICO_C } \\ \text { H1.DX4A } \end{array}$			
P2.2								ACMP2.I NN	VADCO. GOCH7		ERUO.OB	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX } 3 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX4A } \end{aligned}$	$\begin{array}{\|l} \text { USICO_C } \\ \text { H1.DX5A } \end{array}$	$\begin{aligned} & \mathrm{ORCO} \\ & \mathrm{~N} \end{aligned}$		
P2.3									VADC0. G1CH5		$\left\lvert\, \begin{aligned} & \text { ERUO.1B } \\ & 1 \end{aligned}\right.$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX5B } \end{aligned}$	$\begin{aligned} & \text { USIC0_C } \\ & \text { H1.DX3C } \end{aligned}$	$\begin{array}{\|l} \text { USICO_C } \\ \text { H1.DX4C } \end{array}$	$\begin{aligned} & \mathrm{ORC1} . \mathrm{AI} \\ & \mathrm{~N} \end{aligned}$		
P2.4									VADC0. G1CH6		$\begin{aligned} & \text { ERUO.OA } \\ & 1 \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX3B } \end{aligned}$	$\begin{aligned} & \text { USICO_C } \\ & \text { HO.DX4B } \end{aligned}$	$\begin{array}{\|l} \text { USICO_C } \\ \text { H1.DX5B } \end{array}$	$\begin{aligned} & \mathrm{ORC} 2 . \mathrm{AI} \\ & \mathrm{~N} \end{aligned}$		

Port I/O Functions (cont'd)

Function	Outputs							Inputs									
	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	Input									
P2.5									vadco. G1CH7		$\begin{aligned} & \text { ERUO.1A } \\ & 1 \end{aligned}$	USICO_C H0.DX5D	USICO_c H1.D×3E	USICO_C H1.DX4E	$\begin{aligned} & \mathrm{ORC3.AI} \\ & \mathrm{~N} \end{aligned}$		
P2.6								$\begin{aligned} & \text { ACMP1.I } \\ & \mathrm{NN} \end{aligned}$	vadco. GOCHO		$\left\lvert\, \begin{aligned} & \text { ERUO.2A } \\ & 1 \end{aligned}\right.$	USICO C H0.DX3E	USICO C HO.DX4E	USICO C H1.DX5D	$\begin{array}{\|l\|l\|l\|l\|l\|l\|} \hline \\ \mathrm{N} \end{array}$		
P2.7								$\left.\right\|_{\mathrm{APMP} 1 . I} ^{\mathrm{ACP}}$	vadco. G1CH1		$\left.\right\|_{1} ^{\text {ERUO.3A }}$	USICO_C HO.DX5C	USICO_C H1.DX3D	USICO_C H1.DX4D	$\begin{aligned} & \text { ORC5.AI } \\ & \mathrm{N} \end{aligned}$		
P2.8								$\begin{array}{\|l\|l\|l\|l\|} \hline \text { ACMP0.I } \\ \text { NN } \end{array}$	VADC0. GOCH1	VADCO. G1CH0	$\left.\right\|_{1} ^{\text {ERUO.3B }}$	USICO_C H0.DX3D	USICO_C H0.DX4D	USICO_C H1.DX5C	$\begin{aligned} & \mathrm{ORC6.AI} \\ & \mathrm{~N} \end{aligned}$		
P2.9								$\begin{array}{\|l\|l} \text { ACMP0.I } \\ \mathrm{NP} \end{array}$	vadco. GOCH2	VADCO. G1CH4	$\left\lvert\, \begin{aligned} & \text { ERUO.3B } \\ & 0 \end{aligned}\right.$	USICO_C H0.DX5A	USICO_C H1.DX3B	USICO_C H1.DX4B	$\begin{aligned} & \mathrm{ORC7.AI} \\ & \mathrm{~N} \end{aligned}$		
P2.10	ERUO. PDOUT1	CCU40. OUT2	$\begin{aligned} & \text { ERUO. } \\ & \text { GOUTT } \end{aligned}$		$\begin{aligned} & \text { ccu80. } \\ & \text { OUT30 } \end{aligned}$	ACMPO. OUT	USICO_C H1.DOUT 0		VADC0. GOCH3	VADCO. G1CH2	$\left.\right\|_{0} ^{\text {ERUO.2B }}$	Usico_c HO.DX3C	USICO_C HO.DX4C	USICO_C H1.DXOF			
P2.11	$\begin{aligned} & \text { ERUO. } \\ & \text { PDOUTO } \end{aligned}$	CCU40. OUT3	ERUO. GOUTO		$\begin{aligned} & \text { ccu80. } \\ & \text { OUT31 } \end{aligned}$	USICO_C H1.SCLK OUT	USICO_C H1.DOUT 0	ACMP.RE	VADCO. G0CH4	$\begin{aligned} & \text { VADC0. } \\ & \text { G1CH3 } \end{aligned}$	$\left.\right\|_{1} ^{\text {ERUO.2B }}$	USICO_C H1.DX0E	$\begin{aligned} & \text { USICO_C } \\ & \text { H1.DX1E } \end{aligned}$				

Hardware Controlled I/O Functions

Pull Control		HW1_PU
HW0_PU	HW1_PD	HW_
BCMP2.OUT		
BCCU0.OUT8		
BCCU0.OUT2		
BCCU0.OUT3		
BCCU0.OUT4		
BCCU0.OUT5		

Table 2-2

```
Function
```


Table 2-2 Hardware Controlled I/O Functions (cont'd)

Function	Outputs		Inputs		Pull Control			
	HWOO	HWO1	HWIO	HWI1	HWO_PD	HWO_PU	HW1_PD	HW1_PU
P2.5					$\overline{\text { ACMP1.OUT }}$	ACMP1.OUT		
P2.6					BCCU0.OUT2	BCCU0.OUT2	$\overline{\text { CCU40.OUT3 }}$	CCU40.OUT3
P2.7					$\overline{\text { BCCU0.OUT8 }}$	BCCuo.out8	CCU40.OUT3	CCU40.0UT3
P2.8					BCCU0.OUT1	BCCuo.out1	CCU40.OUT2	CCU40.OUT2
P2.9					BCCU0.OUT7	BCCU0.OUT7	$\overline{\text { CCU40.OUT2 }}$	CCU40.OUT2
P2.10					BCCU0.OUT4	BCCU0.OUT4		
P2.11					$\overline{\text { BCCU0.OUT5 }}$	BCCU0.OUT5		

3 Electrical Parameters

This section provides the electrical parameters which are implementation-specific for the XMC1300.

3.1 General Parameters

3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMC1300 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

- CC

Such parameters indicate Controller Characteristics, which are distinctive feature of the XMC1300 and must be regarded for a system design.

- SR

Such parameters indicate System Requirements, which must be provided by the application system in which the XMC1300 is designed in.

XMC1300 AB-Step XMC1000 Family

Electrical Parameters

3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table $9 \quad$ Absolute Maximum Rating Parameters

Parameter	Symbol	Values			Unit	Note I Test Cond ition
			Min	Typ.	Max.	

1) Excluding port pins P2.[1,2,6,7,8,9,11].
2) Applicable to port pins P2.[1,2,6,7,8,9,11].

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.
Table 10 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
- pad supply levels ($V_{\text {DDP }}$)
- temperature

If a pin current is outside of the Operating Conditions but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.
Note: An overload condition on one or more pins does not require a reset.
Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Table 10 Overload Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
			Min.	Typ.	Max.	
Input current on any port pin during overload condition	$I_{\mathrm{OV}} \quad \mathrm{SR}$	-5	-	5	mA	
Absolute sum of all input circuit currents during overload condition	I_{Ovs}	SR	-	-	25	mA

Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against $V_{\text {DDP }}$ and ground are a simplified representation of these ESD protection structures.

Figure 10 Input Overload Current via ESD structures
Table 11 and Table 12 list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload.

Table 11 PN-Junction Characterisitics for positive Overload

Pad Type	$\boldsymbol{I}_{\mathrm{OV}}=\mathbf{5} \mathbf{~ m A}$
Standard, High-current,	$V_{\mathrm{IN}}=V_{\mathrm{DDP}}+0.5 \mathrm{~V}$
AN/DIG_IN	$V_{\mathrm{AIN}}=V_{\mathrm{DDP}}+0.5 \mathrm{~V}$
	$V_{\mathrm{AREF}}=V_{\mathrm{DDP}}+0.5 \mathrm{~V}$
P2.[1,2,6:9,11]	$V_{\mathrm{INP} 2}=V_{\mathrm{DDP}}+0.3 \mathrm{~V}$

Table 12 PN-Junction Characterisitics for negative Overload

Pad Type	$I_{\mathrm{OV}}=\mathbf{5} \mathbf{~ m A}$
Standard, High-current,	$V_{\mathrm{IN}}=V_{\mathrm{SS}}-0.5 \mathrm{~V}$
AN/DIG_IN	$V_{\mathrm{AIN}}=V_{\mathrm{SS}}-0.5 \mathrm{~V}$
	$V_{\text {AREF }}=V_{\mathrm{SS}}-0.5 \mathrm{~V}$
P2.[1,2,6:9,11]	$V_{\text {INP2 }}=V_{\mathrm{SS}}-0.3 \mathrm{~V}$

XMC1300 AB-Step XMC1000 Family

Electrical Parameters

3.1.4 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMC1300. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

Table 13 Operating Conditions Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Ambient Temperature	$T_{\text {A }} \quad$ SR	-40	-	85	${ }^{\circ} \mathrm{C}$	Temp. Range F
		-40	-	105	${ }^{\circ} \mathrm{C}$	Temp. Range X
Digital supply voltage ${ }^{1)}$	$V_{\text {DDP }} \mathrm{SR}$	1.8	-	5.5	V	
MCLK Frequency	$f_{\text {MCLK }}$ CC	-	-	33.2	MHz	CPU clock
PCLK Frequency	$f_{\text {PCLK }}$ CC	-	-	66.4	MHz	Peripherals clock
Short circuit current of digital outputs	$I_{\text {SC }} \quad$ SR	-5	-	5	mA	
Absolute sum of short circuit currents of the device	$\Sigma I_{\text {SC_D }}$ SR	-	-	25	mA	

1) See also the Supply Monitoring thresholds, Chapter 3.3.2.

3.2 DC Parameters

3.2.1 Input/Output Characteristics

Table 14 provides the characteristics of the input/output pins of the XMC1300.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Table 14 Input/Output Characteristics (Operating Conditions apply)

Parameter	Symbol	Limit Values		Unit	Test Conditions
		Min.	Max.		
Output low voltage on port pins (with standard pads)	$V_{\text {OLP }} \mathrm{CC}$	-	1.0	V	$\begin{aligned} & I_{\mathrm{OL}}=11 \mathrm{~mA}(5 \mathrm{~V}) \\ & I_{\mathrm{OL}}=7 \mathrm{~mA}(3.3 \mathrm{~V}) \end{aligned}$
		-	0.4	V	$\begin{aligned} & I_{\mathrm{OL}}=5 \mathrm{~mA}(5 \mathrm{~V}) \\ & I_{\mathrm{OL}}=3.5 \mathrm{~mA}(3.3 \mathrm{~V}) \end{aligned}$
Output low voltage on high current pads	$V_{\text {OLP1 }} \mathrm{CC}$	-	1.0	V	$\begin{aligned} & I_{\mathrm{OL}}=50 \mathrm{~mA}(5 \mathrm{~V}) \\ & I_{\mathrm{OL}}=25 \mathrm{~mA}(3.3 \mathrm{~V}) \end{aligned}$
		-	0.32	V	$I_{\mathrm{OL}}=10 \mathrm{~mA}(5 \mathrm{~V})$
		-	0.4	V	$I_{\mathrm{OL}}=5 \mathrm{~mA}(3.3 \mathrm{~V})$
Output high voltage on port pins (with standard pads)	$V_{\text {OHP }} \quad \mathrm{CC}$	$\begin{aligned} & V_{\mathrm{DDP}}{ }^{-} \\ & 1.0 \end{aligned}$	-	V	$\begin{aligned} & I_{\mathrm{OH}}=-10 \mathrm{~mA}(5 \mathrm{~V}) \\ & I_{\mathrm{OH}}=-7 \mathrm{~mA}(3.3 \mathrm{~V}) \end{aligned}$
		$\begin{aligned} & V_{\mathrm{DDP}}- \\ & 0.4 \end{aligned}$	-	V	$\begin{aligned} & I_{\mathrm{OH}}=-4.5 \mathrm{~mA}(5 \mathrm{~V}) \\ & I_{\mathrm{OH}}=-2.5 \mathrm{~mA}(3.3 \mathrm{~V}) \end{aligned}$
Output high voltage on high current pads	$V_{\text {OHP } 1} \mathrm{CC}$	$\begin{aligned} & V_{\mathrm{DDP}}- \\ & 0.32 \end{aligned}$	-	V	$I_{\mathrm{OH}}=-6 \mathrm{~mA}(5 \mathrm{~V})$
		$\begin{aligned} & V_{\mathrm{DDP}}- \\ & 1.0 \end{aligned}$	-	V	$I_{\mathrm{OH}}=-8 \mathrm{~mA}(3.3 \mathrm{~V})$
		$\begin{aligned} & V_{\mathrm{DDP}}- \\ & 0.4 \end{aligned}$	-	V	$I_{\mathrm{OH}}=-4 \mathrm{~mA}(3.3 \mathrm{~V})$
Input low voltage on port pins (Standard Hysteresis)	$V_{\text {ILPS }} \mathrm{SR}$	-	$\begin{aligned} & 0.19 \times \\ & V_{\mathrm{DDP}} \end{aligned}$	V	CMOS Mode $(5 \mathrm{~V}, 3.3 \mathrm{~V} \& 2.2 \mathrm{~V})$

Electrical Parameters

Table 14 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Conditions
		Min.	Max.		
Input high voltage on port pins (Standard Hysteresis)	$V_{\mathrm{IHPS}} \quad \mathrm{SR}$	$\begin{aligned} & 0.7 \times \\ & V_{\mathrm{DDP}} \end{aligned}$	-	V	CMOS Mode $(5 \mathrm{~V}, 3.3 \mathrm{~V} \& 2.2 \mathrm{~V})$
Input low voltage on port pins (Large Hysteresis)	$V_{\text {ILPL }} \mathrm{SR}$	-	$\begin{aligned} & 0.08 \times \\ & V_{\text {DDP }} \end{aligned}$	V	CMOS Mode $(5 \mathrm{~V}, 3.3 \vee \& 2.2 \mathrm{~V})^{18)}$
Input high voltage on port pins (Large Hysteresis)	$V_{\mathrm{IHPL}} \quad \mathrm{SR}$	$\begin{aligned} & 0.85 \times \\ & V_{\mathrm{DDP}} \end{aligned}$	-	V	CMOS Mode $\left.(5 \mathrm{~V}, 3.3 \vee \& 2.2 \mathrm{~V})^{18}\right)$
Rise time on High Current Pad ${ }^{1)}$	$t_{\text {HCPR }} \mathrm{CC}$	-	9	ns	50 pF @ $5 \mathrm{~V}^{2}$
		-	12	ns	50 pF @ $3.3 \mathrm{~V}^{3}$
		-	25	ns	50 pF @ $1.8 \mathrm{~V}^{4}$
Fall time on High Current Pad ${ }^{1)}$	$t_{\text {HCPF }} \mathrm{CC}$	-	9	ns	50 pF @ $5 \mathrm{~V}^{2}$
		-	12	ns	50 pF @ $3.3 \mathrm{~V}^{3}$
		-	25	ns	50 pF @ $1.8 \mathrm{~V}^{4}$
Rise time on Standard Pad ${ }^{1)}$	$t_{\mathrm{R}} \quad \mathrm{CC}$	-	12	ns	50 pF @ $5 \mathrm{~V}^{5}$
		-	15	ns	50 pF @ $3.3 \mathrm{~V}^{6}$
		-	31	ns	50 pF @ $1.8 \mathrm{~V}^{7}$
Fall time on Standard Pad ${ }^{1)}$	$t_{\text {F }} \quad$ CC	-	12	ns	50 pF @ $5 \mathrm{~V}^{5}$
		-	15	ns	50 pF @ $3.3 \mathrm{~V}^{6}$
		-	31	ns	50 pF @ $1.8 \mathrm{~V}^{7}$

XMC1300 AB-Step
XMC1000 Family

Electrical Parameters

Table 14 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Conditions
		Min.	Max.		
Input Hysteresis ${ }^{8)}$	HYS CC	$\begin{aligned} & 0.08 \times \\ & V_{\text {DDP }} \end{aligned}$	-	V	CMOS Mode (5 V), Standard Hysteresis
		$\begin{aligned} & 0.03 \times \\ & V_{\mathrm{DDP}} \end{aligned}$	-	V	CMOS Mode (3.3 V), Standard Hysteresis
		$\begin{aligned} & 0.02 \times \\ & V_{\mathrm{DDP}} \\ & \hline \end{aligned}$	-	V	CMOS Mode (2.2 V), Standard Hysteresis
		$\begin{aligned} & 0.5 \times \\ & V_{\mathrm{DDP}} \end{aligned}$	$\begin{array}{\|l} \hline 0.75 \times \\ V_{\mathrm{DDP}} \\ \hline \end{array}$	V	CMOS Mode(5 V), Large Hysteresis
		$\begin{aligned} & \hline 0.4 \times \\ & V_{\mathrm{DDP}} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline 0.75 \times \\ V_{\mathrm{DDP}} \\ \hline \end{array}$	V	CMOS Mode(3.3 V), Large Hysteresis
		$\begin{aligned} & 0.2 \times \\ & V_{\mathrm{DDP}} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0.65 \times \\ V_{\mathrm{DDP}} \\ \hline \end{array}$	V	CMOS Mode(2.2 V), Large Hysteresis
Pin capacitance (digital inputs/outputs)	$C_{10} \quad \mathrm{CC}$	-	10	pF	
Pull-up resistor on port pins	$R_{\text {PUP }} \quad$ CC	20	50	kohm	$V_{\mathrm{IN}}=V_{\mathrm{SSP}}$
Pull-down resistor on port pins	$R_{\text {PDP }} \quad$ CC	20	50	kohm	$V_{\text {IN }}=V_{\text {DDP }}$
Input leakage current ${ }^{9}$	$I_{\text {OzP }} \quad \mathrm{CC}$	-1	1	$\mu \mathrm{A}$	$\begin{aligned} & 0<V_{\text {IN }}<V_{\mathrm{DDP}}, \\ & T_{\mathrm{A}} \leq 105^{\circ} \mathrm{C} \end{aligned}$
Voltage on any pin during $V_{\text {DDP }}$ power off	$V_{\mathrm{PO}} \quad \mathrm{SR}$	-	0.3	V	10)
Maximum current per pin (excluding P1, $V_{\text {DDP }}$ and V_{SS})	$I_{\text {MP }} \quad$ SR	-10	11	mA	-
Maximum current per high currrent pins	$I_{\text {MP1A }} \quad$ SR	-10	50	mA	-
Maximum current into $V_{\text {DDP }}$ (TSSOP16, VQFN24)	$I_{\text {MVDD1 }} \mathrm{SR}$	-	130	mA	18)
Maximum current into $V_{\text {DDP }}$ (TSSOP38, VQFN40)	$I_{\text {MVDD2 }}$ SR	-	260	mA	18)

Table 14 Input/Output Characteristics (Operating Conditions apply) (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Conditions
		Min.	Max.		
Maximum current out of $V_{\text {SS }}$ (TSSOP16, VQFN24)	$I_{\text {MVSS1 }} \mathrm{SR}$	-	130	mA	18)
Maximum current out of V_{SS} (TSSOP38, VQFN40)	$I_{\text {MVSS2 }}$ SR	-	260	mA	18)

1) Rise/Fall time parameters are taken with $10 \%-90 \%$ of supply.
2) Additional rise/fall time valid for $\mathrm{CL}=50 \mathrm{pF}-\mathrm{CL}=100 \mathrm{pF} @ 0.150 \mathrm{~ns} / \mathrm{pF}$ at 5 V supply voltage.
3) Additional rise/fall time valid for $\mathrm{CL}=50 \mathrm{pF}-\mathrm{CL}=100 \mathrm{pF} @ 0.205 \mathrm{~ns} / \mathrm{pF}$ at 3.3 V supply voltage.
4) Additional rise/fall time valid for $\mathrm{CL}=50 \mathrm{pF}-\mathrm{CL}=100 \mathrm{pF} @ 0.445 \mathrm{~ns} / \mathrm{pF}$ at 1.8 V supply voltage.
5) Additional rise/fall time valid for $\mathrm{CL}=50 \mathrm{pF}-\mathrm{CL}=100 \mathrm{pF} @ 0.225 \mathrm{~ns} / \mathrm{pF}$ at 5 V supply voltage.
6) Additional rise/fall time valid for $\mathrm{CL}=50 \mathrm{pF}-\mathrm{CL}=100 \mathrm{pF} @ 0.288 \mathrm{~ns} / \mathrm{pF}$ at 3.3 V supply voltage.
7) Additional rise/fall time valid for $\mathrm{CL}=50 \mathrm{pF}-\mathrm{CL}=100 \mathrm{pF} @ 0.588 \mathrm{~ns} / \mathrm{pF}$ at 1.8 V supply voltage.
8) Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.
9) An additional error current $\left(I_{\mathrm{INJ}}\right)$ will flow if an overload current flows through an adjacent pin.
10) However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V_{DDP} is powered off.

3.2.2 Analog to Digital Converters (ADC)

Table 15 shows the Analog to Digital Converter (ADC) characteristics.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 15 ADC Characteristics (Operating Conditions apply) ${ }^{1)}$

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Supply voltage range (internal reference)	$V_{\text {DD_int }} \mathrm{SR}$	2.0	-	3.0	V	$\begin{aligned} & \text { SHSCFG.AREF }=11_{\mathrm{B}} \\ & \text { CALCTR.CALGNSTC }^{=0 \mathrm{C}_{\mathrm{H}}} \end{aligned}$
		3.0	-	5.5	V	SHSCFG.AREF $=10_{\text {B }}$
Supply voltage range (external reference)	$\begin{aligned} & V_{\text {DD_ext }} \\ & \text { SR } \end{aligned}$	3.0	-	5.5	V	SHSCFG.AREF $=00{ }_{\text {B }}$
Analog input voltage range	$V_{\text {AIN }} \mathrm{SR}$	$\begin{array}{\|c} V_{\mathrm{SSP}} \\ -0.05 \end{array}$	-	$\begin{aligned} & V_{\mathrm{DDP}} \\ & + \\ & 0.05 \end{aligned}$	V	
Auxiliary analog reference ground	$\begin{aligned} & V_{\text {REFGND }} \\ & \text { SR } \end{aligned}$	$\begin{gathered} V_{\text {SSP }} \\ -0.05 \end{gathered}$	-	1.0	V	GOCHO
		$\begin{gathered} V_{\mathrm{SSP}} \\ -0.05 \end{gathered}$	-	0.2	V	G1CH0
Internal reference voltage (full scale value)	$\begin{aligned} & V_{\text {REFINT }} \\ & \text { CC } \end{aligned}$	5			V	
Switched capacitance of an analog input	$C_{\text {AINS }} \mathrm{CC}$	-	1.2	2	pF	GNCTRxz.GAINy $=00_{B}$ (unity gain)
		-	1.2	2	pF	$\begin{aligned} & \text { GNCTRxz.GAINy = } 01_{\mathrm{B}} \\ & \text { (gain g1) } \end{aligned}$
		-	4.5	6	pF	$\begin{aligned} & \text { GNCTRxz.GAINy }=10_{\mathrm{B}} \\ & \text { (gain g2) } \end{aligned}$
		-	4.5	6	pF	$\begin{aligned} & \text { GNCTRxz.GAINy }=11_{\mathrm{B}} \\ & \text { (gain g3) } \end{aligned}$
Total capacitance of an analog input	$C_{\text {AINT }} \mathrm{CC}$	-	-	10	pF	
Total capacitance of the reference input	$\begin{aligned} & C_{\text {AREFT }} \\ & \text { CC } \\ & \hline \end{aligned}$	-	-	10	pF	

XMC1300 AB-Step
XMC1000 Family

Electrical Parameters

Table 15 ADC Characteristics (Operating Conditions apply) ${ }^{\mathbf{1}}$ (cont'd)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Gain settings	$G_{\text {IN }} \mathrm{CC}$	1			-	$\begin{aligned} & \text { GNCTRxz.GAINy }=00_{B} \\ & \text { (unity gain) } \end{aligned}$
		3			-	$\begin{aligned} & \text { GNCTRxz.GAINy }=01_{\mathrm{B}} \\ & \text { (gain g1) } \end{aligned}$
		6			-	$\begin{aligned} & \text { GNCTRxz.GAINy }=10_{B} \\ & \text { (gain g2) } \end{aligned}$
		12			-	$\begin{aligned} & \text { GNCTRxz.GAINy }=11_{\mathrm{B}} \\ & \text { (gain g3) } \end{aligned}$
Sample Time	$t_{\text {sample }}$ CC	3	-	-	$\begin{aligned} & 1 / \\ & f_{\mathrm{ADC}} \end{aligned}$	$V_{\text {DD }}=5.0 \mathrm{~V}$
		3	-	-	1 / $f_{\text {ADC }}$	$V_{D D}=3.3 \mathrm{~V}$
		30	-	-	$\begin{aligned} & 1 / \\ & f_{\mathrm{ADC}} \end{aligned}$	$V_{D D}=2.0 \mathrm{~V}$
Sigma delta loop hold time	$t_{\text {SD_hold }}$ CC	20	-	-	$\mu \mathrm{S}$	Residual charge stored in an active sigma delta loop remains available
Conversion time in fast compare mode	$t_{\text {CF }} \mathrm{CC}$	9			1 / $f_{\text {ADC }}$	2)
Conversion time in 12-bit mode	$t_{\text {C12 }} \mathrm{CC}$	20			$\begin{aligned} & 1 / \\ & f_{\mathrm{ADC}} \end{aligned}$	2)
Maximum sample rate in 12-bit mode ${ }^{3)}$	$f_{\mathrm{C} 12} \mathrm{CC}$	-	-	$\begin{aligned} & f_{\mathrm{ADC}} / \\ & 42.5 \end{aligned}$	-	1 sample pending
		-	-	$\begin{aligned} & f_{\mathrm{ADC}} / \\ & 62.5 \end{aligned}$	-	2 samples pending
Conversion time in 10-bit mode	$t_{\text {C10 }} \mathrm{CC}$	18			1 / $f_{\text {ADC }}$	${ }^{2}$
Maximum sample rate in 10-bit mode ${ }^{3)}$	$f_{C 10} \mathrm{CC}$	-	-	$\begin{aligned} & f_{\mathrm{ADC}} / \\ & 40.5 \end{aligned}$	-	1 sample pending
		-	-	$\begin{aligned} & f_{\mathrm{ADC}} / \\ & 58.5 \end{aligned}$	-	2 samples pending
Conversion time in 8-bit mode	$t_{\text {C8 }} \mathrm{CC}$	16			$\begin{aligned} & 1 / \\ & f_{\mathrm{ADC}} \end{aligned}$	${ }^{2}$

Electrical Parameters

Table 15 ADC Characteristics (Operating Conditions apply) ${ }^{10}$ (cont'd)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
Maximum sample rate in 8-bit mode ${ }^{3)}$	$f_{\mathrm{C} 8} \mathrm{CC}$	-	-	$\begin{aligned} & f_{\mathrm{ADC}} / \\ & 38.5 \end{aligned}$	-	1 sample pending
		-	-	$\begin{aligned} & f_{\mathrm{ADC}} l \\ & 54.5 \end{aligned}$	-	2 samples pending
RMS noise ${ }^{4)}$	$\begin{aligned} & E N_{\mathrm{RMS}} \\ & \mathrm{CC} \end{aligned}$	-	1.5	-	$\begin{aligned} & \text { LSB } \\ & 12 \end{aligned}$	DC input, $\begin{aligned} & V_{\mathrm{DD}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{AIN}}=2.5 \mathrm{~V}, \\ & 25^{\circ} \mathrm{C} \end{aligned}$
DNL error	$E A_{\text {DNL }} \mathrm{CC}$	-	± 2.0	-	$\begin{aligned} & \text { LSB } \\ & 12 \end{aligned}$	
INL error	$E A_{\text {INL }} \mathrm{CC}$	-	± 4.0	-	$\begin{aligned} & \text { LSB } \\ & 12 \end{aligned}$	
Gain error with external reference	$\begin{aligned} & E A_{\text {GAIN }} \\ & \mathrm{CC} \end{aligned}$	-	± 0.5	-	\%	$\begin{aligned} & \text { SHSCFG.AREF }=00_{B} \\ & \text { (calibrated) } \end{aligned}$
Gain error with internal reference ${ }^{5)}$	$\begin{aligned} & E A_{\text {GAIN }} \\ & \mathrm{CC} \end{aligned}$	-	± 3.6	-	\%	$\begin{aligned} & \text { SHSCFG.AREF }=1 \mathrm{X}_{\mathrm{B}} \\ & \text { (calibrated), } \\ & -40^{\circ} \mathrm{C}-105^{\circ} \mathrm{C} \end{aligned}$
		-	± 2.0	-	\%	$\begin{aligned} & \text { SHSCFG.AREF }=1 \mathrm{X}_{\mathrm{B}} \\ & \text { (calibrated), } \\ & 0^{\circ} \mathrm{C}-85^{\circ} \mathrm{C} \end{aligned}$
Offset error	$E A_{\text {OFF }} \mathrm{CC}$	-	± 8.0	-	mV	Calibrated, $V_{\mathrm{DD}}=5.0 \mathrm{~V}$

1) The parameters are defined for ADC clock frequency $f_{S H}=32 \mathrm{MHz}$, SHSCFG.DIVS $=0000_{\mathrm{B}}$. Usage of any other frequencies may affect the ADC performance.
2) No pending samples assumed, excluding sampling time and calibration.
3) Includes synchronization and calibration (average of gain and offset calibration).
4) This parameter can also be defined as an SNR value: $\mathrm{SNR}[\mathrm{dB}]=20 \times \log \left(A_{\text {MAXeff }} / N_{\text {RMS }}\right)$.

With $A_{\text {MAXeff }}=2^{N} / 2, \operatorname{SNR}[\mathrm{~dB}]=20 \times \log \left(2048 / N_{\text {RMS }}\right)[\mathrm{N}=12]$.
$N_{\text {RMS }}=1.5$ LSB12, therefore, equals $\mathrm{SNR}=20 \times \log (2048 / 1.5)=62.7 \mathrm{~dB}$.
5) Includes error from the reference voltage.

MC_VADC_AREFPATHS

Figure 11 ADC Voltage Supply

3.2.3 Out of Range Comparator (ORC) Characteristics

The Out-of-Range Comparator (ORC) triggers on analog input voltages ($V_{\text {AIN }}$) above the $V_{\text {DDP }}$ on selected input pins (ORCx.AIN) and generates a service request trigger (ORCx.OUT).
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 16 Out of Range Comparator (ORC) Characteristics (Operating Conditions apply; $\mathrm{V}_{\mathrm{DDP}}=3.0 \mathrm{~V}-5.5 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=0.25 \mathrm{pF}$)

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Typ.	Max.		
DC Switching Level	$V_{\text {ODC }} \mathrm{CC}$	54	-	183	mV	$V \mathrm{IIN} \geq V_{\mathrm{DDP}}+V_{\mathrm{ODC}}$
Hysteresis	$V_{\text {OHYS }} \mathrm{CC}$	15	-	54	mV	
Always detected Overvoltage Pulse	$t_{\text {OPDD }} \mathrm{CC}$	103	-	-	ns	$V_{\text {AIN }} \geq V_{\text {DDP }}+150 \mathrm{mV}$
		88	-	-	ns	$V_{\text {AIN }} \geq V_{\text {DDP }}+350 \mathrm{mV}$
Never detected Overvoltage Pulse	$t_{\text {OPDN }} \mathrm{CC}$	-	-	21	ns	$V_{\text {AIN }} \geq V_{\text {DDP }}+150 \mathrm{mV}$
		-	-	11	ns	$V_{\text {AIN }} \geq V_{\text {DDP }}+350 \mathrm{mV}$
Detection Delay of a persistent Overvoltage	$t_{\text {ODD }}$ CC	39	-	132	ns	$V_{\text {AIN }} \geq V_{\text {DDP }}+150 \mathrm{mV}$
		31	-	121	ns	$V_{\text {AIN }} \geq V_{\text {DDP }}+350 \mathrm{mV}$
Release Delay	$t_{\text {ORD }} \mathrm{CC}$	44	-	240	ns	$V_{\text {AIN }} \leq V_{\text {DDP }} ; \mathrm{V}_{\text {DDP }}=5 \mathrm{~V}$
		57	-	340	ns	$V_{\text {AIN }} \leq V_{\text {DDP }} ; \mathrm{V}_{\text {DDP }}=3.3 \mathrm{~V}$
Enable Delay	$t_{\text {OED }} \mathrm{CC}$	-	-	300	ns	ORCCTRL.ENORCx = 1

Figure 12 ORCx.OUT Trigger Generation

Figure 13 ORC Detection Ranges

3.2.4 Analog Comparator Characteristics

Table 17 below shows the Analog Comparator characteristics.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 17 Analog Comparator Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values			Unit	Notes/ Test Conditions
			Min.	Typ.	Max.		
Input Voltage	$V_{\text {CMP }}$	SR	-0.05	-	$\begin{aligned} & V_{\mathrm{DDP}}+ \\ & 0.05 \end{aligned}$	V	
Input Offset	$V_{\text {CMPOFF }}$	CC	-	+/-3	-	mV	High power mode $\Delta V_{\mathrm{CMP}}<200 \mathrm{mV}$
			-	+/-20	-	mV	Low power mode $\Delta V_{\mathrm{CMP}}<200 \mathrm{mV}$
Propagation Delay ${ }^{1)}$	$t_{\text {PDELAY }}$	CC	-	25	-	ns	High power mode, $\Delta V_{\mathrm{CMP}}=100 \mathrm{mV}$
			-	80	-	ns	High power mode, $\Delta V_{\mathrm{CMP}}=25 \mathrm{mV}$
			-	250	-	ns	Low power mode, $\Delta V_{\mathrm{CMP}}=100 \mathrm{mV}$
			-	700	-	ns	Low power mode, $\Delta V_{\mathrm{CMP}}=25 \mathrm{mV}$
Current Consumption	$I_{\text {ACMP }}$	CC	-	100	-	$\mu \mathrm{A}$	First active ACMP in high power mode, $\Delta V_{\mathrm{CMP}}>30 \mathrm{mV}$
			-	66	-	$\mu \mathrm{A}$	Each additional ACMP in high power mode, $\Delta V_{\mathrm{CMP}}>30 \mathrm{mV}$
			-	10	-	$\mu \mathrm{A}$	First active ACMP in low power mode
			-	6	-	$\mu \mathrm{A}$	Each additional ACMP in low power mode
Input Hysteresis	$V_{\text {HYS }}$	CC	-	+/-15	-	mV	
Filter Delay ${ }^{1)}$	$t_{\text {FDELAY }}$	CC	-	5	-	ns	

[^1]
3.2.5 Temperature Sensor Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 18 Temperature Sensor Characteristics

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Measurement time	$t_{\mathrm{M}} \mathrm{CC}$	-	-	10	ms	
Temperature sensor range	$T_{\mathrm{SR}} \mathrm{SR}$	-40	-	115	${ }^{\circ} \mathrm{C}$	
Sensor Accuracy ${ }^{1)}$	$T_{\text {TSAL }} \mathrm{CC}$	-6	-	6	${ }^{\circ} \mathrm{C}$	$T_{\mathrm{J}}>20^{\circ} \mathrm{C}$
		-10	-	10	${ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C} \leq T_{\mathrm{J}} \leq 20^{\circ} \mathrm{C}$
		-	$-/+8$	-	${ }^{\circ} \mathrm{C}$	$T_{\mathrm{J}}<0^{\circ} \mathrm{C}$
Start-up time after enabling	$t_{\text {TSSTE }} \mathrm{SR}$	-	-	15	$\mu \mathrm{~S}$	

1) The temperature sensor accuracy is independent of the supply voltage.

3.2.6 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.
Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 19 Power Supply Parameters; $\mathrm{V}_{\mathrm{DDP}}=5 \mathrm{~V}$

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min	Typ. ${ }^{1)}$	Max.		
Active mode current Peripherals enabled $f_{\text {MCLK }} / f_{\text {PCLK }}$ in $\mathrm{MHz}^{2)}$	$I_{\text {DDPAE }} \mathrm{CC}$	-	9.2	12	mA	$32 / 64$
		-	8.1	-	mA	24 / 48
		-	6.6	-	mA	16/32
		-	5.5	-	mA	8/16
		-	4	-	mA	$1 / 1$
Active mode current Peripherals disabled $f_{\text {MCLK }} / f_{\text {PCLK }}$ in $\mathrm{MHz}^{3)}$	$I_{\text {DDPAD }} \mathrm{CC}$	-	4.8	-	mA	$32 / 64$
		-	4.1	-	mA	$24 / 48$
		-	3.3	-	mA	16/32
		-	2.7	-	mA	8/16
		-	1.5	-	mA	$1 / 1$
Active mode current Code execution from RAM Flash is powered down $f_{\text {MCLK }} / f_{\text {PCLK }}$ in MHz	$I_{\text {DDPAR }} \mathrm{CC}$	-	7.3	-	mA	$32 / 64$
		-	6.3	-	mA	24/48
		-	5.2	-	mA	16/32
		-	4.2	-	mA	8/16
		-	3.3	-	mA	$1 / 1$
Sleep mode current Peripherals clock enabled $f_{\text {MCLK }} / f_{\text {PCLK }}$ in $\mathrm{MHz}^{4)}$	$I_{\text {DDPSE }} \mathrm{CC}$	-	6.6	-	mA	$32 / 64$
			5.8	-	mA	24/48
			5.1	-	mA	16/32
			4.4	-	mA	8/16
			3.7	-	mA	1 / 1

XMC1300 AB-Step XMC1000 Family

Electrical Parameters
Table 19 Power Supply Parameters; $\mathrm{V}_{\text {DDP }}=5 \mathrm{~V}$

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min	Typ. ${ }^{1}$	Max.		
Sleep mode current Peripherals clock disabled Flash active $f_{\text {MCLK }} / f_{\text {PCLK }}$ in $\mathrm{MHz}^{5)}$	$I_{\text {DDPSD }} \mathrm{CC}$	-	1.8	-	mA	$32 / 64$
			1.7	-	mA	24/48
			1.6	-	mA	16 / 32
			1.5	-	mA	8/16
			1.4	-	mA	$1 / 1$
Sleep mode current Peripherals clock disabled Flash powered down $f_{\text {MCLK }} / f_{\text {PCLK }}$ in MHz^{6})	$I_{\text {DDPSR }} \mathrm{CC}$	-	1.2	-	mA	$32 / 64$
			1.1	-	mA	$24 / 48$
			1.0	-	mA	16/32
			0.8	-	mA	$8 / 16$
			0.7	-	mA	$1 / 1$
Deep Sleep mode current ${ }^{7 \text {) }}$	$I_{\text {DDPDS }} \mathrm{CC}$	-	0.24	-	mA	
Wake-up time from Sleep to Active mode ${ }^{8)}$	$t_{\text {SSA }} \mathrm{CC}$	-	6	-	cycles	
Wake-up time from Deep Sleep to Active mode9)	$t_{\text {DSA }} \mathrm{CC}$	-	280	-	$\mu \mathrm{sec}$	

1) The typical values are measured at $T_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and VDDP $=5 \mathrm{~V}$.
2) CPU and all peripherals clock enabled, Flash is in active mode.
3) CPU enabled, all peripherals clock disabled, Flash is in active mode.
4) CPU in sleep, all peripherals clock enabled and Flash is in active mode.
5) CPU in sleep, Flash is in active mode.
6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.
7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.
8) CPU in sleep, Flash is in active mode during sleep mode.
9) CPU in sleep, Flash is in powered down mode during deep sleep mode.

Figure 14 shows typical graphs for active mode supply current for $\mathrm{V}_{\mathrm{DDP}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDP}}=$ $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDP}}=1.8 \mathrm{~V}$ across different clock frequencies.

Figure 14 Active mode, a) peripherals clocks enabled, b) peripherals clocks disabled: Supply current $I_{\text {DDPA }}$ over supply voltage $\mathrm{V}_{\mathrm{DDP} \text { for different clock }}$ frequencies

Figure 15 shows typical graphs for sleep mode current for $\mathrm{V}_{\mathrm{DDP}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDP}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDP}}$ $=1.8 \mathrm{~V}$ across different clock frequencies.

Figure 15 Sleep mode, peripherals clocks disabled, Flash powered down:
Supply current $I_{\text {DDPSR }}$ over supply voltage $V_{\text {DDP for different clock frequencies }}$

XMC1300 AB-Step XMC1000 Family

Electrical Parameters
Table 20 provides the active current consumption of some modules operating at 5 V power supply at $25^{\circ} \mathrm{C}$. The typical values shown are used as a reference guide on the current consumption when these modules are enabled.

Table 20 Typical Active Current Consumption

Active Current Consumption	Symbol	Limit Values	Unit	Test Condition
		Typ.		
Baseload current	$I_{\text {CPUDDC }}$	5.04	mA	Modules including Core, SCU, PORT, memories, ANATOP ${ }^{1)}$
VADC and SHS	$I_{\text {ADCDDC }}$	3.4	mA	Set CGATCLR0.VADC to $1^{2)}$
USICO	$I_{\text {USICODDC }}$	0.87	mA	Set CGATCLR0.USIC0 to $1^{3)}$
CCU40	$I_{\text {CCU40DDC }}$	0.94	mA	Set CGATCLR0.CCU40 to $1^{4)}$
CCU80	$I_{\text {CCU80DDC }}$	0.42	mA	Set CGATCLR0.CCU80 to $1^{5)}$
POSIF0	$I_{\text {PIFODDC }}$	0.26	mA	Set CGATCLR0.POSIF0 to ${ }^{6}{ }^{6}$
BCCU0	$I_{\text {BCCuoddc }}$	0.24	mA	Set CGATCLR0.BCCU0 to 17)
MATH	$I_{\text {MATHDDC }}$	0.35	mA	Set CGATCLR0.MATH to $1^{8)}$
WDT	$I_{\text {WDTDDC }}$	0.03	mA	Set CGATCLRO.WDT to 1 ${ }^{9}$
RTC	$I_{\text {RTCDDC }}$	0.01	mA	Set CGATCLRO.RTC to 1^{10}

1) Baseload current is measured with device running in user mode, MCLK=PCLK $=32 \mathrm{MHz}$, with an endless loop in the flash memory. The clock to the modules stated in CGATSTATO are gated.
2) Active current is measured with: module enabled, MCLK $=32 \mathrm{MHz}$, running in auto-scan conversion mode
3) Active current is measured with: module enabled, alternating messages sent to $P C$ at 57.6 kbaud every 200 ms
4) Active current is measured with: module enabled, MCLK=PCLK $=32 \mathrm{MHz}, 1$ CCU4 slice for PWM switching from 1500 Hz and 1000 Hz at regular intervals, 1 CCU 4 slice in capture mode for reading period and duty cycle
5) Active current is measured with: module enabled, MCLK $=P C L K=32 \mathrm{MHz}, 1$ CCU8 slice with PWM frequency at 1500 Hz and a period match interrupt used to toggle duty cycle between 10% and 90%
6) Active current is measured with: module enabled, MCLK $=32 \mathrm{MHz}, \mathrm{PCLK}=64 \mathrm{MHz}$, hall sensor mode
7) Active current is measured with: module enabled, MCLK $=32 \mathrm{MHz}$, PCLK $=64 \mathrm{MHz}$, FCLK=0.8MHz, Normal mode (BCCU Clk = FCLK/4), 3 BCCU Channels and 1 Dimming Engine, change color or dim every 1s
8) Active current is measured with: module enabled, MCLK $=32 \mathrm{MHz}$, PCLK $=64 \mathrm{MHz}$, tangent calculation in while loop; CORDIC circular rotation, no keep, autostart; 32-by-32 bit signed DIV, autostart, DVS right shift by 11
9) Active current is measured with: module enabled, MCLK $=32 \mathrm{MHz}$, time-out mode; WLB $=0$, W UB $=$ 0×00008000; WDT serviced every 1s
10) Active current is measured with: module enabled, MCLK $=32 \mathrm{MHz}$, Periodic interrupt enabled

3.2.7 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 21 Flash Memory Parameters

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Erase Time per page / sector	$t_{\text {ERASE }} \mathrm{CC}$	6.8	7.1	7.6	ms	
Program time per block	$t_{\text {PSER }} \mathrm{CC}$	102	152	204	$\mu \mathrm{S}$	
Wake-Up time	$t_{\text {wu }} \mathrm{CC}$	-	32.2	-	$\mu \mathrm{S}$	
Read time per word	$t_{\mathrm{a}} \mathrm{CC}$	-	50	-	ns	
Data Retention Time	$t_{\text {RET }} \mathrm{CC}$	10	-	-	years	Max. 100 erase / program cycles
Flash Wait States ${ }^{1)}$	$N_{\text {WSFLASH }} \mathrm{CC}$	0	0	0		$f_{\text {MCLK }}=8 \mathrm{MHz}$
		0	1	1		$f_{\text {MCLK }}=16 \mathrm{MHz}$
		1	1.3	2		$f_{\text {MCLK }}=32 \mathrm{MHz}$
Fixed Flash Wait States configured in bit NVM_NVMCONF.WS	$N_{\text {FWSFLASH }}$ SR	0	0	1		$\begin{aligned} & \text { NVM_CONFIG1.FI } \\ & \text { XWS }=1 \text {, } \\ & f_{\text {MCLK }} \leq 16 \mathrm{MHz} \end{aligned}$
		1	1	1		$\begin{aligned} & \text { NVM_CONFIG1.FI } \\ & \text { XWS }=1_{\mathrm{B}}, \\ & 16 \mathrm{MHz}<f_{\text {MCLK }} \leq \\ & 32 \mathrm{MHz} \end{aligned}$
Erase Cycles	$N_{\text {ECYC }} \mathrm{CC}$	-	-	$5 * 10^{4}$	cycles	Sum of page and sector erase cycles
Total Erase Cycles	$N_{\text {TECYC }} \mathrm{CC}$	-	-	$2 * 10^{6}$	cycles	

1) Flash wait states are automatically inserted by the Flash module during memory read when needed. Typical values are calculated from the execution of the Dhrystone benchmark program.

XMC1300 AB-Step XMC1000 Family

Electrical Parameters

3.3 AC Parameters

3.3.1 Testing Waveforms

Figure 16 Rise/Fall Time Parameters

Figure 17 Testing Waveform, Output Delay

Figure 18 Testing Waveform, Output High Impedance

3.3.2 Power-Up and Supply Monitoring Characteristics

Table 22 provides the characteristics of the power-up and supply monitoring in XMC1300.

The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while $V_{\text {DDP }}$ is outside its operating range.
The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 22 Power-Up and Supply Monitoring Parameters (Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
$V_{\text {DDP }}$ ramp-up time	$t_{\text {RAMPUP }} \mathrm{SR}$	$V_{\text {DDP }} /$ $S_{\text {VDDPrise }}$	-	10^{7}	$\mu \mathrm{S}$	
$V_{\text {DDP }}$ slew rate	$S_{\text {VDDPOP }}$ SR	0	-	0.1	$\mathrm{V} / \mathrm{\mu s}$	Slope during normal operation
	$S_{\text {VDDP10 }} \mathrm{SR}$	0	-	10	V/us	Slope during fast transient within +/- $10 \% \text { of } V_{\mathrm{DDP}}$
	$S_{\text {VDDPrise }}$ SR	0	-	10	V/us	Slope during power-on or restart after brownout event
	$\mathrm{S}_{\text {VDDPfall }}{ }^{1)} \mathrm{SR}$	0	-	0.25	V/us	Slope during supply falling out of the $+/-10 \%$ limits ${ }^{2}$)
$V_{\text {DDP }}$ prewarning voltage	$V_{\text {DDPPW }} \mathrm{CC}$	2.1	2.25	2.4	V	ANAVDEL.VDEL_ SELECT $=00_{B}$
		2.85	3	3.15	V	ANAVDEL.VDEL_ SELECT $=01_{B}$
		4.2	4.4	4.6	V	ANAVDEL.VDEL_ SELECT $=10_{B}$

XMC1300 AB-Step XMC1000 Family

Electrical Parameters
Table 22 Power-Up and Supply Monitoring Parameters (Operating Conditions apply) (cont'd)

Parameter	Symbol	Values			Unit	Note I Test Condition
	Min.	Typ.	Max.			
$V_{\text {DDP }}$ brownout reset voltage	$V_{\text {DDPBO }}$ CC	1.55	1.62	1.75	V	calibrated, before user code starts running
$V_{\text {DDP }}$ voltage to ensure defined pad states	$V_{\text {DDPPA }}$ CC	-	1.0	-	V	
Start-up time from power-on reset	$t_{\text {SSW }}$ SR	-	320	-	$\mu \mathrm{S}$	Time to the first user code instruction
BMI program time						
	$t_{\mathrm{BMI}} \mathrm{SR}$	-	8.25	-	ms	Time taken from a user-triggered system reset after BMI installation is is requested

1) A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated for this parameter.
2) Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.
3) This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 32 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

Figure 19 Supply Threshold Parameters

3.3.3 On-Chip Oscillator Characteristics

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 23 provides the characteristics of the 64 MHz clock output from the digital controlled oscillator, DCO1 in XMC1300.

Table 2364 MHz DCO1 Characteristics (Operating Conditions apply)

Parameter	Symbol	Limit Values			Unit	Test Conditions
		Min.	Typ.	Max.		
Nominal frequency	$f_{\text {NOM }} \mathrm{CC}$	-	64	-	MHz	under nominal conditions ${ }^{1)}$ after trimming
Accuracy ${ }^{2}$	$\Delta f_{\text {LT }} \quad$ CC	-1.7	-	3.4	\%	with respect to $f_{\text {NOM }}($ typ $)$, over temperature $\left(T_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right)$
		-3.9	-	4.0	\%	with respect to $f_{\text {NOM }}($ typ $)$, over temperature $\left(T_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } 105^{\circ} \mathrm{C}\right)$

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and $T_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
2) The accuracy can be further improved through alternative methods, refer to XMC1000 Oscillator Handling Application Note.

XMC1300 AB-Step
XMC1000 Family
Electrical Parameters
Figure 20 shows the typical curves for the accuracy of DCO1, with and without calibration based on temperature sensor, respectively.

Figure 20 Typical DCO1 accuracy over temperature
Table 24 provides the characteristics of the 32 kHz clock output from digital controlled oscillators, DCO2 in XMC1300.

Table 2432 kHz DCO2 Characteristics (Operating Conditions apply)

Parameter	Symbol	Limit Values			Unit	Test Conditions
		Min.	Typ.	Max.		
Nominal frequency	$f_{\text {Nom }} \mathrm{CC}$	-	32.75	-	kHz	under nominal conditions ${ }^{1)}$ after trimming
Accuracy	$\Delta f_{\text {LT }} \quad$ CC	-1.7	-	3.4	\%	with respect to $f_{\text {NOM }}($ typ $)$, over temperature $\left(0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right)$
		-3.9	-	4.0	\%	with respect to $f_{\text {NOM }}($ typ $)$, over temperature $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.105^{\circ} \mathrm{C}\right)$

1) The deviation is relative to the factory trimmed frequency at nominal V_{DDC} and $T_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.

XMC1300 AB-Step XMC1000 Family

Electrical Parameters

3.3.4 Serial Wire Debug Port (SW-DP) Timing

The following parameters are applicable for communication through the SW-DP interface.
Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 25 SWD Interface Timing Parameters(Operating Conditions apply)

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
SWDCLK high time	$t 1 \mathrm{SR}$	50	-	500000	ns	-
SWDCLK low time	$t_{2} \mathrm{SR}$	50	-	500000	ns	-
SWDIO input setup to SWDCLK rising edge	$t 3 \mathrm{SR}$	10	-	-	ns	-
SWDIO input hold after SWDCLK rising edge	$t_{4} \mathrm{SR}$	10	-	-	ns	-
SWDIO output valid time after SWDCLK rising edge	$t_{5} \mathrm{CC}$	-	-	68	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
SWDIO output hold time	$t_{6} \mathrm{CC}$	4	-	-	ns	
SWD from SWDCLK rising edge			-	-	62	ns
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$						

Figure 21 SWD Timing

3.3.5 SPD Timing Requirements

The optimum SPD decision time between 0_{B} and 1_{B} is $0.75 \mu \mathrm{~s}$. With this value the system has maximum robustness against frequency deviations of the sampling clock on tool and on device side. However it is not always possible to exactly match this value with the given constraints for the sample clock. For instance for a oversampling rate of 4 , the sample clock will be 8 MHz and in this case the closest possible effective decision time is 5.5 clock cycles $(0.69 \mu \mathrm{~s})$.

Table 26 Optimum Number of Sample Clocks for SPD

Sample Freq.	Sampling Factor	Sample Clocks $\mathbf{0}_{\mathbf{B}}$	Sample Clocks $\mathbf{1}_{\mathbf{B}}$	Effective Decision Time $^{\mathbf{1})}$	Remark
8 MHz	4	1 to 5	6 to 12	$0.69 \mu \mathrm{~s}$	The other closest option $(0.81 \mu s)$ for the effective decision time is less robust.

1) Nominal sample frequency period multiplied with $0.5+$ (max. number of 0_{B} sample clocks)

For a balanced distribution of the timing robustness of SPD between tool and device, the timing requirements for the tool are:

- Frequency deviation of the sample clock is +/-5\%
- Effective decision time is between $0.69 \mu \mathrm{~s}$ and $0.75 \mu \mathrm{~s}$ (calculated with nominal sample frequency)

3.3.6 Peripheral Timings

Note: These parameters are not subject to production test, but verified by design and/or characterization.

3.3.6.1 Synchronous Serial Interface (USIC SSC) Timing

The following parameters are applicable for a USIC channel operated in SSC mode. Note: Operating Conditions apply.

Table 27 USIC SSC Master Mode Timing

Parameter	Symbol	Values			Unit	Note I Test Condition	
		Min.	Typ.	Max.		ns	
SCLKOUT master clock period	$t_{\text {CLK }}$ CC	62.5	-	-	ns		
Slave select output SELO active to first SCLKOUT transmit edge	t_{1}	CC	80	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t_{2}	CC	0	-	-	ns	
Data output DOUT[3:0] valid time	t_{3}	CC	-10	-	10	ns	
Receive data input DXO/DX[5:3] setup time to	t_{4}	SR	80	-	-	ns	
SCLKOUT receive edge							
Data input DX0/DX[5:3] hold time from SCLKOUT receive edge	t_{5}	SR	0	-	-	ns	

Table $28 \quad$ USIC SSC Slave Mode Timing

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
DX1 slave clock period	$t_{\text {CLK }} \mathrm{SR}$	125	-	-	ns	
Select input DX2 setup to first clock input DX1 transmit edge ${ }^{1)}$	t_{10} SR	10	-	-	ns	
Select input DX2 hold after last clock input DX1 receive edge ${ }^{1)}$	$t_{11} \quad$ SR	10	-	-	ns	
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ${ }^{1)}$	t_{12} SR	10	-	-	ns	
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ${ }^{1)}$	$t_{13} \quad$ SR	10	-	-	ns	
Data output DOUT[3:0] valid time	$t_{14} \quad \mathrm{CC}$	-	-	80	ns	

1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN $=0$).

XMC1300 AB-Step XMC1000 Family

Electrical Parameters

Figure 22 USIC - SSC Master/Slave Mode Timing
Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

XMC1300 AB-Step
XMC1000 Family
Electrical Parameters

3.3.6.2 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode.
Note: Operating Conditions apply.
Table 29 USIC IIC Standard Mode Timing ${ }^{1)}$

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Fall time of both SDA and SCL	t_{1} CC/SR	-	-	300	ns	
Rise time of both SDA and SCL	t_{2} CC/SR	-	-	1000	ns	
Data hold time	t_{3} CC/SR	0	-	-	$\mu \mathrm{s}$	
Data set-up time	t_{4} CC/SR	250	-	-	ns	
LOW period of SCL clock	t_{5} CC/SR	4.7	-	-	$\mu \mathrm{s}$	
HIGH period of SCL clock	t_{6} CC/SR	4.0	-	-	$\mu \mathrm{s}$	
Hold time for (repeated) START condition	t_{7} CC/SR	4.0	-	-	$\mu \mathrm{s}$	
Set-up time for repeated START condition	t_{8} CC/SR	4.7	-	-	$\mu \mathrm{s}$	
Set-up time for STOP condition	t_{9} CC/SR	4.0	-	-	$\mu \mathrm{s}$	
Bus free time between a STOP and START condition	t_{10} CC/SR	4.7	-	-	$\mu \mathrm{s}$	
Capacitive load for each bus line	C_{b} SR	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at $100 \mathrm{kbit} / \mathrm{s}$, approximately 2 kOhm for operation at $400 \mathrm{kbit} / \mathrm{s}$.

Table $30 \quad$ USIC IIC Fast Mode Timing ${ }^{1)}$

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Fall time of both SDA and SCL	$\begin{aligned} & t_{1} \\ & \mathrm{C} / \mathrm{SR} \end{aligned}$	$\begin{aligned} & 20+ \\ & 0.1^{\star} C_{b} \\ & 2) \end{aligned}$	-	300	ns	
Rise time of both SDA and SCL	$\begin{aligned} & t_{2} \\ & \mathrm{C} / \mathrm{SR} \end{aligned}$	$\begin{aligned} & 20+ \\ & 0.1 * C_{b} \end{aligned}$	-	300	ns	
Data hold time	t_{3} CC/SR	0	-	-	$\mu \mathrm{s}$	
Data set-up time	$\begin{aligned} & t_{4} \\ & \mathrm{CC} / \mathrm{SR} \end{aligned}$	100	-	-	ns	
LOW period of SCL clock	t_{5} CC/SR	1.3	-	-	$\mu \mathrm{s}$	
HIGH period of SCL clock	t_{6} CC/SR	0.6	-	-	$\mu \mathrm{s}$	
Hold time for (repeated) START condition	$\begin{aligned} & t_{7} \\ & \mathrm{C} / \mathrm{SR} \end{aligned}$	0.6	-	-	$\mu \mathrm{s}$	
Set-up time for repeated START condition	$\begin{aligned} & t_{8} \\ & \mathrm{CC} / \mathrm{SR} \end{aligned}$	0.6	-	-	$\mu \mathrm{s}$	
Set-up time for STOP condition	t_{9} CC/SR	0.6	-	-	$\mu \mathrm{s}$	
Bus free time between a STOP and START condition	$\begin{aligned} & t_{10} \\ & \mathrm{CC} / \mathrm{SR} \end{aligned}$	1.3	-	-	$\mu \mathrm{s}$	
Capacitive load for each bus line	$\mathrm{C}_{\mathrm{b}} \mathrm{SR}$	-	-	400	pF	

1) Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at $100 \mathrm{kbit} / \mathrm{s}$, approximately 2 kOhm for operation at $400 \mathrm{kbit} / \mathrm{s}$.
2) C_{b} refers to the total capacitance of one bus line in pF .

XMC1300 AB-Step
XMC1000 Family
Electrical Parameters

Figure 23 USIC IIC Stand and Fast Mode Timing

3.3.6.3 Inter-IC Sound (IIS) Interface Timing

The following parameters are applicable for a USIC channel operated in IIS mode.
Note: Operating Conditions apply.

Table 31 USIC IIS Master Transmitter Timing

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Clock period	$t_{1} \mathrm{CC}$	$2 / f_{\text {MCLK }}$	-	-	ns	$V_{\text {DDP }} \geq 3 \mathrm{~V}$
		$4 / f_{\text {MCLK }}$	-	-	ns	$V_{\text {DDP }}<3 \mathrm{~V}$
Clock HIGH	$t_{2} \mathrm{CC}$	$\begin{aligned} & 0.35 \mathrm{x} \\ & t_{1 \text { min }} \\ & \hline \end{aligned}$	-	-	ns	
Clock Low	$t_{3} \mathrm{CC}$	$\begin{array}{\|l} \hline 0.35 \mathrm{x} \\ t_{1 \text { min }} \\ \hline \end{array}$	-	-	ns	
Hold time	$t_{4} \mathrm{CC}$	0	-	-	ns	
Clock rise time	$t_{5} \mathrm{CC}$	-	-	$\begin{aligned} & 0.15 \mathrm{x} \\ & t_{1 \text { min }} \\ & \hline \end{aligned}$	ns	

XMC1300 AB-Step
XMC1000 Family
Electrical Parameters

Figure 24 USIC IIS Master Transmitter Timing

Table 32 USIC IIS Slave Receiver Timing

Parameter	Symbol	Values			Unit	Note I Test Condition
		Min.	Typ.	Max.		
Clock period	$t_{6} \mathrm{SR}$	$4 / f_{\text {MCLK }}$	-	-	ns	
Clock HIGH	$t 7 \mathrm{SR}$	$\begin{aligned} & 0.35 x \\ & t_{6 \text { min }} \\ & \hline \end{aligned}$	-	-	ns	
Clock Low	$t 8$ SR	$\begin{aligned} & 0.35 \mathrm{x} \\ & t_{6} \mathrm{~min} \end{aligned}$	-	-	ns	
Set-up time	$t 9$ SR	$\begin{aligned} & 0.2 \mathrm{x} \\ & t_{6} \mathrm{~min} \end{aligned}$	-	-	ns	
Hold time	$t 10$ SR	10	-	-	ns	

Figure 25 USIC IIS Slave Receiver Timing

XMC1300 AB-Step XMC1000 Family

Package and Reliability

4 Package and Reliability

The XMC1300 is a member of the XMC1000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.
Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.
If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

4.1 Package Parameters

Table 33 provides the thermal characteristics of the packages used in XMC1300.

Table 33 Thermal Characteristics of the Packages

Parameter	Symbol	Limit Values		Unit	Package Types
		Min.	Max.		
Exposed Die Pad Dimensions	$\begin{aligned} & E x \times E y \\ & C C \end{aligned}$	-	2.7×2.7	mm	PG-VQFN-24-19
		-	3.7×3.7	mm	PG-VQFN-40-13
Thermal resistance Junction-Ambient	$R_{\text {@JA }} \mathrm{CC}$	-	104.6	K/W	PG-TSSOP-16-8 ${ }^{1)}$
		-	83.2	K/W	PG-TSSOP-28-16 ${ }^{1)}$
		-	70.3	K/W	PG-TSSOP-38-9 ${ }^{1)}$
		-	46.0	K/W	PG-VQFN-24-19 ${ }^{1)}$
		-	38.4	K/W	PG-VQFN-40-13 ${ }^{1)}$

1) Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground $V_{\text {SSP }}$, independent of EMC and thermal requirements.

4.1.1 Thermal Considerations

When operating the XMC1300 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.
The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance $R_{\text {®JA }}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed $115{ }^{\circ} \mathrm{C}$.

Package and Reliability

The difference between junction temperature and ambient temperature is determined by $\Delta \mathrm{T}=\left(P_{\text {INT }}+P_{\text {IOSTAT }}+P_{\text {IODYN }}\right) \times R_{\text {ӨJA }}$
The internal power consumption is defined as
$P_{\text {INT }}=V_{\mathrm{DDP}} \times I_{\mathrm{DDP}}$ (switching current and leakage current).
The static external power consumption caused by the output drivers is defined as
$P_{\text {IOSTAT }}=\Sigma\left(\left(V_{\text {DDP }}-V_{\text {OH }}\right) \times I_{\text {OH }}\right)+\Sigma\left(V_{\text {OL }} \times I_{\text {OL }}\right)$
The dynamic external power consumption caused by the output drivers ($P_{\text {IODYN }}$) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce $V_{\text {DDP }}$, if possible in the system
- Reduce the system frequency
- Reduce the number of output pins
- Reduce the load on active output drivers

4.2 Package Outlines

Figure 26 PG-TSSOP-38-9

Figure 27

Figure 28 PG-TSSOP-16-8

Package and Reliability

Figure 29 PG-VQFN-24-19

Package and Reliability

Figure 30 PG-VQFN-40-13
All dimensions in mm.

5 Quality Declaration

Table 34 shows the characteristics of the quality parameters in the XMC1300.
Table 34 Quality Parameters

Parameter	Symbol	Limit Values		Unit	Notes
		Min.	Max.		
ESD susceptibility according to Human Body Model (HBM)	V_{HBM} SR	-	2000	V	Conforming to EIA/JESD22- A114-B
ESD susceptibility according to Charged Device Model (CDM) pins	$V_{\text {CDM }}$ SR	-	500	V	Conforming to JESD22-C101-C
Moisture sensitivity level	MSL CC	-	3	-	JEDEC J-STD-020D
Soldering temperature	$T_{\text {SDR }}$ SR	-	260	${ }^{\circ} \mathrm{C}$	Profile according to JEDEC J-STD-020D

ww w.infineon.com

Published by Infineon Technologies AG

[^0]: 1) Some pins in a package may be connected to more than one channel. For the detailed mapping see the Port I/O Function table.
[^1]: 1) Total Analog Comparator Delay is the sum of Propagation Delay and Filter Delay.
