CREE -
 C4D02120E
 Silicon Carbide Schottky Diode Z-REC ${ }^{\circledR}$ Rectifier

Features

- 1.2 kV Schottky Rectifier
- Zero Reverse Recovery Current
- High-Frequency Operation
- Temperature-Independent Switching
- Extremely Fast Switching
- Positive Temperature Coefficient on V_{F}

Benefits

- Replace Bipolar with Unipolar Rectifiers
- Essentially No Switching Losses
- Higher Efficiency
- Reduction of Heat Sink Requirements
- Parallel Devices Without Thermal Runaway

Applications

- Switch Mode Power Supplies (SMPS)
- Boost Diodes in PFC or DC/DC stages

Package

TO-252-2

Part Number	Package	Marking
C4D02120E	TO-252-2	C4D02120

- Free Wheeling Diodes in Inverter stages
- LED Lighting Power Supplies
- AC/DC Converters

Maximum Ratings ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Value	Unit	Test Conditions	Note
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	1200	V		
$\mathrm{V}_{\text {RSM }}$	Surge Peak Reverse Voltage	1300	V		
V_{DC}	DC Blocking Voltage	1200	V		
I_{F}	Maximum DC Current	$\begin{gathered} \hline 10 \\ 5 \\ 2 \\ \hline \end{gathered}$	A	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ}{ }^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=135^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=165^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Fig. 3
$\mathrm{I}_{\text {FRM }}$	Repetitive Peak Forward Surge Current	$\begin{gathered} 13 \\ 8.4 \end{gathered}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine pulse $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine pulse	
$\mathrm{I}_{\text {FSM }}$	Non-Repetitive Peak Forward Surge Current	$\begin{gathered} \hline 19 \\ 16.5 \end{gathered}$	A	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine pulse $\mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$, Half Sine pulse	Fig. 8
$\mathrm{I}_{\mathrm{F} \text { Max }}$	Non-Repetitive Peak Forward Current	$\begin{aligned} & 200 \\ & 160 \end{aligned}$	A	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{P}}=10 \mu \mathrm{~s} \text {, Pulse } \\ & \mathrm{T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mu \mathrm{~s} \text {, Pulse } \end{aligned}$	Fig. 8
$\mathrm{P}_{\text {tot }}$	Power Dissipation	$\begin{aligned} & 60 \\ & 26 \end{aligned}$	W	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=110^{\circ} \mathrm{C} \end{aligned}$	Fig. 4
dV/dt	Diode dV/dt ruggedness	200	V/ns	$\mathrm{V}_{\mathrm{R}}=0-650 \mathrm{~V}$	
$\int i^{2} \mathrm{dt}$	$i^{2} \mathrm{t}$ value	$\begin{aligned} & 1.8 \\ & 1.4 \end{aligned}$	A^{2} S	$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{C}}=110^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms} \end{aligned}$	
$\mathrm{T}_{\mathrm{j}}, \mathrm{T}_{\text {stg }}$	Operating Junction and Storage Temperature	$\begin{aligned} & -55 \text { to } \\ & +175 \end{aligned}$	${ }^{\circ} \mathrm{C}$		

CREE 슥

Electrical Characteristics

Symbol	Parameter	Typ.	Max.	Unit	Test Conditions	Note
V_{F}	Forward Voltage	$\begin{aligned} & 1.4 \\ & 1.9 \end{aligned}$	$\begin{gathered} 1.8 \\ 3 \end{gathered}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \end{aligned}$	Fig. 1
I_{R}	Reverse Current	$\begin{aligned} & 10 \\ & 40 \\ & \hline \end{aligned}$	$\begin{gathered} 50 \\ 150 \end{gathered}$	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=1200 \vee \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{R}}=1200 \vee \mathrm{~T}_{\mathrm{J}}=175^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Fig. 2
Q_{C}	Total Capacitive Charge	11		nC	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=800 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=2 \mathrm{~A} \\ & \mathrm{~d} i / \mathrm{d} t=200 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C} \end{aligned}$	Fig. 5
C	Total Capacitance	$\begin{gathered} 167 \\ 11 \\ 8 \\ \hline \end{gathered}$		pF	$\begin{aligned} & \mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=400 \mathrm{~V}_{1} \mathrm{~T}_{\mathrm{J}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{R}}=800 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	Fig. 6
E_{c}	Capacitance Stored Energy	3.2		$\mu \mathrm{J}$	$\mathrm{V}_{\mathrm{R}}=800 \mathrm{~V}$	Fig. 7

Note: This is a majority carrier diode, so there is no reverse recovery charge.

Thermal Characteristics

Symbol	Parameter	Typ.	Unit	Note
$\mathrm{R}_{\theta נ \mathrm{C}}$	Thermal Resistance from Junction to Case	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Fig. 9

Typical Performance

Figure 1. Forward Characteristics

Figure 2. Reverse Characteristics

CREE -

Typical Performance

Figure 3. Current Derating

Figure 5. Recovery Charge vs. Reverse Voltage

Figure 4. Power Derating

Figure 6. Capacitance vs. Reverse Voltage

CREE -

Typical Performance

Figure 7. Typical Capacitance Stored Energy

Figure 8. Non-repetitive peak forward surge current versus pulse duration (sinusoidal waveform)

Figure 9. Transient Thermal Impedance

CREE -

Package Dimensions

Package TO-252-2

SYMBOL	MILLIMETERS		
	MIN	MAX	
A	2.159	2.413	
A1	0	0.13	
b	0.64	0.89	
b2	0.653	1.143	
b3	5.004	5.6	
c	0.457	0.61	
c2	0.457	0.864	
D	5.867	6.248	
D1	5.21	-	
E	6.35	7.341	
E1	4.32	-	
e	4.58 BSC		
H	9.65	10.414	
L	1.106	1.78	
L2	0.51 BSC		
L3	0.889	1.27	
L4	0.64	1.01	
θ	0°	8°	
PIN 1 O			
PIN 2 O			

Recommended Solder Pad Layout

Part Number	Package	Marking
C4D02120E	TO-252-2	C4D02120

TO-252-2

Note: Recommended soldering profiles can be found in the applications note here: http://www.wolfspeed.com/power_app_notes/soldering

$$
\begin{gathered}
\mathrm{V}_{\mathrm{fT}}=\mathrm{V}_{\mathrm{T}}+\mathrm{If} * \mathrm{R}_{\mathrm{T}} \\
\mathrm{~V}_{\mathrm{T}}=0.9592+\left(\mathrm{T}_{3} *-1.20 * 10^{-3}\right) \\
\mathrm{R}_{\mathrm{T}}=0.1673+\left(\mathrm{T}_{J} * 2.10^{*} 10^{-3}\right)
\end{gathered}
$$

Note: $\mathbf{T}_{\mathrm{J}}=$ Diode Junction Temperature in Degrees Celsius, valid from $25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$

Notes

- RoHS Compliance

The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Wolfspeed representative or from the Product Ecology section of our website at http:// www.wolfspeed.com/power/tools-and-support/product-ecology.

- REACh Compliance

REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future, please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request.

- This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, or air traffic control systems.

Related Links

- Cree SiC Schottky diode portfolio: http://www.wolfspeed.com/Power/Products\#SiCSchottkyDiodes
- Schottky diode Spice models: http://www.wolfspeed.com/power/tools-and-support/DIODE-model-request2
- SiC MOSFET and diode reference designs: http://go.pardot.com/l/101562/2015-07-31/349i

