SILICON LABS

C8051F320/1

Full Speed USB, 16 k ISP FLASH MCU Family

Analog Peripherals

- 10-Bit ADC

- Up to 200 ksps
- Up to 17 or 13 external single-ended or differential inputs
- VREF from external pin, internal reference, or VDD
- Built-in temperature sensor
- External conversion start input
- Two Comparators
- Internal Voltage Reference
- POR/Brown-Out Detector

USB Function Controller

- USB specification 2.0 compliant
- Full speed (12 Mbps) or low speed (1.5 Mbps) operation
- Integrated clock recovery; no external crystal required for full speed or low speed
- Supports eight flexible endpoints
- 1 kB USB buffer memory
- Integrated transceiver; no external resistors required

On-Chip Debug

- On-chip debug circuitry facilitates full speed, non-intrusive in-system debug (no emulator required)
- Provides breakpoints, single stepping, inspect/modify memory and registers
- Superior performance to emulation systems using ICE-chips, target pods, and sockets
Voltage Regulator Input: 4.0 to 5.25 V

High Speed $8051 \mu \mathrm{C}$ Core

- Pipelined instruction architecture; executes 70\% of instructions in 1 or 2 system clocks
- Up to 25 MIPS throughput with 25 MHz clock
- Expanded interrupt handler

Memory

- 2304 bytes internal RAM ($1 k+256+1 k$ USB FIFO)
- 16 kB Flash; In-system programmable in 512-byte sectors
Digital Peripherals
- 25/21 Port I/O; All 5 V tolerant with high sink current
- Hardware enhanced SPI ${ }^{\text {TM }}$, enhanced UART, and SMBus ${ }^{\text {TM }}$ serial ports
- Four general purpose 16-bit counter/timers
- 16-bit programmable counter array (PCA) with five capture/compare modules
- Real time clock mode using external clock source and PCA or timer
Clock Sources
- Internal Oscillator: 0.25\% accuracy with clock recovery enabled. Supports all USB and UART modes
- External oscillator: Crystal, RC, C, or Clock (1 or 2 pin modes)
- Can switch between clock sources on-the-fly; useful in power saving strategies
RoHS Compliant Packages
- 32-pin LQFP (C8051F320)
- 28-pin QFN (C8051F321)

Temperature Range: $\mathbf{- 4 0}$ to $+85{ }^{\circ} \mathrm{C}$

C8051F320/1

Table of Contents

1. System Overview 15
1.1. CIP-51 ${ }^{\text {™ }}$ Microcontroller Core 18
1.1.1. Fully 8051 Compatible 18
1.1.2. Improved Throughput 18
1.1.3. Additional Features 18
1.2. On-Chip Memory 19
1.3. Universal Serial Bus Controller 20
1.4. Voltage Regulator 21
1.5. On-Chip Debug Circuitry 21
1.6. Programmable Digital I/O and Crossbar 22
1.7. Serial Ports 23
1.8. Programmable Counter Array 23
1.9. 10-Bit Analog to Digital Converter 24
1.10.Comparators 25
2. Absolute Maximum Ratings 27
3. Global Electrical Characteristics 28
4. Pinout and Package Definitions 30
5. 10-Bit ADC (ADC0). 39
5.1. Analog Multiplexer 40
5.2. Temperature Sensor 41
5.3. Modes of Operation 43
5.3.1. Starting a Conversion. 43
5.3.2. Tracking Modes 44
5.3.3. Settling Time Requirements 45
5.4. Programmable Window Detector 50
5.4.1. Window Detector In Single-Ended Mode 52
5.4.2. Window Detector In Differential Mode 53
6. Voltage Reference 55
7. Comparators 57
8. Voltage Regulator (REGO) 67
8.1. Regulator Mode Selection. 67
8.2. VBUS Detection 67
9. CIP-51 Microcontroller 71
9.1. Instruction Set 72
9.1.1. Instruction and CPU Timing 72
9.1.2. MOVX Instruction and Program Memory 73
9.2. Memory Organization 77
9.2.1. Program Memory 77
9.2.2. Data Memory 78
9.2.3. General Purpose Registers 78
9.2.4. Bit Addressable Locations 78
9.2.5. Stack 78
9.2.6. Special Function Registers 79

C8051F320/1

9.2.7. Register Descriptions 83
9.3. Interrupt Handler 87
9.3.1. MCU Interrupt Sources and Vectors 87
9.3.2. External Interrupts 88
9.3.3. Interrupt Priorities 88
9.3.4. Interrupt Latency 89
9.3.5. Interrupt Register Descriptions 90
9.4. Power Management Modes 97
9.4.1. Idle Mode. 97
9.4.2. Stop Mode 97
10. Reset Sources 99
10.1.Power-On Reset 100
10.2.Power-Fail Reset / VDD Monitor 101
10.3.External Reset 102
10.4.Missing Clock Detector Reset 102
10.5.Comparator0 Reset 102
10.6.PCA Watchdog Timer Reset 102
10.7.Flash Error Reset 102
10.8.Software Reset 103
10.9.USB Reset 103
11. Flash Memory 106
11.1.Programming The Flash Memory 106
11.1.1.Flash Lock and Key Functions 106
11.1.2.Flash Erase Procedure 106
11.1.3.Flash Write Procedure 107
11.2.Non-volatile Data Storage 107
11.3.Security Options 108
11.4.Flash Write and Erase Guidelines 110
11.4.1.VDD Maintenance and the VDD Monitor 110
11.4.2.16.4.2 PSWE Maintenance 111
11.4.3.System Clock 111
12. External RAM 114
12.1.Accessing User XRAM 114
12.2.Accessing USB FIFO Space 114
13. Oscillators 116
13.1.Programmable Internal Oscillator 116
13.1.1.Programming the Internal Oscillator on C8051F320/1 Devices 117
13.1.2.Internal Oscillator Suspend Mode 118
13.2.External Oscillator Drive Circuit 119
13.2.1.Clocking Timers Directly Through the External Oscillator 119
13.2.2.External Crystal Example 119
13.2.3.External RC Example. 120
13.2.4.External Capacitor Example 120
13.3.4x Clock Multiplier 122
13.4.System and USB Clock Selection 123
13.4.1.System Clock Selection 123
13.4.2.USB Clock Selection 123
14. Port Input/Output 126
14.1.Priority Crossbar Decoder 128
14.2.Port I/O Initialization 130
14.3.General Purpose Port I/O 132
15. Universal Serial Bus Controller (USB) 139
15.1.Endpoint Addressing 140
15.2.USB Transceiver 140
15.3.USB Register Access 142
15.4.USB Clock Configuration 146
15.5.FIFO Management 147
15.5.1.FIFO Split Mode 147
15.5.2.FIFO Double Buffering 148
15.5.3.FIFO Access 148
15.6.Function Addressing 149
15.7.Function Configuration and Control 149
15.8. Interrupts 152
15.9.The Serial Interface Engine 157
15.10.Endpoint0 157
15.10.1.Endpoint0 SETUP Transactions 158
15.10.2.Endpoint0 IN Transactions 158
15.10.3.Endpoint0 OUT Transactions 159
15.11.Configuring Endpoints1-3 161
15.12.Controlling Endpoints1-3 IN 161
15.12.1.Endpoints1-3 IN Interrupt or Bulk Mode 161
15.12.2.Endpoints1-3 IN Isochronous Mode 162
15.13.Controlling Endpoints1-3 OUT 164
15.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode 164
15.13.2.Endpoints1-3 OUT Isochronous Mode 165
16. SMBus 169
16.1.Supporting Documents 170
16.2.SMBus Configuration. 170
16.3. SMBus Operation 170
16.3.1.Arbitration 171
16.3.2.Clock Low Extension 171
16.3.3.SCL Low Timeout. 171
16.3.4.SCL High (SMBus Free) Timeout 172
16.4.Using the SMBus 172
16.4.1.SMBus Configuration Register 173
16.4.2.SMBOCN Control Register 176
16.4.3.Data Register 179
16.5.SMBus Transfer Modes 180
16.5.1.Master Transmitter Mode 180
16.5.2.Master Receiver Mode 181

C8051F320/1

16.5.3.Slave Receiver Mode 182
16.5.4.Slave Transmitter Mode 183
16.6.SMBus Status Decoding 184
17. UART0 187
17.1.Enhanced Baud Rate Generation 188
17.2.Operational Modes 188
17.2.1.8-Bit UART 189
17.2.2.9-Bit UART 190
17.3.Multiprocessor Communications 190
18. Enhanced Serial Peripheral Interface (SPIO) 195
18.1.Signal Descriptions 196
18.1.1.Master Out, Slave In (MOSI) 196
18.1.2.Master In, Slave Out (MISO) 196
18.1.3.Serial Clock (SCK) 196
18.1.4.Slave Select (NSS) 196
18.2. SPIO Master Mode Operation 197
18.3.SPIO Slave Mode Operation 198
18.4.SPIO Interrupt Sources 199
18.5.Serial Clock Timing 199
18.6.SPI Special Function Registers 202
19.Timers 209
19.1.Timer 0 and Timer 1 209
19.1.1.Mode 0: 13-bit Counter/Timer 209
19.1.2.Mode 1: 16-bit Counter/Timer 211
19.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload 211
19.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only) 212
19.2.Timer 2 217
19.2.1.16-bit Timer with Auto-Reload 217
19.2.2.8-bit Timers with Auto-Reload 218
19.2.3.USB Start-of-Frame Capture 219
19.3.Timer 3 222
19.3.1.16-bit Timer with Auto-Reload 222
19.3.2.8-bit Timers with Auto-Reload 223
19.3.3.USB Start-of-Frame Capture. 224
20. Programmable Counter Array (PCAO) 227
20.1.PCA Counter/Timer 228
20.2.Capture/Compare Modules 229
20.2.1.Edge-triggered Capture Mode. 230
20.2.2.Software Timer (Compare) Mode 232
20.2.3. High Speed Output Mode 233
20.2.4.Frequency Output Mode 234
20.2.5.8-Bit Pulse Width Modulator Mode 235
20.2.6.16-Bit Pulse Width Modulator Mode. 236
20.3.Watchdog Timer Mode 236
20.3.1.Watchdog Timer Operation 237
20.3.2.Watchdog Timer Usage 238
20.4.Register Descriptions for PCA 239
21. C2 Interface 245
21.1.C2 Interface Registers 245
21.2.C2 Pin Sharing 247

C8051F320/1

C8051F320/1

List of Figures and Tables

1. System Overview
Table 1.1. Product Selection Guide 16
Figure 1.1. C8051F320 Block Diagram 16
Figure 1.2. C8051F321 Block Diagram 17
Figure 1.3. On-Chip Clock and Reset 19
Figure 1.4. On-Board Memory Map 20
Figure 1.5. USB Controller Block Diagram 21
Figure 1.6. Development/In-System Debug Diagram 22
Figure 1.7. Digital Crossbar Diagram 23
Figure 1.8. PCA Block Diagram 24
Figure 1.9. PCA Block Diagram 24
Figure 1.10. 10-Bit ADC Block Diagram 25
Figure 1.11. Comparator0 Block Diagram 26
2. Absolute Maximum Ratings
Table 2.1. Absolute Maximum Ratings 27
3. Global Electrical Characteristics
Table 3.1. Global Electrical Characteristics 28
Table 3.2. Index to Electrical Characteristics Tables 29
4. Pinout and Package Definitions
Table 4.1. Pin Definitions for the C8051F320/1 30
Figure 4.1. LQFP-32 Pinout Diagram (Top View) 32
Figure 4.2. QFN-28 Pinout Diagram (Top View) 36
5. 10-Bit ADC (ADC0)
Figure 5.1. ADC0 Functional Block Diagram 39
Figure 5.2. Temperature Sensor Transfer Function 41
Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 42
Figure 5.4. 10-Bit ADC Track and Conversion Example Timing 44
Figure 5.5. ADC0 Equivalent Input Circuits 45
Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data 52
Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data 52
Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data 53
Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data 53
Table 5.1. ADC0 Electrical Characteristics 54
6. Voltage Reference
Figure 6.1. Voltage Reference Functional Block Diagram 55
Table 6.1. Voltage Reference Electrical Characteristics 56
7. Comparators
Figure 7.1. Comparator0 Functional Block Diagram 57
Figure 7.2. Comparator1 Functional Block Diagram 58
Figure 7.3. Comparator Hysteresis Plot 59
Table 7.1. Comparator Electrical Characteristics 66
8. Voltage Regulator (REG0)

C8051F320/1

Figure 8.1. External Capacitors for Voltage Regulator Input/Output 67
Table 8.1. Voltage Regulator Electrical Specifications 68
Figure 8.2. REG0 Configuration: USB Bus-Powered 68
Figure 8.3. REG0 Configuration: USB Self-Powered 69
Figure 8.4. REG0 Configuration: USB Self-Powered, Regulator Disabled 69
Figure 8.5. REG0 Configuration: No USB Connection 70
9. CIP-51 Microcontroller
Figure 9.1. CIP-51 Block Diagram 71
Table 9.1. CIP-51 Instruction Set Summary 73
Figure 9.2. Memory Map 77
Table 9.2. Special Function Register (SFR) Memory Map 79
Table 9.3. Special Function Registers 80
Table 9.4. Interrupt Summary 89
10. Reset Sources
Figure 10.1. Reset Sources 99
Figure 10.2. Power-On and VDD Monitor Reset Timing 100
Table 10.1. Reset Electrical Characteristics 105
11. Flash Memory
Table 11.1. Flash Electrical Characteristics 107
Figure 11.1. Flash Program Memory Map and Security Byte 108
Table 11.2. Flash Security Summary 109
12. External RAM
Figure 12.1. External Ram Memory Map 114
Figure 12.2. XRAM Memory Map Expanded View 115
13. Oscillators
Figure 13.1. Oscillator Diagram 116
Table 13.1. Typical USB Full Speed Clock Settings 123
Table 13.2. Typical USB Low Speed Clock Settings 124
Table 13.3. Internal Oscillator Electrical Characteristics 125
14. Port Input/Output
Figure 14.1. Port I/O Functional Block Diagram 126
Figure 14.2. Port I/O Cell Block Diagram 127
Figure 14.3. Crossbar Priority Decoder with No Pins Skipped 128
Figure 14.4. Crossbar Priority Decoder with Crystal Pins Skipped 129
Table 14.1. Port I/O DC Electrical Characteristics 138
15. Universal Serial Bus Controller (USB)
Figure 15.1. USBO Block Diagram 139
Table 15.1. Endpoint Addressing Scheme 140
Figure 15.2. USBO Register Access Scheme 142
Table 15.2. USB0 Controller Registers 144
Figure 15.3. USB FIFO Allocation 147
Table 15.3. FIFO Configurations 148
Table 15.4. USB Transceiver Electrical Characteristics 168
16. SMBus
Figure 16.1. SMBus Block Diagram 169
Figure 16.2. Typical SMBus Configuration 170
Figure 16.3. SMBus Transaction 171
Table 16.1. SMBus Clock Source Selection 173
Figure 16.4. Typical SMBus SCL Generation 174
Table 16.2. Minimum SDA Setup and Hold Times 174
Table 16.3. Sources for Hardware Changes to SMB0CN 178
Figure 16.5. Typical Master Transmitter Sequence 180
Figure 16.6. Typical Master Receiver Sequence 181
Figure 16.7. Typical Slave Receiver Sequence 182
Figure 16.8. Typical Slave Transmitter Sequence 183
Table 16.4. SMBus Status Decoding 184
17.UART0
Figure 17.1. UARTO Block Diagram 187
Figure 17.2. UARTO Baud Rate Logic 188
Figure 17.3. UART Interconnect Diagram 189
Figure 17.4. 8-Bit UART Timing Diagram 189
Figure 17.5. 9-Bit UART Timing Diagram 190
Figure 17.6. UART Multi-Processor Mode Interconnect Diagram 191
Table 17.1. Timer Settings for Standard Baud Rates Using The Internal Oscillator 194
18. Enhanced Serial Peripheral Interface (SPI0)
Figure 18.1. SPI Block Diagram 195
Figure 18.2. Multiple-Master Mode Connection Diagram 198
Figure 18.3. 3-Wire Single Master and Slave Mode Connection Diagram 198
Figure 18.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram 198
Figure 18.5. Master Mode Data/Clock Timing 200
Figure 18.6. Slave Mode Data/Clock Timing (CKPHA = 0) 200
Figure 18.7. Slave Mode Data/Clock Timing (CKPHA = 1) 201
Figure 18.8. SPI Master Timing (CKPHA = 0) 206
Figure 18.9. SPI Master Timing (CKPHA = 1) 206
Figure 18.10. SPI Slave Timing (CKPHA = 0) 207
Figure 18.11. SPI Slave Timing (CKPHA = 1) 207
Table 18.1. SPI Slave Timing Parameters 208
19. Timers
Figure 19.1. TO Mode 0 Block Diagram 210
Figure 19.2. T0 Mode 2 Block Diagram 211
Figure 19.3. T0 Mode 3 Block Diagram 212
Figure 19.4. Timer 2 16-Bit Mode Block Diagram 217
Figure 19.5. Timer 2 8-Bit Mode Block Diagram 218
Figure 19.6. Timer 2 SOF Capture Mode (T2SPLIT = '0’) 219
Figure 19.7. Timer 2 SOF Capture Mode (T2SPLIT = '1') 219
Figure 19.8. Timer 3 16-Bit Mode Block Diagram 222
Figure 19.9. Timer 3 8-Bit Mode Block Diagram 223
Figure 19.10. Timer 3 SOF Capture Mode (T3SPLIT = ‘0’) 224

C8051F320/1

Figure 19.11. Timer 3 SOF Capture Mode (T3SPLIT = '1') 224
20. Programmable Counter Array (PCA0)
Figure 20.1. PCA Block Diagram 227
Table 20.1. PCA Timebase Input Options 228
Figure 20.2. PCA Counter/Timer Block Diagram 228
Table 20.2. PCA0CPM Register Settings for PCA Capture/Compare Modules 229
Figure 20.3. PCA Interrupt Block Diagram 230
Figure 20.4. PCA Capture Mode Diagram 231
Figure 20.5. PCA Software Timer Mode Diagram 232
Figure 20.6. PCA High Speed Output Mode Diagram 233
Figure 20.7. PCA Frequency Output Mode 234
Figure 20.8. PCA 8-Bit PWM Mode Diagram 235
Figure 20.9. PCA 16-Bit PWM Mode 236
Figure 20.10. PCA Module 4 with Watchdog Timer Enabled 237
Table 20.3. Watchdog Timer Timeout Intervals ${ }^{1}$ 239
21. C2 Interface
Figure 21.1. Typical C2 Pin Sharing 247
List of Registers
SFR Definition 5.1. AMXOP: AMUXO Positive Channel Select 46
SFR Definition 5.2. AMXON: AMUXO Negative Channel Select 47
SFR Definition 5.3. ADC0CF: ADC0 Configuration 48
SFR Definition 5.4. ADCOH: ADC0 Data Word MSB 48
SFR Definition 5.5. ADC0L: ADC0 Data Word LSB 48
SFR Definition 5.6. ADCOCN: ADCO Control 49
SFR Definition 5.7. ADCOGTH: ADC0 Greater-Than Data High Byte 50
SFR Definition 5.8. ADCOGTL: ADC0 Greater-Than Data Low Byte 50
SFR Definition 5.9. ADCOLTH: ADC0 Less-Than Data High Byte 51
SFR Definition 5.10. ADCOLTL: ADC0 Less-Than Data Low Byte 51
SFR Definition 6.1. REFOCN: Reference Control 56
SFR Definition 7.1. CPTOCN: Comparator0 Control 60
SFR Definition 7.2. CPTOMX: Comparator0 MUX Selection 61
SFR Definition 7.3. CPTOMD: Comparator0 Mode Selection 62
SFR Definition 7.4. CPT1CN: Comparator1 Control 63
SFR Definition 7.5. CPT1MX: Comparator1 MUX Selection 64
SFR Definition 7.6. CPT1MD: Comparator1 Mode Selection 65
SFR Definition 8.1. REGOCN: Voltage Regulator Control 70
SFR Definition 9.1. DPL: Data Pointer Low Byte 83
SFR Definition 9.2. DPH: Data Pointer High Byte 84
SFR Definition 9.3. SP: Stack Pointer 84
SFR Definition 9.4. PSW: Program Status Word 85
SFR Definition 9.5. ACC: Accumulator 86
SFR Definition 9.6. B: B Register 86
SFR Definition 9.7. IE: Interrupt Enable 91
SFR Definition 9.8. IP: Interrupt Priority 92
SFR Definition 9.9. EIE1: Extended Interrupt Enable 1 93
SFR Definition 9.10. EIP1: Extended Interrupt Priority 1 94
SFR Definition 9.11. EIE2: Extended Interrupt Enable 2 95
SFR Definition 9.12. EIP2: Extended Interrupt Priority 2 95
SFR Definition 9.13. IT01CF: INT0/INT1 Configuration 96
SFR Definition 9.14. PCON: Power Control 98
SFR Definition 10.1. VDMOCN: VDD Monitor Control 101
SFR Definition 10.2. RSTSRC: Reset Source 104
SFR Definition 11.1. PSCTL: Program Store R/W Control 112
SFR Definition 11.2. FLKEY: Flash Lock and Key 112
SFR Definition 11.3. FLSCL: Flash Scale 113
SFR Definition 12.1. EMIOCN: External Memory Interface Control 115
SFR Definition 13.1. OSCICN: Internal Oscillator Control 118
SFR Definition 13.2. OSCICL: Internal Oscillator Calibration 118
SFR Definition 13.3. OSCXCN: External Oscillator Control 121
SFR Definition 13.4. CLKMUL: Clock Multiplier Control 122
SFR Definition 13.5. CLKSEL: Clock Select 124

C8051F320/1

SFR Definition 14.1. XBR0: Port I/O Crossbar Register 0 131
SFR Definition 14.2. XBR1: Port I/O Crossbar Register 1 132
SFR Definition 14.3. P0: Port0 Register 133
SFR Definition 14.4. POMDIN: Port0 Input Mode Register 133
SFR Definition 14.5. POMDOUT: Port0 Output Mode Register 133
SFR Definition 14.6. POSKIP: Port0 Skip Register 134
SFR Definition 14.7. P1: Port1 Register 134
SFR Definition 14.8. P1MDIN: Port1 Input Mode Register 134
SFR Definition 14.9. P1MDOUT: Port1 Output Mode Register 135
SFR Definition 14.10. P1SKIP: Port1 Skip Register 135
SFR Definition 14.11. P2: Port2 Register 135
SFR Definition 14.12. P2MDIN: Port2 Input Mode Register 136
SFR Definition 14.13. P2MDOUT: Port2 Output Mode Register 136
SFR Definition 14.14. P2SKIP: Port2 Skip Register 136
SFR Definition 14.15. P3: Port3 Register 137
SFR Definition 14.16. P3MDIN: Port3 Input Mode Register 137
SFR Definition 14.17. P3MDOUT: Port3 Output Mode Register 137
SFR Definition 15.1. USB0XCN: USB0 Transceiver Control 141
SFR Definition 15.2. USBOADR: USBO Indirect Address 143
SFR Definition 15.3. USBODAT: USB0 Data 144
USB Register Definition 15.4. INDEX: USB0 Endpoint Index 145
USB Register Definition 15.5. CLKREC: Clock Recovery Control 146
USB Register Definition 15.6. FIFOn: USB0 Endpoint FIFO Access 148
USB Register Definition 15.7. FADDR: USB0 Function Address 149
USB Register Definition 15.8. POWER: USB0 Power 151
USB Register Definition 15.9. FRAMEL: USB0 Frame Number Low 152
USB Register Definition 15.10. FRAMEH: USB0 Frame Number High 152
USB Register Definition 15.11. IN1INT: USBO IN Endpoint Interrupt 153
USB Register Definition 15.12. OUT1INT: USB0 Out Endpoint Interrupt 154
USB Register Definition 15.13. CMINT: USB0 Common Interrupt 155
USB Register Definition 15.14. IN1IE: USBO IN Endpoint Interrupt Enable 156
USB Register Definition 15.15. OUT1IE: USB0 Out Endpoint Interrupt Enable 156
USB Register Definition 15.16. CMIE: USB0 Common Interrupt Enable 157
USB Register Definition 15.17. EOCSR: USB0 Endpoint0 Control 160
USB Register Definition 15.18. E0CNT: USB0 Endpoint 0 Data Count 161
USB Register Definition 15.19. EINCSRL: USBO IN Endpoint Control Low Byte 163
USB Register Definition 15.20. EINCSRH: USBO IN Endpoint Control High Byte 164
USB Register Definition 15.21. EOUTCSRL: USB0 OUT Endpoint Control High Byte166USB Register Definition 15.22. EOUTCSRH: USB0 OUT Endpoint Control Low Byte167
USB Register Definition 15.23. EOUTCNTL: USB0 OUT Endpoint Count Low 167
USB Register Definition 15.24. EOUTCNTH: USBO OUT Endpoint Count High 167
SFR Definition 16.1. SMB0CF: SMBus Clock/Configuration 175
SFR Definition 16.2. SMB0CN: SMBus Control 177
SFR Definition 16.3. SMB0DAT: SMBus Data 179
SFR Definition 17.1. SCONO: Serial Port 0 Control 192
SFR Definition 17.2. SBUF0: Serial (UART0) Port Data Buffer 193
SFR Definition 18.1. SPIOCFG: SPIO Configuration 203
SFR Definition 18.2. SPIOCN: SPIO Control 204
SFR Definition 18.3. SPIOCKR: SPIO Clock Rate 205
SFR Definition 18.4. SPIODAT: SPIO Data Register 205
SFR Definition 19.1. TCON: Timer Control 213
SFR Definition 19.2. TMOD: Timer Mode 214
SFR Definition 19.3. CKCON: Clock Control 215
SFR Definition 19.4. TLO: Timer 0 Low Byte 216
SFR Definition 19.5. TL1: Timer 1 Low Byte 216
SFR Definition 19.6. TH0: Timer 0 High Byte 216
SFR Definition 19.7. TH1: Timer 1 High Byte 216
SFR Definition 19.8. TMR2CN: Timer 2 Control 220
SFR Definition 19.9. TMR2RLL: Timer 2 Reload Register Low Byte 221
SFR Definition 19.10. TMR2RLH: Timer 2 Reload Register High Byte 221
SFR Definition 19.11. TMR2L: Timer 2 Low Byte 221
SFR Definition 19.12. TMR2H Timer 2 High Byte 221
SFR Definition 19.13. TMR3CN: Timer 3 Control 225
SFR Definition 19.14. TMR3RLL: Timer 3 Reload Register Low Byte 226
SFR Definition 19.15. TMR3RLH: Timer 3 Reload Register High Byte 226
SFR Definition 19.16. TMR3L: Timer 3 Low Byte 226
SFR Definition 19.17. TMR3H Timer 3 High Byte 226
SFR Definition 20.1. PCAOCN: PCA Control 240
SFR Definition 20.2. PCAOMD: PCA Mode 241
SFR Definition 20.3. PCA0CPMn: PCA Capture/Compare Mode 242
SFR Definition 20.4. PCAOL: PCA Counter/Timer Low Byte 243
SFR Definition 20.5. PCAOH: PCA Counter/Timer High Byte 243
SFR Definition 20.6. PCA0CPLn: PCA Capture Module Low Byte 243
SFR Definition 20.7. PCA0CPHn: PCA Capture Module High Byte 244
C2 Register Definition 21.1. C2ADD: C2 Address 245
C2 Register Definition 21.2. C2 Device ID 245
C2 Register Definition 21.3. REVID: C2 Revision ID 246
C2 Register Definition 21.4. FPCTL: C2 Flash Programming Control 246
C2 Register Definition 21.5. FPDAT: C2 Flash Programming Data 246

C8051F320/1

1. System Overview

C8051F320/1 devices are fully integrated mixed-signal System-on-a-Chip MCUs. Highlighted features are listed below. Refer to Table 1.1 for specific product feature selection.

- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- Universal Serial Bus (USB) Function Controller with eight flexible endpoint pipes, integrated transceiver, and 1 k FIFO RAM
- Supply Voltage Regulator (5-to-3 V)
- True 10-bit 200 ksps 17 -channel single-ended/differential ADC with analog multiplexer
- On-chip Voltage Reference and Temperature Sensor
- On-chip Voltage Comparators (2)
- Precision programmable 12 MHz internal oscillator and 4 x clock multiplier
- 16 kB of on-chip Flash memory
- 2304 total bytes of on-chip RAM ($256+1 k+1 k$ USB FIFO)
- SMBus/I ${ }^{2}$ C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware
- Four general-purpose 16 -bit timers
- Programmable Counter/Timer Array (PCA) with five capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, VDD Monitor, and Missing Clock Detector
- 25/21 Port I/O (5 V tolerant)

With on-chip Power-On Reset, VDD monitor, Voltage Regulator, Watchdog Timer, and clock oscillator, C8051F320/1 devices are truly stand-alone System-on-a-Chip solutions. The Flash memory can be reprogrammed in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for 2.7 -to- 3.6 V operation over the industrial temperature range (-40 to $+85^{\circ} \mathrm{C}$). (Note that $3.0-$ to- 3.6 V is required for USB communication.) The Port I/O and /RST pins are tolerant of input signals up to 5 V . C8051F320/1 are available in a 32 -pin LQFP or a 28 -pin QFN package.

C8051F320/1

Table 1.1. Product Selection Guide

					$\begin{aligned} & \infty \\ & \\ & \hline \end{aligned}$		$\begin{aligned} & U \\ & N \\ & N \\ & N \\ & \sum_{0} \\ & \sum_{0} \end{aligned}$		$\frac{\stackrel{r}{2}}{\substack{4}}$									
C8051F320-GQ	25	16 k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	4				\checkmark	\checkmark	\checkmark	2	LQFP-32
C8051F321-GM	25	16 k	2304	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	4	\checkmark			\checkmark	\checkmark	\checkmark	2	QFN-28

Figure 1.1. C8051F320 Block Diagram

C8051F320/1

Figure 1.2. C8051F321 Block Diagram

SILICON LABS

C8051F320/1

1.1. CIP-51 ${ }^{\text {TM }}$ Microcontroller Core

1.1.1. Fully 8051 Compatible

The C8051F320/1 family utilizes Silicon Labs' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51 ${ }^{\text {TM }}$ instruction set; standard $803 \mathrm{x} / 805 \mathrm{x}$ assemblers and compilers can be used to develop software. The CIP-51 core offers all the peripherals included with a standard 8052, including four 16 -bit counter/timers, a full-duplex UART with extended baud rate configuration, an enhanced SPI port, 2304 bytes of on-chip RAM, 128 byte Special Function Register (SFR) address space, and 25/21 I/O pins.

1.1.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute with a maximum system clock of $12-\mathrm{to}-24 \mathrm{MHz}$. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than four system clock cycles.

The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	$2 / 3$	3	$3 / 4$	4	$4 / 5$	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

1.1.3. Additional Features

The C8051F320/1 SoC family includes several key enhancements to the CIP-51 core and peripherals to improve performance and ease of use in end applications.

The extended interrupt handler provides 16 interrupt sources into the CIP-51 (as opposed to 7 for the standard 8051), allowing numerous analog and digital peripherals to interrupt the controller. An interrupt driven system requires less intervention by the MCU, giving it more effective throughput. The extra interrupt sources are very useful when building multi-tasking, real-time systems.

Nine reset sources are available: power-on reset circuitry (POR), an on-chip VDD monitor (forces reset when power supply voltage drops below $\mathrm{V}_{\mathrm{RST}}$ as given in Table 10.1 on page 105), the USB controller (USB bus reset or a VBUS transition), a Watchdog Timer, a Missing Clock Detector, a voltage level detection from Comparator0, a forced software reset, an external reset pin, and an errant Flash read/write protection circuit. Each reset source except for the POR, Reset Input Pin, or Flash error may be disabled by the user in software. The WDT may be permanently enabled in software after a power-on reset during MCU initialization.

The internal oscillator is factory calibrated to $12 \mathrm{MHz} \pm 1.5 \%$, and the internal oscillator period may be user programmed in $\sim 0.25 \%$ increments. A clock recovery mechanism allows the internal oscillator to be used with the $4 x$ Clock Multiplier as the USB clock source in Full Speed mode; the internal oscillator can also be used as the USB clock source in Low Speed mode. External oscillators may also be used with the $4 x$ Clock Multiplier. An external oscillator drive circuit is also included, allowing an external crystal, ceramic resonator, capacitor, RC, or CMOS clock source to generate the system clock. The system clock may be configured to use the internal oscillator, external oscillator, or the Clock Multiplier output divided by 2. If desired, the system clock source may be switched on-the-fly between oscillator sources. An external oscillator can be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) external clock source, while periodically switching to the internal oscillator as needed.

Figure 1.3. On-Chip Clock and Reset

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

Program memory consists of 16 kB of Flash. This memory may be reprogrammed in-system in 512 byte sectors, and requires no special off-chip programming voltage. See Figure 1.4 for the MCU system memory map.

Figure 1.4. On-Board Memory Map

1.3. Universal Serial Bus Controller

The Universal Serial Bus Controller (USBO) is a USB 2.0 compliant Full or Low Speed function with integrated transceiver and endpoint FIFO RAM. A total of eight endpoint pipes are available: a bi-directional control endpoint (Endpoint0) and three pairs of IN/OUT endpoints (Endpoints1-3 IN/OUT).

A 1k block of XRAM is used as dedicated USB FIFO space. This FIFO space is distributed among End-points0-3; Endpoint1-3 FIFO slots can be configured as IN, OUT, or both IN and OUT (split mode). The maximum FIFO size is 512 bytes (Endpoint3).

USBO can be operated as a Full or Low Speed function. On-chip 4x Clock Multiplier and clock recovery circuitry allow both Full and Low Speed options to be implemented with the on-chip precision oscillator as the USB clock source. An external oscillator source can also be used with the $4 x$ Clock Multiplier to generate the USB clock. The CPU clock source is independent of the USB clock.

The USB Transceiver is USB 2.0 compliant, and includes on-chip matching and pull-up resistors. The pullup resistors can be enabled/disabled in software, and will appear on the D+ or D-pin according to the soft-ware-selected speed setting (Full or Low Speed).

Figure 1.5. USB Controller Block Diagram

1.4. Voltage Regulator

C8051F320/1 devices include a 5-to-3 V voltage regulator (REG0). When enabled, the REG0 output appears on the VDD pin and can be used to power external devices. REG0 can be enabled/disabled by software.

1.5. On-Chip Debug Circuitry

The C8051F320/1 devices include on-chip Silicon Labs 2-Wire (C2) debug circuitry that provides non-intrusive, full speed, in-circuit debugging of the production part installed in the end application.

Silicon Labs' debugging system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, timers, or communications channels are required. All the digital and analog peripherals are functional and work correctly while debugging. All the peripherals (except for the USB, ADC, and SMBus) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F320DK development kit provides all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8051F320/1 MCUs. The kit includes software with a developer's studio and debugger, 8051 assembler and linker, evaluation ' C ' compiler, and a debug adapter. It also has a target application board with the C8051F320 MCU installed, the necessary cables for connection to a PC, and a wall-mount power supply. The development kit contents may also be used to program and debug the device on the production PCB using the appropriate connections for the programming pins.

The Silicon Labs IDE interface is a vastly superior developing and debugging configuration, compared to standard MCU emulators that use on-board "ICE Chips" and require the MCU in the application board to

C8051F320/1

be socketed. Silicon Labs' debug paradigm increases ease of use and preserves the performance of the precision analog peripherals.

Figure 1.6. Development/In-System Debug Diagram

1.6. Programmable Digital I/O and Crossbar

C8051F320 devices include 25 I/O pins (three byte-wide Ports and one 1-bit-wide Port); C8051F321 devices include 21 I/O pins (two byte-wide Ports, one 4-bit-wide Port, and one 1-bit-wide Port). The C8051F320/1 Ports behave like typical 8051 Ports with a few enhancements. Each Port pin may be configured as an analog input or a digital I/O pin. Pins selected as digital I/Os may additionally be configured for push-pull or open-drain output. The "weak pull-ups" that are fixed on typical 8051 devices may be globally disabled, providing power savings capabilities.

The Digital Crossbar allows mapping of internal digital system resources to Port I/O pins (See Figure 1.7). On-chip counter/timers, serial buses, HW interrupts, comparator outputs, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and digital resources needed for the particular application.

C8051F320/1

Figure 1.7. Digital Crossbar Diagram

1.7. Serial Ports

The C8051F320/1 Family includes an SMBus/I ${ }^{2}$ C interface, a full-duplex UART with enhanced baud rate configuration, and an Enhanced SPI interface. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little CPU intervention.

1.8. Programmable Counter Array

An on-chip Programmable Counter/Timer Array (PCA) is included in addition to the four 16-bit general purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with five programmable capture/compare modules. The PCA clock is derived from one of six sources: the system clock divided by 12, the system clock divided by 4 , Timer 0 overflows, an External Clock Input (ECI), the system clock, or the external oscillator clock source divided by 8 . The external clock source selection is useful for real-time clock functionality, where the PCA is clocked by an external source while the internal oscillator drives the system clock.

Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture, Software Timer, High Speed Output, 8- or 16-bit Pulse Width Modulator, or Frequency Output. Additionally, Capture/Compare Module 4 offers watchdog timer (WDT) capabilities. Following a system reset, Module 4 is configured and enabled in WDT mode. The PCA Capture/Compare Module I/O and External Clock Input may be routed to Port I/O via the Digital Crossbar.

C8051F320/1

Figure 1.9. PCA Block Diagram

1.9. 10-Bit Analog to Digital Converter

The C8051F320/1 devices include an on-chip 10-bit SAR ADC with a 17-channel differential input multiplexer. With a maximum throughput of 200 ksps , the ADC offers true 10-bit linearity with an INL of $\pm 1 \mathrm{LSB}$. The ADC system includes a configurable analog multiplexer that selects both positive and negative ADC inputs. Ports1-3 are available as ADC inputs; additionally, the on-chip Temperature Sensor output and the power supply voltage (VDD) are available as ADC inputs. User firmware may shut down the ADC to save power.

Conversions can be started in six ways: a software command, an overflow of Timer $0,1,2$, or 3 , or an external convert start signal. This flexibility allows the start of conversion to be triggered by software events, a periodic signal (timer overflows), or external HW signals. Conversion completions are indicated by a status bit and an interrupt (if enabled). The resulting 10-bit data word is latched into the ADC data SFRs upon completion of a conversion.

Window compare registers for the ADC data can be configured to interrupt the controller when ADC data is either within or outside of a specified range. The ADC can monitor a key voltage continuously in background mode, but not interrupt the controller unless the converted data is within/outside the specified range.

Figure 1.10. 10-Bit ADC Block Diagram

1.10. Comparators

C8051F320/1 devices include two on-chip voltage comparators that are enabled/disabled and configured via user software. Port I/O pins may be configured as comparator inputs via a selection mux. Two comparator outputs may be routed to a Port pin if desired: a latched output and/or an unlatched (asynchronous) output. Comparator response time is programmable, allowing the user to select between high-speed and low-power modes. Positive and negative hysteresis are also configurable.

Comparator interrupts may be generated on rising, falling, or both edges. When in IDLE mode, these interrupts may be used as a "wake-up" source. Comparator0 may also be configured as a reset source. Figure 1.11 shows the Comparator0 block diagram.

Figure 1.11. Comparator0 Block Diagram

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Typ	Max	Units
Ambient temperature under bias		-55	-	125	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	-	150	${ }^{\circ} \mathrm{C}$
Voltage on any Port I/O Pin or /RST with respect to GND		-0.3	-	5.8	V
Voltage on VDD with respect to GND		-0.3	-	4.2	V
Maximum Total current through VDD and GND		-	-	500	mA
Maximum output current sunk by /RST or any Port pin		-	-	100	mA

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

C8051F320/1

3. Global Electrical Characteristics

Table 3.1. Global Electrical Characteristics
-40 to $+85^{\circ} \mathrm{C}, 25 \mathrm{MHz}$ system clock unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units
Digital Supply Voltage		$\mathrm{V}_{\mathrm{RST}}{ }^{1,2}$	3.0	3.6	V
Digital Supply RAM Data Retention Voltage		-	1.5	-	V
SYSCLK (System Clock) ${ }^{3}$		0	-	25	MHz
$\mathrm{T}_{\text {SYSH }}$ (SYSCLK High Time)		18	-	-	ns
$\mathrm{T}_{\text {SYSL }}$ (SYSCLK Low Time)		18	-	-	ns
Specificed Operating Temperature Range		-40	-	+85	${ }^{\circ} \mathrm{C}$
Digital Supply Current - CPU Active (Normal Mode, fetching instructions from Flash)					
IDD ${ }^{4}$	$\mathrm{V}_{\text {DD }}=3.6 \mathrm{~V} ; \mathrm{F}=25 \mathrm{MHz}$	-	12.3	13.6	mA
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F}=24 \mathrm{MHz}$	-	10.6	11.5	mA
	$\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V}, \mathrm{~F}=6 \mathrm{MHz}$	-	3.2	-	mA
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F}=32 \mathrm{kHz}$	-	38	-	uA
	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F}=24 \mathrm{MHz}$	-	9.0	9.8	mA
	$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V}, \mathrm{~F}=6 \mathrm{MHz}$	-	2.7	-	mA
	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F}=32 \mathrm{kHz}$	-	32	-	uA
IDD Supply Sensitivity ${ }^{4}$	$\mathrm{F}=24 \mathrm{MHz}$	-	0.66	-	\%/V
	$\mathrm{F}=6 \mathrm{MHz}$	-	0.63	-	\%/V
IDD Frequency Sensitivity ${ }^{4,5}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F} \leq 15 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.45	-	mA/MHz
	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F}>15 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.26	-	$\mathrm{mA} / \mathrm{MHz}$
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F} \leq 15 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.53	-	mA/MHz
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F}>15 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.29	-	$\mathrm{mA} / \mathrm{MHz}$
Digital Supply Current - CPU and USB Active (USB Transceiver Enabled and Connected to PC)					
IDD ${ }^{4}$	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F}=24 \mathrm{MHz}$, Full Speed	-	16.8	-	mA
	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F}=24 \mathrm{MHz}$, Full Speed	-	14.4	-	mA
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F}=6 \mathrm{MHz}$, Low Speed	-	7.2	-	mA
	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F}=6 \mathrm{MHz}$, Low Speed	-	6.0	-	mA
Digital Supply Current - CPU Inactive (Idle Mode, not fetching instructions from Flash)					
$\text { Idle IDD }{ }^{4}$	$\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V} ; \mathrm{F}=25 \mathrm{Mhz}$	-	5.8	6.5	mA
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F}=24 \mathrm{MHz}$	-	5.2	5.9	mA
	$\mathrm{V}_{\text {DD }}=3.3 \mathrm{~V}, \mathrm{~F}=6 \mathrm{MHz}$	-	1.7	-	mA
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F}=32 \mathrm{kHz}$	-	14	-	uA
	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F}=24 \mathrm{MHz}$	-	4.6	5.2	mA
	$\mathrm{V}_{\text {DD }}=3.0 \mathrm{~V}, \mathrm{~F}=6 \mathrm{MHz}$	-	1.5	-	mA
	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F}=32 \mathrm{kHz}$	-	11	-	uA

Table 3.1. Global Electrical Characteristics (Continued)
-40 to $+85{ }^{\circ} \mathrm{C}, 25 \mathrm{MHz}$ system clock unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units
Idle IDD Supply Sensitivity ${ }^{4}$	$\mathrm{F}=24 \mathrm{MHz}$	-	0.47	-	\%/V
	$\mathrm{F}=6 \mathrm{MHz}$	-	0.50	-	\%/V
Idle IDD Frequency Sensitivity ${ }^{4,6}$	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F} \leq 1 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.25	-	$\mathrm{mA} / \mathrm{MHz}$
	$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~F}>1 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.17	-	$\mathrm{mA} / \mathrm{MHz}$
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F} \leq 1 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.29	-	$\mathrm{mA} / \mathrm{MHz}$
	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~F}>1 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$	-	0.20	-	$\mathrm{mA} / \mathrm{MHz}$
Digital Supply Current (Stop Mode)	Oscillator not running, $V_{\text {DD }}$ Monitor disabled	-	<0.1	-	$\mu \mathrm{A}$

Notes:

1. Given in Table 10.1, "Reset Electrical Characteristics," on page 105.
2. USB requires a minimum supply voltage of 3.0 V .
3. SYSCLK must be at least 32 kHz to enable debugging.
4. Based on device characterization data; Not production tested.
5. IDD can be estimated for frequencies $\leq 15 \mathrm{MHz}$ by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate IDD for $>15 \mathrm{MHz}$, the estimate should be the current at 24 MHz minus the difference in current indicated by the frequency sensitivity number. For example: VDD $=3.0 \mathrm{~V} ; \mathrm{F}=20 \mathrm{MHz}, \mathrm{IDD}=9.0 \mathrm{~mA}-(24 \mathrm{MHz}-$ $20 \mathrm{MHz}) \times 0.26 \mathrm{~mA} / \mathrm{MHz}=7.96 \mathrm{~mA}$.
6. Idle IDD can be estimated for frequencies $\leq 1 \mathrm{MHz}$ by simply multiplying the frequency of interest by the frequency sensitivity number for that range. When using these numbers to estimate Idle IDD for $>1 \mathrm{MHz}$, the estimate should be the current at 24 MHz minus the difference in current indicated by the frequency sensitivity number. For example: VDD $=3.0 \mathrm{~V} ; \mathrm{F}=5 \mathrm{MHz}$, Idle IDD $=4.6 \mathrm{~mA}-(24 \mathrm{MHz}-$ $5 \mathrm{MHz}) \times 0.17 \mathrm{~mA} / \mathrm{MHz}=1.37 \mathrm{~mA}$.

Table 3.2. Index to Electrical Characteristics Tables

Peripheral Electrical Characteristics	Page \#
ADC0 Electrical Characteristics	$\underline{54}$
Voltage Reference Electrical Characteristics	$\underline{56}$
Comparator Electrical Characteristics	$\underline{66}$
Voltage Regulator Electrical Characteristics	$\underline{68}$
Reset Electrical Characteristics	$\underline{105}$
Flash Electrical Characteristics	$\underline{107}$
Internal Oscillator Electrical Characteristics	$\underline{125}$
Port I/O DC Electrical Characteristics	$\underline{138}$

C8051F320/1

4. Pinout and Package Definitions

Table 4.1. Pin Definitions for the C8051F320/1

Name	Pin Numbers	Type	Description			
	'F321	Power In	2.7-3.6 V Power Supply Voltage Input.			
VDD	6	6	Power Out	3.3 V Voltage Regulator Output. See Section 8.		
GND	3	3		Ground.		
/RST/	9	9		D I/O Device Reset. Open-drain output of internal POR or VDD monitor. An external source can initiate a system reset by driving this pin low for at least 15 μ s. See Section 10. C2CK		
P3.0/	10	10	D I/O	Port 3.0. See Section 14 for a complete description. Bi-directional data signal for the C2 Debug Interface.		
C2D	7	7	Power In	S V Regulator Input. This pin is the input to the on-chip volt- age regulator.		
REGIN	7	8	D In	VBUS Sense Input. This pin should be connected to the VBUS signal of a USB network. A 5 V signal on this pin indi- cates a USB network connection.		
VBUS	8	4	4	D I/O		USB D+.
:---						

C8051F320/1

Table 4.1. Pin Definitions for the C8051F320/1 (Continued)

Name	Pin Numbers		Type	Description
	'F321	P1.1	25	21
D I/O or				
A In				

Figure 4.1. LQFP-32 Pinout Diagram (Top View)

Figure 4.2. LQFP-32 Package Drawing

Table 4.2. LQFP-32 Package Dimensions

Dimension	Min	Nom	Max
A	-	-	1.60
A1	0.05	-	0.15
A2	1.35	1.40	1.45
b	0.30	0.37	0.45
c	0.09	-	0.20
D	9.00 BSC.		
D1	7.00 BSC. 0.80 BSC.		
e	9.00 BSC.		
E	7.00 BSC.		
E1	0.45	0.60	0.75
L			

C8051F320/1

Table 4.2. LQFP-32 Package Dimensions (Continued)

Dimension	Min	Nom	Max
aaa	0.20		
bbb	0.20		
CCC			
ddd	0°	0.10	
Q	$3^{\circ} .5^{\circ}$	7°	

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC outline MS-026, variation BBA.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD020 specification for Small Body Components.

Figure 4.3. LQFP-32 Recommended PCB Land Pattern

Table 4.3. LQFP-32 PCB Land Pattern Dimensions

Dimension	Min	Max	Dimension	Min	Max
C1	8.40	8.50	X1	0.40	0.50
C2	8.40	8.50	Y1	1.25	1.35
E					
Notes:					
General					
1. All dimensions shown are in millimeters (mm) unless otherwise noted.					
Solder Mask Design					
3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.					
Stencil Design					
4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.					
Card Assembly					
7. A No-C 8. The rec Body C	Typeended nents	aste is w profi	ded. JEDEC/IPC	$-020 \mathrm{sp}$	for S

C8051F320/1

Figure 4.4. QFN-28 Pinout Diagram (Top View)

Figure 4.5. QFN-28 Package Drawing

Table 4.4. QFN-28 Package Dimensions

Dimension	Min	Typ	Max
A	0.80	0.90	1.00
A1	0.00	0.02	0.05
A3	0.25 REF		
b	0.18	0.23	0.30
D	5.00 BSC.		
D2	2.90	3.15	3.35
E	0.50 BSC.		
E	5.00 BSC.		
E2	2.90	3.15	3.35

Dimension	Min	Typ	Max
L	0.35	0.55	0.65
L1	0.00	-	0.15
aaa	0.15		
bbb	0.10		
ddd	0.05		
eee	0.08		
Z	0.44		
Y	0.18		

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, variation VHHD except for custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

C8051F320/1

Figure 4.6. QFN-28 Recommended PCB Land Pattern

Table 4.5. QFN-28 PCB Land Pattern Dimesions

Dimension	Min	Max	Dimension	Min	Max
C1	4.80		X2	3.20	3.30
C2	4.80		Y1	0.85	0.95
E	0.50		Y2	3.20	3.30
X1	0.20	0.30			

Notes:

General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be $1: 1$ for all perimeter pins.
8. A 3×3 array of 0.90 mm openings on a 1.1 mm pitch should be used for the center pad to assure the proper paste volume (67\% Paste Coverage).

Card Assembly
9. A No-Clean, Type-3 solder paste is recommended.
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

C8051F320/1

5. 10-Bit ADC (ADC0)

The ADC0 subsystem for the C8051F320/1 consists of two analog multiplexers (referred to collectively as AMUXO) with 17 total input selections, and a 200 ksps , 10 -bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector. The AMUXO, data conversion modes, and window detector are all configurable under software control via the Special Function Registers shown in Figure 5.1. ADCO operates in both Single-ended and Differential modes, and may be configured to measure P1.0-P3.0, the Temperature Sensor output, or VDD with respect to P1.0-P3.0, VREF, or GND. The ADCO subsystem is enabled only when the ADOEN bit in the ADCO Control register (ADCOCN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0 .

Figure 5.1. ADCO Functional Block Diagram

C8051F320/1

5.1. Analog Multiplexer

AMUXO selects the positive and negative inputs to the ADC. Any of the following may be selected as the positive input: P1.0-P3.0, the on-chip temperature sensor, or the positive power supply ($V_{D D}$). Any of the following may be selected as the negative input: P1.0-P3.0, VREF, or GND. When GND is selected as the negative input, ADCO operates in Single-ended Mode; all other times, ADCO operates in Differential Mode. The ADCO input channels are selected in the AMXOP and AMXON registers as described in Figure 5.2 and Figure 5.2.

The conversion code format differs between Single-ended and Differential modes. The registers ADCOH and ADCOL contain the high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-justified or left-justified, depending on the setting of the ADOLJST bit (ADC0CN.0). When in Single-ended Mode, conversion codes are represented as 10-bit unsigned integers. Inputs are measured from '0' to VREF x 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADCOH and ADCOL registers are set to ' 0 '.

Input Voltage (Single-Ended)	Right-Justified ADCOH:ADCOL (ADOLJST = 0)	Left-Justified ADCOH:ADCOL (ADOLJST = 1)
VREF $\times 1023 / 1024$	0×03FF	$0 \times F F C 0$
VREF $\times 512 / 1024$	0×0200	0×8000
VREF $\times 256 / 1024$	0×0100	0×4000
0	0×0000	0×0000

When in Differential Mode, conversion codes are represented as 10-bit signed 2's complement numbers. Inputs are measured from -VREF to VREF x 511/512. Example codes are shown below for both right-justified and left-justified data. For right-justified data, the unused MSBs of ADCOH are a sign-extension of the data word. For left-justified data, the unused LSBs in the ADCOL register are set to ' 0 '.

Input Voltage (Differential)	Right-Justified ADCOH:ADCOL (ADOLJST = 0)	Left-Justified ADCOH:ADCOL (ADOLJST = 1)
VREF $\times 511 / 512$	0×01 FF	$0 \times 7 F C 0$
VREF $\times 256 / 512$	0×0100	0×4000
0	0×0000	0×0000
- VREF $\times 256 / 512$	$0 \times F F 00$	0×0000
- VREF	$0 \times F E 00$	0×8000

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to ' 0 ' the corresponding bit in register PnMDIN (for $\mathrm{n}=0,1,2,3$). To force the Crossbar to skip a Port pin, set to ' 1 ' the corresponding bit in register PnSKIP (for $n=0,1,2$). See Section "14. Port Input/Output" on page 126 for more Port I/O configuration details.

5.2. Temperature Sensor

The temperature sensor transfer function is shown in Figure 5.2. The output voltage ($\mathrm{V}_{\text {TEMP }}$) is the positive ADC input when the temperature sensor is selected by bits AMXOP4-0 in register AMXOP. Values for the Offset and Slope parameters can be found in Table 5.1.

Temperature
Figure 5.2. Temperature Sensor Transfer Function

The uncalibrated temperature sensor output is extremely linear and suitable for relative temperature measurements (see Table 5.1 for linearity specifications). For absolute temperature measurements, offset and/ or gain calibration is recommended. Typically a 1-point (offset) calibration includes the following steps:

Step 1. Control/measure the ambient temperature (this temperature must be known).
Step 2. Power the device, and delay for a few seconds to allow for self-heating.
Step 3. Perform an ADC conversion with the temperature sensor selected as the positive input and GND selected as the negative input.
Step 4. Calculate the offset characteristics, and store this value in non-volatile memory for use with subsequent temperature sensor measurements.

Figure 5.3 shows the typical temperature sensor error assuming a 1-point calibration at $25^{\circ} \mathrm{C}$. Note that parameters which affect ADC measurement, in particular the voltage reference value, will also affect temperature measurement.

C8051F320/1

Figure 5.3. Temperature Sensor Error with 1-Point Calibration (VREF = 2.40 V)

5.3. Modes of Operation

ADC0 has a maximum conversion speed of 200 ksps . The ADCO conversion clock is a divided version of the system clock, determined by the ADOSC bits in the ADCOCF register (system clock divided by (ADOSC +1) for $0 \leq$ ADOSC ≤ 31).

5.3.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (ADOCM2-0) in register ADC0CN. Conversions may be initiated by one of the following:

1. Writing a ' 1 ' to the ADOBUSY bit of register ADCOCN
2. A Timer 0 overflow (i.e., timed continuous conversions)
3. A Timer 2 overflow
4. A Timer 1 overflow
5. A rising edge on the CNVSTR input signal (pin P0.6)
6. A Timer 3 overflow

Writing a ' 1 ' to ADOBUSY provides software control of ADC0 whereby conversions are performed "ondemand". During conversion, the ADOBUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of ADOBUSY triggers an interrupt (when enabled) and sets the ADCO interrupt flag (ADOINT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (ADOINT) should be used. Converted data is available in the ADC0 data registers, ADCOH:ADCOL, when bit ADOINT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer $2 / 3$ is in 8 -bit mode; High byte overflows are used if Timer $2 / 3$ is in 16 -bit mode. See Section "19. Timers" on page 209 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as Port pin P0.6. When the CNVSTR input is used as the ADC0 conversion source, Port pin P0.6 should be skipped by the Digital Crossbar. To configure the Crossbar to skip P0.6, set to '1' Bit6 in register P0SKIP. See Section "14. Port Input/Output" on page 126 for details on Port I/O configuration.

C8051F320/1

5.3.2. Tracking Modes

The ADOTM bit in register ADCOCN controls the ADCO track-and-hold mode. In its default state, the ADCO input is continuously tracked, except when a conversion is in progress. When the ADOTM bit is logic 1, ADCO operates in low-power track-and-hold mode. In this mode, each conversion is preceded by a tracking period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR signal is used to initiate conversions in low-power tracking mode, ADC0 tracks only when CNVSTR is low; conversion begins on the rising edge of CNVSTR (see Figure 5.4). Tracking can also be disabled (shutdown) when the device is in low power standby or sleep modes. Low-power track-and-hold mode is also useful when AMUX settings are frequently changed, due to the settling time requirements described in Section "5.3.3. Settling Time Requirements" on page 45.

A. ADC0 Timing for External Trigger Source

Write '1' to ADOBUSY,

B. ADC0 Timing for Internal Trigger Source

 Timer 0, Timer 2,Timer 1, Timer 3 Overflow (ADOCM[2:0] $=000,001,010$

Figure 5.4. 10-Bit ADC Track and Conversion Example Timing

C8051F320/1

5.3.3. Settling Time Requirements

When the ADCO input configuration is changed (i.e., a different AMUXO selection is made), a minimum tracking time is required before an accurate conversion can be performed. This tracking time is determined by the AMUXO resistance, the ADC0 sampling capacitance, any external source resistance, and the accuracy required for the conversion. Note that in low-power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 5.5 shows the equivalent ADC0 input circuits for both Differential and Single-ended modes. Notice that the equivalent time constant for both input circuits is the same. The required ADCO settling time for a given settling accuracy (SA) may be approximated by Equation 5.1. When measuring the Temperature Sensor output or VDD with respect to GND, $R_{\text {TOTAL }}$ reduces to $R_{M U X}$. See Table 5.1 for ADC0 minimum settling time requirements.

Equation 5.1. ADCO Settling Time Requirements

$$
t=\ln \left(\frac{2^{n}}{S A}\right) \times R_{\text {TOTAL }} C_{\text {SAMPLE }}
$$

Where:
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within $1 / 4$ LSB) t is the required settling time in seconds
$R_{\text {TOTAL }}$ is the sum of the AMUXO resistance and any external source resistance.
n is the ADC resolution in bits (10).

Differential Mode

Single-Ended Mode

Figure 5.5. ADCO Equivalent Input Circuits

C8051F320/1

SFR Definition 5.1. AMXOP: AMUXO Positive Channel Select

R	R	R	R/W	R/w	R/W	R/w	R/w	Reset Value
-	-	-	AMX0P4	AMXOP3	AMXOP2	AMX0P1	AMXOPO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times B B$

Bits7-5: UNUSED. Read = 000b; Write = don't care.
Bits4-0: AMXOP4-0: AMUXO Positive Input Selection

AMX0P4-0	ADC0 Positive Input
00000	P 1.0
00001	P 1.1
00010	P 1.2
00011	P 1.3
00100	P 1.4
00101	P 1.5
00110	P 1.6
00111	P 1.7
01000	P 2.0
01001	P 2.1
01010	P 2.2
01011	P 2.3
01100^{\star}	$\mathrm{P} 2.4^{\star}$
01101^{\star}	$\mathrm{P} 2.5^{\star}$
01110^{\star}	$\mathrm{P} 2.6^{\star}$
01111^{\star}	$\mathrm{P} 2.7^{\star}$
10000	P 3.0
$10001-11101$	RESERVED
11110	Temp Sensor
11111	VDD

*Note: Only applies to C8051F320; selection RESERVED on C8051F321 devices.

C8051F320/1

SFR Definition 5.2. AMXON: AMUXO Negative Channel Select

R	R	R	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	AMX0N4	AMX0N3	AMXON2	AMX0N1	AMXONO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

0xBA

Bits7-5: UNUSED. Read = 000b; Write = don't care.
Bits4-0: AMX0N4-0: AMUX0 Negative Input Selection.
Note that when GND is selected as the Negative Input, ADC0 operates in Single-ended mode. For all other Negative Input selections, ADC0 operates in Differential mode.

AMX0N4-0	ADC0 Negative Input
00000	P 1.0
00001	P 1.1
00010	P 1.2
00011	P 1.3
00100	P 1.4
00101	P 1.5
00110	P 1.6
00111	P 1.7
01000	P 2.0
01001	P 2.1
01010	P 2.2
01011	P 2.3
01100^{*}	$\mathrm{P} 2.4^{*}$
01101^{*}	$\mathrm{P} 2.5^{*}$
01110^{*}	$\mathrm{P} 2.6^{*}$
01111^{*}	$\mathrm{P} 2.7^{*}$
10000	P3.0
$10001-11101$	RESERVED
11110	VREF
11111	GND (ADC in Single-Ended Mode)

*Note: Only applies to C8051F320; selection RESERVED on C8051F321 devices.

C8051F320/1

SFR Definition 5.3. ADC0CF: ADC0 Configuration

R/w	Reset Value							
AD0SC4	AD0SC3	AD0SC2	AD0SC1	AD0SC0	ADOLJST	-		11111000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times B C$
Bits7-3:	AD0SC4-0: ADC0 SAR Conversion Clock Period Bits. SAR Conversion clock is derived from system clock by the following equation, where ADOSC refers to the 5-bit value held in bits ADOSC4-0. SAR Conversion clock requirements are given in Table 5.1.							
Bit2: Bits1-0:	ADOLJST: A 0 : Data in A 1: Data in A UNUSED.	DC0 Left J RCOH:ADC ead $=00 \mathrm{~b}$;	stify Selec L registers L registers Write = don	are right-ju are left-jus 't care.	stified. tified.			

SFR Definition 5.4. ADCOH: ADCO Data Word MSB

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBE

Bits7-0: ADC0 Data Word High-Order Bits.
For ADOLJST $=0$: Bits $7-2$ are the sign extension of Bit1. Bits 1-0 are the upper 2 bits of the 10-bit ADC0 Data Word.
For ADOLJST = 1: Bits 7-0 are the most-significant bits of the 10-bit ADCO Data Word.

SFR Definition 5.5. ADCOL: ADCO Data Word LSB

SFR Definition 5.6. ADCOCN: ADCO Control

C8051F320/1

5.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADCO conversion results to userprogrammed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADOWINT in register ADCOCN) can also be used in polled mode. The ADC0 Greater-Than (ADCOGTH, ADCOGTL) and Less-Than (ADCOLTH, ADCOLTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADCO Greater-Than registers.

The Window Detector registers must be written with the same format (left/right justified, signed/unsigned) as that of the current ADC configuration (left/right justified, single-ended/differential).

SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte

R/W	Reset Value							
								11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

Bits7-0: High byte of ADC0 Greater-Than Data Word.

SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte

Bits7-0: Low byte of ADC0 Greater-Than Data Word.

C8051F320/1

SFR Definition 5.9. ADCOLTH: ADCO Less-Than Data High Byte

Bits7-0: High byte of ADC0 Less-Than Data Word.

SFR Definition 5.10. ADCOLTL: ADCO Less-Than Data Low Byte

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times C 5$
Bits7-0: Low byte of ADC0 Less-Than Data Word.								

C8051F320/1

5.4.1. Window Detector In Single-Ended Mode

Figure 5.6 shows two example window comparisons for right-justified, single-ended data, with ADCOLTH:ADCOLTL $=0 \times 0080$ (128d) and ADCOGTH:ADCOGTL $=0 \times 0040$ ($64 d$). In single-ended mode, the input voltage can range from ' 0 ' to VREF * (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an ADOWINT interrupt will be generated if the ADC0 conversion word (ADCOH:ADCOL) is within the range defined by ADCOGTH:ADCOGTL and ADCOLTH:ADCOLTL (if $0 x 0040<$ ADCOH:ADCOL < 0x0080). In the right example, and ADOWINT interrupt will be generated if the ADCO conversion word is outside of the range defined by the ADCOGT and ADCOLT registers (if ADCOH:ADCOL < 0x0040 or ADCOH:ADCOL > 0x0080). Figure 5.7 shows an example using left-justified data with equivalent ADCOGT and ADCOLT register settings.

Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data

Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data

5.4.2. Window Detector In Differential Mode

Figure 5.8 shows two example window comparisons for right-justified, differential data, with ADCOLTH:ADCOLTL $=0 \times 0040$ (+64d) and ADCOGTH:ADC0GTH $=0 \times F F F F(-1 d)$. In differential mode, the measurable voltage between the input pins is between -VREF and VREF*(511/512). Output codes are represented as 10-bit 2's complement signed integers. In the left example, an ADOWINT interrupt will be generated if the ADCO conversion word (ADCOH:ADCOL) is within the range defined by ADC0GTH:ADC0GTL and ADCOLTH:ADCOLTL (if $0 x F F F F(-1 d)<A D C O H: A D C O L<0 x 0040(64 d)$). In the right example, an ADOWINT interrupt will be generated if the ADCO conversion word is outside of the range defined by the ADCOGT and ADCOLT registers (if ADCOH:ADCOL < 0xFFFF (-1d) or ADCOH:ADCOL > 0x0040 (+64d)). Figure 5.9 shows an example using left-justified data with equivalent ADCOGT and ADCOLT register settings.

Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data

Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data

C8051F320/1

Table 5.1. ADCO Electrical Characteristics
$V_{D D}=3.0 \mathrm{~V}, \mathrm{VREF}=2.40 \mathrm{~V},-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units	
DC Accuracy		10				
Resolution		-	± 0.5	± 1	LSB	
Integral Nonlinearity	Guaranteed Monotonic	-	± 0.5	± 1	LSB	
Differential Nonlinearity		-15	0	15	LSB	
Offset Error		-15	-1	15	LSB	
Full Scale Error	-	10	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
Offset Temperature Coefficient						

Dynamic Performance (10 kHz sine-wave Single-ended input, 1 dB below Full Scale, 200 ksps)

Signal-to-Noise Plus Distortion		53	55.5	-	dB
Total Harmonic Distortion	Up to the $5^{\text {th }}$ harmonic	-	-67	-	dB
Spurious-Free Dynamic Range		-	78	-	dB

Conversion Rate

SAR Conversion Clock		-	-	3	MHz
Conversion Time in SAR Clocks		10	-	-	clocks
Track/Hold Acquisition Time		300	-	-	ns
Throughput Rate		-	-	200	ksps

Analog Inputs

ADC Input Voltage Range	Single Ended (AIN+ - GND) Differential (AIN+ - AIN-)	0 - VREF	-	VREF VREF	V V
Absolute Pin Voltage with respect to GND	Single Ended or Differential	0	-	VDD	V
Input Capacitance		-	5	-	pF
Temperature Sensor		-	-	-	
Linearity 1		-	± 0.1	-	${ }^{\circ} \mathrm{C}$
Gain 2		-	2.86	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Offset 1,2	(Temp $\left.=0^{\circ} \mathrm{C}\right)$	-	0.776 ± 8.5	-	mV

Power Specifications

Power Supply Current $\left(V_{D D}\right.$ supplied to ADCO)	Operating Mode, 200 ksps	-	400	900	$\mu \mathrm{~A}$
Power Supply Rejection		-	± 0.3		mV / V

Notes:

1. Includes ADC offset, gain, and linearity variations.
2. Represents one standard deviation from the mean.

6. Voltage Reference

The Voltage reference MUX on C8051F320/1 devices is configurable to use an externally connected voltage reference, the internal reference voltage generator, or the power supply voltage VDD (see Figure 6.1). The REFSL bit in the Reference Control register (REFOCN) selects the reference source. For the internal reference or an external source, REFSL should be set to ' 0 '; For VDD as the reference source, REFSL should be set to ' 1 '.

The BIASE bit enables the internal ADC bias generator, which is used by the ADC and Internal Oscillator. This enable is forced to logic 1 when either of the aforementioned peripherals is enabled. The ADC bias generator may be enabled manually by writing a ' 1 ' to the BIASE bit in register REFOCN; see Figure 6.1 for REF0CN register details. The Reference bias generator (see Figure 6.1) is used by the Internal Voltage Reference, Temperature Sensor, and Clock Multiplier. The Reference bias is automatically enabled when any of the aforementioned peripherals are enabled. The electrical specifications for the voltage reference and bias circuits are given in Table 6.1.

Important Note About the VREF Input: Port pin P0.7 is used as the external VREF input. When using an external voltage reference, P 0.7 should be configured as analog input and skipped by the Digital Crossbar. To configure P0.7 as analog input, set to ' 0 ' Bit7 in register POMDIN. To configure the Crossbar to skip P0.7, set to ' 1 ' Bit7 in register P0SKIP. Refer to Section "14. Port Input/Output" on page 126 for complete Port I/O configuration details.

The temperature sensor connects to the ADC0 positive input multiplexer (see Section "5.1. Analog Multiplexer" on page 40 for details). The TEMPE bit in register REFOCN enables/disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADCO measurements performed on the sensor result in meaningless data.

Figure 6.1. Voltage Reference Functional Block Diagram

C8051F320/1

SFR Definition 6.1. REFOCN: Reference Control

R/W	Reset Value							
-	-	-		REFSL	TEMPE	BIASE	REFBE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times D 1$
Bits7-3: Bit3:	UNUSED. Read = 00000b; Write = don't care. REFSL: Voltage Reference Select. This bit selects the source for the internal voltage reference. 0 : VREF pin used as voltage reference. 1: VDD used as voltage reference.							
Bit2:	TEMPE: Temperature Sensor Enable Bit. 0: Internal Temperature Sensor off. 1: Internal Temperature Sensor on.							
Bit1:	BIASE: Internal Analog Bias Generator Enable Bit. 0: Internal Bias Generator off. 1: Internal Bias Generator on.							
Bit0:	REFBE: I 0: Interna 1: Interna	Refe	Buf	nable Bit	Itage refe	nce driv	on the V	REF pin.

Table 6.1. Voltage Reference Electrical Characteristics
$V_{D D}=3.0 \mathrm{~V} ;-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Internal Reference (REFBE = 1)					
Output Voltage	$25^{\circ} \mathrm{C}$ ambient	2.38	2.44	2.50	V
VREF Short-Circuit Current				10	mA
VREF Temperature Coefficient			15		ppm/ $/{ }^{\circ} \mathrm{C}$
Load Regulation	Load = 0 to $200 \mu \mathrm{~A}$ to GND		1.5		ppm/ $/$ A
VREF Turn-on Time 1	$4.7 \mu \mathrm{~F}$ tantalum, $0.1 \mu \mathrm{~F}$ ceramic bypass		2		ms
VREF Turn-on Time 2	$0.1 \mu \mathrm{~F}$ ceramic bypass		20		$\mu \mathrm{s}$
VREF Turn-on Time 3	no bypass cap		10		$\mu \mathrm{s}$
Power Supply Rejection			140		ppm/V
External Reference (REFBE = 0)					
Input Voltage Range		0		VDD	V
Input Current	Sample Rate = 200 ksps ; VREF $=3.0 \mathrm{~V}$		12		$\mu \mathrm{A}$
Bias Generators					
ADC Bias Generator	BIASE = '1'		106	148	$\mu \mathrm{A}$
Reference Bias Generator			42	60	$\mu \mathrm{A}$

7. Comparators

C8051F320/1 devices include two on-chip programmable voltage Comparators: Comparator0 is shown in Figure 7.1; Comparator1 is shown in Figure 7.2. The two Comparators operate identically with the following exceptions: (1) Their input selections differ as shown in Figure 7.1 and Figure 7.2; (2) Comparator0 can be used as a reset source.

Each Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CP0, CP1), or an asynchronous "raw" output (CPOA, CP1A). The asynchronous signal is available even when the system clock is not active. This allows the Comparators to operate and generate an output with the device in STOP mode. When assigned to a Port pin, the Comparator outputs may be configured as open drain or push-pull (see Section "14.2. Port I/O Initialization" on page 130). Comparator0 may also be used as a reset source (see Section "10.5. Comparator0 Reset" on page 102).

The Comparator0 inputs are selected in the CPT0MX register (Figure 7.2). The CMX0P1-CMX0P0 bits select the Comparator0 positive input; the CMXON1-CMX0NO bits select the Comparator0 negative input. The Comparator1 inputs are selected in the CPT1MX register (Figure 7.5). The CMX1P1-CMX1P0 bits select the Comparator1 positive input; the CMX1N1-CMX1N0 bits select the Comparator1 negative input.

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see Section "14.3. General Purpose Port I/O" on page 132).

Figure 7.1. Comparator0 Functional Block Diagram

C8051F320/1

Comparator outputs can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, Comparator outputs are available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and supply current falls to less than 100 nA . See Section "14.1. Priority Crossbar Decoder" on page 128 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to $\left(\mathrm{V}_{\mathrm{DD}}\right)+0.25 \mathrm{~V}$ without damage or upset. The complete Comparator electrical specifications are given in Table 7.1.

Comparator response time may be configured in software via the CPTnMD registers (see Figure 7.3 and Figure 7.6). Selecting a longer response time reduces the Comparator supply current. See Table 7.1 for complete timing and supply current specifications.

Figure 7.2. Comparator1 Functional Block Diagram

Figure 7.3. Comparator Hysteresis Plot
Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN (shown in Figure 7.1 and Figure 7.4). The amount of negative hysteresis voltage is determined by the settings of the CPnHYN bits. As shown in Figure 7.3, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPnHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section "9.3. Interrupt Handler" on page 87.) The CPnFIF flag is set to ' 1 ' upon a Comparator falling-edge, and the CPnRIF flag is set to ' 1 ' upon the Comparator rising-edge. Once set, these bits remain set until cleared by software. The output state of the Comparator can be obtained at any time by reading the CPnOUT bit. The Comparator is enabled by setting the CPnEN bit to ' 1 ', and is disabled by clearing this bit to ' 0 '.

C8051F320/1

SFR Definition 7.1. CPTOCN: Comparator0 Control

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CPOEN	CP0OUT	CPORIF	CPOFIF	CPOHYP1	CPOHYPO	CPOHYN1	CPOHYNO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times 9 B$
Bit7:	CPOEN: Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled.							
Bit6:	CPOOUT: Comparator0 Output State Flag. 0 : Voltage on CPO+ < CP0-. 1: Voltage on CPO + CPO .							
Bit5:	CPORIF: Comparator0 Rising-Edge Flag. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred.							
Bit4:	CPOFIF: Comparator0 Falling-Edge Flag. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge Interrupt has occurred.							
Bits3-2:	CPOHYP1-0: Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis $=5 \mathrm{mV}$. 10: Positive Hysteresis $=10 \mathrm{mV}$. 11: Positive Hysteresis $=20 \mathrm{mV}$.							
Bits1-0:	CPOHYN1-0 00: Negative 01: Negative 10: Negative 11: Negative	Compara Hysteresis Hysteresis Hysteresis Hysteresis	r0 Negat Disabled. $=5 \mathrm{mV}$. $=10 \mathrm{mV}$ $=20 \mathrm{mV}$	e Hysteresi	is Control	Bits.		

SFR Definition 7.2. CPTOMX: Comparator0 MUX Selection

R/W	Reset Value							
-	-	CMX0N1	CMXONO	-	-	CMX0P1	CMXOPO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x9F

Bits7-6: UNUSED. Read $=00 b$, Write $=$ don't care.
Bits5-4: CMX0N1-CMX0N0: Comparator0 Negative Input MUX Select.
These bits select which Port pin is used as the Comparator0 negative input.

CMXON1	CMXONO	Negative Input
0	0	P 1.1
0	1	P 1.5
1	0	P 2.1
1	1	$\mathrm{P} 2.5^{*}$

Bits3-2: UNUSED. Read $=00 \mathrm{~b}$, Write $=$ don't care.
Bits1-0: CMX0P1-CMX0P0: Comparator0 Positive Input MUX Select.
These bits select which Port pin is used as the Comparator0 positive input.

CMX0P1	CMXOP0	Positive Input
0	0	P 1.0
0	1	P 1.4
1	0	P 2.0
1	1	$\mathrm{P} 2.4^{\star}$

*Note: P2.4 and P2.5 available only on C8051F320 devices; selection reserved on C8051F321 devices.

C8051F320/1

SFR Definition 7.3. CPTOMD: Comparator0 Mode Selection

SFR Definition 7.4. CPT1CN: Comparator1 Control

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP1EN	CP1OUT	CP1RIF	CP1FIF	CP1HYP1	CP1HYP0	CP1HYN1	CP1HYN0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times 9 \mathrm{~A}$
Bit7:	CP1EN: Comparator1 Enable Bit. 0: Comparator1 Disabled. 1: Comparator1 Enabled.							
Bit6:	CP1OUT: Comparator1 Output State Flag. 0: Voltage on CP1+ < CP1-. 1: Voltage on CP1+ > CP1-.							
Bit5:	CP1RIF: Comparator1 Rising-Edge Flag. 0: No Comparator1 Rising Edge has occurred since this flag was last cleared. 1: Comparator1 Rising Edge has occurred.							
Bit4:	CP1FIF: Comparator1 Falling-Edge Flag. 0: No Comparator1 Falling-Edge has occurred since this flag was last cleared. 1: Comparator1 Falling-Edge has occurred.							
Bits3-2:	CP1HYP1-0 00: Positive 01: Positive 10: Positive 11: Positive	Compara	r1 Positi sabled. 5 mV . 10 mV . 20 mV .	Hysteresis	Control Bi			
Bits1-0:	CP1HYN1-0 00: Negative 01: Negative 10: Negative 11: Negative	Compara Hysteresi Hysteresi Hysteresi Hysteresi	r1 Negat Disabled. 5 mV . 10 mV . 20 mV .	ve Hysteres	is Control	Bits.		

C8051F320/1

SFR Definition 7.5. CPT1MX: Comparator1 MUX Selection

R/W	Reset Value							
-	-	CMX1N1	CMX1N0	-	-	CMX1P1	CMX1P0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x9E
$\begin{aligned} & \text { Bits7-6: } \\ & \text { Bits5-4: } \end{aligned}$	CMX1N1-CMX1N0: Comparator1 Negative Input MUX Select. These bits select which Port pin is used as the Comparator1 negative input.							
	CMX1N1	CMX1N0	Negative In					
	0	0	P1.3					
	0	1	P1.7					
	1	0	P2.3					
	1	1	P2.7*					
$\begin{aligned} & \text { Bits3-2: } \\ & \text { Bits1-0: } \end{aligned}$	UNUSED. Read = 00b, Write $=$ don't care . CMX1P1-CMX1P0: Comparator1 Positive Input MUX Select. These bits select which Port pin is used as the Comparator1 positive input.							
	CMX1P1	CMX1P0	Positive Inp					
	0	0	P1.2					
	0	1	P1.6					
	1	0	P2.2					
	1	1	P2.6*					
	*Note: P2. C80 rese	6 and P2.7 51F320 devic rved on C805	vailable only on ces; selection 51F321 device					

SFR Definition 7.6. CPT1MD: Comparator1 Mode Selection

R/W	Reset Value							
-	-	CP1RIE	CP1FIE	-	-	CP1MD1	CP1MD0	00000010
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	$\begin{aligned} & \text { SFR Address: } \\ & 0 \times 9 \mathrm{C} \end{aligned}$
Bits7-6: Bit5:	UNUSED. Read = 00b, Write = don't care. CP1RIE: Comparator1 Rising-Edge Interrupt Enable. 0 : Comparator1 rising-edge interrupt disabled. 1: Comparator1 rising-edge interrupt enabled.							
Bit4:	CP1FIE: Comparator1 Falling-Edge Interrupt Enable. 0 : Comparator1 falling-edge interrupt disabled. 1: Comparator1 falling-edge interrupt enabled.							
Bits3-2: Bits1-0:	UNUSED. Read $=00 \mathrm{~b}$. Write $=$ don't care. CP1MD1-CP1MD0: Comparator1 Mode Select. These bits select the response time for Comparator1.							
	Mode	CP1MD1	CP1MD0	CP1 R	se Tim	(TYP)		
	0	0	0		0 ns			
	1	0	1		5 ns			
	2	1	0		0 ns			
	3	1	1		50 ns			

C8051F320/1

Table 7.1. Comparator Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V},-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. All specifications apply to both Comparator0 and Comparator1 unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units
Response Time: Mode 0, Vcm* $=1.5 \mathrm{~V}$	CPO+ - CPO- = 100 mV	-	100	-	ns
	CPO+ - CPO- = -100 mV	-	250	-	ns
Response Time: Mode 1, Vcm* $=1.5 \mathrm{~V}$	CPO+ - CPO- = 100 mV	-	175	-	ns
	CP0+ - CPO- = -100 mV	-	500	-	ns
Response Time: Mode 2, Vcm* $=1.5 \mathrm{~V}$	CPO+ - CPO- = 100 mV	-	320	-	ns
	CP0+ - CPO- = -100 mV	-	1100	-	ns
Response Time: Mode 3, $\mathrm{Vcm} *=1.5 \mathrm{~V}$	CP0+ - CP0- = 100 mV	-	1050	-	ns
	CP0+ - CPO- = -100 mV	-	5200	-	ns
Common-Mode Rejection Ratio		-	1.5	4	mV / V
Positive Hysteresis 1	CPOHYP1-0 = 00	-	0	1	mV
Positive Hysteresis 2	CPOHYP1-0 = 01	2	5	10	mV
Positive Hysteresis 3	CPOHYP1-0 = 10	7	10	20	mV
Positive Hysteresis 4	CPOHYP1-0 = 11	15	20	30	mV
Negative Hysteresis 1	CPOHYN1-0 = 00		0	1	mV
Negative Hysteresis 2	CPOHYN1-0 = 01	2	5	10	mV
Negative Hysteresis 3	CPOHYN1-0 = 10	7	10	20	mV
Negative Hysteresis 4	CPOHYN1-0 = 11	15	20	30	mV
Inverting or Non-Inverting Input Voltage Range		-0.25		VDD + 0.25	V
Input Capacitance		-	3	-	pF
Input Bias Current		-	0.001	-	nA
Input Offset Voltage		-5	-	+5	mV
Power Supply					
Power Supply Rejection		-	0.1	-	mV / V
Power-up Time		-	10	-	$\mu \mathrm{s}$
Supply Current at DC	Mode 0	-	7.6	20	$\mu \mathrm{A}$
	Mode 1	-	3.2	10	$\mu \mathrm{A}$
	Mode 2	-	1.3	5	$\mu \mathrm{A}$
	Mode 3	-	0.4	2.5	$\mu \mathrm{A}$
*Note: Vcm is the common-mode voltage on CPO+ and CPO-.					

8. Voltage Regulator (REGO)

C8051F320/1 devices include a 5-to-3 V voltage regulator (REG0). When enabled, the REG0 output appears on the VDD pin and can be used to power external devices. REG0 can be enabled/disabled by software using bit REGEN in register REG0CN. See Table 8.1 for REG0 electrical characteristics.

Note that the VBUS signal must be connected to the VBUS pin when using the device in a USB network. The VBUS signal should only be connected to the REGIN pin when operating the device as a bus-powered function. REG0 configuration options are shown in Figure 8.2-Figure 8.5.

The input (VREGIN) and output (VDD) of the voltage regulator should both be protected by adding decoupling and bypass capacitors on each pin to ground. Suggested values for the two capacitors are $4.7 \mu \mathrm{~F}+0.1 \mu \mathrm{~F}$. These capacitors will increase noise immunity and stabilize the voltage supply.

Figure 8.1. External Capacitors for Voltage Regulator Input/Output

8.1. Regulator Mode Selection

REG0 offers a low power mode intended for use when the device is in suspend mode. In this low power mode, the REG0 output remains as specified; however the REG0 dynamic performance (response time) is degraded. See Table 8.1 for normal and low power mode supply current specifications. The REG0 mode selection is controlled via the REGMOD bit in register REGOCN.

8.2. VBUS Detection

When the USB Function Controller is used (see section Section "15. Universal Serial Bus Controller (USB)" on page 139), the VBUS signal should be connected to the VBUS pin. The VBSTAT bit (register REGOCN) indicates the current logic level of the VBUS signal. If enabled, a VBUS interrupt will be generated when the VBUS signal matches the polarity selected by the VBPOL bit in register REGOCN. The VBUS interrupt is level-sensitive, and has no associated interrupt pending flag. The VBUS interrupt will be active as long as the VBUS signal matches the polarity selected by VBPOL. See Table 8.1 for VBUS input parameters.

C8051F320/1

Important Note: When USB is selected as a reset source, a system reset will be generated when the VBUS signal matches the polarity selected by the VBPOL bit. See Section "10. Reset Sources" on page 99 for details on selecting USB as a reset source.

Table 8.1. Voltage Regulator Electrical Specifications
-40 to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
${\text { Input Voltage } \text { Range }^{1}} \quad$		2.7	-	5.25	V
Output Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)^{2}$	Output Current =1 to 100 mA	3.0	3.3	3.6	V
Output Current ${ }^{2}$		-	-	100	mA
VBUS Detection Input Low Voltage		-	-	1.0	V
VBUS Detection Input High Voltage		3.0	-	-	V
Bias Current	Normal Mode (REGMOD $=0)$ Low Power Mode (REGMOD $=1)$	-	65	111	$\mu 5$
Dropout Voltage $\left(\mathrm{V}_{\mathrm{DO}}\right)^{3}$		-	1	-	$\mathrm{mV} / \mathrm{mA}$

Notes:

1. Input range specified for regulation. When an external regulator is used, REGIN should be tied to $V_{D D}$.
2. Output current is total regulator output, including any current required by the C8051F320/1.
3. The minimum input voltage is 2.70 V or VDD $+\mathrm{V}_{\mathrm{DO}}$ (max load), whichever is greater.

Figure 8.2. REG0 Configuration: USB Bus-Powered

Figure 8.3. REGO Configuration: USB Self-Powered

Figure 8.4. REG0 Configuration: USB Self-Powered, Regulator Disabled

C8051F320/1

Figure 8.5. REG0 Configuration: No USB Connection

SFR Definition 8.1. REG0CN: Voltage Regulator Control

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
REGDIS	VBSTAT	VBPOL	REGMOD	Reserved	Reserved	Reserved	Reserved	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 x C 9$
Bit7:	REGDIS: Voltage Regulator Disable. 0: Voltage Regulator Enabled. 1: Voltage Regulator Disabled.							
Bit6:	VBSTAT: VBUS Signal Status. 0 : VBUS signal currently absent (device not attached to USB network). 1: VBUS signal currently present (device attached to USB network).							
Bit5:	VBPOL: VBUS Interrupt Polarity Select. This bit selects the VBUS interrupt polarity. 0 : VBUS interrupt active when VBUS is low. 1: VBUS interrupt active when VBUS is high.							
Bit4:	REGMOD: This bit sele lator operat 0: USB0 Vol 1: USB0 Vol	Itage Reg s the Volta in low po ge Regulal ge Regul	ulator Mode age Regulat (suspen ator in norm ator in low p	Select. tor mode. W d) mode. al mode. power mode	Vhen REGM	OD is set	' 1 ', the	Itage regu-
Bits3-0:	Reserved. Read $=0000$ b. Must Write $=0000 \mathrm{~b}$.							

C8051F320/1

9. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51 ${ }^{\text {TM }}$ instruction set; standard $803 x / 805 x$ assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are four 16-bit counter/timers (see description in Section 19), an enhanced full-duplex UART (see description in Section 17), an Enhanced SPI (see description in Section 18), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (Section 9.2.6), and 25 Port I/O (see description in Section 14). The CIP-51 also includes on-chip debug hardware (see description in Section 21), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 9.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25 MHz Clock
- 0 to 25 MHz Clock Frequency
- 256 Bytes of Internal RAM
- 25 Port I/O ('F320) / 21 Port I/O ('F321)
- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Figure 9.1. CIP-51 Block Diagram

C8051F320/1

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz . By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's maximum system clock at 25 MHz , it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that for execution time.

Clocks to Execute	1	2	$2 / 3$	3	$3 / 4$	4	$4 / 5$	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

Programming and Debugging Support

In-system programming of the Flash program memory and communication with on-chip debug support logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2). Note that the re-programmable Flash can also be read and changed a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or other on-chip resources. C2 details can be found in Section "21. C2 Interface" on page 245.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, macro assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

9.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51 ${ }^{\text {TM }}$ instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51 ${ }^{\mathrm{TM}}$ counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

9.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 9.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

C8051F320/1

9.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory (Note: the C8051F320/1 does not support off-chip data or program memory). In the CIP-51, the MOVX write instruction is used to accesses external RAM (XRAM) and the on-chip program memory space implemented as re-programmable Flash memory. The Flash access feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to Section "11. Flash Memory" on page 106 for further details.

Table 9.1. CIP-51 Instruction Set Summary

Mnemonic	Description	Bytes	Clock Cycles
Arithmetic Operations			
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, \#data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, \#data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, \#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
Logical Operations			
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, \#data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, \#data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, \#data	OR immediate to A	2	2

C8051F320/1

Table 9.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
ORL direct, A	OR A to direct byte	2	2
ORL direct, \#data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, \#data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, \#data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer			
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, \#data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, \#data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, \#data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, \#data	Move immediate to indirect RAM	2	2
MOV DPTR, \#data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2

Table 9.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
Boolean Manipulation			
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
Program Branching			
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, \#data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, \#data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, \#data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

C8051F320/1

Notes on Registers, Operands and Addressing Modes:
Rn - Register R0-R7 of the currently selected register bank.
@Ri - Data RAM location addressed indirectly through R0 or R1.
rel - 8-bit, signed (two's complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.
direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x000x7F) or an SFR (0x80-0xFF).
\#data-8-bit constant
\#data16-16-bit constant
bit - Direct-accessed bit in Data RAM or SFR
addr11-11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.
addr16-16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 16 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP.
All mnemonics copyrighted © Intel Corporation 1980.

9.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The CIP-51 memory organization is shown in Figure 9.2.

Figure 9.2. Memory Map

9.2.1. Program Memory

The CIP-51 core has a 64k-byte program memory space. The C8051F320/1 implements 16k bytes of this program memory space as in-system, re-programmable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x3FFF. Addresses above 0x3DFF are reserved.

Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for nonvolatile data storage. Refer to Section "11. Flash Memory" on page 106 for further details.

C8051F320/1

9.2.2. Data Memory

The CIP-51 includes 256 of internal RAM mapped into the data memory space from 0×00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0×00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations $0 x 20$ through $0 x 2 F$, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 9.2 illustrates the data memory organization of the CIP-51.

9.2.3. General Purpose Registers

The lower 32 bytes of data memory, locations 0×00 through $0 \times 1 F$, may be addressed as four banks of gen-eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in Figure 9.4). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

9.2.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through $0 \times 2 \mathrm{~F}$ are also accessible as 128 individually addressable bits. Each bit has a bit address from 0×00 to $0 \times 7 \mathrm{~F}$. Bit 0 of the byte at 0×20 has bit address 0×00 while bit 7 of the byte at 0×20 has bit address 0×07. Bit 7 of the byte at $0 \times 2 \mathrm{~F}$ has bit address $0 \times 7 \mathrm{~F}$. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).

The MCS-51 ${ }^{\mathrm{TM}}$ assembly language allows an alternate notation for bit addressing of the form XX . B where $X X$ is the byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22h. 3
moves the Boolean value at 0×13 (bit 3 of the byte at location 0×22) into the Carry flag.

9.2.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0×07. Therefore, the first value pushed on the stack is placed at location 0×08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

C8051F320/1

9.2.6. Special Function Registers

The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs). The SFRs provide control and data exchange with the CIP-51's resources and peripherals. The CIP-51 duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the MCU. This allows the addition of new functionality while retaining compatibility with the MCS-51 ${ }^{\text {TM }}$ instruction set. Table 9.2 lists the SFRs implemented in the CIP-51 System Controller.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, SCONO, IE, etc.) are bitaddressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in Table 9.3, for a detailed description of each register.

Table 9.2. Special Function Register (SFR) Memory Map

F8	SPIOCN	PCAOL	PCAOH	PCAOCPLO	PCAOCPH0	PCA0CPL4	PCA0CPH4	VDMOCN
F0	B	POMDIN	P1MDIN	P2MDIN	P3MDIN		EIP1	EIP2
E8	ADCOCN	PCA0CPL1	PCAOCPH1	PCA0CPL2	PCAOCPH2	PCA0CPL3	PCAOCPH3	RSTSRC
E0	ACC	XBR0	XBR1		IT01CF		EIE1	EIE2
D8	PCAOCN	PCAOMD	$\begin{gathered} \text { PCAOCPM } \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PCAOCPM } \\ 1 \end{array}$	$\begin{gathered} \text { PCAOCPM } \\ 2 \end{gathered}$	$\begin{gathered} \text { PCAOCPM } \\ 3 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { PCAOCPM } \\ 4 \end{array}$	
D0	PSW	REFOCN			POSKIP	P1SKIP	P2SKIP	USBOXCN
C8	TMR2CN	REGOCN	TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMBOCN	SMB0CF	SMBODAT	ADC0GTL	ADCOGTH	ADCOLTL	ADCOLTH	
B8	IP	CLKMUL	AMXON	AMXOP	ADCOCF	ADCOL	ADCOH	
B0	P3	OSCXCN	OSCICN	OSCICL			FLSCL	FLKEY
A8	IE	CLKSEL	EMIOCN					
A0	P2	SPIOCFG	SPIOCKR	SPIODAT	POMDOUT	P1MDOUT	P2MDOUT	P3MDOUT
98	SCONO	SBUFO	CPT1CN	CPTOCN	CPT1MD	CPTOMD	CPT1MX	CPTOMX
90	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	USBOADR	USBODAT
88	TCON	TMOD	TLO	TL1	TH0	TH1	CKCON	PSCTL
80	P0	SP	DPL	DPH				PCON
	$0(8)$ (bit addressable)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

C8051F320/1

Table 9.3. Special Function Registers
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	Description	Page
ACC	0xE0	Accumulator	86
ADC0CF	0xBC	ADC0 Configuration	48
ADC0CN	0xE8	ADC0 Control	49
ADCOGTH	0xC4	ADC0 Greater-Than Compare High	50
ADC0GTL	$0 \times C 3$	ADC0 Greater-Than Compare Low	50
ADCOH	OxBE	ADC0 High	48
ADCOL	0xBD	ADC0 Low	48
ADCOLTH	$0 \times \mathrm{C} 6$	ADC0 Less-Than Compare Word High	51
ADCOLTL	0xC5	ADC0 Less-Than Compare Word Low	51
AMXON	0xBA	AMUX0 Negative Channel Select	47
AMXOP	0xBB	AMUX0 Positive Channel Select	46
B	0xF0	B Register	86
CKCON	0x8E	Clock Control	215
CLKSEL	0xA9	Clock Select	124
CLKMUL	0xB9	Clock Multiplier Control	122
CPTOCN	0x9B	Comparator0 Control	60
CPTOMD	0x9D	Comparator0 Mode Selection	62
CPTOMX	0x9F	Comparator0 MUX Selection	61
CPT1CN	$0 \times 9 \mathrm{~A}$	Comparator1 Control	63
CPT1MD	0x9C	Comparator1 Mode Selection	65
CPT1MX	0x9E	Comparator1 MUX Selection	64
DPH	0x83	Data Pointer High	84
DPL	0x82	Data Pointer Low	83
EIE1	0xE6	Extended Interrupt Enable 1	93
EIE2	0xE7	Extended Interrupt Enable 2	95
EIP1	0xF6	Extended Interrupt Priority 1	94
EIP2	0xF7	Extended Interrupt Priority 2	95
EMIOCN	OxAA	External Memory Interface Control	115
FLKEY	0xB7	Flash Lock and Key	112
FLSCL	0xB6	Flash Scale	113
IE	0xA8	Interrupt Enable	91
IP	0xB8	Interrupt Priority	92

C8051F320/1

Table 9.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	Description	Page
IT01CF	0xE4	INTO/INT1 Configuration	96
OSCICL	$0 \times B 3$	Internal Oscillator Calibration	118
OSCICN	$0 \times B 2$	Internal Oscillator Control	118
OSCXCN	$0 \times B 1$	External Oscillator Control	121
P0	0x80	Port 0 Latch	133
POMDIN	0xF1	Port 0 Input Mode Configuration	133
POMDOUT	0xA4	Port 0 Output Mode Configuration	133
POSKIP	$0 \times D 4$	Port 0 Skip	134
P1	0x90	Port 1 Latch	134
P1MDIN	0xF2	Port 1 Input Mode Configuration	134
P1MDOUT	0xA5	Port 1 Output Mode Configuration	135
P1SKIP	0xD5	Port 1 Skip	135
P2	0xA0	Port 2 Latch	135
P2MDIN	0xF3	Port 2 Input Mode Configuration	136
P2MDOUT	0xA6	Port 2 Output Mode Configuration	136
P2SKIP	0xD6	Port 2 Skip	136
P3	$0 \times B 0$	Port 3 Latch	137
P3MDIN	0xF4	Port 3 Input Mode Configuration	137
P3MDOUT	0xA7	Port 3 Output Mode Configuration	137
PCAOCN	0xD8	PCA Control	240
PCAOCPHO	0xFC	PCA Capture 0 High	244
PCAOCPH1	0xEA	PCA Capture 1 High	244
PCA0CPH2	0xEC	PCA Capture 2 High	244
PCA0CPH3	0xEE	PCA Capture 3High	244
PCA0CPH4	0xFE	PCA Capture 4 High	244
PCAOCPLO	0xFB	PCA Capture 0 Low	243
PCA0CPL1	0xE9	PCA Capture 1 Low	243
PCA0CPL2	0xEB	PCA Capture 2 Low	243
PCA0CPL3	0xED	PCA Capture 3Low	243
PCA0CPL4	0xFD	PCA Capture 4 Low	243
PCA0CPM0	0xDA	PCA Module 0 Mode Register	242
PCA0CPM1	0xDB	PCA Module 1 Mode Register	242

C8051F320/1

Table 9.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	Description	Page
PCA0CPM2	0xDC	PCA Module 2 Mode Register	242
PCA0CPM3	0xDD	PCA Module 3 Mode Register	242
PCA0CPM4	0xDE	PCA Module 4 Mode Register	242
PCAOH	0xFA	PCA Counter High	243
PCAOL	0xF9	PCA Counter Low	243
PCAOMD	0xD9	PCA Mode	241
PCON	0x87	Power Control	98
PSCTL	0x8F	Program Store R/W Control	112
PSW	0xD0	Program Status Word	85
REFOCN	$0 \times D 1$	Voltage Reference Control	56
REG0CN	0xC9	Voltage Regulator Control	70
RSTSRC	0xEF	Reset Source Configuration/Status	104
SBUFO	0x99	UART0 Data Buffer	193
SCON0	0x98	UARTO Control	192
SMB0CF	$0 \times \mathrm{C} 1$	SMBus Configuration	175
SMB0CN	0xC0	SMBus Control	177
SMB0DAT	$0 \times \mathrm{C} 2$	SMBus Data	179
SP	0x81	Stack Pointer	84
SPIOCFG	$0 \times \mathrm{A} 1$	SPI Configuration	203
SPIOCKR	0xA2	SPI Clock Rate Control	205
SPIOCN	0xF8	SPI Control	204
SPIODAT	0xA3	SPI Data	205
TCON	0x88	Timer/Counter Control	213
TH0	0x8C	Timer/Counter 0 High	216
TH1	0x8D	Timer/Counter 1 High	216
TLO	0x8A	Timer/Counter 0 Low	216
TL1	0x8B	Timer/Counter 1 Low	216
TMOD	0x89	Timer/Counter Mode	214
TMR2CN	0xC8	Timer/Counter 2 Control	220
TMR2H	OxCD	Timer/Counter 2 High	221
TMR2L	0xCC	Timer/Counter 2 Low	221
TMR2RLH	0xCB	Timer/Counter 2 Reload High	221

Table 9.3. Special Function Registers (Continued)
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	Description	Page
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	221
TMR3CN	0×91	Timer/Counter 3Control	225
TMR3H	0×95	Timer/Counter 3 High	226
TMR3L	$0 x 94$	Timer/Counter 3Low	226
TMR3RLH	$0 x 93$	Timer/Counter 3 Reload High	226
TMR3RLL	$0 x 92$	Timer/Counter 3 Reload Low	226
USB0ADR	0×96	USB0 Indirect Address Register	143
USB0DAT	0x97	USB0 Data Register	144
USB0XCN	0xD7	USB0 Transceiver Control	141
VDM0CN	0xFF	VDD Monitor Control	101
XBR0	0xE1	Port I/O Crossbar Control 0	131
XBR1	0xE2	Port I/O Crossbar Control 1	132
0x84-0x86, 0xAB-0xAF, 0xB4, 0xB5, 0xBF, 0xC7, 0xCE, 0xCF, 0xD2, 0xD3, 0xDF, 0xE3, 0xE5, 0xF5	Reserved		

9.2.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic I. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0 , selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

SFR Definition 9.1. DPL: Data Pointer Low Byte

R/W	Reset Value							
								00000000
Bit7	Bit6 Bit5		Bit4 Bit3		Bit2 Bit1		Bit0	SFR Address: 0×82
Bits7-0: DPL: Data Pointer Low. The DPL register is the low byte of the 16 -bit DPTR. DPTR is used to access indirectly addressed memory.								

C8051F320/1

SFR Definition 9.2. DPH: Data Pointer High Byte

SFR Definition 9.3. SP: Stack Pointer

R/W	Reset Value							
								00000111
Bit7	Bit6 Bit5		Bit4 Bit3		Bit2	Bit1	Bit0	SFR Address: 0×81
Bits7-0: SP: Stack Pointer. The Stack Pointer holds the location of the top of the stack. The stack pointer is incremented before every PUSH operation. The SP register defaults to 0x07 after reset.								

SFR Definition 9.4. PSW: Program Status Word

Bit7: CY: Carry Flag.
This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow (subtraction). It is cleared to logic 0 by all other arithmetic operations.
Bit6: AC: Auxiliary Carry Flag
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations.
Bit5: F0: User Flag 0.
This is a bit-addressable, general purpose flag for use under software control.
Bits4-3: RS1-RSO: Register Bank Select.
These bits select which register bank is used during register accesses.

RS1	RS0	Register Bank	Address
0	0	0	$0 \times 00-0 \times 07$
0	1	1	$0 \times 08-0 \times 0 \mathrm{~F}$
1	0	2	$0 \times 10-0 \times 17$
1	1	3	$0 \times 18-0 \times 1 \mathrm{~F}$

Bit2: OV: Overflow Flag.
This bit is set to 1 under the following circumstances:

- An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
- A MUL instruction results in an overflow (result is greater than 255).
- A DIV instruction causes a divide-by-zero condition.

The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases.
Bit1: F1: User Flag 1.
This is a bit-addressable, general purpose flag for use under software control.
Bit0: PARITY: Parity Flag.
This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum is even.

C8051F320/1

SFR Definition 9.5. ACC: Accumulator

R/W	Reset Value							
ACC. 7	ACC. 6	ACC. 5	ACC. 4	ACC. 3	ACC. 2	ACC. 1	ACC. 0	00000000
Bit7	Bit6 Bit5		Bit4	Bit3 Bit2		Bit1	Bit0	SFR Address:
			addressable)			0xE0		
Bits7-0: ACC: Accumulator. This register is the accumulator for arithmetic operations								

SFR Definition 9.6. B: B Register

R/W	Reset Value							
B. 7	B. 6	B. 5	B. 4	B. 3	B. 2	B. 1	B. 0	00000000
Bit7	Bit6 Bit5		Bit4 Bit3		Bit2 Bit1		Bit0	SFR Address:
			dressable)	0xF0				
Bits7-0: $\begin{aligned} & \text { B: B Register. } \\ & \\ & \text { This register serves as a second accumulator for certain arithmetic operations. }\end{aligned}$								

9.3. Interrupt Handler

The CIP-51 includes an extended interrupt system supporting a total of 16 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the specific version of the device. Each interrupt source has one or more associated interruptpending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE-EIE2). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.

Note: any instruction which clears the EA bit should be immediately followed by an instruction which has two or more opcode bytes. For example:
// in 'C':
$E A=0 ; / /$ clear EA bit
EA = 0; // ... followed by another 2-byte opcode
; in assembly:
CLR EA ; clear EA bit
CLR EA ; ... followed by another 2-byte opcode
If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. If the EA bit is read inside the interrupt service routine, it will return a ' 0 '. When the "CLR EA" opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

9.3.1. MCU Interrupt Sources and Vectors

The MCU supports 16 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1 . If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 9.4 on page 89. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

C8051F320/1

9.3.2. External Interrupts

The /INT0 and /INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (/INT0 Polarity) and IN1PL (/INT1 Polarity) bits in the IT01CF register select active high or active low; the ITO and IT1 bits in TCON (Section "19.1. Timer 0 and Timer 1" on page 209) select level or edge sensitive. The table below lists the possible configurations.

ITO	INOPL	IINT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	IINT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensi- tive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

/INT0 and /INT1 are assigned to Port pins as defined in the IT01CF register (see Figure 9.13). Note that /INTO and /INTO Port pin assignments are independent of any Crossbar assignments. /INTO and /INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to /INT0 and/or /INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBRO (see Section "14.1. Priority Crossbar Decoder" on page 128 for complete details on configuring the Crossbar).

IEO (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (INOPL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

9.3.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 9.4.

C8051F320/1

9.3.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

Note that the CPU is stalled during Flash write/erase operations and USB FIFO MOVX accesses (see Section "12.2. Accessing USB FIFO Space" on page 114). Interrupt service latency will be increased for interrupts occuring while the CPU is stalled. The latency for these situations will be determined by the standard interrupt service procedure (as described above) and the amount of time the CPU is stalled.

Table 9.4. Interrupt Summary

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag			Enable Flag	Priority Control
Reset	0x0000	Top	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (IINTO)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	$\begin{aligned} & \hline \text { PX0 } \\ & \text { (IP.0) } \end{aligned}$
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	$\begin{aligned} & \text { PX1 } \\ & (\text { IP.2) } \end{aligned}$
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	$\begin{array}{\|l} \hline \text { RIO (SCONO.O) } \\ \text { TIO (SCONO.1) } \\ \hline \end{array}$	Y	N	ES0 (IE.4)	$\begin{aligned} & \text { PS0 } \\ & \text { (IP.4) } \end{aligned}$
Timer 2 Overflow	0x002B	5	$\begin{aligned} & \hline \text { TF2H (TMR2CN.7) } \\ & \text { TF2L (TMR2CN.6) } \\ & \hline \end{aligned}$	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPIO	0x0033	6	$\begin{aligned} & \hline \text { SPIF (SPIOCN.7) } \\ & \text { WCOL (SPIOCN.6) } \\ & \text { MODF (SPIOCN.5) } \\ & \text { RXOVRN } \\ & \text { (SPIOCN.4) } \\ & \hline \end{aligned}$	Y	N	$\begin{aligned} & \text { ESPIO } \\ & \text { (IE.6) } \end{aligned}$	$\begin{aligned} & \text { PSPIO } \\ & \text { (IP.6) } \end{aligned}$
SMB0	0x003B	7	SI (SMBOCN.0)	Y	N	$\begin{array}{\|l} \hline \text { ESMB0 } \\ \text { (EIE1.0) } \end{array}$	$\begin{aligned} & \hline \text { PSMB0 } \\ & \text { (EIP1.0) } \end{aligned}$
USB0	0x0043	8	Special	N	N	$\begin{array}{\|l} \hline \text { EUSB0 } \\ \text { (EIE1.1) } \end{array}$	$\begin{array}{\|l} \hline \text { PUSB0 } \\ \text { (EIP1.1) } \end{array}$
ADC0 Window Compare	0x004B	9	$\begin{aligned} & \text { ADOWINT } \\ & \text { (ADC0CN.3) } \end{aligned}$	Y	N	$\begin{aligned} & \text { EWADC0 } \\ & \text { (EIE1.2) } \end{aligned}$	PWADC0 (EIP1.2)

C8051F320/1

Table 9.4. Interrupt Summary (Continued)

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag			Enable Flag	Priority Control
ADC0 Conversion Complete	0x0053	10	ADOINT (ADCOCN.5)	Y	N	$\begin{array}{\|l\|} \hline \text { EADC0 } \\ \text { (EIE1.3) } \end{array}$	$\begin{aligned} & \text { PADC0 } \\ & \text { (EIP1.3) } \end{aligned}$
Programmable Counter Array	0x005B	11	$\begin{aligned} & \hline \text { CF (PCAOCN.7) } \\ & \text { CCFn (PCAOCN.n) } \end{aligned}$	Y	N	$\begin{array}{\|l\|} \hline \text { EPCAO } \\ \text { (EIE1.4) } \end{array}$	$\begin{aligned} & \hline \text { PPCAO } \\ & \text { (EIP1.4) } \end{aligned}$
Comparator0	0x0063	12	$\begin{aligned} & \text { CPOFIF (CPTOCN.4) } \\ & \text { CPORIF (CPTOCN.5) } \end{aligned}$	N	N	$\begin{array}{\|l\|} \hline \text { ECP0 } \\ \text { (EIE1.5) } \end{array}$	$\begin{aligned} & \text { PCP0 } \\ & \text { (EIP1.5) } \end{aligned}$
Comparator1	0x006B	13	$\begin{aligned} & \text { CP1FIF (CPT1CN.4) } \\ & \text { CP1RIF (CPT1CN.5) } \end{aligned}$	N	N	$\begin{array}{\|l\|} \hline \text { ECP1 } \\ \text { (EIE1.6) } \end{array}$	$\begin{aligned} & \hline \text { PCP1 } \\ & \text { (EIP1.6) } \end{aligned}$
Timer 3 Overflow	0x0073	14	$\begin{array}{\|l} \text { TF3H (TMR3CN.7) } \\ \text { TF3L (TMR3CN.6) } \\ \hline \end{array}$	N	N	$\begin{array}{\|l\|} \hline \text { ET3 } \\ \text { (EIE1.7) } \\ \hline \end{array}$	$\begin{aligned} & \text { PT3 } \\ & \text { (EIP1.7) } \\ & \hline \end{aligned}$
VBUS Level	0x007B	15	N/A	N/A	N/A	$\begin{aligned} & \hline \text { EVBUS } \\ & \text { (EIE2.0) } \end{aligned}$	PVBUS (EIP2.0)

9.3.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

C8051F320/1

SFR Definition 9.7. IE: Interrupt Enable

R/W	Reset Value							
EA	ESPIO	ET2	ES0	ET1	EX1	ETO	EXO	00000000
Bit7	Bit6 Bit5		Bit4	Bit3 Bit2		Bit1	Bit0	SFR Address:
						dressable)	0xA8	
Bit7:	EA: Enable All Interrupts.							
	This bit globally enables/disables all interrupts. It overrides the individual interrupt mask settings.							
	0: Disable all interrupt sources.							
	1: Enable each interrupt according to its individual mask setting.							
Bit6:	ESPIO: Enable Serial Peripheral Interface (SPIO) Interrupt.							
	This bit sets the masking of the SPIO interrupts.							
	0: Disable all SPIO interrupts.							
	1: Enable interrupt requests generated by SPIO.							
Bit5:	ET2: Enable Timer 2 Interrupt.							
	This bit sets the masking of the Timer 2 interrupt.							
	0 : Disable Timer 2 interrupt.							
	1: Enable interrupt requests generated by the TF2L or TF2H flags.							
Bit4:	ESO: Enable UARTO Interrupt.							
	This bit sets the masking of the UART0 interrupt.							
	0 : Disable UARTO interrupt.							
	1: Enable UART0 interrupt.							
Bit3:	ET1: Enable Timer 1 Interrupt.							
	This bit sets the masking of the Timer 1 interrupt.							
	0 : Disable all Timer 1 interrupt.							
	1: Enable interrupt requests generated by the TF1 flag.							
Bit2:	EX1: Enable External Interrupt 1.							
	This bit sets the masking of External Interrupt 1.							
	0 : Disable external interrupt 1.							
	1: Enable interrupt requests generated by the /INT1 input.							
Bit1:	ETO: Enable Timer 0 Interrupt.							
	This bit sets the masking of the Timer 0 interrupt.							
	0 : Disable all Timer 0 interrupt.							
	1: Enable interrupt requests generated by the TFO flag.							
Bit0:	EX0: Enable External Interrupt 0.							
	This bit sets the masking of External Interrupt 0.							
	0 : Disable external interrupt 0.							
	1: Enable interrupt requests generated by the /INTO input.							

C8051F320/1

SFR Definition 9.8. IP: Interrupt Priority

R/W	Reset Value							
-	PSPIO	PT2	PS0	PT1	PX1	PT0	PX0	10000000
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
			(bit addressable)				0xB8	
$\begin{aligned} & \text { Bit7: } \\ & \text { Bit6: } \end{aligned}$	UNUSED. Read = 1b, Write = don't care.							
	PSPIO: Serial Peripheral Interface (SPIO) Interrupt Priority Control.							
	This bit sets the priority of the SPIO interrupt.							
	0 S SPIO interrupt set to low priority level.							
	1: SPIO interrupt set to high priority level.							
Bit5:	PT2: Timer 2 Interrupt Priority Control.							
	This bit sets the priority of the Timer 2 interrupt.							
	0 : Timer 2 interrupt set to low priority level.							
	1: Timer 2 interrupts set to high priority level.							
Bit4:	PSO: UARTO Interrupt Priority Control.							
	This bit sets the priority of the UARTO interrupt.							
	0 : UART0 interrupt set to low priority level.							
	1: UARTO interrupts set to high priority level.							
Bit3:	PT1: Timer 1 Interrupt Priority Control.							
	This bit sets the priority of the Timer 1 interrupt.							
	0 : Timer 1 interrupt set to low priority level.							
	1: Timer 1 interrupts set to high priority level.							
Bit2:	PX1: External Interrupt 1 Priority Control.							
	This bit sets the priority of the External Interrupt 1 interrupt.							
	0 : External Interrupt 1 set to low priority level.							
	1: External Interrupt 1 set to high priority level.							
Bit1:	PTO: Timer 0 Interrupt Priority Control.							
	This bit sets the priority of the Timer 0 interrupt.							
	0 : Timer 0 interrupt set to low priority level.							
	1: Timer 0 interrupt set to high priority level.							
Bit0:	PXO: External Interrupt 0 Priority Control.							
	This bit sets the priority of the External Interrupt 0 interrupt.							
	0 : External Interrupt 0 set to low priority level.							
	1: External Interrupt 0 set to high priority level.							

SFR Definition 9.9. EIE1: Extended Interrupt Enable 1

SFR Definition 9.10. EIP1: Extended Interrupt Priority 1

R/W	Reset Value							
PT3	PCP1	PCP0	PPCA0	PADC0	PWADC0	PUSB0	PSMB0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xF6
Bit7:	PT3: Timer 3 Interrupt Priority Control. This bit sets the priority of the Timer 3 interrupt. 0 : Timer 3 interrupts set to low priority level. 1: Timer 3 interrupts set to high priority level.							
Bit6:	PCP1: Com This bit set 0: CP1 inte 1: CP1 inte	rator1 e priority set to set to	1) Interru f the CP1 priority ph priority	Priority terrupt. el. vel.	ontrol.			
Bit5:	PCP0: Com This bit set 0: CP0 inte 1: CP0 inte	rator0	O) Interru f the CPO priority ph priority	Priority terrupt. el. vel.	ntrol.			
Bit4:	PPCA0: Pr This bit sets 0: PCAO int 1: PCAO int	ammabl	Counter A	y (PCAO) interrupt evel. evel.	Interrupt P	rity Con		
Bit3:	PADC0 AD This bit set 0: ADC0 C 1: ADC0	Conver	f Comple	Interrupt Convers upt set to upt set to	Priority Con low priority high priority	ol. interrupt. vel. level.		
Bit2:	PWADC0: This bit set 0: ADC0 W 1: ADC0 W	CO Wind	Compar	Window	Priority C terrupt. vel. vel.	trol.		
Bit1:	PUSB0: US This bit set 0: USB0 int 1: USB0 int	Interru e priorit upt set to upt set to	Priority Co	rol. interrupt evel. evel.				
Bit0:	This bit sets the priority of the SMB0 interrupt. 0 : SMB0 interrupt set to low priority level. 1: SMB0 interrupt set to high priority level.							

C8051F320/1

SFR Definition 9.11. EIE2: Extended Interrupt Enable 2

SFR Definition 9.12. EIP2: Extended Interrupt Priority 2

R/W	Reset Value							
-	-	-	-	-	-	-	PVBUS	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 x F 7$
Bits7-1: UNUSED. Read $=0000000 \mathrm{~b}$. Write $=$ don't care. Bit0: PVBUS: VBUS Level Interrupt Priority Control. This bit sets the priority of the VBUS interrupt. 0 : VBUS interrupt set to low priority level. 1: VBUS interrupt set to high priority level.								

C8051F320/1

SFR Definition 9.13. IT01CF: INT0/INT1 Configuration

R/W	R/W	R/W	R/W	R/W	R/W			
R/W	R/W	Reset Value						
IN1PL	IN1SL2	IN1SL1	IN1SL0	INOPL	INOSL2	INOSL1	INOSL0	00000001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

Note: Refer to Figure 19.1 for INT0/1 edge- or level-sensitive interrupt selection.

Bit7: IN1PL: /INT1 Polarity 0 : /INT1 input is active low.
1: /INT1 input is active high.
Bits6-4: IN1SL2-0: /INT1 Port Pin Selection Bits
These bits select which Port pin is assigned to /INT1. Note that this pin assignment is independent of the Crossbar; /INT1 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by setting to ' 1 ' the corresponding bit in register POSKIP).

IN1SL2-0	IINT1 Port Pin
000	P 0.0
001	P 0.1
010	P 0.2
011	P 0.3
100	P 0.4
101	P 0.5
110	P 0.6
111	P 0.7

Bit3: INOPL: /INTO Polarity
0 : /INT0 interrupt is active low.
1: /INTO interrupt is active high.
Bits2-0: INTOSL2-0: /INT0 Port Pin Selection Bits
These bits select which Port pin is assigned to /INTO. Note that this pin assignment is independent of the Crossbar. /INTO will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin (accomplished by setting to ' 1 ' the corresponding bit in register P0SKIP).

INOSL2-0	IINTO Port Pin
000	P0.0
001	P 0.1
010	P 0.2
011	P 0.3
100	P 0.4
101	P 0.5
110	P 0.6
111	P 0.7

9.4. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the peripherals and clocks active. In Stop mode, the CPU is halted, all interrupts, are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. Figure 1.15 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished through system clock and individual peripheral management. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off the oscillators lowers power consumption considerably; however a reset is required to restart the MCU.

The internal oscillator can be placed in Suspend mode (see Section "13. Oscillators" on page 116). In Suspend mode, the internal oscillator is stopped until a non-idle USB event is detected, or the VBUS input signal matches the polarity selected by the VBPOL bit in register REGOCN (Figure 8.1 on Page 70).

9.4.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0×0000.

If enabled, the Watchdog Timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to Section "10.6. PCA Watchdog Timer Reset" on page 102 for more information on the use and configuration of the WDT.

9.4.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0×0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of $100 \mu \mathrm{sec}$.

C8051F320/1

SFR Definition 9.14. PCON: Power Control

R/W	Reset Value							
GF5	GF4	GF3	GF2	GF1	GF0	STOP	IDLE	00000000
Bit7	Bit6 Bit5		Bit4 Bit3		Bit2	Bit1 Bit0		SFR Address 0×87
Bits7-2:	GF5-GF0: General Purpose Flags 5-0. These are general purpose flags for use under software control.							
Bit1:	Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0 . 1: CPU goes into Stop mode (internal oscillator stopped).							
Bit0:	IDLE: Idle Setting thi 1: CPU go Ports, and	will pla	e CIP	Idle active.)	This	ck to Ti	read	pts, Serial

10. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled.

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pull-ups are enabled during and after the reset. For VDD Monitor and Power-On Resets, the /RST pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. Refer to Section "13. Oscillators" on page 116 for information on selecting and configuring the system clock source. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source (Section "20.3. Watchdog Timer Mode" on page 236 details the use of the Watchdog Timer). Program execution begins at location 0×0000.

Figure 10.1. Reset Sources

C8051F320/1

10.1. Power-On Reset

During power-up, the device is held in a reset state and the /RST pin is driven low until VDD settles above $\mathrm{V}_{\text {RST }}$. A Power-On Reset delay ($\mathrm{T}_{\text {PORDelay }}$) occurs before the device is released from reset; this delay is typically less than 0.3 ms . Figure 10.2. plots the power-on and VDD monitor reset timing.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0×0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The VDD monitor is enabled following a power-on reset.

Software can force a power-on reset by writing ' 1 ' to the PINRSF bit in register RSTSRC.

Figure 10.2. Power-On and VDD Monitor Reset Timing

10.2. Power-Fail Reset / VDD Monitor

When a power-down transition or power irregularity causes VDD to drop below $\mathrm{V}_{\mathrm{RST}}$, the power supply monitor will drive the /RST pin low and hold the CIP-51 in a reset state (see Figure 10.2). When VDD returns to a level above V_{RS}, the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if VDD dropped below the level required for data retention. If the PORSF flag reads ' 1 ', the data may no longer be valid. The VDD monitor is enabled after power-on resets; however its defined state (enabled/disabled) is not altered by any other reset source. For example, if the VDD monitor is enabled and a software reset is performed, the VDD monitor will still be enabled after the reset.

Important Note: The VDD monitor must be enabled before it is selected as a reset source. Selecting the VDD monitor as a reset source before it is enabled and stabilized will cause a system reset. The procedure for configuring the VDD monitor as a reset source is shown below:

Step 1. Enable the VDD monitor (VDM0CN. 7 = ' 1 ').
Step 2. Wait for the VDD monitor to stabilize (see Table 10.1 for the VDD Monitor turn-on time).
Step 3. Select the VDD monitor as a reset source (RSTSRC. 1 = ' 1 ').
See Figure 10.2 for VDD monitor timing. See Table 10.1 for complete electrical characteristics of the VDD monitor.

SFR Definition 10.1. VDMOCN: VDD Monitor Control

R/W	R	R	R	R	R	R	R	Reset Value Variable
VDMEN	VDDSTAT	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 x F F$
Bit7:	VDMEN: VD This bit turns resets until it Monitor mus VDD monito See Table 10 lowing all $P O$ 0: VDD Mon 1: VDD Mon	D Monitor the VDD is also sel t be allowe as a res 0.1 for the OR resets. itor Disable itor Enabled.	Enable. monitor circu ected as a r to stabilize source be minimum VDD d. d.	it on/off. Th reset source before it is efore it has D Monitor	VDD Mo in register s selected stabilized turn-on time	nitor cannot RSTSRC s a reset so will gener . The VDD	generate Figure 10.2 urce. Sel ate a sys Monitor is	ystem The VDD ting the m reset. nabled fol-
Bit6:	VDDSTAT: V This bit indic 0 : VDD is at 1: VDD is ab	DD Status ates the cu or below th ove the VDD	rrent power e VDD mon D monitor th	supply statu itor threshold hreshold.	us (VDD M Id.	onitor output	t).	
Bits5-0:	Reserved. R	Read $=$ Varia	le. Write	don't care.				

C8051F320/1

10.3. External Reset

The external /RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the /RST pin generates a reset; an external pull-up and/or decoupling of the /RST pin may be necessary to avoid erroneous noise-induced resets. See Table 10.1 for complete /RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

10.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If more than 100μ s pass between rising edges on the system clock, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read ' 1 ', signifying the MCD as the reset source; otherwise, this bit reads ' 0 '. Writing a ' 1 ' to the MCDRSF bit enables the Missing Clock Detector; writing a ' 0 ' disables it. The state of the /RST pin is unaffected by this reset.

10.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a ' 1 ' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), a system reset is generated. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read ' 1 ' signifying Comparator0 as the reset source; otherwise, this bit reads ' 0 '. The state of the /RST pin is unaffected by this reset.

Note: When Comparator0 is not enabled but is enabled as a reset source, a reset will not be generated.

10.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "20.3. Watchdog Timer Mode" on page 236; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to ' 1 '. The state of the /RST pin is unaffected by this reset.

10.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to ' 1 ' and a MOVX write operation is attempted above address 0x3DFF.
- A Flash read is attempted above user code space. This occurs when a MOVC operation is attempted above address 0x3DFF.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above 0x3DFF.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "11.3. Security Options" on page 108).

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the /RST pin is unaffected by this reset.

10.8. Software Reset

Software may force a reset by writing a ' 1 ' to the SWRSF bit (RSTSRC.4). The SWRSF bit will read ' 1 ' following a software forced reset. The state of the /RST pin is unaffected by this reset.

10.9. USB Reset

Writing ' 1 ' to the USBRSF bit in register RSTSRC selects USB0 as a reset source. With USB0 selected as a reset source, a system reset will be generated when either of the following occur:

1. RESET signaling is detected on the USB network. The USB Function Controller (USBO) must be enabled for RESET signaling to be detected. See Section "15. Universal Serial Bus Controller (USB)" on page 139 for information on the USB Function Controller.
2. The voltage on the VBUS pin matches the polarity selected by the VBPOL bit in register REG0CN. See Section "8. Voltage Regulator (REG0)" on page 67 for details on the VBUS detection circuit.

The USBRSF bit will read ' 1 ' following a USB reset. The state of the /RST pin is unaffected by this reset.

SFR Definition 10.2. RSTSRC: Reset Source

R/W	R	R/W	R/W	R	R/W	R/W	R	Reset Value
USBRSF	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF	Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xEF
Bit7:	USBRSF: USB Reset Flag 0: Read: Last reset was not a USB reset; Write: USB resets disabled. 1: Read: Last reset was a USB reset; Write: USB resets enabled.							
Bit6:	FERROR: Flash Error Indicator. 0 : Source of last reset was not a Flash read/write/erase error. 1: Source of last reset was a Flash read/write/erase error.							
Bit5:	CORSEF: C 0 : Read: So source. 1: Read: So (active-low)	mparator0 urce of last urce of last	Reset Ena reset was eset was	le and Flag ot Compar Comparator	ator0; Write Write: C	Compar mparator	rO is not a reset	reset ource
Bit4:	SWRSF: Software Reset Force and Flag. 0: Read: Source of last reset was not a write to the SWRSF bit; Write: No Effect. 1: Read: Source of last was a write to the SWRSF bit; Write: Forces a system reset.							
Bit3:	WDTRSF: l	atchdog Ti	er Reset	Flag.				
Bit2:	0: Read: Source of last reset was not a Missing Clock Detector timeout; Write: Missing Clock Detector disabled. 1: Read: Source of last reset was a Missing Clock Detector timeout; Write: Missing Clock Detector enabled; triggers a reset if a missing clock condition is detected.							
Bit1:	This bit is set anytime a power-on reset occurs. Writing this bit selects/deselects the VDD monitor as a reset source. Note: writing ' 1 ' to this bit before the VDD monitor is enabled and stabilized can cause a system reset. See register VDM0CN (Figure 10.1). 0 : Read: Last reset was not a power-on or VDD monitor reset; Write: VDD monitor is not a reset source.							
Bit0:	PINRSF: HV 0: Source of 1: Source of	Pin Reset	Flag.	?.				
Note: For read), rea bits: USB	bits that ac d-modify-w RSF, CORS			enables and modi PORSF.	on a write the sour	and res enable	dicato ly. This	ags (on a pplies to

Table 10.1. Reset Electrical Characteristics
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
/RST Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8.5 \mathrm{~mA}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 3.6 V			0.6	V
/RST Input High Voltage		$0.7 \times \mathrm{VDD}$			V
/RST Input Low Voltage				$0.3 \times \mathrm{VDD}$	
/RST Input Pull-Up Current	$/ \mathrm{RST}=0.0 \mathrm{~V}$		25	40	$\mu \mathrm{A}$
VDD POR Threshold ($\mathrm{V}_{\mathrm{RST}}$)		2.40	2.55	2.70	V
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	100	220	500	$\mu \mathrm{s}$
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	5.0			$\mu \mathrm{s}$
Minimum /RST Low Time to Generate a System Reset		15			$\mu \mathrm{s}$
VDD Monitor Turn-on Time		100			$\mu \mathrm{s}$
VDD Monitor Supply Current			20	50	$\mu \mathrm{A}$

C8051F320/1

11. Flash Memory

On-chip, re-programmable Flash memory is included for program code and non-volatile data storage. The Flash memory can be programmed in-system, a single byte at a time, through the C2 interface or by software using the MOVX instruction. Once cleared to logic 0 , a Flash bit must be erased to set it back to logic 1. Flash bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution; data polling to determine the end of the write/erase operation is not required. Code execution is stalled during a Flash write/erase operation. Refer to Table 11.1 for complete Flash memory electrical characteristics.

11.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the C 2 interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "21. C2 Interface" on page 245.

To ensure the integrity of Flash contents, it is strongly recommended that the on-chip VDD Monitor be enabled in any system that includes code that writes and/or erases Flash memory from software.

11.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in Figure 11.2.

11.1.2. Flash Erase Procedure

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY); and (2) Setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 (this directs the MOVX writes to target Flash memory). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. A byte location to be programmed must be erased before a new value is written. The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to $0 x F F$). To erase an entire 512-byte page, perform the following steps:

Step 1. Disable interrupts (recommended).
Step 2. Write the first key code to FLKEY: 0xA5.
Step 3. Write the second key code to FLKEY: 0xF1.
Step 4. Set the PSEE bit (register PSCTL).
Step 5. Set the PSWE bit (register PSCTL).
Step 6. Using the MOVX instruction, write a data byte to any location within the 512-byte page to be erased.
Step 7. Clear the PSWE bit (register PSCTL).
Step 8. Clear the PSEE bit (register PSCTI).

C8051F320/1

11.1.3. Flash Write Procedure

Flash bytes are programmed by software with the following sequence:
Step 1. Disable interrupts (recommended).
Step 2. Erase the 512-byte Flash page containing the target location, as described in Section 11.1.2.

Step 3. Write the first key code to FLKEY: OxA5.
Step 4. Write the second key code to FLKEY: 0xF1.
Step 5. Set the PSWE bit (register PSCTL).
Step 6. Clear the PSEE bit (register PSCTL).
Step 7. Using the MOVX instruction, write a single data byte to the desired location within the 512byte sector.
Step 8. Clear the PSWE bit (register PSCTL).
Steps 3-8 must be repeated for each byte to be written. After Flash writes are complete, PSWE should be cleared so that MOVX instructions do not target program memory.

Table 11.1. Flash Electrical Characteristics

Parameter	Conditions	Min	Typ	Max	Units
Flash Size	C8051F320/1	16384^{*}			bytes
Endurance		20 k	100 k		Erase/Write
Erase Cycle Time	25 MHz System Clock	10	15	20	ms
Write Cycle Time	25 MHz System Clock	40	55	70	$\mu \mathrm{~s}$

*Note: 512 bytes at location 0x3E00 to 0x3FFF are reserved.

11.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. Note: MOVX read instructions always target XRAM.

11.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to ' 1 ' before software can modify the Flash memory; both PSWE and PSEE must be set to ' 1 ' before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. The Flash security mechanism allows the user to lock n 512-byte Flash pages, starting at page 0 (addresses 0×0000 to 0x01FF), where n is the 1's compliment number represented by the Security Lock Byte. See example below.

Security Lock Byte:	11111101b
1's Compliment:	00000010 b
Flash pages locked:	2
Addresses locked:	0×0000 to 0x03FF

Important Notes About the Flash Security:

1. Clearing any bit of the Lock Byte to ' 0 ' will lock the Flash page containing the Lock Byte (in addition to the selected pages).
2. Locked pages cannot be read, written, or erased via the C2 interface.
3. Locked pages cannot be read, written, or erased by user firmware executing from unlocked memory space.
4. User firmware executing in a locked page may read and write Flash memory in any locked or unlocked page excluding the reserved area.
5. User firmware executing in a locked page may erase Flash memory in any locked or unlocked page excluding the reserved area and the page containing the Lock Byte.
6. Locked pages can only be unlocked through the C2 interface with a C2 Device Erase command.
7. If a user firmware Flash access attempt is denied (per restrictions \#3, \#4, and \#5 above), a Flash Error system reset will be generated.

Figure 11.1. Flash Program Memory Map and Security Byte

C8051F320/1

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 11.2 summarizes the Flash security features of the 'F320/1 devices.

Table 11.2. Flash Security Summary

Action	C2 Debug Interface	User Firmware executing from:	
		an unlocked page	a locked page
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	FEDR	Permitted
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	FEDR	Permitted
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted
Read contents of Lock Byte (if any page is locked)	Not Permitted	FEDR	Permitted
Erase page containing Lock Byte (if no pages are locked)	Permitted	FEDR	FEDR
Erase page containing Lock Byte-Unlock all pages (if any page is locked)	Only C2DE	FEDR	FEDR
Lock additional pages (change '1's to '0's in the Lock Byte)	Not Permitted	FEDR	FEDR
Unlock individual pages (change '0's to '1's in the Lock Byte)	Not Permitted	FEDR	FEDR
Read, Write or Erase Reserved Area	Not Permitted	FEDR	FEDR
C2DE - C2 Device Erase (Erases all Flash pages including the page containing the Lock Byte) FEDR - Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after reset) - All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset). - Locking any Flash page also locks the page containing the Lock Byte. - Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase. - If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.			

11.4. Flash Write and Erase Guidelines

Any system which contains routines which write or erase Flash memory from software involves some risk that the write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of VDD, system clock frequency, or temperature. This accidental execution of Flash modifying code can result in alteration of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the device.

To help prevent the accidental modification of Flash by firmware, the VDD Monitor must be enabled and enabled as a reset source on C8051F32x devices for the Flash to be successfully modified. If either the VDD Monitor or the VDD Monitor reset source is not enabled, a Flash Error Device Reset will be generated when the firmware attempts to modify the Flash.

The following guidelines are recommended for any system that contains routines which write or erase Flash from code.

11.4.1. VDD Maintenance and the VDD Monitor

1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings table are not exceeded.
2. Make certain that the minimum VDD rise time specification of 1 ms is met. If the system cannot meet this rise time specification, then add an external VDD brownout circuit to the /RST pin of the device that holds the device in reset until VDD reaches 2.7 V and re-asserts /RST if VDD drops below 2.7 V .
3. Keep the on-chip VDD Monitor enabled and enable the VDD Monitor as a reset source as early in code as possible. This should be the first set of instructions executed after the Reset Vector. For 'C'-based systems, this will involve modifying the startup code added by the 'C' compiler. See your compiler documentation for more details. Make certain that there are no delays in software between enabling the VDD Monitor and enabling the VDD Monitor as a reset source. Code examples showing this can be found in AN201, "Writing to Flash from Firmware", available from the Silicon Laboratories web site.
4. As an added precaution, explicitly enable the VDD Monitor and enable the VDD Monitor as a reset source inside the functions that write and erase Flash memory. The VDD Monitor enable instructions should be placed just after the instruction to set PSWE to a '1', but before the Flash write or erase operation instruction.
5. Make certain that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC $=0 \times 02$ " is correct, but "RSTSRC |= 0×02 " is incorrect.
6. Make certain that all writes to the RSTSRC register explicitly set the PORSF bit to a '1'. Areas to check are initialization code which enables other reset sources, such as the Missing Clock Detector or Comparator, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can quickly verify this.

C8051F320/1

11.4.2. 16.4.2 PSWE Maintenance

7. Reduce the number of places in code where the PSWE bit (bO in PSCTL) is set to a ' 1 '. There should be exactly one routine in code that sets PSWE to a '1' to write Flash bytes and one routine in code that sets both PSWE and PSEE both to a '1' to erase Flash pages.
8. Minimize the number of variable accesses while PSWE is set to a '1'. Handle pointer address updates and loop maintenance outside the "PSWE = 1; ... PSWE = 0;" area. Code examples showing this can be found in AN201, "Writing to Flash from Firmware", available from the Silicon Laboratories web site.
9. Disable interrupts prior to setting PSWE to a '1' and leave them disabled until after PSWE has been reset to ' 0 '. Any interrupts posted during the Flash write or erase operation will be serviced in priority order after the Flash operation has been completed and interrupts have been re-enabled by software.
10. Make certain that the Flash write and erase pointer variables are not located in XRAM. See your compiler documentation for instructions regarding how to explicitly locate variables in different memory areas.
11. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine called with an illegal address does not result in modification of the Flash.

11.4.3. System Clock

12. If operating from an external crystal, be advised that crystal performance is susceptible to electrical interference and is sensitive to layout and to changes in temperature. If the system is operating in an electrically noisy environment, use the internal oscillator or use an external CMOS clock.
13. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase operations. The external oscillator can continue to run, and the CPU can switch back to the external oscillator after the Flash operation has completed.

SFR Definition 11.1. PSCTL: Program Store R/W Control

R/W	Reset Value							
-		-			Reserved	PSEE	PSWE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times 8 F$
Bits7-3: Bit2: Bit1:	Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0 : Flash program memory erasure disabled. 1: Flash program memory erasure enabled.							
Bit0:	Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0 : Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.							

SFR Definition 11.2. FLKEY: Flash Lock and Key

C8051F320/1

SFR Definition 11.3. FLSCL: Flash Scale

R/W	Reset Value							
FOSE	Reserved	10000000						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB6
Bits7:	FOSE: Flash One-shot Enable This bit enables the Flash read one-shot. When the Flash one-shot disabled, the Flash sense amps are enabled for a full clock cycle during Flash reads. At system clock frequencies below 10 MHz , disabling the Flash one-shot will increase system power consumption. 0 : Flash one-shot disabled. 1: Flash one-shot enabled.							
Bits6-0:	ESERVE	ead $=0$	00b. Mus	Write 000	00b.			

12. External RAM

The C8051F320/1 devices include 2048 bytes of on-chip XRAM. This XRAM space is split into user RAM (addresses 0x0000-0x03FF) and USB0 FIFO space (addresses 0x0400-0x07FF).

Figure 12.1. External Ram Memory Map

12.1. Accessing User XRAM

XRAM can be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using MOVX indirect addressing mode. If the MOVX instruction is used with an 8-bit address operand (such as $@ R 1$), then the high byte of the 16-bit address is provided by the External Memory Interface Control Register (EMIOCN as shown in Figure 12.1). Note: the MOVX instruction is also used for writes to the Flash memory. See Section "11. Flash Memory" on page 106 for details. The MOVX instruction accesses XRAM by default.

For any of the addressing modes the upper 5 bits of the 16-bit external data memory address word are "don't cares". As a result, the 2048-byte RAM is mapped modulo style over the entire 64k external data memory address range. For example, the XRAM byte at address 0×0000 is also at address 0x0800, $0 \times 1000,0 \times 1800,0 \times 2000$, etc.

Important Note: The upper 1k of the 2k XRAM functions as USB FIFO space. See Section 12.2 for details on accessing this memory space.

12.2. Accessing USB FIFO Space

The upper 1k of XRAM functions as USB FIFO space. Figure 12.2 shows an expanded view of the FIFO space and user XRAM. FIFO space is accessed via USB FIFO registers; see Section "15.5. FIFO Management" on page 147 for more information on accessing these FIFOs. The MOVX instruction should not be used to load or modify USB data in the FIFO space.

Unused areas of the FIFO space may be used as general purpose XRAM, accessible as described in Section 12.1. The FIFO block operates on the USB clock domain; thus the USB clock must be active when accessing FIFO space. Note that the number of SYSCLK cycles required by the MOVX instruction is increased when accessing USB FIFO space.

Important Note: The USB clock must be active when accessing FIFO space.

C8051F320/1

Figure 12.2. XRAM Memory Map Expanded View
SFR Definition 12.1. EMIOCN: External Memory Interface Control

| | | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Reset Value

Bits7-3: Unused: Read $=00000$ b. Write $=$ don't care.
Bits2-0: PGSEL[2:0]: XRAM Page Select Bits.
The XRAM Page Select Bits provide the high byte of the 16-bit external data memory address when using an 8-bit MOVX command, effectively selecting a 256-byte page of RAM. The upper 5-bits are "don't cares", so the 2 k address blocks are repeated modulo over the entire 64k external data memory address space.

13. Oscillators

C8051F320/1 devices include a programmable internal oscillator, an external oscillator drive circuit, and a $4 x$ Clock Multiplier. The internal oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 13.1. The system clock (SYSCLK) can be derived from the internal oscillator, external oscillator circuit, or the $4 x$ Clock Multiplier divided by 2. The USB clock (USBCLK) can be derived from the internal oscillator, external oscillator, or $4 x$ Clock Multiplier. Oscillator electrical specifications are given in Table 13.3 on page 125.

Figure 13.1. Oscillator Diagram

13.1. Programmable Internal Oscillator

All C8051F320/1 devices include a programmable internal oscillator that defaults as the system clock after a system reset. The internal oscillator period can be programmed via the OSCICL register as defined by Equation 13.1, where $f_{B A S E}$ is the frequency of the internal oscillator following a reset, ΔT is the change in internal oscillator period, and $\triangle O S C I C L$ is a change to the value held in register OSCICL.

SILICON LABS

C8051F320/1

Equation 13.1. Typical Change in Internal Oscillator Period with OSCICL

$$
\Delta T \cong 0.0025 \times \frac{1}{f_{\text {BASE }}} \times \Delta O S C I C L
$$

On C8051F320/1 devices, OSCICL is factory calibrated to obtain a 12 MHz base frequency ($f_{\text {BASE }}$). Section 13.1.1 details oscillator programming for C8051F320/1 devices. Electrical specifications for the precision internal oscillator are given in Table 13.3 on page 125. Note that the system clock may be derived from the programmed internal oscillator divided by $1,2,4$, or 8 , as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

13.1.1. Programming the Internal Oscillator on C8051F320/1 Devices

The OSCICL reset value is factory calibrated to result in a 12 MHz internal oscillator with a $\pm 1.5 \%$ accuracy; this frequency is suitable for use as the USB clock (see Section 13.4). Software may modify the frequency of the internal oscillator as described below.

Important Note: Once the internal oscillator frequency has been modified, the internal oscillator may not be used as the USB clock as described in Section 13.4. The internal oscillator frequency will reset to its original factory-calibrated frequency following any device reset, at which point the oscillator is suitable for use as the USB clock.

Software should read and adjust the value of OSCICL according to Equation 13.1 to obtain the desired frequency. The example below shows how to obtain an 11.6 MHz internal oscillator frequency.
$f_{B A S E}$ is the internal oscillator reset frequency; $T_{B A S E}$ is the reset oscillator period.
$f_{D E S}$ is the desired internal oscillator frequency; $T_{D E S}$ is the desired oscillator period.

$$
\begin{array}{rll}
f_{B A S E} & =12000000 \mathrm{~Hz} & f_{D E S}=11600000 \mathrm{~Hz} \\
T_{B A S E} & =\frac{1}{12000000} \mathrm{~s} & T_{D E S}=\frac{1}{11600000} \mathrm{~s}
\end{array}
$$

The required change in period $\left(\Delta T_{D E S}\right)$ is the difference between the base period and the desired period.

$$
\Delta T_{D E S}=\frac{1}{11600000}-\frac{1}{12000000}=2.87 \times 10^{-9} s
$$

Using Equation 13.1 and the above calculations, find $\triangle O S C I C L$:

$$
\begin{aligned}
2.87 \times 10^{-9} & =0.0025 \times \frac{1}{f_{\text {BASE }}} \times \Delta O S C I C L \\
\Delta O S C I C L & =13.79
\end{aligned}
$$

$\triangle O S C I C L$ is rounded to the nearest integer (14) and added to the reset value of register OSCICL.

Important Note: If the sum of the reset value of OSCICL and \triangle OSCICL is greater than 31 or less than 0 , then the device will not be capable of producing the desired frequency.

13.1.2. Internal Oscillator Suspend Mode

The internal oscillator may be placed in Suspend mode by writing ' 1 ' to the SUSPEND bit in register OSCICN. In Suspend mode, the internal oscillator is stopped until a non-idle USB event is detected (Section 15) or VBUS matches the polarity selected by the VBPOL bit in register REG0CN (Section 8.2). The transceiver is able to detect non-idle USB events even when it is placed in Suspend mode. On a non-idle USB event, a Resume interrupt is generated, on receipt of which the PHYEN bit should be set to '1' to reenable the transceiver.

SFR Definition 13.1. OSCICN: Internal Oscillator Control

R/W	R	R/W	R	R/W	R/W	R/W	R/W	Reset Value
IOSCEN	IFRDY	SUSPEND			-	IFCN1	IFCNO	10000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xB2
Bit7:	IOSCEN: Internal Oscillator Enable Bit. 0: Internal Oscillator Disabled. 1: Internal Oscillator Enabled.							
Bit6:	IFRDY: Internal Oscillator Frequency Ready Flag. 0 : Internal Oscillator is not running at programmed frequency. 1: Internal Oscillator is running at programmed frequency.							
Bit5:	Writing a ' 1 ' to this bit will force the internal oscillator to be stopped. The oscillator will be restarted on the next non-idle USB event (i.e., RESUME signaling) or VBUS interrupt event (see Figure 8.1).							
Bits4-2:	UNUSED. Read $=000 \mathrm{~b}$, Write = don't care.							
Bits1-0:	IFCN1-0: In 00: SYSCL 01: SYSCL 10: SYSCL 11: SYSCLK	dernal Oscilla derived from derived from derived from	Fre	Con	ts.			

SFR Definition 13.2. OSCICL: Internal Oscillator Calibration

R/W	Reset Value							
-	-	-			SCC			Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times B 3$
Bits4-0: $\begin{array}{ll}\text { OSCCAL: Oscillator Calibration Value } \\ & \text { These bits determine the internal oscillator period as }\end{array}$								
Note: The contents of this register are undefined when Clock Recovery is enabled. See Section "15.4. USB Clock Configuration" on page 146 for details on Clock Recovery.								

C8051F320/1

13.2. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 13.1. A $10 \mathrm{M} \Omega$ resistor also must be wired across the XTAL1 and XTAL2 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 13.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see Figure 13.3)

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.2 and P0.3 are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.3 is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pins used by the oscillator circuit; see Section "14.1. Priority Crossbar Decoder" on page 128 for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as analog inputs. In CMOS clock mode, the associated pin should be configured as a digital input. See Section "14.2. Port I/O Initialization" on page 130 for details on Port input mode selection.

13.2.1. Clocking Timers Directly Through the External Oscillator

The external oscillator source divided by eight is a clock option for the timers (Section "19. Timers" on page 209) and the Programmable Counter Array (PCA) (Section "20. Programmable Counter Array (PCAO)" on page 227). When the external oscillator is used to clock these peripherals, but is not used as the system clock, the external oscillator frequency must be less than or equal to the system clock frequency. In this configuration, the clock supplied to the peripheral (external oscillator / 8) is synchronized with the system clock; the jitter associated with this synchronization is limited to ± 0.5 system clock cycles.

13.2.2. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU , the circuit should be configured as shown in Figure 13.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crystal column of the table in Figure 13.3 (OSCXCN register). For example, a 12 MHz crystal requires an XFCN setting of 111 b .

When the crystal oscillator is first enabled, the oscillator amplitude detection circuit requires a settling time to achieve proper bias. Introducing a delay of 1 ms between enabling the oscillator and checking the XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure is:

Step 1. Enable the external oscillator.
Step 2. Wait at least 1 ms .
Step 3. Poll for XTLVLD => ' 1 '.
Step 4. Switch the system clock to the external oscillator.
Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

13.2.3. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 13.1, Option 2. The capacitor should be no greater than 100 pF ; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. If the frequency desired is 100 kHz , let $\mathrm{R}=246 \mathrm{k} \Omega$ and $\mathrm{C}=50 \mathrm{pF}$:
$\mathrm{f}=1.23\left(10^{3}\right) / \mathrm{RC}=1.23\left(10^{3}\right) /[246 \times 50]=0.1 \mathrm{MHz}=100 \mathrm{kHz}$
Referring to the table in Figure 13.3, the required XFCN setting is 010b. Programming XFCN to a higher setting in RC mode will improve frequency accuracy at an increased external oscillator supply current.

13.2.4. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 13.1, Option 3. The capacitor should be no greater than 100 pF ; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the equations below. Assume VDD $=3.0 \mathrm{~V}$ and C $=50 \mathrm{pF}$:
$\mathrm{f}=\mathrm{KF} /(\mathrm{C} \times$ VDD $)=\mathrm{KF} /(50 \times 3) \mathrm{MHz}$
$\mathrm{f}=\mathrm{KF} / 150 \mathrm{MHz}$
If a frequency of roughly 150 kHz is desired, select the K Factor from the table in Figure 13.3 as $\mathrm{KF}=22$:
$\mathrm{f}=22 / 150=0.146 \mathrm{MHz}$, or 146 kHz
Therefore, the XFCN value to use in this example is 011b.

SFR Definition 13.3. OSCXCN: External Oscillator Control

CRYSTAL MODE (Circuit from Figure 13.1, Option 1; XOSCMD = 11x)
Choose XFCN value to match crystal or resonator frequency.
RC MODE (Circuit from Figure 13.1, Option 2; XOSCMD = 10x)
Choose XFCN value to match frequency range:
$\mathrm{f}=\mathbf{1 . 2 3 (1 0 ^ { 3 })} /(\mathrm{R}$ * C$)$, where
$\mathrm{f}=$ frequency of clock in MHz
$\mathrm{C}=$ capacitor value in pF
$\mathrm{R}=$ Pull-up resistor value in $\mathrm{k} \Omega$
C MODE (Circuit from Figure 13.1, Option 3; XOSCMD = 10x)
Choose K Factor (KF) for the oscillation frequency desired:
$\mathbf{f}=\mathrm{KF} /$ (\mathbf{C} * VDD), where
$\mathrm{f}=$ frequency of clock in MHz
C = capacitor value the XTAL2 pin in pF
VDD = Power Supply on MCU in volts

13.3. 4x Clock Multiplier

The 4 x Clock Multiplier allows a 12 MHz oscillator to generate the 48 MHz clock required for Full Speed USB communication (see Section "15.4. USB Clock Configuration" on page 146). A divided version of the Multiplier output can also be used as the system clock. See Section 13.4 for details on system clock and USB clock source selection.

The $4 x$ Clock Multiplier is configured via the CLKMUL register. The procedure for configuring and enabling the $4 x$ Clock Multiplier is as follows:

1. Reset the Multiplier by writing 0×00 to register CLKMUL.
2. Select the Multiplier input source via the MULSEL bits.
3. Enable the Multiplier with the MULEN bit (CLKMUL | $=0 \times 80$).
4. Delay for $>5 \mu \mathrm{~s}$.
5. Initialize the Multiplier with the MULINIT bit (CLKMUL $\mid=0 \times C 0$).
6. Poll for MULRDY => ' 1 '.

Important Note: When using an external oscillator as the input to the $4 x$ Clock Multiplier, the external source must be enabled and stable before the Multiplier is initialized. See Section 13.4 for details on selecting an external oscillator source.

SFR Definition 13.4. CLKMUL: Clock Multiplier Control

R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$	
MULEN	MULINIT	MULRDY	-	-	-	MULSEL			
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address	
							0xB9		
Bit7:	MULEN: Clock Multiplier Enable								
	0: Clock Multiplier disabled.								
	1: Clock Multiplier enabled.								
Bit6:	MULINIT: Clock Multiplier Initialize								
	This bit should be a ' 0 ' when the Clock Multiplier is enabled. Once enabled, writing a ' 1 ' to this bit will initialize the Clock Multiplier. The MULRDY bit reads ' 1 ' when the Clock Multiplier is stabilized.								
Bit5:	MULRDY: Clock Multiplier Ready								
	This read-only bit indicates the status of the Clock Multiplier.								
	0: Clock Multiplier not ready.								
	1: Clock Multiplier ready (locked).								
Bits4-2: Unused. Read = 000b; Write = don't care.									
Bits1-0:	MULSEL: Clock Multiplier Input Select								
	These bits select the clock supplied to the Clock Multiplier.								
	MULSEL			Selected Clock					
		00	Internal Oscillator						
		01	External Oscillator						
		10	External Oscillator / 2						
		11	RESERVED						

C8051F320/1

13.4. System and USB Clock Selection

The internal oscillator requires little start-up time and may be selected as the system or USB clock immediately following the OSCICN write that enables the internal oscillator. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to ' 1 ' by hardware when the external oscillator is settled. To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD. RC and C modes typically require no startup time.

13.4.1. System Clock Selection

The CLKSL[1:0] bits in register CLKSEL select which oscillator source is used as the system clock. CLKSL[1:0] must be set to 01b for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA, USB) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator, external oscillator, and $4 x$ Clock Multiplier so long as the selected oscillator is enabled and has settled.

13.4.2. USB Clock Selection

The USBCLK[2:0] bits in register CLKSEL select which oscillator source is used as the USB clock. The USB clock may be derived from the $4 x$ Clock Multiplier output, a divided version of the internal oscillator, or a divided version of the external oscillator. Note that the USB clock must be 48 MHz when operating USBO as a Full Speed Function; the USB clock must be 6 MHz when operating USBO as a Low Speed Function. See Figure 13.5 for USB clock selection options.

Some example USB clock configurations for Full and Low Speed mode are given below:

Table 13.1. Typical USB Full Speed Clock Settings

Internal Oscillator		
Clock Signal	Input Source Selection	Register Bit Settings
USB Clock	Clock Multiplier	USBCLK = 000b
Clock Multiplier Input	Internal Oscillator*	MULSEL = 00b
Internal Oscillator	Divide by 1	IFCN = 11b
External Oscillator		
Clock Signal		
USB Clock	Input Source Selection	Register Bit Settings
Clock Multiplier Input	External Oscier	USBCLK = 000b
External Oscillator	Crystal Oscillator Mode 12 MHz Crystal	MULSEL $=01 \mathrm{~b}$ XOSCMD $=110 \mathrm{~b}$ XFCN $=111 \mathrm{~b}$
*Note: Clock Recovery must be enabled for this configuration.		

Table 13.2. Typical USB Low Speed Clock Settings

Internal Oscillator				
Clock Signal	Input Source Selection	Register Bit Settings		
USB Clock	Internal Oscillator/2	USBCLK = 001b		
Internal Oscillator	Divide by 1	IFCN = 11b		
External Oscillator				
Clock Signal				
Input Source Selection	Register Bit Settings			
External Oscillator	External Oscillator/4	USBCLK $=101 \mathrm{~b}$		Crystal Oscillator Mode
:---				
24 MHz Crystal	\quad	XOSCMD = 110b		
:---				
XFCN $=111 \mathrm{~b}$				

SFR Definition 13.5. CLKSEL: Clock Select

R/W	Reset Value							
-		USBCLK		-	-	CLKSL		00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address

Bit 7: Unused. Read = 0b; Write = don't care.
Bits6-4: USBCLK2-0: USB Clock Select
These bits select the clock supplied to USBO. When operating USBO in full-speed mode, the selected clock should be 48 MHz . When operating USB0 in low-speed mode, the selected clock should be 6 MHz .

USBCLK	Selected Clock
000	$4 \times$ Clock Multiplier
001	Internal Oscillator/2
010	External Oscillator
011	External Oscillator/2
100	External Oscillator/3
101	External Oscillator/4
110	RESERVED
111	RESERVED

Bits3-2: Unused. Read = 00b; Write = don't care.
Bits1-0: CLKSL1-0: System Clock Select
These bits select the system clock source.

CLKSL	Selected Clock
00	Internal Oscillator (as determined by the IFCN bits in register OSCICN)
01	External Oscillator
10	$4 \times$ Clock Multiplier/2
11	RESERVED

C8051F320/1

Table 13.3. Internal Oscillator Electrical Characteristics
-40 to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Internal Oscillator Frequency	Reset Frequency	11.82	12	12.18	MHz
Internal Oscillator Supply Current (from VDD)	OSCICN.7 =1		450		$\mu \mathrm{~A}$
USB Clock Frequency*	Full Speed Mode	47.88	48	48.12	
	Low Speed Mode	5.91	6	6.09	MHz
*Note: Applies only to external oscillator sources.					

14. Port Input/Output

Digital and analog resources are available through 25 I/O pins (C8051F320) or 21 I/O pins (C8051F321). Port pins are organized as shown in Figure 14.1. Each of the Port pins can be defined as general-purpose I/O (GPIO) or analog input; Port pins P0.0-P2.3 can be assigned to one of the internal digital resources as shown in Figure 14.3. The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 14.3 and Figure 14.4). The registers XBR0 and XBR1, defined in Figure 14.1 and Figure 14.2, are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 14.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where $\mathrm{n}=0,1,2,3$). Complete Electrical Specifications for Port I/O are given in Table 14.1 on page 138.

Figure 14.1. Port I/O Functional Block Diagram

C8051F320/1

Figure 14.2. Port I/O Cell Block Diagram

C8051F320/1

14.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 14.3) assigns a priority to each I/O function, starting at the top with UARTO. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UARTO, which is always at pins 4 and 5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to P0.7 if VREF is used, P0.3 and/or P0.2 if the external oscillator circuit is enabled, P0.6 if the ADC is configured to use the external conversion start signal (CNVSTR), and any selected ADC or Comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 14.3 shows the Crossbar Decoder priority with no Port pins skipped (P0SKIP, P1SKIP, P2SKIP = 0x00); Figure 14.4 shows the Crossbar Decoder priority with the XTAL1 (P0.2) and XTAL2 (P0.3) pins skipped (POSKIP = 0x0C).

Figure 14.3. Crossbar Priority Decoder with No Pins Skipped

C8051F320/1

Figure 14.4. Crossbar Priority Decoder with Crystal Pins Skipped

Registers XBR0 and XBR1 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); when the UART is selected, the Crossbar assigns both pins associated with the UART (TX and RX). UARTO pin assignments are fixed for bootloading purposes: UART TX0 is always assigned to P0.4; UART RXO is always assigned to P0.5. Standard Port I/Os appear contiguously after the prioritized functions have been assigned.

Important Note: The SPI can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1-NSSMD0 bits in register SPIOCN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

14.2. Port I/O Initialization

Port I/O initialization consists of the following steps:
Step 1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
Step 2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
Step 3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
Step 4. Assign Port pins to desired peripherals (XBRO, XBR1).
Step 5. Enable the Crossbar (XBARE = ' 1 ').
All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pull-up, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however this practice is not recommended. To configure a Port pin for digital input, write ' 0 ' to the corresponding bit in register PnMDOUT, and write ' 1 ' to the corresponding Port latch (register Pn).

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a ' 1 ' indicates a digital input, and a ' 0 ' indicates an analog input. All pins default to digital inputs on reset. See Figure 14.4 for the PnMDIN register details.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMDOUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings. When the WEAKPUD bit in XBR1 is ' 0 ', a weak pull-up is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pull-up is turned off on an output that is driving a ' 0 ' to avoid unnecessary power dissipation.

Registers XBRO and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to ' 1 ' enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Configuration Wizard utility of the Silicon Labs IDE software will determine the Port I/O pin-assignments based on the XBRn Register settings.

Important Note: The Crossbar must be enabled to use Ports P0, P1, and P2.0-P2.3 as standard Port I/O in output mode. These Port output drivers are disabled while the Crossbar is disabled. P2.4-P2.7 and P3.0 always function as standard GPIO.

C8051F320/1

SFR Definition 14.1. XBR0: Port I/O Crossbar Register 0

R/W	Reset Value							
CP1AE	CP1E	CP0AE	CPOE	SYSCKE	SMB0E	SPIOE	URT0E	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xE1
Bit7:	CP1AE: Comparator1 Asynchronous Output Enable 0: Asynchronous CP1 unavailable at Port pin. 1: Asynchronous CP1 routed to Port pin.							
Bit6:	CP1E: Comparator1 Output Enable 0: CP1 unavailable at Port pin. 1: CP1 routed to Port pin.							
Bit5:	CPOAE: ComparatorO Asynchronous Output Enable 0 : Asynchronous CPO unavailable at Port pin. 1: Asynchronous CPO routed to Port pin.							
Bit4:	CPOE: Com 0: CPO una 1: CPO rou	arator0 O lable at to Port pin	ut Enab pin.					
Bit3:	SYSCKE: 0: ISYSCLK 1: ISYSCLK	SCLK O	at Enab Port pin to Port					
Bit2:	SMB0E: SI 0: SMBus 1: SMBus	us I/O En	at Port					
Bit1:	SPIOE: SP 0: SPI I/O 1: SPI I/O	Enable	Port pins					
Bit0:	URTOE: UAR 0: UART I/ 1: UART T	I/O Out	Enable t Port p to Port	ns P0. 4 a	P0.5.			

SFR Definition 14.2. XBR1: Port I/O Crossbar Register 1

R/W		R/W	Reset Value						
WEAKPUD		XBARE	T1E	TOE	ECIE		AOM		00000000
Bit7		Bit6	Bit5	Bit4 Bit3		Bit2	Bit1	Bit0	SFR Address:
									0xE2
Bit7: $\begin{array}{ll}\text { l } \\ & 0 \\ & p \\ & 1\end{array}$	WEAKPUD: Port I/O Weak Pull-up Disable.								
	0: Weak Pull-ups enabled (except for Ports whose I/O are configured as analog input or push-pull output).								
	1: Weak Pull-ups disabled.								
Bit6: $\quad \begin{array}{ll}\text { a } \\ & 0 \\ & 1\end{array}$	XBARE: Crossbar Enable.								
	0 : Crossbar disabled; all Port drivers disabled.								
	1: Crossbar enabled.								
Bit5: $\quad 1$	T1E: T1 Enable								
	0: T1 unavailable at Port pin.								
	1: T1 routed to Port pin.								
Bit4: $\quad 1$	TOE: T0 Enable								
	0: T0 unavailable at Port pin.								
	1: T0 routed to Port pin.								
Bit3: $\begin{array}{ll}\text { E } \\ & 0 \\ & 1\end{array}$	ECIE: PCA0 External Counter Input Enable								
	0 : ECI unavailable at Port pin.								
	1: ECI routed to Port pin.								
Bits2-0: $\begin{aligned} & \text { P } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1\end{aligned}$	PCAOME: PCA Module I/O Enable Bits.								
	000: All PCA I/O unavailable at Port pins.								
	001: CEX0 routed to Port pin.								
	010: CEX0, CEX1 routed to Port pins.								
	011: CEX0, CEX1, CEX2 routed to Port pins.								
	100: CEX0, CEX1, CEX2, CEX3 routed to Port pins.								
	101: CEX0, CEX1, CEX2, CEX3, CEX4 routed to Port pins.								
	110: Reserved.								
	111: Reserved.								

14.3. General Purpose Port I/O

Port pins that remain unassigned by the Crossbar and are not used by analog peripherals can be used for general purpose I/O. Ports3-0 are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the register (not the pin) is read, modified, and written back to the SFR.

C8051F320/1

SFR Definition 14.3. P0: Port0 Register

R/W	Reset Value							
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							dressable)	0x80

Bits7-0: P0.[7:0]
Write - Output appears on I/O pins per Crossbar Registers (when XBARE = ' 1 ').
0 : Logic Low Output.
1: Logic High Output (high impedance if corresponding POMDOUT.n bit $=0$).
Read - Always reads ' 0 ' if selected as analog input in register POMDIN. Directly reads Port pin when configured as digital input.
0 : PO.n pin is logic low.
1: PO.n pin is logic high.

SFR Definition 14.4. POMDIN: Port0 Input Mode Register

SFR Definition 14.5. POMDOUT: Port0 Output Mode Register

R/W	Reset Value							
Bit7	Bit6	Bit5	Bit4	Bit3			Bit0	
					Bit2	Bit1		SFR Address:
								0xA4

Bits7-0: Output Configuration Bits for P0.7-P0.0 (respectively): ignored if corresponding bit in register POMDIN is logic 0.
0 : Corresponding $\mathrm{P} 0 . \mathrm{n}$ Output is open-drain.
1: Corresponding P0.n Output is push-pull.
(Note: When SDA and SCL appear on any of the Port I/O, each are open-drain regardless of the value of POMDOUT).

SFR Definition 14.6. P0SKIP: Port0 Skip Register

SFR Definition 14.7. P1: Port1 Register

SFR Definition 14.8. P1MDIN: Port1 Input Mode Register

SFR Definition 14.9. P1MDOUT: Port1 Output Mode Register

R/W	Reset Value							
								00000000
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xA5
Bits7-0: Output Configuration Bits for P1.7-P1.0 (respectively): ignored if corresponding bit in register P1MDIN is logic 0 . 0 : Corresponding P1.n Output is open-drain. 1: Corresponding P1.n Output is push-pull.								

SFR Definition 14.10. P1SKIP: Port1 Skip Register

SFR Definition 14.11. P2: Port2 Register

R/W	Reset Value							
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							ressa	OxA0
Bits7-0:	7:0] - Ot gic L gic H d - Al when 2.n pi 2.n pi	appea utput. utput reads ured gic lo gic hig		Cros if corr analo	Regist	hen	$\begin{aligned} & E=‘ 1 \\ & =0) . \\ & \text { Directl } \end{aligned}$	ads Port
Note: P2.7-P2.4 only available on C8051F320 devices. Writes to these Ports do not require $X B A R E=' 1$ '.								

C8051F320/1

SFR Definition 14.12. P2MDIN: Port2 Input Mode Register

R/W	Reset Value							
								11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xF3
Bits7-0: Analog Input Configuration Bits for P2.7-P2.0 (respectively). Port pins configured as analog inputs have their weak pull-up, digital driver, and digital receiver disabled. 0 : Corresponding P2.n pin is configured as an analog input. 1: Corresponding P2.n pin is not configured as an analog input.								
Note: P2.7-P2.4 only available on C8051F320 devices.								

SFR Definition 14.13. P2MDOUT: Port2 Output Mode Register

SFR Definition 14.14. P2SKIP: Port2 Skip Register

C8051F320/1

SFR Definition 14.15. P3: Port3 Register

SFR Definition 14.16. P3MDIN: Port3 Input Mode Register

R/W	Reset Value							
-	-	-	-	-	-	-		00000001
Bit7	Bit6 Bit5		Bit4 Bit3		Bit2 Bit1		Bit0	SFR Address: $0 x F 4$
$\begin{aligned} & \text { Bits7-1: } \\ & \text { Bit0: } \end{aligned}$	UNUSED Analog Inp Port pins receiver d 0: Corresp 1: Corresp	= 000 nfigu ured d. ding P3 P3	b; W Bit f log i is co is no	don't have d as digured	eak	, dig ut.	er, a	digital

SFR Definition 14.17. P3MDOUT: Port3 Output Mode Register

R/W	Reset Value							
-	-	-	-	-	-	-		00000000
Bit7	Bit6 Bit5		Bit4 Bit3		Bit2 Bit1		Bit0	SFR Address: 0xA7
Bits7-1: Bit0:	Output Configuration Bit for P3.0; ignored if corresponding bit in register P3MDIN is logic 0 . 0 : Corresponding P3.n Output is open-drain. 1: Corresponding P3.n Output is push-pull.							

Table 14.1. Port I/O DC Electrical Characteristics
$V_{D D}=2.7$ to $3.6 \mathrm{~V},-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameters	Conditions	Min	Typ	Max	Units
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$, Port I / O push-pull	$\mathrm{VDD}-0.7$	-	-	
	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$, Port I/O push-pull	$\mathrm{VDD}-0.1$	-	-	V
	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$, Port I/O push-pull	-	$\mathrm{VDD}-0.8$	-	
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8.5 \mathrm{~mA}$	-	-	0.6	
	$\mathrm{I} \mathrm{OL}=10 \mu \mathrm{~A}$	-	-	0.1	V
	$\mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$	-	1.0	-	
Input High Voltage		2.0	-	-	V
Input Low Voltage		-	-	0.8	V
Input Leakage Current	Weak Pull-up Off	-	-	± 1	$\mu \mathrm{~A}$
	Weak Pull-up On, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	25	50	

C8051F320/1

15. Universal Serial Bus Controller (USB)

C8051F320/1 devices include a complete Full/Low Speed USB function for USB peripheral implementations*. The USB Function Controller (USB0) consists of a Serial Interface Engine (SIE), USB Transceiver (including matching resistors and configurable pull-up resistors), 1k FIFO block, and clock recovery mechanism for crystal-less operation. No external components are required. The USB Function Controller and Transceiver is Universal Serial Bus Specification 2.0 compliant.

Figure 15.1. USB0 Block Diagram

Note: This document assumes a comprehensive understanding of the USB Protocol. Terms and abbreviations used in this document are defined in the USB Specification. We encourage you to review the latest version of the USB Specification before proceeding.
*Note: The C8051F320/1 cannot be used as a USB Host device.

C8051F320/1

15.1. Endpoint Addressing

A total of eight endpoint pipes are available. The control endpoint (Endpoint0) always functions as a bi-directional IN/OUT endpoint. The other endpoints are implemented as three pairs of IN/OUT endpoint pipes:

Table 15.1. Endpoint Addressing Scheme

Endpoint	Associated Pipes	USB Protocol Address
Endpoint0	Endpoint0 IN	0×00
	Endpoint0 OUT	0×00
Endpoint1	Endpoint1 IN	0×81
	Endpoint1 OUT	0×01
Endpoint2	Endpoint2 IN	0×82
	Endpoint2 OUT	0×02
	Endpoint3 IN	0×83
	Endpoint3 OUT	0×03

15.2. USB Transceiver

The USB Transceiver is configured via the USBOXCN register shown in Figure 15.1. This configuration includes Transceiver enable/disable, pull-up resistor enable/disable, and device speed selection (Full or Low Speed). When bit SPEED = ' 1 ', USB0 operates as a Full Speed USB function, and the on-chip pull-up resistor (if enabled) appears on the D+ pin. When bit SPEED = '0', USB0 operates as a Low Speed USB function, and the on-chip pull-up resistor (if enabled) appears on the D-pin. Bits4-0 of register USB0XCN can be used for Transceiver testing as described in Figure 15.1. The pull-up resistor is enabled only when VBUS is present (see Section "8.2. VBUS Detection" on page 67 for details on VBUS detection).

Note: The USB clock should be active before the Transceiver is enabled.

C8051F320/1

SFR Definition 15.1. USB0XCN: USB0 Transceiver Control

R/W	R/W	R/W	R/W	R/W	R	R	R	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$
PREN	PHYEN	SPEED	PHYTST1	PHYTST0	DFREC	Dp	Dn	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

0xD7

Bit7: PREN: Internal Pull-up Resistor Enable
The location of the pull-up resistor ($D+$ or $D-$) is determined by the SPEED bit.
0: Internal pull-up resistor disabled (device effectively detached from the USB network).
1: Internal pull-up resistor enabled when VBUS is present (device attached to the USB network).
Bit6: PHYEN: Physical Layer Enable
This bit enables/disables the USB0 physical layer transceiver.
0 : Transceiver disabled (suspend).
1: Transceiver enabled (normal).
Bit5: SPEED: USB0 Speed Select
This bit selects the USB0 speed.
0: USB0 operates as a Low Speed device. If enabled, the internal pull-up resistor appears on the D - line.
1: USB0 operates as a Full Speed device. If enabled, the internal pull-up resistor appears on the D+ line.
Bits4-3: PHYTST1-0: Physical Layer Test
These bits can be used to test the USB0 transceiver.

PHYTST[1:0]	Mode	D+	D-
00b	Mode 0: Normal (non-test mode)	X	X
01b	Mode 1: Differential '1' Forced	1	0
10b	Mode 2: Differential '0' Forced	0	1
11b	Mode 3: Single-Ended '0' Forced	0	0

Bit2: DFREC: Differential Receiver
The state of this bit indicates the current differential value present on the D+ and D- lines when PHYEN = ' 1 '.
0 : Differential ' 0 ' signaling on the bus.
1: Differential ' 1 ' signaling on the bus.
Bit1: Dp: D+ Signal Status
This bit indicates the current logic level of the $D+p i n$.
0 : D+ signal currently at logic 0 .
1: D+ signal currently at logic 1.
Bit0: Dn: D- Signal Status
This bit indicates the current logic level of the $D-$ pin.
0 : $\mathrm{D}-$ signal currently at logic 0.
1: D- signal currently at logic 1.

C8051F320/1

15.3. USB Register Access

The USBO controller registers listed in Table 15.2 are accessed through two SFRs: USBO Address (USBOADR) and USB0 Data (USBODAT). The USB0ADR register selects which USB register is targeted by reads/writes of the USBODAT register. See Figure 15.2.

Endpoint control/status registers are accessed by first writing the USB register INDEX with the target endpoint number. Once the target endpoint number is written to the INDEX register, the control/status registers associated with the target endpoint may be accessed. See the "Indexed Registers" section of Table 15.2 for a list of endpoint control/status registers.

Note: The USB clock must be active when accessing USB registers.

Figure 15.2. USB0 Register Access Scheme

SFR Definition 15.2. USB0ADR: USB0 Indirect Address

R/W	et Valu							
BUSY	AUTORD	USBADDR						00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0×96
Bits7:	BUSY: USBO Register Read Busy Flag This bit is used during indirect USBO register accesses. Software should write ' 1 ' to this bit to initiate a read of the USBO register targeted by the USBADDR bits (USBOADR.[5-0]). The target address and BUSY bit may be written in the same write to USBOADR. After BUSY is set to ' 1 ', hardware will clear BUSY when the targeted register data is ready in the USBODAT register. Software should check BUSY for ' 0 ' before writing to USBODAT. Write: 0 : No effect. 1: A USBO indirect register read is initiated at the address specified by the USBADDR bits. Read: 0 : USBODAT register data is valid. 1: USBO is busy accessing an indirect register; USBODAT register data is invalid.							
Bit6:	AUTORD: USBO Register Auto-read Flag This bit is used for block FIFO reads. 0: BUSY must be written manually for each USBO indirect register read. 1: The next indirect register read will automatically be initiated when software reads USBODAT (USBADDR bits will not be changed).							
Bits5-0:	These bits hold a 6-bit address used to indirectly access the USB0 core registers. Table 15.2 lists the USBO core registers and their indirect addresses. Reads and writes to USBODAT will target the register indicated by the USBADDR bits.							

C8051F320/1

SFR Definition 15.3. USB0DAT: USB0 Data

Table 15.2. USB0 Controller Registers

USB Register Name	USB Register Address	Description	Page Number
Interrupt Registers			
IN1INT	0×02	Endpoint0 and Endpoints1-3 IN Interrupt Flags	153
OUT1INT	0x04	Endpoints1-3 OUT Interrupt Flags	154
CMINT	0×06	Common USB Interrupt Flags	155
IN1IE	0x07	Endpoint0 and Endpoints1-3 IN Interrupt Enables	156
OUT1IE	0x09	Endpoints1-3 OUT Interrupt Enables	156
CMIE	0x0B	Common USB Interrupt Enables	157
Common Registers			
FADDR	0x00	Function Address	149
POWER	0×01	Power Management	151
FRAMEL	0x0C	Frame Number Low Byte	152
FRAMEH	0x0D	Frame Number High Byte	152
INDEX	0x0E	Endpoint Index Selection	145
CLKREC	0x0F	Clock Recovery Control	146
FIFOn	0x20-0x23	Endpoints0-3 FIFOs	148

C8051F320/1

Table 15.2. USB0 Controller Registers (Continued)

USB Register Name	USB Register Address	Description	Page Number
Indexed Registers			
E0CSR	0×11	Endpoint0 Control / Status	160
EINCSRL		Endpoint IN Control / Status Low Byte	163
EINCSRH	0x12	Endpoint IN Control / Status High Byte	164
EOUTCSRL	0x14	Endpoint OUT Control / Status Low Byte	166
EOUTCSRH	0x15	Endpoint OUT Control / Status High Byte	167
EOCNT	0×16	Number of Received Bytes in Endpoint0 FIFO	161
EOUTCNTL		Endpoint OUT Packet Count Low Byte	167
EOUTCNTH	0×17	Endpoint OUT Packet Count High Byte	167

USB Register Definition 15.4. INDEX: USB0 Endpoint Index

C8051F320/1

15.4. USB Clock Configuration

USBO is capable of communication as a Full or Low Speed USB function. Communication speed is selected via the SPEED bit in SFR USBOXCN. When operating as a Low Speed function, the USBO clock must be 6 MHz . When operating as a Full Speed function, the USBO clock must be 48 MHz . Clock options are described in Section "13. Oscillators" on page 116. The USB0 clock is selected via SFR CLKSEL (see Figure 13.5 on Page 124).

Clock Recovery circuitry uses the incoming USB data stream to adjust the internal oscillator; this allows the internal oscillator (and 4x Clock Multiplier) to meet the requirements for USB clock tolerance. Clock Recovery should be used in the following configurations:

Communication Speed	USB Clock	4x Clock Multiplier Input
Full Speed	4x Clock Multiplier	Internal Oscillator
Low Speed	Internal Oscillator/2	N/A

When operating USBO as a Low Speed function with Clock Recovery, software must write ' 1 ' to the CRLOW bit to enable Low Speed Clock Recovery. Clock Recovery is typically not necessary in Low Speed mode.

Single Step Mode can be used to help the Clock Recovery circuitry to lock when high noise levels are present on the USB network. This mode is not required (or recommended) in typical USB environments.

USB Register Definition 15.5. CLKREC: Clock Recovery Control

R/W	Reset Value							
CRE	CRSSEN	CRLOW	Reserved					00001001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: $0 \times 0 \mathrm{~F}$
Bit7:	CRE: Clock Recovery Enable. This bit enables/disables the USB clock recovery feature. 0 : Clock recovery disabled. 1: Clock recovery enabled.							
Bit6:	CRSSEN: Clock Recovery Single Step. This bit forces the oscillator calibration into 'single-step' mode during clock recovery. 0 : Normal calibration mode. 1: Single step mode.							
Bit5:	CRLOW: Low Speed Clock Recovery Mode. This bit must be set to ' 1 ' if clock recovery is used when operating as a Low Speed USB device.							
Bits4-0:	Reserved. Read = Variable. Must Write $=1001 \mathrm{~b}$.							

15.5. FIFO Management

1024 bytes of on-chip XRAM are used as FIFO space for USB0. This FIFO space is split between End-points0-3 as shown in Figure 15.3. FIFO space allocated for Endpoints1-3 is configurable as IN, OUT, or both (Split Mode: half IN, half OUT).

Figure 15.3. USB FIFO Allocation

15.5.1. FIFO Split Mode

The FIFO space for Endpoints1-3 can be split such that the upper half of the FIFO space is used by the IN endpoint, and the lower half is used by the OUT endpoint. For example: if the Endpoint3 FIFO is configured for Split Mode, the upper 256 bytes (0×0540 to 0x063F) are used by Endpoint3 IN and the lower 256 bytes (0x0440 to 0x053F) are used by Endpoint3 OUT.

If an endpoint FIFO is not configured for Split Mode, that endpoint IN/OUT pair's FIFOs are combined to form a single IN or OUT FIFO. In this case only one direction of the endpoint IN/OUT pair may be used at a time. The endpoint direction (IN/OUT) is determined by the DIRSEL bit in the corresponding endpoint's EINCSRH register (see Figure 15.20).

C8051F320/1

15.5.2. FIFO Double Buffering

FIFO slots for Endpoints1-3 can be configured for double-buffered mode. In this mode, the maximum packet size is halved and the FIFO may contain two packets at a time. This mode is available for End-points1-3. When an endpoint is configured for Split Mode, double buffering may be enabled for the IN Endpoint and/or the OUT endpoint. When Split Mode is not enabled, double-buffering may be enabled for the entire endpoint FIFO. See Table 15.3 for a list of maximum packet sizes for each FIFO configuration.

Table 15.3. FIFO Configurations

Endpoint Number	Split Mode Enabled?	Maximum IN Packet Size (Double Buffer Disabled/Enabled)	Maximum OUT Packet Size (Double Buffer Disabled/Enabled)			
0	N/A	64				
1	N	$128 / 64$				
	Y	$256 / 128$			$64 / 32$	
2	N	$64 / 32$	$512 / 256$			$128 / 64$
	Y	N	$128 / 64$			
	Y	$256 / 128$	$256 / 128$			

15.5.1. FIFO Access

Each endpoint FIFO is accessed through a corresponding FIFOn register. A read of an endpoint FIFOn register unloads one byte from the FIFO; a write of an endpoint FIFOn register loads one byte into the endpoint FIFO. When an endpoint FIFO is configured for Split Mode, a read of the endpoint FIFOn register unloads one byte from the OUT endpoint FIFO; a write of the endpoint FIFOn register loads one byte into the IN endpoint FIFO.

USB Register Definition 15.6. FIFOn: USB0 Endpoint FIFO Access

R/W	Reset Value							
FIFODATA								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address:
								0x20-0x23

USB Addresses $0 \times 20-0 \times 23$ provide access to the 4 pairs of endpoint FIFOs:

IN/OUT Endpoint FIFO	USB Address
0	0×20
1	0×21
2	0×22
3	0×23

Writing to the FIFO address loads data into the IN FIFO for the corresponding endpoint. Reading from the FIFO address unloads data from the OUT FIFO for the corresponding endpoint.

15.6. Function Addressing

The FADDR register holds the current USB0 function address. Software should write the host-assigned 7-bit function address to the FADDR register when received as part of a SET_ADDRESS command. A new address written to FADDR will not take effect (USB0 will not respond to the new address) until the end of the current transfer (typically following the status phase of the SET_ADDRESS command transfer). The UPDATE bit (FADDR.7) is set to ' 1 ' by hardware when software writes a new address to the FADDR register. Hardware clears the UPDATE bit when the new address takes effect as described above.

USB Register Definition 15.7. FADDR: USB0 Function Address

R	R/W	Reset Value						
Update	Function Address							00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	uSB Address: 0×00
Bit7:	Update: Function Address Update Set to ' 1 ' when software writes the FADDR register. USB0 clears this bit to ' 0 ' when the new address takes effect. 0 : The last address written to FADDR is in effect. 1: The last address written to FADDR is not yet in effect.							
Bits6-0:	Function Holds the the SET takes effe	SS unct ESS n th	ress ard d e req	B0. reque omp	dres ceiv	ld be Endp	by The	ware when address

15.7. Function Configuration and Control

The USB register POWER (Figure 15.8) is used to configure and control USB0 at the device level (enable/ disable, Reset/Suspend/Resume handling, etc.).

USB Reset: The USBRST bit (POWER.3) is set to ' 1 ' by hardware when Reset signaling is detected on the bus. Upon this detection, the following occur:

1. The USBO Address is reset (FADDR $=0 \times 00$).
2. Endpoint FIFOs are flushed.
3. Control/status registers are reset to $0 x 00$ (E0CSR, EINCSRL, EINCSRH, EOUTCSRL, EOUTCSRH).
4. USB register INDEX is reset to 0×00.
5. All USB interrupts (excluding the Suspend interrupt) are enabled and their corresponding flags cleared.
6. A USB Reset interrupt is generated if enabled.

Writing a '1' to the USBRST bit will generate an asynchronous USB0 reset. All USB registers are reset to their default values following this asynchronous reset.

Suspend Mode: With Suspend Detection enabled (SUSEN = ' 1 '), USB0 will enter Suspend Mode when Suspend signaling is detected on the bus. An interrupt will be generated if enabled (SUSINTE = '1'). The Suspend Interrupt Service Routine (ISR) should perform application-specific configuration tasks such as

C8051F320/1

disabling appropriate peripherals and/or configuring clock sources for low power modes. See Section "13. Oscillators" on page 116 for more details on internal oscillator configuration, including the Suspend mode feature of the internal oscillator.

USB0 exits Suspend mode when any of the following occur: (1) Resume signaling is detected or generated, (2) Reset signaling is detected, or (3) a device or USB reset occurs. If suspended, the internal oscillator will exit Suspend mode upon any of the above listed events.

Resume Signaling: USB0 will exit Suspend mode if Resume signaling is detected on the bus. A Resume interrupt will be generated upon detection if enabled (RESINTE = ' 1 '). Software may force a Remote Wakeup by writing ' 1 ' to the RESUME bit (POWER.2). When forcing a Remote Wakeup, software should write RESUME = ' 0 ' to end Resume signaling $10-15 \mathrm{~ms}$ after the Remote Wakeup is initiated (RESUME = '1').

ISO Update: When software writes ' 1 ' to the ISOUP bit (POWER.7), the ISO Update function is enabled. With ISO Update enabled, new packets written to an ISO IN endpoint will not be transmitted until a new Start-Of-Frame (SOF) is received. If the ISO IN endpoint receives an IN token before a SOF, USB0 will transmit a zero-length packet. When ISOUP = ' 1 ', ISO Update is enabled for all ISO endpoints.

USB Enable: USBO is disabled following a Power-On-Reset (POR). USB0 is enabled by clearing the USBINH bit (POWER.4). Once written to ' 0 ', the USBINH can only be set to ' 1 ' by one of the following: (1) a Power-On-Reset (POR), or (2) an asynchronous USB0 reset generated by writing ' 1 ' to the USBRST bit (POWER.3).

Software should perform all USBO configuration before enabling USBO. The configuration sequence should be performed as follows:

Step 1. Select and enable the USB clock source.
Step 2. Reset USB0 by writing USBRST= ' 1 '.
Step 3. Configure and enable the USB Transceiver.
Step 4. Perform any USBO function configuration (interrupts, Suspend detect).
Step 5. Enable USBO by writing USBINH = '0'.

USB Register Definition 15.8. POWER: USB0 Power

C8051F320/1

USB Register Definition 15.9. FRAMEL: USB0 Frame Number Low

USB Register Definition 15.10. FRAMEH: USB0 Frame Number High

R	R	R	R	R	R	R	R	Reset Value 00000000 USB Address 0x0D
-	-	-	-	-	Frame Number High			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits7-3: Bits2-0:	Unused. Read $=0$. Write $=$ don't care. Frame Number High Byte This register contains bits10-8 of the last received frame number.							

15.8. Interrupts

The read-only USB0 interrupt flags are located in the USB registers shown in Figure 15.11 through Figure 15.13. The associated interrupt enable bits are located in the USB registers shown in Figure 15.14 through Figure 15.16. A USB0 interrupt is generated when any of the USB interrupt flags is set to ' 1 '. The USB0 interrupt is enabled via the EIE1 SFR (see Section "9.3. Interrupt Handler" on page 87).

Note: Reading a USB interrupt flag register resets all flags in that register to ' 0 '.

USB Register Definition 15.11. IN1INT: USBO IN Endpoint Interrupt

R	R	R	R	R	R	R	R	Reset Value
-	-	-	-	IN3	IN2	IN1	EPO	00000000
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0×02
$\begin{aligned} & \text { Bits7-4: } \\ & \text { Bit3: } \end{aligned}$	Unused. Read $=0000$ b. Write $=$ don't care. IN3: IN Endpoint 3 Interrupt-pending Flag This bit is cleared when software reads the IN1INT register. 0: IN Endpoint 3 interrupt inactive. 1: IN Endpoint 3 interrupt active.							
Bit2:	IN2: IN E This bit is 0: IN End 1: IN End	2 I d wh inte inte	-pe twa acti ctive	lag s the	reg			
Bit1:	IN1: IN E This bit is 0: IN End 1: IN End	1 d w inte inte	-pe twa act ctive	lag s the	T reg			
Bit0:	EPO: End This bit 0: Endpo 1: Endpo	Inte d w erru terru	end twa ive e.	the	reg			

C8051F320/1

USB Register Definition 15.12. OUT1INT: USB0 Out Endpoint Interrupt

R	R	R	R	R	R	R	R	Reset Value 00000000 USB Address: 0x04
-	-	-	-	OUT3	OUT2	OUT1	-	
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	
Bits7-4:	Unused. Read $=0000 \mathrm{~b}$. Write = don't care.							
Bit3:	OUT3: O This bit is 0: OUT E 1: OUT E	dpoin	rrup twar inac act	ding Fla ds the	1INT reg			
Bit2:	OUT2: O This bit 0 : OUT 1: OUT	dpoin	errup	ding Fla ds the	1INT reg			
Bit1:	OUT1: O This bit 0: OUT 1: OUT	dpoi	errup	ding Flag ds the	1INT reg			
Bit0:	Unused. Read = Ob; Write = don't care.							

USB Register Definition 15.13. CMINT: USB0 Common Interrupt

R	R	R	R	R	R	R	R	Reset Value
-				SOF	RSTINT	RSUINT	SUSINT	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address 0×06
Bits7-4: Bit3:	Set by hardware when a SOF token is received. This interrupt event is synthesized by hardware: an interrupt will be generated when hardware expects to receive a SOF event, even if the actual SOF signal is missed or corrupted. This bit is cleared when software reads the CMINT register. 0 : SOF interrupt inactive. 1: SOF interrupt active.							
Bit2:	RSTINT: Set by ha This bit is 0: Reset 1: Reset	Inter	et si	is de	NT regist	us.		
Bit1:	RSUINT: Set by ha mode. This bit is 0: Resum 1: Resum	wh In d whet rupt	-pen ume twar e.	lag ing is s the	ected on NT regist	bus whil	USBO is	n suspend
Bit0:	SUSINT: When Su ware when reads the 0 : Suspe 1: Suspe	nd In	i-pen	lag bit SU ted on	N in regist e bus. This	POWER bit is clea	this bit is when	set by hardoftware

USB Register Definition 15.14. IN1IE: USB0 IN Endpoint Interrupt Enable

USB Register Definition 15.15. OUT1IE: USB0 Out Endpoint Interrupt Enable

R/W	Reset Value							
-	-	-	-	OUT3E	OUT2E	OUT1E	-	00001110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0×09
Bits7-4: Bit3:	Unused. Read $=0000$ b. Write $=$ don't care. OUT3E: OUT Endpoint 3 Interrupt Enable 0: OUT Endpoint 3 interrupt disabled. 1: OUT Endpoint 3 interrupt enabled.							
Bit2:	OUT2E: 0: OUT E 1: OUT E			nable				
Bit1:	OUT1E: 0: OUT E 1: OUT E		terru disa t ena	nable				
Bit0:	Unused. R	$=0 \mathrm{~b}$;	= don					

USB Register Definition 15.16. CMIE: USB0 Common Interrupt Enable

15.9. The Serial Interface Engine

The Serial Interface Engine (SIE) performs all low level USB protocol tasks, interrupting the processor when data has successfully been transmitted or received. When receiving data, the SIE will interrupt the processor when a complete data packet has been received; appropriate handshaking signals are automatically generated by the SIE. When transmitting data, the SIE will interrupt the processor when a complete data packet has been transmitted and the appropriate handshake signal has been received.

The SIE will not interrupt the processor when corrupted/erroneous packets are received.

15.10. Endpoint0

Endpoint0 is managed through the USB register EOCSR (Figure 15.17). The INDEX register must be loaded with 0×00 to access the EOCSR register.

An Endpoint0 interrupt is generated when:

1. A data packet (OUT or SETUP) has been received and loaded into the Endpoint0 FIFO. The OPRDY bit (EOCSR.0) is set to ' 1 ' by hardware.
2. An IN data packet has successfully been unloaded from the Endpoint0 FIFO and transmitted to the host; INPRDY is reset to ' 0 ' by hardware.
3. An IN transaction is completed (this interrupt generated during the status stage of the transaction).
4. Hardware sets the STSTL bit (EOCSR.2) after a control transaction ended due to a protocol violation.
5. Hardware sets the SUEND bit (EOCSR.4) because a control transfer ended before firmware sets the DATAEND bit (EOCSR.3).

C8051F320/1

The EOCNT register (Figure 15.18) holds the number of received data bytes in the Endpoint0 FIFO.

Hardware will automatically detect protocol errors and send a STALL condition in response. Firmware may force a STALL condition to abort the current transfer. When a STALL condition is generated, the STSTL bit will be set to ' 1 ' and an interrupt generated. The following conditions will cause hardware to generate a STALL condition:

1. The host sends an OUT token during a OUT data phase after the DATAEND bit has been set to ' 1 '.
2. The host sends an IN token during an IN data phase after the DATAEND bit has been set to '1'.
3. The host sends a packet that exceeds the maximum packet size for Endpoint0.
4. The host sends a non-zero length DATA1 packet during the status phase of an IN transaction. Firmware sets the SDSTL bit (E0CSR.5) to ' 1 '.

15.10.1.Endpoint0 SETUP Transactions

All control transfers must begin with a SETUP packet. SETUP packets are similar to OUT packets, containing an 8-byte data field sent by the host. Any SETUP packet containing a command field of anything other than 8 bytes will be automatically rejected by USB0. An Endpoint0 interrupt is generated when the data from a SETUP packet is loaded into the Endpoint0 FIFO. Software should unload the command from the Endpoint0 FIFO, decode the command, perform any necessary tasks, and set the SOPRDY bit to indicate that it has serviced the OUT packet.

15.10.2.Endpoint0 IN Transactions

When a SETUP request is received that requires USBO to transmit data to the host, one or more IN requests will be sent by the host. For the first IN transaction, firmware should load an IN packet into the Endpoint0 FIFO, and set the INPRDY bit (EOCSR.1). An interrupt will be generated when an IN packet is transmitted successfully. Note that no interrupt will be generated if an IN request is received before firmware has loaded a packet into the Endpoint0 FIFO. If the requested data exceeds the maximum packet size for Endpoint0 (as reported to the host), the data should be split into multiple packets; each packet should be of the maximum packet size excluding the last (residual) packet. If the requested data is an integer multiple of the maximum packet size for Endpoint0, the last data packet should be a zero-length packet signaling the end of the transfer. Firmware should set the DATAEND bit to ' 1 ' after loading into the Endpoint0 FIFO the last data packet for a transfer.

Upon reception of the first IN token for a particular control transfer, Endpoint0 is said to be in Transmit Mode. In this mode, only IN tokens should be sent by the host to Endpoint0. The SUEND bit (E0CSR.4) is set to ' 1 ' if a SETUP or OUT token is received while Endpoint0 is in Transmit Mode.

Endpoint0 will remain in Transmit Mode until any of the following occur:

1. USBO receives an EndpointO SETUP or OUT token.
2. Firmware sends a packet less than the maximum Endpoint0 packet size.
3. Firmware sends a zero-length packet.

Firmware should set the DATAEND bit (E0CSR.3) to ' 1 ' when performing (2) and (3) above.
The SIE will transmit a NAK in response to an IN token if there is no packet ready in the IN FIFO (INPRDY $=$ ' 0 ').

15.10.3.Endpoint0 OUT Transactions

When a SETUP request is received that requires the host to transmit data to USBO, one or more OUT requests will be sent by the host. When an OUT packet is successfully received by USB0, hardware will set the OPRDY bit (EOCSR.0) to ' 1 ' and generate an Endpoint0 interrupt. Following this interrupt, firmware should unload the OUT packet from the Endpoint0 FIFO and set the SOPRDY bit (EOCSR.6) to ' 1 '.

If the amount of data required for the transfer exceeds the maximum packet size for Endpoint0, the data will be split into multiple packets. If the requested data is an integer multiple of the maximum packet size for Endpoint0 (as reported to the host), the host will send a zero-length data packet signaling the end of the transfer.

Upon reception of the first OUT token for a particular control transfer, Endpoint0 is said to be in Receive Mode. In this mode, only OUT tokens should be sent by the host to Endpoint0. The SUEND bit (EOCSR.4) is set to ' 1 ' if a SETUP or IN token is received while Endpoint0 is in Receive Mode.

Endpoint0 will remain in Receive mode until:

1. The SIE receives a SETUP or IN token.
2. The host sends a packet less than the maximum Endpoint0 packet size.
3. The host sends a zero-length packet.

Firmware should set the DATAEND bit (EOCSR.3) to ' 1 ' when the expected amount of data has been received. The SIE will transmit a STALL condition if the host sends an OUT packet after the DATAEND bit has been set by firmware. An interrupt will be generated with the STSTL bit (EOCSR.2) set to ' 1 ' after the STALL is transmitted.

USB Register Definition 15.17. EOCSR: USB0 Endpoint0 Control

R/W	R/W	R/W	R	R/W	R/W	R/W	R	et Value
SSUEND	SOPRDY	SDSTL	SUEND	DATAEND	STSTL	INPRDY	OPRDY	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	uSB Address: 0×11
Bit7:	SSUEND: Serviced Setup End Write: Software should set this bit to ' 1 ' after servicing a Setup End (bit SUEND) event. Hardware clears the SUEND bit when software writes ' 1 ' to SSUEND. Read: This bit always reads ' 0 '.							
Bit6:	SOPRDY: Serviced OPRDY Write: Software should write ' 1 ' to this bit after servicing a received Endpoint0 packet. The OPRDY bit will be cleared by a write of ' 1 ' to SOPRDY. Read: This bit always reads ' 0 '.							
Bit5:	SDSTL: Send Stall Software can write ' 1 ' to this bit to terminate the current transfer (due to an error condition, unexpected transfer request, etc.). Hardware will clear this bit to ' 0 ' when the STALL handshake is transmitted.							
Bit4:	SUEND: Setup End Hardware sets this read-only bit to ' 1 ' when a control transaction ends before software has written ' 1 ' to the DATAEND bit. Hardware clears this bit when software writes ' 1 ' to SSUEND.							
Bit3:	DATAEND: Software sh 1. When wr 2. When wr 3. When wr This bit is aut	ata End uld write ing ' 1 ' to ing ' 1 ' to ing ' 1 ' to maticall	to this bit PRDY for PRDY for PRDY aft leared by	the last outg a zero-lengt er servicing hardware.	ing data data pack he last in	erket.	packet.	
Bit2:	Hardware sets this bit to ' 1 ' after transmitting a STALL handshake signal. This flag must be cleared by software.							
Bit1:	INPRDY: IN Software sh transmit. Ha conditions: 1. The pack 2. The pack 3. The pack	acket R uld write ware cle is transm is overw is overw	y to this bit this bit ed. en by an en by an	after loading and generate incoming SE incoming OUT	a data pa an interr UP pack T packet.	ket into the under e	Endpoint er of the	FIFO for ollowing
Bit0:	Hardware sets this read-only bit and generates an interrupt when a data packet has been received. This bit is cleared only when software writes ' 1 ' to the SOPRDY bit.							

C8051F320/1

USB Register Definition 15.18. E0CNT: USB0 Endpoint 0 Data Count

15.11. Configuring Endpoints1-3

Endpoints1-3 are configured and controlled through their own sets of the following control/status registers: IN registers EINCSRL and EINCSRH, and OUT registers EOUTCSRL and EOUTCSRH. Only one set of endpoint control/status registers is mapped into the USB register address space at a time, defined by the contents of the INDEX register (Figure 15.4).

Endpoints1-3 can be configured as IN, OUT, or both IN/OUT (Split Mode) as described in Section 15.5.1. The endpoint mode (Split/Normal) is selected via the SPLIT bit in register EINCSRH.

When SPLIT = ' 1 ', the corresponding endpoint FIFO is split, and both IN and OUT pipes are available.
When SPLIT = ' 0 ', the corresponding endpoint functions as either IN or OUT; the endpoint direction is selected by the DIRSEL bit in register EINCSRH.

15.12. Controlling Endpoints1-3 IN

Endpoints1-3 IN are managed via USB registers EINCSRL and EINCSRH. All IN endpoints can be used for Interrupt, Bulk, or Isochronous transfers. Isochronous (ISO) mode is enabled by writing ' 1 ' to the ISO bit in register EINCSRH. Bulk and Interrupt transfers are handled identically by hardware.

An Endpoint1-3 IN interrupt is generated by any of the following conditions:

1. An IN packet is successfully transferred to the host.
2. Software writes ' 1 ' to the FLUSH bit (EINCSRL.3) when the target FIFO is not empty.
3. Hardware generates a STALL condition.

15.12.1.Endpoints1-3 IN Interrupt or Bulk Mode

When the ISO bit (EINCSRH.6) $=$ ' 0 ' the target endpoint operates in Bulk or Interrupt Mode. Once an endpoint has been configured to operate in Bulk/Interrupt IN mode (typically following an Endpoint0 SET_INTERFACE command), firmware should load an IN packet into the endpoint IN FIFO and set the INPRDY bit (EINCSRL.0). Upon reception of an IN token, hardware will transmit the data, clear the INPRDY bit, and generate an interrupt.

Writing ' 1 ' to INPRDY without writing any data to the endpoint FIFO will cause a zero-length packet to be transmitted upon reception of the next IN token.

C8051F320/1

A Bulk or Interrupt pipe can be shut down (or Halted) by writing ' 1 ' to the SDSTL bit (EINCSRL.4). While SDSTL = '1', hardware will respond to all IN requests with a STALL condition. Each time hardware generates a STALL condition, an interrupt will be generated and the STSTL bit (EINCSRL.5) set to '1'. The STSTL bit must be reset to '0' by firmware.

Hardware will automatically reset INPRDY to ' 0 ' when a packet slot is open in the endpoint FIFO. Note that if double buffering is enabled for the target endpoint, it is possible for firmware to load two packets into the IN FIFO at a time. In this case, hardware will reset INPRDY to ' 0 ' immediately after firmware loads the first packet into the FIFO and sets INPRDY to ' 1 '. An interrupt will not be generated in this case; an interrupt will only be generated when a data packet is transmitted.

When firmware writes ' 1 ' to the FCDT bit (EINCSRH.3), the data toggle for each IN packet will be toggled continuously, regardless of the handshake received from the host. This feature is typically used by Interrupt endpoints functioning as rate feedback communication for Isochronous endpoints. When FCDT = '0', the data toggle bit will only be toggled when an ACK is sent from the host in response to an IN packet.

15.12.2.Endpoints1-3 IN Isochronous Mode

When the ISO bit (EINCSRH.6) is set to ' 1 ', the target endpoint operates in Isochronous (ISO) mode. Once an endpoint has been configured for ISO IN mode, the host will send one IN token (data request) per frame; the location of data within each frame may vary. Because of this, it is recommended that double buffering be enabled for ISO IN endpoints.

Hardware will automatically reset INPRDY (EINCSRL.0) to ' 0 ' when a packet slot is open in the endpoint FIFO. Note that if double buffering is enabled for the target endpoint, it is possible for firmware to load two packets into the IN FIFO at a time. In this case, hardware will reset INPRDY to ' 0 ' immediately after firmware loads the first packet into the FIFO and sets INPRDY to ' 1 '. An interrupt will not be generated in this case; an interrupt will only be generated when a data packet is transmitted.

If there is not a data packet ready in the endpoint FIFO when USB0 receives an IN token from the host, USB0 will transmit a zero-length data packet and set the UNDRUN bit (EINCSRL.2) to ' 1 '.

The ISO Update feature (see Section 15.7) can be useful in starting a double buffered ISO IN endpoint. If the host has already set up the ISO IN pipe (has begun transmitting IN tokens) when firmware writes the first data packet to the endpoint FIFO, the next IN token may arrive and the first data packet sent before firmware has written the second (double buffered) data packet to the FIFO. The ISO Update feature ensures that any data packet written to the endpoint FIFO will not be transmitted during the current frame; the packet will only be sent after a SOF signal has been received.

USB Register Definition 15.19. EINCSRL: USB0 IN Endpoint Control Low Byte

R	w	R/W	R/W	W	R/W	R/W	R/W	Reset Value
	CLRDT	STSTL	SDSTL	FLUSH	UNDRUN	FIFONE	INPRDY	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0×11
Bit7: Bit6:	CLRDT: Clear Data Toggle. Write: Software should write ' 1 ' to this bit to reset the IN Endpoint data toggle to ' 0 '. Read: This bit always reads ' 0 '.							
Bit5:	STSTL: Sent Stall Hardware sets this bit to ' 1 ' when a STALL handshake signal is transmitted. The FIFO is flushed, and the INPRDY bit cleared. This flag must be cleared by software.							
Bit4:	SDSTL: Send Stall. Software should write ' 1 ' to this bit to generate a STALL handshake in response to an IN token. Software should write '0' to this bit to terminate the STALL signal. This bit has no effect in ISO mode.							
Bit3:	Writing a ' 1 ' to this bit flushes the next packet to be transmitted from the IN Endpoint FIFO. The FIFO pointer is reset and the INPRDY bit is cleared. If the FIFO contains multiple packets, software must write ' 1 ' to FLUSH for each packet. Hardware resets the FLUSH bit to ' 0 ' when the FIFO flush is complete.							
Bit2:	The function of this bit depends on the IN Endpoint mode: ISO: Set when a zero-length packet is sent after an IN token is received while bit INPRDY = '0'. Interrupt/Bulk: Set when a NAK is returned in response to an IN token. This bit must be cleared by software.							
Bit1:	FIFONE: F 0: The IN E 1. The IN E	Not Em	is empty	e or mor	packets.			
Bit0:	INPRDY: In Software sh Hardware 1. A data p 2. Double 3. If the end until the ne An interrup of a packe		to this bit due to mitted. abled (DB chronous ived. will be mitted.	ter loadin of the fo $\left.\mathrm{N}=\mathbf{' 1}^{\prime}\right) \mathrm{a}$ Mode (ISO nerated	a data pa owing: d there is = ' 1 ') and hen hardv	ket into the n open FIF OUD = ‘1’	IN Endpo packet INPRDY INPRDY	I FIFO. ot. ill read ' 0 ' a result

C8051F320/1

USB Register Definition 15.20. EINCSRH: USBO IN Endpoint Control High Byte

R/W	R/W	R/w	R	R/w	R/W	R	R	Reset Value
DBIEN	ISO	DIRSEL		FCDT	SPLIT			00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0×12
Bit7:	DBIEN: IN Endpoint Double-buffer Enable. 0 : Double-buffering disabled for the selected IN endpoint. 1: Double-buffering enabled for the selected IN endpoint.							
Bit6:	ISO: Isochronous Transfer Enable. This bit enables/disables isochronous transfers on the current endpoint. 0 : Endpoint configured for bulk/interrupt transfers. 1: Endpoint configured for isochronous transfers.							
Bit5:	DIRSEL: Endpoint Direction Select. This bit is valid only when the selected FIFO is not split (SPLIT = ' 0 '). 0: Endpoint direction selected as OUT. 1: Endpoint direction selected as IN.							
Bit4:	Unused. Read = 'Ob'. Write = don't care.							
Bit3:	FCDT: Force Data Toggle. 0: Endpoint data toggle switches only when an ACK is received following a data packet transmission. 1: Endpoint data toggle forced to switch after every data packet is transmitted, regardless of ACK reception.							
Bit2:	When SPLIT = ' 1 ', the selected endpoint FIFO is split. The upper half of the selected FIFO is used by the IN endpoint; the lower half of the selected FIFO is used by the OUT endpoint.							
Bits1-0:	Unused. R	$\mathrm{d}=00 \mathrm{~b}$;						

15.13. Controlling Endpoints1-3 OUT

Endpoints1-3 OUT are managed via USB registers EOUTCSRL and EOUTCSRH. All OUT endpoints can be used for Interrupt, Bulk, or Isochronous transfers. Isochronous (ISO) mode is enabled by writing ' 1 ' to the ISO bit in register EOUTCSRH. Bulk and Interrupt transfers are handled identically by hardware.

An Endpoint1-3 OUT interrupt may be generated by the following:

1. Hardware sets the OPRDY bit (EINCSRL.0) to ' 1 '.
2. Hardware generates a STALL condition.

15.13.1.Endpoints1-3 OUT Interrupt or Bulk Mode

When the ISO bit (EOUTCSRH.6) = '0' the target endpoint operates in Bulk or Interrupt mode. Once an endpoint has been configured to operate in Bulk/Interrupt OUT mode (typically following an Endpoint0 SET_INTERFACE command), hardware will set the OPRDY bit (EOUTCSRL.0) to ' 1 ' and generate an interrupt upon reception of an OUT token and data packet. The number of bytes in the current OUT data packet (the packet ready to be unloaded from the FIFO) is given in the EOUTCNTH and EOUTCNTL registers. In response to this interrupt, firmware should unload the data packet from the OUT FIFO and reset the OPRDY bit to ' 0 '.

A Bulk or Interrupt pipe can be shut down (or Halted) by writing ' 1 ' to the SDSTL bit (EOUTCSRL.5). While SDSTL = '1', hardware will respond to all OUT requests with a STALL condition. Each time hardware generates a STALL condition, an interrupt will be generated and the STSTL bit (EOUTCSRL.6) set to ' 1 '. The STSTL bit must be reset to '0' by firmware.

Hardware will automatically set OPRDY when a packet is ready in the OUT FIFO. Note that if double buffering is enabled for the target endpoint, it is possible for two packets to be ready in the OUT FIFO at a time. In this case, hardware will set OPRDY to ' 1 ' immediately after firmware unloads the first packet and resets OPRDY to ' 0 '. A second interrupt will be generated in this case.

15.13.2.Endpoints1-3 OUT Isochronous Mode

When the ISO bit (EOUTCSRH.6) is set to ' 1 ', the target endpoint operates in Isochronous (ISO) mode. Once an endpoint has been configured for ISO OUT mode, the host will send exactly one data per USB frame; the location of the data packet within each frame may vary, however. Because of this, it is recommended that double buffering be enabled for ISO OUT endpoints.

Each time a data packet is received, hardware will load the received data packet into the endpoint FIFO, set the OPRDY bit (EOUTCSRL.0) to ' 1 ', and generate an interrupt (if enabled). Firmware would typically use this interrupt to unload the data packet from the endpoint FIFO and reset the OPRDY bit to ' 0 '.

If a data packet is received when there is no room in the endpoint FIFO, an interrupt will be generated and the OVRUN bit (EOUTCSRL.2) set to ' 1 '. If USBO receives an ISO data packet with a CRC error, the data packet will be loaded into the endpoint FIFO, OPRDY will be set to ' 1 ', an interrupt (if enabled) will be generated, and the DATAERR bit (EOUTCSRL.3) will be set to ' 1 '. Software should check the DATAERR bit each time a data packet is unloaded from an ISO OUT endpoint FIFO.

C8051F320/1

USB Register Definition 15.21. EOUTCSRL: USB0 OUT Endpoint Control High Byte

W	R/W	R/W	W	R	R/W	R	R/W	eset Value
CLRDT	STSTL	SDSTL	FLUSH	DATERR	OVRUN	FIFOFUL	OPRDY	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	uSB Address: 0×14
Bit7:	CLRDT: Clear Data Toggle Write: Software should write ' 1 ' to this bit to reset the OUT endpoint data toggle to ' 0 '. Read: This bit always reads ' 0 '.							
Bit6:	STSTL: Sent Stall Hardware sets this bit to ' 1 ' when a STALL handshake signal is transmitted. This flag must be cleared by software.							
Bit5:	SDSTL: Send Stall Software should write ' 1 ' to this bit to generate a STALL handshake. Software should write ' 0 ' to this bit to terminate the STALL signal. This bit has no effect in ISO mode.							
Bit4:	FLUSH: FIFO Flush Writing a ' 1 ' to this bit flushes the next packet to be read from the OUT endpoint FIFO. The FIFO pointer is reset and the OPRDY bit is cleared. If the FIFO contains multiple packets, software must write ' 1 ' to FLUSH for each packet. Hardware resets the FLUSH bit to ' 0 ' when the FIFO flush is complete.							
Bit3:	DATERR: Data Error In ISO mode, this bit is set by hardware if a received packet has a CRC or bit-stuffing error. It is cleared when software clears OPRDY. This bit is only valid in ISO mode.							
Bit2:	This bit is set by hardware when an incoming data packet cannot be loaded into the OUT endpoint FIFO. This bit is only valid in ISO mode, and must be cleared by software. 0 : No data overrun. 1: A data packet was lost because of a full FIFO since this flag was last cleared.							
Bit1:	This bit indicates the contents of the OUT FIFO. If double buffering is enabled for the endpoint (DBIEN = ' 1 '), the FIFO is full when the FIFO contains two packets. If DBIEN = ' 0 ', the FIFO is full when the FIFO contains one packet.							
Bit0:	Hardware sets this bit to ' 1 ' and generates an interrupt when a data packet is available. Software should clear this bit after each data packet is unloaded from the OUT endpoint FIFO.							

USB Register Definition 15.22. EOUTCSRH: USB0 OUT Endpoint Control Low Byte

R/w	R/W	R/W	R/W	R	R	R	R	Reset Value
DBOEN	ISO	-	-	-	-	-	-	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address 0×15
Bit7:	DBOEN: 0: Double 1: Double	-buf	able d for for	ecte ecte				
Bit6:	ISO: Isoc This bit e 0 : Endpoi 1: Endpoi	us Tr /disa figur figur	Ena ochr bulk/ soch	trans tran	the	t end		
Bits5-0:	Unused. R	- 000	Writ	't ca				

USB Register Definition 15.23. EOUTCNTL: USB0 OUT Endpoint Count Low

R	R	R	R	R	R	R	R	Reset Value
EOCL 00000000								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0×16
Bits7-0: EOCL: OUT Endpoint Count Low Byte EOCL holds the lower 8-bits of the 10-bit number of data bytes in the last received packet in the current OUT endpoint FIFO. This number is only valid while OPRDY = ' 1 '.								

USB Register Definition 15.24. EOUTCNTH: USB0 OUT Endpoint Count High

R	R	R	R	R	R	R	R	Reset Value
-	-	-	-	-	-			00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	USB Address: 0×17
Bits7-2: Unused. Read $=000000 \mathrm{~b}$. Write $=$ don't care. Bits1-0: EOCH: OUT Endpoint Count High Byte EOCH holds the upper 2-bits of the 10-bit number of data bytes in the last received packet in the current OUT endpoint FIFO. This number is only valid while OPRDY = ' 1 '.								

C8051F320/1

Table 15.4. USB Transceiver Electrical Characteristics
$V_{D D}=3.0$ to $3.6 \mathrm{~V},-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameters	Symbol	Conditions	Min	Typ	Max	Units
Transmitter						
Output High Voltage	V_{OH}		2.8			V
Output Low Voltage	V_{OL}				0.8	V
Output Crossover Point	$\mathrm{V}_{\text {CRS }}$		1.3		2.0	V
Output Impedance	$Z_{\text {DRV }}$	Driving High Driving Low		$\begin{aligned} & 38 \\ & 38 \end{aligned}$		W
Pull-up Resistance	R_{PU}	Full Speed (D+ Pull-up) Low Speed (D- Pull-up)	$\begin{aligned} & 1.425 \\ & 1.425 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1.575 \\ & 1.575 \end{aligned}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Output Rise Time	T_{R}	Low Speed Full Speed	$\begin{gathered} 75 \\ 4 \end{gathered}$		$\begin{gathered} 300 \\ 20 \end{gathered}$	ns
Output Fall Time	T_{F}	Low Speed Full Speed	$\begin{gathered} 75 \\ 4 \end{gathered}$		$\begin{gathered} 300 \\ 20 \end{gathered}$	ns
Receiver						
Differential Input Sensitivity	V_{DI}	$\mid(\mathrm{D}+$) - (D-) \|	0.2			V
Differential Input Common Mode Range	V_{CM}		0.8		2.5	V
Input Leakage Current	I_{L}	Pullups Disabled		<1.0		$\mu \mathrm{A}$

Note: Refer to the USB Specification for timing diagrams and symbol definitions.

16. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the $I^{2} C$ serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to $1 / 20$ th of the system clock as a master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. Three SFRs are associated with the SMBus: SMB0CF configures the SMBus; SMB0CN controls the status of the SMBus; and SMBODAT is the data register, used for both transmitting and receiving SMBus data and slave addresses.

Figure 16.1. SMBus Block Diagram

SILICON LABS

C8051F320/1

16.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

1. The $I^{2} \mathrm{C}$-Bus and How to Use It (including specifications), Philips Semiconductor.
2. The $I^{2} \mathrm{C}$-Bus Specification -- Version 2.0, Philips Semiconductor.
3. System Management Bus Specification -- Version 1.1, SBS Implementers Forum.

16.2. SMBus Configuration

Figure 16.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V ; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pull-up resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns , respectively.

Figure 16.2. Typical SMBus Configuration

16.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device who transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7-1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see Figure 16.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

The direction bit (R/W) occupies the least-significant bit position of the address byte. The direction bit is set to logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 16.3 illustrates a typical SMBus transaction.

Figure 16.3. SMBus Transaction

16.3.1. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see Section "16.3.4. SCL High (SMBus Free) Timeout" on page 172). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

16.3.2. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to $I^{2} \mathrm{C}$, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

16.3.3. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMBOCF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

C8051F320/1

16.3.4. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that $50 \mu \mathrm{~s}$, the bus is designated as free. When the SMBFTE bit in SMB0CF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods. If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. Note that a clock source is required for free timeout detection, even in a slave-only implementation.

16.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information

SMBus interrupts are generated for each data byte or slave address that is transferred. When transmitting, this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data, this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. See Section "16.5. SMBus Transfer Modes" on page 180 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMBOCN (SMBus Control register) to find the cause of the SMBus interrupt. The SMBOCN register is described in Section "16.4.2. SMBOCN Control Register" on page 176; Table 16.4 provides a quick SMBOCN decoding reference.

SMBus configuration options include:

- Timeout detection (SCL Low Timeout and/or Bus Free Timeout)
- SDA setup and hold time extensions
- Slave event enable/disable
- Clock source selection

These options are selected in the SMB0CF register, as described in Section "16.4.1. SMBus Configuration Register" on page 173.

16.4.1. SMBus Configuration Register

The SMBus Configuration register (SMB0CF) is used to enable the SMBus Master and/or Slave modes, select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of the current transfer).

Table 16.1. SMBus Clock Source Selection

SMBCS	SMBCS	
$\mathbf{1}$	$\mathbf{0}$	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

The SMBCS1-0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 16.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "19. Timers" on page 209.

Equation 16.1. Minimum SCL High and Low Times

$$
T_{\text {HighMin }}=T_{\text {LowMin }}=\frac{1}{f_{\text {ClockSourceOverflow }}}
$$

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 16.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 16.2.

Equation 16.2. Typical SMBus Bit Rate
BitRate $=\frac{f_{\text {ClockSourceOverflow }}}{3}$

C8051F320/1

Figure 16.4 shows the typical SCL generation described by Equation 16.2. Notice that $\mathrm{T}_{\text {HIGH }}$ is typically twice as large as $\mathrm{T}_{\text {Low }}$. The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 16.1.

Figure 16.4. Typical SMBus SCL Generation
Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns , respectively. Table 16.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz .

Table 16.2. Minimum SDA Setup and Hold Times
$\left.\begin{array}{|c|c|c|}\hline \text { EXTHOLD } & \text { Minimum SDA Setup Time } & \text { Minimum SDA Hold Time } \\ \hline 0 & \begin{array}{c}\mathrm{T}_{\text {low }}-4 \text { system clocks } \\ \text { OR }\end{array} & 3 \text { system clocks } \\ & 1 \text { system clock }+ \text { s/w delay }\end{array}\right]$
*Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. The s/w delay occurs between the time SMBODAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "16.3.3. SCL Low Timeout" on page 171). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 16.4). When a Free Timeout is detected, the interface will respond as if a STOP was detected (an interrupt will be generated, and STO will be set).

SFR Definition 16.1. SMB0CF: SMBus Clock/Configuration

R/W	R/W	R	R/w	R/w	R/W	R/W	R/W	Reset Value
ENSMB	INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS1	SMBCSO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bit7: ENSMB: SMBus Enable.
This bit enables/disables the SMBus interface. When enabled, the interface constantly monitors the SDA and SCL pins.
0 : SMBus interface disabled.
1: SMBus interface enabled.
Bit6: INH: SMBus Slave Inhibit.
When this bit is set to logic 1 , the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected.
0: SMBus Slave Mode enabled.
1: SMBus Slave Mode inhibited.
Bit5: BUSY: SMBus Busy Indicator.
This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free-timeout is sensed.
Bit4: EXTHOLD: SMBus Setup and Hold Time Extension Enable.
This bit controls the SDA setup and hold times according to .
0: SDA Extended Setup and Hold Times disabled.
1: SDA Extended Setup and Hold Times enabled.
Bit3: SMBTOE: SMBus SCL Timeout Detection Enable.
This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces Timer 3 to reload while SCL is high and allows Timer 3 to count when SCL goes low. Timer 3 should be programmed to generate interrupts at 25 ms , and the Timer 3 interrupt service routine should reset SMBus communication.
Bit2: SMBFTE: SMBus Free Timeout Detection Enable.
When this bit is set to logic 1 , the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods.
Bits1-0: SMBCS1-SMBCS0: SMBus Clock Source Selection.
These two bits select the SMBus clock source, which is used to generate the SMBus bit rate. The selected device should be configured according to Equation 16.1.

SMBCS1	SMBCS0	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

C8051F320/1

16.4.2. SMBOCN Control Register

SMBOCN is used to control the interface and to provide status information (see Figure 16.2). The higher four bits of SMBOCN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER and TXMODE indicate the master/slave state and transmit/receive modes, respectively.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a ' 1 ' to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a ' 1 ' to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 16.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI .

Table 16.3 lists all sources for hardware changes to the SMBOCN bits. Refer to Table 16.4 for SMBus status decoding using the SMBOCN register.

SFR Definition 16.2. SMB0CN: SMBus Control

R	R	R/W	R/W	R	R	R/W	R/W	Reset Value
MASTER	TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable

Bit7: MASTER: SMBus Master/Slave Indicator.
This read-only bit indicates when the SMBus is operating as a master.
0: SMBus operating in Slave Mode.
1: SMBus operating in Master Mode.
Bit6: TXMODE: SMBus Transmit Mode Indicator.
This read-only bit indicates when the SMBus is operating as a transmitter.
0 : SMBus in Receiver Mode.
1: SMBus in Transmitter Mode.
Bit5: STA: SMBus Start Flag.
Write:
0: No Start generated.
1: When operating as a master, a START condition is transmitted if the bus is free (If the bus is not free, the START is transmitted after a STOP is received or a timeout is detected). If STA is set by software as an active Master, a repeated START will be generated after the next ACK cycle.
Read:
0: No Start or repeated Start detected.
1: Start or repeated Start detected.
Bit4: STO: SMBus Stop Flag.
Write:
0 : No STOP condition is transmitted.
1: Setting STO to logic 1 causes a STOP condition to be transmitted after the next ACK cycle. When the STOP condition is generated, hardware clears STO to logic 0 . If both STA and STO are set, a STOP condition is transmitted followed by a START condition.
Read:
0: No Stop condition detected.
1: Stop condition detected (if in Slave Mode) or pending (if in Master Mode).
Bit3: ACKRQ: SMBus Acknowledge Request
This read-only bit is set to logic 1 when the SMBus has received a byte and needs the ACK bit to be written with the correct ACK response value.
Bit2: ARBLOST: SMBus Arbitration Lost Indicator.
This read-only bit is set to logic 1 when the SMBus loses arbitration while operating as a transmitter. A lost arbitration while a slave indicates a bus error condition.
Bit1: ACK: SMBus Acknowledge Flag.
This bit defines the out-going ACK level and records incoming ACK levels. It should be written each time a byte is received (when $\mathrm{ACKRQ}=1$), or read after each byte is transmitted. 0: A "not acknowledge" has been received (if in Transmitter Mode) OR will be transmitted (if in Receiver Mode).
1: An "acknowledge" has been received (if in Transmitter Mode) OR will be transmitted (if in Receiver Mode).
Bit0: SI: SMBus Interrupt Flag.
This bit is set by hardware under the conditions listed in Table 16.3. SI must be cleared by software. While SI is set, SCL is held low and the SMBus is stalled.

C8051F320/1

Table 16.3. Sources for Hardware Changes to SMB0CN

Bit	Set by Hardware When:	Cleared by Hardware When:
MASTER	- A START is generated.	- A STOP is generated. - Arbitration is lost.
TXMODE	- START is generated. - SMBODAT is written before the start of an SMBus frame.	- A START is detected. - Arbitration is lost. - SMBODAT is not written before the start of an SMBus frame.
STA	- A START followed by an address byte is received.	- Must be cleared by software.
STO	- A STOP is detected while addressed as a slave. - Arbitration is lost due to a detected STOP.	- A pending STOP is generated.
ACKRQ	- A byte has been received and an ACK response value is needed.	- After each ACK cycle.
ARBLOST	- A repeated START is detected as a MASTER when STA is low (unwanted repeated START). - SCL is sensed low while attempting to generate a STOP or repeated START condition. - SDA is sensed low while transmitting a ' 1 ' (excluding ACK bits).	- Each time SI is cleared.
ACK	- The incoming ACK value is low (ACKNOWLEDGE).	- The incoming ACK value is high (NOT ACKNOWLEDGE).
SI	- A START has been generated. - Lost arbitration. - A byte has been transmitted and an ACK/NACK received. - A byte has been received. - A START or repeated START followed by a slave address + R/W has been received. - A STOP has been received.	- Must be cleared by software.

16.4.3. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0, as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMBODAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMBODAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMBODAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMBODAT.

SFR Definition 16.3. SMBODAT: SMBus Data

C8051F320/1

16.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames; however, note that the interrupt is generated before the ACK cycle when operating as a receiver, and after the ACK cycle when operating as a transmitter.

16.5.1. Master Transmitter Mode

Serial data is transmitted on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMBODAT is not written following a Master Transmitter interrupt. Figure 16.5 shows a typical Master Transmitter sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that the 'data byte transferred' interrupts occur after the ACK cycle in this mode.

Figure 16.5. Typical Master Transmitter Sequence

16.5.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. After each byte is received, ACKRQ is set to ' 1 ' and an interrupt is generated. Software must write the ACK bit (SMBOCN.1) to define the outgoing acknowledge value (Note: writing a ' 1 ' to the ACK bit generates an ACK; writing a ' 0 ' generates a NACK). Software should write a ' 0 ' to the ACK bit after the last byte is received, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. Note that the interface will switch to Master Transmitter Mode if SMBODAT is written while an active Master Receiver. Figure 16.6 shows a typical Master Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur before the ACK cycle in this mode.

Figure 16.6. Typical Master Receiver Sequence

C8051F320/1

16.5.3. Slave Receiver Mode

Serial data is received on SDA and the clock is received on SCL. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. Upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. Software responds to the received slave address with an ACK, or ignores the received slave address with a NACK. If the received slave address is ignored, slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received. Software must write the ACK bit after each received byte to ACK or NACK the received byte. The interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave Transmitter Mode if SMBODAT is written while an active Slave Receiver. Figure 16.7 shows a typical Slave Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur before the ACK cycle in this mode.

Figure 16.7. Typical Slave Receiver Sequence

16.5.4. Slave Transmitter Mode

Serial data is transmitted on SDA and the clock is received on SCL. When slave events are enabled (INH $=0$), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. Upon entering Slave Transmitter Mode, an interrupt is generated and the ACKRQ bit is set. Software responds to the received slave address with an ACK, or ignores the received slave address with a NACK. If the received slave address is ignored, slave interrupts will be inhibited until a START is detected. If the received slave address is acknowledged, data should be written to SMBODAT to be transmitted. The interface enters Slave Transmitter Mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMBODAT should be written with the next data byte. If the acknowledge bit is a NACK, SMBODAT should not be written to before SI is cleared (Note: an error condition may be generated if SMBODAT is written following a received NACK while in Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a STOP. Note that the interface will switch to Slave Receiver Mode if SMBODAT is not written following a Slave Transmitter interrupt. Figure 16.8 shows a typical Slave Transmitter sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that the 'data byte transferred' interrupts occur after the ACK cycle in this mode.

Figure 16.8. Typical Slave Transmitter Sequence

C8051F320/1

16.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMBOCN register. In the table below, STATUS VECTOR refers to the four upper bits of SMBOCN: MASTER, TXMODE, STA, and STO. Note that the shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed but do not conform to the SMBus specification.

Table 16.4. SMBus Status Decoding

$\begin{aligned} & \mathbb{O} \\ & \underset{\Sigma}{\circ} \end{aligned}$	Values Read				Current SMbus State	Typical Response Options	Values Written		
				$\begin{array}{\|r} \text { Y } \\ \hline \end{array}$			$\stackrel{\varangle}{6}$	-	ソ
	1110	0	0	X	A master START was generated.	Load slave address + R/W into SMBODAT.	0	0	X
	1100	0	0	0	A master data or address byte	Set STA to restart transfer.	1	0	X
					was transmitted; NACK received.	Abort transfer.	0	1	X
		0	0	1	A master data or address byte was transmitted; ACK received.	Load next data byte into SMBODAT.	0	0	X
						End transfer with STOP.	0	1	X
						End transfer with STOP and start another transfer.	1	1	X
						Send repeated START.	1	0	X
						Switch to Master Receiver Mode (clear SI without writing new data to SMBODAT).	0	0	X

C8051F320/1

Table 16.4. SMBus Status Decoding (Continued)

$\begin{aligned} & \text { O } \\ & \underline{\Sigma} \\ & \hline \end{aligned}$	Values Read				Current SMbus State	Typical Response Options	Values Written		
	$\begin{aligned} & n \\ & \vdots \\ & \vdots \\ & \overleftarrow{N} \\ & 0 \\ & 0 \end{aligned}$		尔	$\begin{aligned} & \text { Y } \\ & \text { U } \end{aligned}$			¢	-	¢
	1000	1	0	X	A master data byte was received; ACK requested.	Acknowledge received byte; Read SMBODAT.	0	0	1
						Send NACK to indicate last byte, and send STOP.	0	1	0
						Send NACK to indicate last byte, and send STOP followed by START.	1	1	0
						Send ACK followed by repeated START.	1	0	1
						Send NACK to indicate last byte, and send repeated START.	1	0	0
						Send ACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	1
						Send NACK and switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	0
	0100	0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	X
		0	0	1	A slave byte was transmitted; ACK received.	Load SMBODAT with next data byte to transmit.	0	0	X
		0	1	X	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	X
	0101	0	X	X	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	X

C8051F320/1

Table 16.4. SMBus Status Decoding (Continued)

$\begin{aligned} & \text { O } \\ & \text { 을 } \end{aligned}$	Values Read				Current SMbus State	Typical Response Options	Values Written		
		$\begin{aligned} & \text { O} \\ & \underset{\sim}{x} \\ & \underset{\sim}{U} \end{aligned}$		$\begin{array}{\|c} Y \\ \hline \end{array}$			¢	-	Y
	0010	1	0	X	A slave address was received; ACK requested.	Acknowledge received address.	0	0	1
						Do not acknowledge received address.	0	0	0
		1	1	X	Lost arbitration as master; slave address received; ACK requested.	Acknowledge received address.	0	0	1
						Do not acknowledge received address.	0	0	0
						Reschedule failed transfer; do not acknowledge received address.	1	0	0
	0010	0	1	X	Lost arbitration while attempting a repeated START.	Abort failed transfer.	0	0	X
						Reschedule failed transfer.	1	0	X
	0001	1	1	X	Lost arbitration while attempting a STOP.	No action required (transfer complete/aborted).	0	0	0
		0	0	X	A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	X
		0	1	X	Lost arbitration due to a detected STOP.	Abort transfer.	0	0	X
						Reschedule failed transfer.	1	0	X
	0000	1	0	X	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMB0DAT.	0	0	1
						Do not acknowledge received byte.	0	0	0
		1	1	X	Lost arbitration while transmitting a data byte as master.	Abort failed transfer.	0	0	0
						Reschedule failed transfer.	1	0	0

17. UARTO

UARTO is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "17.1. Enhanced Baud Rate Generation" on page 188). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCONO) and Serial Data Buffer 0 (SBUF0). The single SBUFO location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UARTO interrupts enabled, an interrupt is generated each time a transmit is completed (TIO is set in SCONO), or a data byte has been received (RIO is set in SCONO). The UARTO interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive complete).

Figure 17.1. UARTO Block Diagram

C8051F320/1

17.1. Enhanced Baud Rate Generation

The UARTO baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 17.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Figure 17.2. UARTO Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 211). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 17.1.

Equation 17.1. UART0 Baud Rate

$$
\text { UartBaudRate }=\frac{T 1_{C L K}}{(256-T 1 H)} \times \frac{1}{2}
$$

Where $T 1_{C L K}$ is the frequency of the clock supplied to Timer 1 , and $T 1 H$ is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "19. Timers" on page 209. A quick reference for typical baud rates and system clock frequencies is given in Table 17.1. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

17.2. Operational Modes

UARTO provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the SOMODE bit (SCON0.7). Typical UART connection options are shown below.

Figure 17.3. UART Interconnect Diagram

17.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TXO pin and received at the RXO pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TIO Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the RENO Receive Enable bit (SCONO.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUFO receive register if the following conditions are met: RIO must be logic 0 , and if MCEO is logic 1, the stop bit must be logic 1 . In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RIO flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RIO flag will not be set. An interrupt will occur if enabled when either TIO or RIO is set.

Figure 17.4. 8-Bit UART Timing Diagram

C8051F320/1

17.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TIO Transmit Interrupt Flag (SCONO.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the RENO Receive Enable bit (SCON0.4) is set to ' 1 '. After the stop bit is received, the data byte will be loaded into the SBUFO receive register if the following conditions are met: (1) RIO must be logic 0 , and (2) if MCEO is logic 1 , the 9 th bit must be logic 1 (when MCE 0 is logic 0 , the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB80, and the RIO flag is set to ' 1 '. If the above conditions are not met, SBUF0 and RB80 will not be loaded and the RIO flag will not be set to ' 1 '. A UART0 interrupt will occur if enabled when either TIO or RIO is set to ' 1 '.

Figure 17.5. 9-Bit UART Timing Diagram

17.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1 ; in a data byte, the ninth bit is always set to logic 0.

Setting the MCEO bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 ($\mathrm{RB} 80=1$) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCEO bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCEO bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 17.6. UART Multi-Processor Mode Interconnect Diagram

SFR Definition 17.1. SCON0: Serial Port 0 Control

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SOMODE	-	MCEO	RENO	TB80	RB80	TIO	RIO	01000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable
							Addr	0x98

Bit7: SOMODE: Serial Port 0 Operation Mode.
This bit selects the UARTO Operation Mode.
0: 8-bit UART with Variable Baud Rate.
1: 9-bit UART with Variable Baud Rate.
Bit6: UNUSED. Read = 1b. Write $=$ don't care.
Bit5: MCE0: Multiprocessor Communication Enable.
The function of this bit is dependent on the Serial Port 0 Operation Mode.
SOMODE $=0$: Checks for valid stop bit.
0 : Logic level of stop bit is ignored.
1: RIO will only be activated if stop bit is logic level 1 .
SOMODE =1: Multiprocessor Communications Enable.
0 : Logic level of ninth bit is ignored.
1: RIO is set and an interrupt is generated only when the ninth bit is logic 1 .
Bit4: RENO: Receive Enable.
This bit enables/disables the UART receiver.
0 : UARTO reception disabled.
1: UARTO reception enabled.
Bit3: TB80: Ninth Transmission Bit.
The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. It is not used in 8 -bit UART Mode. Set or cleared by software as required.
Bit2: RB80: Ninth Receive Bit.
RB80 is assigned the value of the STOP bit in Mode 0 ; it is assigned the value of the 9th data bit in Mode 1.
Bit1: TIO: Transmit Interrupt Flag.
Set by hardware when a byte of data has been transmitted by UARTO (after the 8th bit in 8bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UART0 interrupt is enabled, setting this bit causes the CPU to vector to the UARTO interrupt service routine. This bit must be cleared manually by software.
Bit0: RIO: Receive Interrupt Flag.
Set to ' 1 ' by hardware when a byte of data has been received by UARTO (set at the STOP bit sampling time). When the UARTO interrupt is enabled, setting this bit to ' 1 ' causes the CPU to vector to the UARTO interrupt service routine. This bit must be cleared manually by software.

SFR Definition 17.2. SBUF0: Serial (UARTO) Port Data Buffer

Bits7-0: SBUF0[7:0]: Serial Data Buffer Bits 7-0 (MSB-LSB)
This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUFO, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUFO initiates the transmission. A read of SBUFO returns the contents of the receive latch.

C8051F320/1

Table 17.1. Timer Settings for Standard Baud Rates Using The Internal Oscillator

	Target Baud Rate (bps)	Actual Baud Rate (bps)	Baud Rate Error	Oscillator Divide Factor	Timer Clock Source	$\begin{gathered} \hline \text { SCA1-SCA0 } \\ \text { (pre-scale } \\ \text { select)* } \end{gathered}$	T1M*	Timer 1 Reload Value (hex)
	230400	230769	0.16\%	52	SYSCLK	XX	1	0xE6
	115200	115385	0.16\%	104	SYSCLK	XX	1	0xCC
	57600	57692	0.16\%	208	SYSCLK	XX	1	0x98
	28800	28846	0.16\%	416	SYSCLK	XX	1	0×30
	14400	14423	0.16\%	832	SYSCLK / 4	01	0	0×98
	9600	9615	0.16\%	1248	SYSCLK / 4	01	0	0x64
	2400	2404	0.16\%	4992	SYSCLK / 12	00	0	0x30
	1200	1202	0.16\%	9984	SYSCLK / 48	10	0	0x98
$\stackrel{\text { c }}{\substack{\text { c }}}$	230400	230769	0.16\%	104	SYSCLK	XX	1	0xCC
	115200	115385	0.16\%	208	SYSCLK	XX	1	0×98
	57600	57692	0.16\%	416	SYSCLK	XX	1	0x30
	28800	28846	0.16\%	832	SYSCLK / 4	01	0	0×98
	14400	14423	0.16\%	1664	SYSCLK / 4	01	0	0×30
	9600	9615	0.16\%	2496	SYSCLK / 12	00	0	0×98
	2400	2404	0.16\%	9984	SYSCLK / 48	10	0	0×98
	1200	1202	0.16\%	19968	SYSCLK / 48	10	0	0x30

X = Don't care
*Note: SCA1-SCA0 and T1M define the Timer Clock Source. Bit definitions for these values can be found in Section "19.1. Timer 0 and Timer 1" on page 209.

18. Enhanced Serial Peripheral Interface (SPIO)

The Enhanced Serial Peripheral Interface (SPIO) provides access to a flexible, full-duplex synchronous serial bus. SPIO can operate as a master or slave device in both 3 -wire or 4 -wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPIO in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3 -wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

Figure 18.1. SPI Block Diagram

SILICON LABS

C8051F320/1

18.1. Signal Descriptions

The four signals used by SPIO (MOSI, MISO, SCK, NSS) are described below.

18.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPIO is operating as a master and an input when SPIO is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3-and 4-wire mode.

18.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPIO is operating as a master and an output when SPIO is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4 -wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is always driven by the MSB of the shift register.

18.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPIO generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

18.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0 bits in the SPIOCN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPIO operates in 3-wire mode, and NSS is disabled. When operating as a slave device, SPIO is always selected in 3-wire mode. Since no select signal is present, SPIO must be the only slave on the bus in 3-wire mode. This is intended for point-to-point communication between a master and one slave.
2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPIO operates in 4-wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPIO device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPIO so that multiple master devices can be used on the same SPI bus.
3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPIO operates in 4-wire mode, and NSS is enabled as an output. The setting of NSSMDO determines what logic level the NSS pin will output. This configuration should only be used when operating SPIO as a master device.

See Figure 18.2, Figure 18.3, and Figure 18.4 for typical connection diagrams of the various operational modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or 3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device. See Section "14. Port Input/Output" on page 126 for general purpose port I/O and crossbar information.

C8051F320/1

18.2. SPIO Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPIO is placed in master mode by setting the Master Enable flag (MSTEN, SPIOCN.6). Writing a byte of data to the SPIO data register (SPIODAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPIO master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPIOCN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPIO master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPIODAT.

When configured as a master, SPIO can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO $($ SPIOCN.2 $)=1$. In this mode, NSS is an input to the device, and is used to disable the master SPIO when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPIOCN.6) and SPIEN (SPIOCN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPIOCN. $5=1$). Mode Fault will generate an interrupt if enabled. SPIO must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 18.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=0$. In this mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 18.3 shows a connection diagram between a master device in 3 -wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPIOCN.3) $=1$. In this mode, NSS is configured as an output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMDO (SPIOCN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 18.4 shows a connection diagram for a master device in 4 -wire master mode and two slave devices.

C8051F320/1

Figure 18.2. Multiple-Master Mode Connection Diagram

Figure 18.3. 3-Wire Single Master and Slave Mode Connection Diagram

Figure 18.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram

18.3. SPIO Slave Mode Operation

When SPIO is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPIO logic counts SCK edges. When 8 bits have been shifted through the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPIODAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPIODAT. Writes to SPIODAT are doublebuffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

C8051F320/1

When configured as a slave, SPIO can be configured for 4-wire or 3-wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMD0 (SPIOCN.2) $=1$. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPIO is enabled when NSS is logic 0, and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 18.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master device.

3 -wire slave mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=0$. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of uniquely addressing the device in 3-wire slave mode, SPIO must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and reenabling SPIO with the SPIEN bit. Figure 18.3 shows a connection diagram between a slave device in 3wire slave mode and a master device.

18.4. SPIO Interrupt Sources

When SPIO interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

Note that all of the following bits must be cleared by software.

1. The SPI Interrupt Flag, SPIF (SPIOCN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPIO modes.
2. The Write Collision Flag, WCOL (SPIOCN.6) is set to logic 1 if a write to SPIODAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPIODAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPIO modes.
3. The Mode Fault Flag MODF (SPIOCN.5) is set to logic 1 when SPIO is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPIOCN are set to logic 0 to disable SPIO and allow another master device to access the bus.
4. The Receive Overrun Flag RXOVRN (SPIOCN.4) is set to logic 1 when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

18.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPIO Configuration Register (SPIOCFG). The CKPHA bit (SPIOCFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPIOCFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPIO should be disabled (by clearing the SPIEN bit, SPIOCN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 18.5. For slave mode, the clock and data relationships are shown in Figure 18.6 and Figure 18.7. Note that CKPHA must be set to ' 0 ' on both the master and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x, C8051F12x, C8051F31x, C8051F32x, and C8051F33x

The SPIO Clock Rate Register (SPIOCKR) as shown in Figure 18.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz , whichever is

C8051F320/1

slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is $1 / 10$ the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than $1 / 10$ the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of $1 / 4$ the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

Figure 18.5. Master Mode Data/Clock Timing

Figure 18.6. Slave Mode Data/Clock Timing (CKPHA = 0)

C8051F320/1

Figure 18.7. Slave Mode Data/Clock Timing (CKPHA = 1)

C8051F320/1

18.6. SPI Special Function Registers

SPIO is accessed and controlled through four special function registers in the system controller: SPIOCN Control Register, SPIODAT Data Register, SPIOCFG Configuration Register, and SPIOCKR Clock Rate Register. The four special function registers related to the operation of the SPIO Bus are described in the following figures.

SFR Definition 18.1. SPIOCFG: SPIO Configuration

R	R/W	R/W	R/W	R	R	R	R	$\begin{aligned} & \text { Reset Value } \\ & 00000111 \end{aligned}$
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBM	
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	
				SFR Address: 0xA1				
Bit 7:	SPIBSY: SPI Busy (read only). This bit is set to logic 1 when a SPI transfer is in progress (Master or slave Mode).							
Bit 6:	MSTEN: Master Mode Enable. 0: Disable master mode. Operate in slave mode. 1: Enable master mode. Operate as a master.							
Bit 5:	CKPHA: SPIO Clock Phase. This bit controls the SPIO clock phase. 0: Data centered on first edge of SCK period.* 1: Data centered on second edge of SCK period.*							
Bit 4:	CKPOL: SP This bit cont 0: SCK line 1: SCK line	Clock Po ls the SP w in idle gh in idle	rity. clock po ate. ate.	rity.				
Bit 3:	This bit is set to logic 1 whenever the NSS pin is low indicating SPIO is the selected slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the instantaneous value at the NSS pin, but rather a de-glitched version of the pin input.							
Bit 2:	This bit mimics the instantaneous value that is present on the NSS port pin at the time that the register is read. This input is not de-glitched.							
Bit 1:	This bit will be set to logic 1 when all data has been transferred in/out of the shift register, and there is no new information available to read from the transmit buffer or write to the receive buffer. It returns to logic 0 when a data byte is transferred to the shift register from the transmit buffer or by a transition on SCK. NOTE: SRMT = 1 when in Master Mode.							
Bit 0:	This bit will be set to logic 1 when the receive buffer has been read and contains no new information. If there is new information available in the receive buffer that has not been read, this bit will return to logic 0 .							
*Note:	In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device. See Table 18.1 for timing parameters.							

SFR Definition 18.2. SPIOCN: SPIO Control

R/W	R/W	R/W	R/w	R/W	R/W	R	R/W	Reset Value
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable

Bit 7: SPIF: SPIO Interrupt Flag.
This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled, setting this bit causes the CPU to vector to the SPIO interrupt service routine. This bit is not automatically cleared by hardware. It must be cleared by software.
Bit 6: WCOL: Write Collision Flag. This bit is set to logic 1 by hardware (and generates a SPIO interrupt) to indicate that a write to the SPIO data register was attempted while the transmit buffer already contained data. It must be cleared by software.
Bit 5: MODF: Mode Fault Flag.
This bit is set to logic 1 by hardware (and generates a SPIO interrupt) when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not automatically cleared by hardware. It must be cleared by software.
Bit 4: RXOVRN: Receive Overrun Flag (Slave Mode only).
This bit is set to logic 1 by hardware (and generates a SPIO interrupt) when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPIO shift register. This bit is not automatically cleared by hardware. It must be cleared by software.
Bits 3-2: NSSMD1-NSSMD0: Slave Select Mode.
Selects between the following NSS operation modes:
(See Section "18.2. SPIO Master Mode Operation" on page 197 and Section "18.3. SPIO Slave Mode Operation" on page 198).
00: 3-Wire Slave or 3-wire Master Mode. NSS signal is not routed to a port pin.
01: 4-Wire Slave or Multi-Master Mode (Default). NSS is always an input to the device.
1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMDO.
Bit 1: TXBMT: Transmit Buffer Empty.
This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1 , indicating that it is safe to write a new byte to the transmit buffer.
Bit 0: SPIEN: SPIO Enable.
This bit enables/disables the SPI.
0 : SPI disabled.
1: SPI enabled.

SFR Definition 18.4. SPIODAT: SPIO Data Register

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
							Addre	$0 \times A 3$

Bits 7-0: SPIODAT: SPIO Transmit and Receive Data.
The SPIODAT register is used to transmit and receive SPIO data. Writing data to SPIODAT places the data into the transmit buffer and initiates a transfer when in Master Mode. A read of SPIODAT returns the contents of the receive buffer.

SFR Definition 18.3. SPIOCKR: SPIO Clock Rate

R/W	Reset Value							
SCR7	SCR6	SCR5	SCR4	SCR3	SCR2	SCR1	SCR0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	

Bits 7-0: SCR7-SCRO: SPIO Clock Rate.
These bits determine the frequency of the SCK output when the SPIO module is configured for master mode operation. The SCK clock frequency is a divided version of the system clock, and is given in the following equation, where SYSCLK is the system clock frequency and SPIOCKR is the 8-bit value held in the SPIOCKR register.
$f_{S C K}=\frac{S Y S C L K}{2 \times(S P I 0 C K R+1)}$
for 0 <= SPIOCKR <= 255
Example: If SYSCLK $=2 \mathrm{MHz}$ and SPIOCKR $=0 \times 04$,

$$
\begin{aligned}
& f_{S C K}=\frac{2000000}{2 \times(4+1)} \\
& f_{S C K}=200 \mathrm{kHz}
\end{aligned}
$$

C8051F320/1

* SCK is shown for CKPOL $=0 . \operatorname{SCK}$ is the opposite polarity for $\mathrm{CKPOL}=1$.

Figure 18.8. SPI Master Timing $(\mathbf{C K P H A}=0)$

* SCK is shown for CKPOL $=0 . \operatorname{SCK}$ is the opposite polarity for CKPOL $=1$.

Figure 18.9. SPI Master Timing (CKPHA = 1)

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 18.10. SPI Slave Timing (CKPHA = 0)

Figure 18.11. SPI Slave Timing (CKPHA = 1)

C8051F320/1

Table 18.1. SPI Slave Timing Parameters

Parameter	Description	Min	Max	Units
Master Mode Timing* (See Figure 18.8 and Figure 18.9)				
$\mathrm{T}_{\text {мскн }}$	SCK High Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {MCKL }}$	SCK Low Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {MIS }}$	MISO Valid to SCK Shift Edge	$1 \times \mathrm{T}_{\text {SYSCLK }}+20$	-	ns
$\mathrm{T}_{\text {MIH }}$	SCK Shift Edge to MISO Change	0	-	ns
Slave Mode Timing* (See Figure 18.10 and Figure 18.11)				
$\mathrm{T}_{\text {SE }}$	NSS Falling to First SCK Edge	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SD }}$	Last SCK Edge to NSS Rising	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SEZ }}$	NSS Falling to MISO Valid	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {SDZ }}$	NSS Rising to MISO High-Z	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {CKH }}$	SCK High Time	$5 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {CKL }}$	SCK Low Time	$5 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SIS }}$	MOSI Valid to SCK Sample Edge	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SIH }}$	SCK Sample Edge to MOSI Change	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SOH }}$	SCK Shift Edge to MISO Change	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {SLH }}$	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	$6 \times \mathrm{T}_{\text {SYSCLK }}$	$8 \times \mathrm{T}_{\text {SYSCLK }}$	ns
*Note: $\mathrm{T}_{\text {SYSCLK }}$ is equal to one period of the device system clock (SYSCLK).				

19. Timers

Each MCU includes four counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and two are 16-bit auto-reload timer for use with the ADC, SMBus, USB (frame measurements), or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and Timer 3 offer 16-bit and split 8-bit timer functionality with autoreload.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:	Timer 3 Modes:
13-bit counter/timer	16-bit timer with auto-reload	16-bit timer with auto-reload
16-bit counter/timer	1wo 8-bit timers with auto-reload	Two 8-bit timers with auto-reload
8-bit counter/timer with auto-reload	Two 8-bit counter/timers (Timer 0 only)	

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1MTOM) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See Figure 19.3 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 and Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided by 8.

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

19.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TLO or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ETO bit in the IE register (Section "9.3.5. Interrupt Register Descriptions" on page 90); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (SFR Definition 9.7). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1-T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

19.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0 . The following describes the configuration and operation of Timer 0 . However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TLO holds the five LSBs in bit positions TLO.4-TLO.O. The three upper bits of TLO (TL0.7-TLO.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TFO (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/TO bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (TO) increment the timer register (Refer to Section

C8051F320/1

"14.1. Priority Crossbar Decoder" on page 128 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the TOM bit (CKCON.3). When TOM is set, Timer 0 is clocked by the system clock. When TOM is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see Figure 19.3).

Setting the TRO bit (TCON.4) enables the timer when either GATEO (TMOD.3) is logic 0 or the input signal /INTO is active as defined by bit INOPL in register INT01CF (see Figure 8.13). Setting GATE0 to '1' allows the timer to be controlled by the external input signal /INT0 (see Section "9.3.5. Interrupt Register Descriptions" on page 90), facilitating pulse width measurements.

TR0	GATE0	IINT0	Counter/Timer
0	X	X	Disabled
1	0	X	Enabled
1	1	0	Disabled
1	1	1	Enabled
X			

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TLO and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal /INT1 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register INT01CF (see Figure 8.13).

Figure 19.1. TO Mode 0 Block Diagram

C8051F320/1

19.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

19.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8 -bit counter/timers with automatic reload of the start value. TLO holds the count and THO holds the reload value. When the counter in TLO overflows from all ones to 0×00, the timer overflow flag TFO (TCON.5) is set and the counter in TLO is reloaded from THO. If Timer 0 interrupts are enabled, an interrupt will occur when the TFO flag is set. The reload value in THO is not changed. TLO must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0 . Setting the TRO bit (TCON.4) enables the timer when either GATEO (TMOD.3) is logic 0 or when the input signal /INTO is active as defined by bit INOPL in register INTO1CF (see Section "9.3.2. External Interrupts" on page 88 for details on the external input signals /INT0 and /INT1).

Figure 19.2. TO Mode 2 Block Diagram

C8051F320/1

19.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8 -bit counter/timers held in TLO and THO. The counter/timer in TLO is controlled using the Timer 0 control/status bits in TCON and TMOD: TRO, C/T0, GATE0 and TFO. TLO can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. THO is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0 , 1 , or 2 . To disable Timer 1 , configure it for Mode 3.

Figure 19.3. TO Mode 3 Block Diagram

C8051F320/1

SFR Definition 19.1. TCON: Timer Control

C8051F320/1

SFR Definition 19.2. TMOD: Timer Mode

R/W	Reset Value							
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	TOM0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

Bit7: GATE1: Timer 1 Gate Control.
0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level.
1: Timer 1 enabled only when TR1 = 1 AND /INT1 is active as defined by bit IN1PL in register IT01CF (see SFR Definition 9.13).
Bit6: C/T1: Counter/Timer 1 Select.
0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.3).
1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin (T1).
Bits5-4: T1M1-T1M0: Timer 1 Mode Select.
These bits select the Timer 1 operation mode.

T1M1	T1M0	Mode
0	0	Mode 0: 13-bit counter/timer
0	1	Mode 1: 16-bit counter/timer
1	0	Mode 2: 8-bit counter/timer with auto- reload
1	1	Mode 3: Timer 1 inactive

Bit3: GATE0: Timer 0 Gate Control.
0 : Timer 0 enabled when TR0 $=1$ irrespective of /INTO logic level.
1: Timer 0 enabled only when TRO = 1 AND /INTO is active as defined by bit INOPL in register IT01CF (see SFR Definition 9.13).
Bit2: C/TO: Counter/Timer Select.
0: Timer Function: Timer 0 incremented by clock defined by TOM bit (CKCON.2).
1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin (TO).
Bits1-0: T0M1-T0M0: Timer 0 Mode Select.
These bits select the Timer 0 operation mode.

T0M1	TOM0	Mode
0	0	Mode 0: 13-bit counter/timer
0	1	Mode 1: 16-bit counter/timer
1	0	Mode 2: 8-bit counter/timer with auto- reload
1	1	Mode 3: Two 8-bit counter/timers

C8051F320/1

SFR Definition 19.3. CKCON: Clock Control

R/W	$\begin{aligned} & \text { Reset Value } \\ & 00000000 \end{aligned}$							
T3MH	T3ML	T2MH	T2ML	T1M	TOM	SCA1	SCA0	
Bit7	Bit6 Bit5		Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x8E
Bit7:	T3MH: Timer 3 High Byte Clock Select.							
	This bit selects the clock supplied to the Timer 3 high byte if Timer 3 is configured in split 8bit timer mode. T3MH is ignored if Timer 3 is in any other mode.							
	0 : Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN.							
	1: Timer 3	byte u	the sys	clock.				
Bit6:	T3ML: Timer 3 Low Byte Clock Select.							
	This bit selects the clock supplied to Timer 3. If Timer 3 is configured in split 8-bit timer mode, this bit selects the clock supplied to the lower 8-bit timer.							
	0 : Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN.							
	1: Timer 3 low byte uses the system clock.							
Bit5:	T2MH: Timer 2 High Byte Clock Select.							
	This bit selects the clock supplied to the Timer 2 high byte if Timer 2 is configured in split 8bit timer mode. T2MH is ignored if Timer 2 is in any other mode.							
	0 : Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN.							
	1: Timer 2 high byte uses the system clock.							
Bit4:	T2ML: Timer 2 Low Byte Clock Select.							
	This bit selects the clock supplied to Timer 2. If Timer 2 is configured in split 8 -bit timer mode, this bit selects the clock supplied to the lower 8 -bit timer.							
	0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.							
	1: Timer 2 low byte uses the system clock.							
Bit3:	T1M: Timer 1 Clock Select.							
	This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to logic 1.							
	1: Timer 1 uses the system clock.							
Bit2:	TOM: Timer 0 Clock Select.							
	This bit selects the clock source supplied to Timer 0 . TOM is ignored when C/TO is set to logic 1.							
	0 : Counter/Timer 0 uses the clock defined by the prescale bits, SCA1-SCA0.							
	1: Counter/Timer 0 uses the system clock.							
Bits1-0:	SCA1-SCA0: Timer 0/1 Prescale Bits.							
	These bits control the division of the clock supplied to Timer 0 and/or Timer 1 if configured to use prescaled clock inputs.							

SCA1	SCA0	Prescaled Clock
0	0	System clock divided by 12
0	1	System clock divided by 4
1	0	System clock divided by 48
1	1	External clock divided by 8

Note: External clock divided by 8 is synchronized with the system clock.

C8051F320/1

SFR Definition 19.4. TLO: Timer 0 Low Byte

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x8A
Bits 7-0: TLO: Timer 0 Low Byte.								

SFR Definition 19.5. TL1: Timer 1 Low Byte

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x8B

Bits 7-0: TL1: Timer 1 Low Byte.
The TL1 register is the low byte of the 16-bit Timer 1.

SFR Definition 19.6. TH0: Timer 0 High Byte

R/W	Reset Value							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: $0 \times 8 \mathrm{C}$
Bits 7-0: THO: Timer 0 High Byte. The THO register is the high byte of the 16 -bit Timer 0 .								

SFR Definition 19.7. TH1: Timer 1 High Byte

R/W	Reset Value							
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x8D
Bits 7-0: TH1: Timer 1 High Byte. The TH1 register is the high byte of the 16 -bit Timer 1 .								

19.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, or USB Start-of-Frame (SOF) capture mode. The Timer 2 operation mode is defined by the T2SPLIT (TMR2CN.3) and T2SOF (TMR2CN.4) bits.

Timer 2 may be clocked by the system clock, the system clock divided by 12 , or the external oscillator source divided by 8 . The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

19.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT = '0' and T2SOF = '0', Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8 . As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 19.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE. 5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from $0 x F F$ to 0×00.

Figure 19.4. Timer 2 16-Bit Mode Block Diagram

C8051F320/1

19.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT = ' 1 ' and T2SOF = ' 0 ', Timer 2 operates as two 8 -bit timers (TMR2H and TMR2L). Both 8bit timers operate in auto-reload mode as shown in Figure 19.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8 -bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK / 12
0	1	External Clock /8
1	X	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK / 12
0	1	External Clock /8
1	X	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from $0 x F F$ to $0 x 00$. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 19.5. Timer 2 8-Bit Mode Block Diagram

C8051F320/1

19.2.3. USB Start-of-Frame Capture

When T2SOF = ' 1 ', Timer 2 operates in USB Start-of-Frame (SOF) capture mode. When T2SPLIT = '0', Timer 2 counts up and overflows from $0 x F F F F$ to 0×0000. Each time a USB SOF is received, the contents of the Timer 2 registers (TMR2H:TMR2L) are latched into the Timer 2 Reload registers (TMR2RLH:TMR2RLL). A Timer 2 interrupt is generated if enabled. This mode can be used to calibrate the system clock or external oscillator against the known USB host SOF clock.

Figure 19.6. Timer 2 SOF Capture Mode (T2SPLIT = ' 0 ')

When T2SPLIT = ' 1 ', the Timer 2 registers (TMR2H and TMR2L) act as two 8 -bit counters. Each counter counts up independently and overflows from 0xFF to 0×00. Each time a USB SOF is received, the contents of the Timer 2 registers are latched into the Timer 2 Reload registers (TMR2RLH and TMR2RLL). A Timer 2 interrupt is generated if enabled.

Figure 19.7. Timer 2 SOF Capture Mode (T2SPLIT = ‘1’)

SFR Definition 19.8. TMR2CN: Timer 2 Control

R/W	Reset Value							
TF2H	TF2L	TF2LEN	T2SOF	T2SPLIT	TR2		T2XCLK	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	$\begin{gathered} \hline \text { Bit0 } \\ \text { ddressabl } \end{gathered}$	SFR Address: $0 \times \mathrm{C} 8$
Bit7:	TF2H: Timer 2 High Byte Overflow Flag. Set by hardware when the Timer 2 high byte overflows from $0 \times F F$ to 0×00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to 0×0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. TF2H is not automatically cleared by hardware and must be cleared by software.							
Bit6:	TF2L: Timer 2 Low Byte Overflow Flag. Set by hardware when the Timer 2 low byte overflows from 0xFF to 0×00. When this bit is set, an interrupt will be generated if TF2LEN is set and Timer 2 interrupts are enabled. TF2L will set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.							
Bit5:	TF2LEN: Timer 2 Low Byte Interrupt Enable. This bit enables/disables Timer 2 Low Byte interrupts. If TF2LEN is set and Timer 2 interrupts are enabled, an interrupt will be generated when the low byte of Timer 2 overflows. 0 : Timer 2 Low Byte interrupts disabled. 1: Timer 2 Low Byte interrupts enabled.							
Bit4:	1: SOF Capture enabled. Each time a USB SOF is received, the contents of the Timer 2 registers (TMR2H and TMR2L) are latched into the Timer 2 reload registers (TMR2RLH and TMR2RLH), and a Timer 2 interrupt is generated (if enabled).							
Bit3:	T2SPLIT: When this 0: Timer 2 1: Timer 2	er 2 Split is set, Tim erates in erates as	ode Enab	as two load mode. o-reload ti	timer	0 : Timer 2 operates in 16 -bit auto-reload mode. 1: Timer 2 operates as two 8 -bit auto-reload timers.	oad.	
Bit2:	TR2: Time This bit en TMR2L is 0: Timer 2 1: Timer 2	Run Cont es/disables ays enab sabled.	Timer 2.	8-bit mod	his bit	es/d	les TMR2	H only;
Bit1:	UNUSED. Read = Ob. Write = don't care.							
Bit0:	This bit selects the external clock source for Timer 2. If Timer 2 is in 8 -bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0 : Timer 2 external clock selection is the system clock divided by 12. 1: Timer 2 external clock selection is the external clock divided by 8 . Note that the external oscillator source divided by 8 is synchronized with the system clock.							

SFR Definition 19.9. TMR2RLL: Timer 2 Reload Register Low Byte

R/W	Reset Value										
								00000000			
Bit7 Bit6		Bit5 Bit4		Bit3 Bit2		Bit1	Bit0	SFR Address:			
			Bit2		0xCA						
Bits 7-0: TMR2RLL: Timer 2 Reload Register Low Byte. TMR2RLL holds the low byte of the reload value for Timer 2 when operating in auto-reload mode, or the captured value of the TMR2L register in capture mode.											

SFR Definition 19.10. TMR2RLH: Timer 2 Reload Register High Byte

R/W	Reset Value														
								00000000							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:							
								0xCB							
Bits 7-0: TMR2RLH: Timer 2 Reload Register High Byte. The TMR2RLH holds the high byte of the reload value for Timer 2 when operating in autoreload mode, or the captured value of the TMR2H register in capture mode.															

SFR Definition 19.11. TMR2L: Timer 2 Low Byte

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xCC

Bits 7-0: TMR2L: Timer 2 Low Byte.
In 16-bit mode, the TMR2L register contains the low byte of the 16 -bit Timer 2 . In 8 -bit mode, TMR2L contains the 8 -bit low byte timer value.

SFR Definition 19.12. TMR2H Timer 2 High Byte

C8051F320/1

19.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode, (split) 8-bit auto-reload mode, or USB Start-of-Frame (SOF) capture mode. The Timer 3 operation mode is defined by the T3SPLIT (TMR3CN.3) and T3SOF (TMR2CN.4) bits.

Timer 3 may be clocked by the system clock, the system clock divided by 12 , or the external oscillator source divided by 8 . The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

19.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16 -bit value in the Timer 3 reload registers (TMR3RLH and TM3RLL) is loaded into the Timer 3 register as shown in Figure 19.4, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled, an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0×00.

Figure 19.8. Timer 3 16-Bit Mode Block Diagram

19.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 19.5. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

T3MH	T3XCLK	TMR3H Clock Source
0	0	SYSCLK / 12
0	1	External Clock/8
1	X	SYSCLK

T3ML	T3XCLK	TMR3L Clock Source
0	0	SYSCLK / 12
0	1	External Clock /8
1	X	SYSCLK

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from 0xFF to 0×00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 19.9. Timer 3 8-Bit Mode Block Diagram

C8051F320/1

19.3.3. USB Start-of-Frame Capture

When T3SOF = ' 1 ', Timer 3 operates in USB Start-of-Frame (SOF) capture mode. When T3SPLIT = '0', Timer 3 counts up and overflows from 0xFFFF to 0x0000. Each time a USB SOF is received, the contents of the Timer 3 registers (TMR3H:TMR3L) are latched into the Timer 3 Reload registers (TMR3RLH:TMR3RLL). A Timer 3 interrupt is generated if enabled. This mode can be used to calibrate the system clock or external oscillator against the known USB host SOF clock.

Figure 19.10. Timer 3 SOF Capture Mode (T3SPLIT = ‘0’)

When T3SPLIT = ' 1 ', the Timer 3 registers (TMR3H and TMR3L) act as two 8 -bit counters. Each counter counts up independently and overflows from 0xFF to 0×00. Each time a USB SOF is received, the contents of the Timer 3 registers are latched into the Timer 3 Reload registers (TMR3RLH and TMR3RLL). A Timer 3 interrupt is generated if enabled.

Figure 19.11. Timer 3 SOF Capture Mode (T3SPLIT = ' 1 ')

SFR Definition 19.13. TMR3CN: Timer 3 Control

R/W	Reset Value							
TF3H	TF3L	TF3LEN	T3SOF	T3SPLIT	TR3		T3XCLK	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0×91
Bit7:	TF3H: Timer 3 High Byte Overflow Flag. Set by hardware when the Timer 3 high byte overflows from $0 x F F$ to 0×00. In 16 bit mode, this will occur when Timer 3 overflows from 0xFFFF to 0×0000. When the Timer 3 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 interrupt service routine. TF3H is not automatically cleared by hardware and must be cleared by software.							
Bit6:	TF3L: Timer 3 Low Byte Overflow Flag. Set by hardware when the Timer 3 low byte overflows from 0xFF to 0×00. When this bit is set, an interrupt will be generated if TF3LEN is set and Timer 3 interrupts are enabled. TF3L will set when the low byte overflows regardless of the Timer 3 mode. This bit is not automatically cleared by hardware.							
Bit5:	TF3LEN: Timer 3 Low Byte Interrupt Enable. This bit enables/disables Timer 3 Low Byte interrupts. If TF3LEN is set and Timer 3 interrupts are enabled, an interrupt will be generated when the low byte of Timer 3 overflows. This bit should be cleared when operating Timer 3 in 16-bit mode. 0: Timer 3 Low Byte interrupts disabled. 1: Timer 3 Low Byte interrupts enabled.							
Bit4:	1: SOF Capture enabled. Each time a USB SOF is received, the contents of the Timer 3 registers (TMR3H and TMR3L) are latched into the Timer3 reload registers (TMR3RLH and TMR3RLH), and a Timer 3 interrupt is generated (if enabled).							
Bit3:	When this bit is set, Timer 3 operates as two 8 -bit timers with auto-reload. 0 : Timer 3 operates in 16 -bit auto-reload mode. 1: Timer 3 operates as two 8 -bit auto-reload timers.							
Bit2:	TR3: Time This bit en TMR3L is 0: Timer 3 1: Timer 3	Run Cont es/disable ays enabl abled. abled.	Timer 3.	8-bit mod	his bit	les/d	les TMR3	only;
Bit1:	UNUSED. Read $=0 \mathrm{~b}$. Write $=$ don't care .							
Bit0:	This bit selects the external clock source for Timer 3. If Timer 3 is in 8 -bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 0 : Timer 3 external clock selection is the system clock divided by 12. 1: Timer 3 external clock selection is the external clock divided by 8 . Note that the external oscillator source divided by 8 is synchronized with the system clock.							

C8051F320/1

SFR Definition 19.14. TMR3RLL: Timer 3 Reload Register Low Byte

R/W	Reset Value													
								00000000						
Bit7 Bit6		Bit5 Bit4		Bit3	Bit2	Bit1	Bit0	SFR Address:						
		0×92												
Bits 7-0: TMR3RLL: Timer 3 Reload Register Low Byte. TMR3RLL holds the low byte of the reload value for Timer 3 when operating in auto-reload mode, or the captured value of the TMR3L register when operating in capture mode.														

SFR Definition 19.15. TMR3RLH: Timer 3 Reload Register High Byte

R/W	Reset Value							
Bit7 Bit6		Bit5 Bit4		Bit3	Bit2	Bit1	Bit0	SFR Address: 0×93
Bits 7-0: TMR3RLH: Timer 3 Reload Register High Byte. The TMR3RLH holds the high byte of the reload value for Timer 3 when operating in autoreload mode, or the captured value of the TMR3H register when operating in capture mode.								

SFR Definition 19.16. TMR3L: Timer 3 Low Byte

R/W	Reset Value														
								00000000							
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:							
								0x94							
Bits 7-0: TMR3L: Timer 3 Low Byte. In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-bit mode, TMR3L contains the 8-bit low byte timer value.															

SFR Definition 19.17. TMR3H Timer 3 High Byte

20. Programmable Counter Array (PCA0)

The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and five 16 -bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section "14.1. Priority Crossbar Decoder" on page 128 for details on configuring the Crossbar). The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8 , Timer 0 overflow, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8-Bit PWM, or 16-Bit PWM (each mode is described in Section "20.2. Capture/Compare Modules" on page 229). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 20.1.

Note: The PCA Module 4 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 20.3 for details

Figure 20.1. PCA Block Diagram

C8051F320/1

20.1. PCA Counter/Timer

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCAOL and PCAOH. PCAOH is the high byte (MSB) of the 16 -bit counter/timer and PCAOL is the low byte (LSB). Reading PCAOL automatically latches the value of PCAOH into a "snapshot" register; the following PCAOH read accesses this "snapshot" register. Reading the PCAOL Register first guarantees an accurate reading of the entire 16-bit PCAO counter. Reading PCAOH or PCAOL does not disturb the counter operation. The CPS2-CPSO bits in the PCAOMD register select the timebase for the counter/timer as shown in Table 20.1.

When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCAOCN is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCAOMD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software (Note: PCAO interrupts must be globally enabled before CF interrupts are recognized. PCAO interrupts are globally enabled by setting the EA bit (IE.7) and the EPCAO bit in EIE1 to logic 1). Clearing the CIDL bit in the PCAOMD register allows the PCA to continue normal operation while the CPU is in Idle mode.

Table 20.1. PCA Timebase Input Options

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)
1	0	0	System clock
1	0	1	External oscillator source divided by 8*
1	1	x	Reserved

*Note: External oscillator source divided by 8 is synchronized with the system clock.

Figure 20.2. PCA Counter/Timer Block Diagram

20.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 20.2 summarizes the bit settings in the PCAOCPMn registers used to select the PCA capture/compare module's operating modes. Setting the ECCFn bit in a PCAOCPMn register enables the module's CCFn interrupt. Note: PCAO interrupts must be globally enabled before individual CCFn interrupts are recognized. PCAO interrupts are globally enabled by setting the EA bit and the EPCAO bit to logic 1 . See Figure 20.3 for details on the PCA interrupt configuration.

Table 20.2. PCAOCPM Register Settings for PCA Capture/Compare Modules

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode
X	X	1	0	0	0	0	X	Capture triggered by positive edge on CEXn
X	X	0	1	0	0	0	X	Capture triggered by negative edge on CEXn
X	X	1	1	0	0	0	X	Capture triggered by transition on CEXn
X	1	0	0	1	0	0	X	Software Timer
X	1	0	0	1	1	0	X	High Speed Output
X	1	0	0	X	1	1	X	Frequency Output
0	1	0	0	X	0	1	X	8-Bit Pulse Width Modulator
1	1	0	0	X	0	1	X	16-Bit Pulse Width Modulator

Note: X = Don't Care

C8051F320/1

Figure 20.3. PCA Interrupt Block Diagram

20.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCAOCPLn and PCAOCPHn). The CAPPn and CAPNn bits in the PCAOCPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

C8051F320/1

Figure 20.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

C8051F320/1

20.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCAOCPHn and PCAOCPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCAOCPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to ' 0 '; writing to PCA0CPHn sets ECOMn to ' 1 '.

Figure 20.5. PCA Software Timer Mode Diagram

20.2.3. High Speed Output Mode

In High Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCAOCPHn and PCAOCPLn) Setting the TOGn, MATn, and ECOMn bits in the PCAOCPMn register enables the HighSpeed Output mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCAO Capture/ Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to ' 0 '; writing to PCA0CPHn sets ECOMn to ' 1 '.

Figure 20.6. PCA High Speed Output Mode Diagram

C8051F320/1

20.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 20.1.

Equation 20.1. Square Wave Frequency Output

$$
F_{C E X n}=\frac{F_{P C A}}{2 \times P C A 0 C P H n}
$$

Note: A value of 0×00 in the PCAOCPH register is equal to 256 for this equation.
Where $F_{P C A}$ is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCAOCPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.

Figure 20.7. PCA Frequency Output Mode

20.2.5. 8-Bit Pulse Width Modulator Mode

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer. The duty cycle of the PWM output signal is varied using the module's PCAOCPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCAOL) is equal to the value in PCA0CPLn, the output on the CEXn pin will be set. When the count value in PCAOL overflows, the CEXn output will be reset (see Figure 20.8). Also, when the counter/timer low byte (PCAOL) overflows from 0xFF to 0x00, PCAOCPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCAOCPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 20.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCAO Capture/ Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to ' 0 '; writing to PCA0CPHn sets ECOMn to ' 1 '.

Equation 20.2. 8-Bit PWM Duty Cycle

$$
\text { DutyCycle }=\frac{(256-\text { PCA0CPHn })}{256}
$$

Using Equation 20.2, the largest duty cycle is 100% ($\mathrm{PCAOCPHn}=0$), and the smallest duty cycle is 0.39% ($\mathrm{PCAOCPH}=0 \times F F$). A 0\% duty cycle may be generated by clearing the ECOMn bit to ' 0 '.

Figure 20.8. PCA 8-Bit PWM Mode Diagram

C8051F320/1

20.2.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. In this mode, the 16 -bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCAOCPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn = 1) to help synchronize the capture/compare register writes. The duty cycle for 16 -Bit PWM Mode is given by Equation 20.3.

Important Note About Capture/Compare Registers: When writing a 16 -bit value to the PCAO Capture/ Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to ' 0 '; writing to PCAOCPHn sets ECOMn to ' 1 '.

Equation 20.3. 16-Bit PWM Duty Cycle

$$
\text { DutyCycle }=\frac{(65536-P C A 0 C P n)}{65536}
$$

Using Equation 20.3, the largest duty cycle is 100% (PCAOCPn $=0$), and the smallest duty cycle is 0.0015% (PCAOCPn $=0 x F F F F$). A 0% duty cycle may be generated by clearing the ECOMn bit to ' 0 '.

Figure 20.9. PCA 16-Bit PWM Mode

20.3. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 4. The WDT is used to generate a reset if the time between writes to the WDT update register (PCAOCPH4) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE and/or WDLCK bits set to ' 1 ' in the PCAOMD register, Module 4 operates as a watchdog timer (WDT). The Module 4 high byte is compared to the PCA counter high byte; the Module 4 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled.

20.3.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCAOL and PCAOH are not allowed.
- PCA clock source bits (CPS2-CPSO) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 4 is forced into Watchdog Timer mode.
- Writes to the Module 4 mode register (PCAOCPM4) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCAOCPH4 and PCAOH while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCAOCPH4. Upon a PCAOCPH4 write, PCAOH plus the offset held in PCAOCPL4 is loaded into PCAOCPH4 (See Figure 20.10).

Figure 20.10. PCA Module 4 with Watchdog Timer Enabled

C8051F320/1

Note that the 8-bit offset held in PCA0CPH4 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCAOL overflows before a reset. Up to 256 PCA clocks may pass before the first PCAOL overflow occurs, depending on the value of the PCAOL when the update is performed. The total offset is then given (in PCA clocks) by Equation 20.4, where PCAOL is the value of the PCAOL register at the time of the update.

$$
\begin{gathered}
\text { Equation 20.4. Watchdog Timer Offset in PCA Clocks } \\
\text { Offset }=(256 \times P C A 0 C P L 4)+(256-P C A 0 L)
\end{gathered}
$$

The WDT reset is generated when PCAOL overflows while there is a match between PCA0CPH4 and PCAOH. Software may force a WDT reset by writing a ' 1 ' to the CCF4 flag (PCA0CN.4) while the WDT is enabled.

20.3.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

1. Disable the WDT by writing a ' 0 ' to the WDTE bit.
2. Select the desired PCA clock source (with the CPS2-CPS0 bits).
3. Load PCA0CPL4 with the desired WDT update offset value.
4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
5. Enable the WDT by setting the WDTE bit to ' 1 '.
6. (optional) Lock the WDT (prevent WDT disable until the next system reset) by setting the WDLCK bit to ' 1 '.
7. Write a value to PCAOCPH4 to reload the WDT.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCAOMD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCAO counter clock defaults to the system clock divided by 12, PCAOL defaults to 0×00, and PCA0CPL4 defaults to 0×00. Using Equation 20.4, this results in a WDT timeout interval of 256 PCA clock cycles (3072 system clock cycles). Table 20.3 lists some example timeout intervals for typical system clocks.

Table 20.3. Watchdog Timer Timeout Intervals ${ }^{1}$

System Clock (Hz)	PCA0CPL4	Timeout Interval (ms)
24,000,000	255	32.8
24,000,000	128	16.5
24,000,000	32	4.2
12,000,000	255	65.5
12,000,000	128	33.0
12,000,000	32	8.4
4,000,000	255	196.6
4,000,000	128	99.1
4,000,000	32	25.3
1,500,000 ${ }^{2}$	255	524.3
1,500,000 ${ }^{2}$	128	264.2
1,500,000 ${ }^{2}$	32	67.6
32,768	255	24,000
32,768	128	12,093.75
32,768	32	3,093.75
Notes: 1. Assumes SYSCLK / 12 as the PCA clock source, and a PCAOL value of 0×00 at the update time. 2. Internal oscillator reset frequency.		

20.4. Register Descriptions for PCA

Following are detailed descriptions of the special function registers related to the operation of the PCA.

C8051F320/1

SFR Definition 20.1. PCA0CN: PCA Control

R/W	Reset Value							
CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCFO	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

Bit7: CF: PCA Counter/Timer Overflow Flag.
Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
Bit6: CR: PCA Counter/Timer Run Control.
This bit enables/disables the PCA Counter/Timer.
0 : PCA Counter/Timer disabled.
1: PCA Counter/Timer enabled.
Bit5: \quad UNUSED. Read $=0 \mathrm{~b}$, Write $=$ don't care.
Bit4: CCF4: PCA Module 4 Capture/Compare Flag.
This bit is set by hardware when a match or capture occurs. When the CCF4 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
Bit3: CCF3: PCA Module 3 Capture/Compare Flag.
This bit is set by hardware when a match or capture occurs. When the CCF3 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
Bit2: CCF2: PCA Module 2 Capture/Compare Flag.
This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
Bit1: CCF1: PCA Module 1 Capture/Compare Flag.
This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
Bit0: CCF0: PCA Module 0 Capture/Compare Flag.
This bit is set by hardware when a match or capture occurs. When the CCFO interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.

SFR Definition 20.2. PCAOMD: PCA Mode

R/W	Reset Value							
CIDL	WDTE	WDLCK	-	CPS2	CPS1	CPS0	ECF	01000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:

Bit7: CIDL: PCA Counter/Timer Idle Control.
Specifies PCA behavior when CPU is in Idle Mode.
0 : PCA continues to function normally while the system controller is in Idle Mode.
1: PCA operation is suspended while the system controller is in Idle Mode.
Bit6: WDTE: Watchdog Timer Enable
If this bit is set, PCA Module 4 is used as the watchdog timer.
0 : Watchdog Timer disabled.
1: PCA Module 4 enabled as Watchdog Timer.
Bit5: WDLCK: Watchdog Timer Lock
This bit enables and locks the Watchdog Timer. When WDLCK is set to ' 1 ', the Watchdog Timer may not be disabled until the next system reset.
0 : Watchdog Timer unlocked.
1: Watchdog Timer enabled and locked.
Bit4: UNUSED. Read = 0b, Write = don't care.
Bits3-1: CPS2-CPS0: PCA Counter/Timer Pulse Select.
These bits select the timebase source for the PCA counter.

CPS2	CPS1	CPSO	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate $=$ system clock divided by 4)
1	0	0	System clock
1	0	1	External clock divided by 8^{*}
1	1	0	Reserved
1	1	1	Reserved
*Note: External oscillator source divided by 8 is synchronized with the system clock.			

Bit0: ECF: PCA Counter/Timer Overflow Interrupt Enable.
This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt.
0: Disable the CF interrupt.
1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCAOCN.7) is set.

Note: When the WDTE bit is set to ' 1 ', the PCAOMD register cannot be modified. To change the contents of the PCAOMD register, the Watchdog Timer must first be disabled.

SFR Definition 20.3. PCA0CPMn: PCA Capture/Compare Mode

R/W	R									
PWM16n	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	EE			
Bit7 Bit6		Bit5	Bit4	Bit3	Bit2	Bit1				
		0xDA				B, $0 \times$				
PCA0CPMn Address:			PCA0CPM0 $=0 \times D A(n=0)$, PCA0CPM1 $=0 \times D B(n=1)$,							
		PCAOCPM2 $=0 \times D C(n=2)$, PCAOCPM3 $=0 \times D D(n=3)$,								

Bit7: PWM16n: 16-bit Pulse Width Modulation Enable. This bit selects 16 -bit mode when Pulse Width Modulation mode is enabled ($\mathrm{PWMn}=1$). 0: 8-bit PWM selected. 1: 16-bit PWM selected.
Bit6: ECOMn: Comparator Function Enable. This bit enables/disables the comparator function for PCA module n.
0 : Disabled.
1: Enabled.
Bit5: CAPPn: Capture Positive Function Enable.
This bit enables/disables the positive edge capture for PCA module n.
0 : Disabled.
1: Enabled.
Bit4: CAPNn: Capture Negative Function Enable.
This bit enables/disables the negative edge capture for PCA module n.
0 : Disabled.
1: Enabled.
Bit3: MATn: Match Function Enable
This bit enables/disables the match function for PCA module n. When enabled, matches of the PCA counter with a module's capture/compare register cause the CCFn bit in PCAOMD register to be set to logic 1.
0 : Disabled.
1: Enabled.
Bit2: TOGn: Toggle Function Enable.
This bit enables/disables the toggle function for PCA module n. When enabled, matches of the PCA counter with a module's capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module operates in Frequency Output Mode.
0 : Disabled.
1: Enabled.
Bit1: PWMn: Pulse Width Modulation Mode Enable.
This bit enables/disables the PWM function for PCA module n. When enabled, a pulse width modulated signal is output on the CEXn pin. 8-bit PWM is used if PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module operates in Frequency Output Mode.
0 : Disabled.
1: Enabled.
Bit0: ECCFn: Capture/Compare Flag Interrupt Enable.
This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.
0 : Disable CCFn interrupts.
1: Enable a Capture/Compare Flag interrupt request when CCFn is set.

C8051F320/1

SFR Definition 20.4. PCAOL: PCA Counter/Timer Low Byte

R/W	Reset Value															
								00000000								
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:$0 x F 9$								
Bits 7-0: PCAOL: PCA Counter/Timer Low Byte.The PCA0L register holds the low byte (LSB) of the 16-bit PCA Counter/Timer																

SFR Definition 20.5. PCAOH: PCA Counter/Timer High Byte

R/W	Reset Value							
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xFA
Bits 7-0: PCA0H: PCA Counter/Timer High Byte								
The PCAOH register holds the high byte (MSB) of the 16-bit PCA Counter/Timer.								

SFR Definition 20.6. PCAOCPLn: PCA Capture Module Low Byte

C8051F320/1

SFR Definition 20.7. PCAOCPHn: PCA Capture Module High Byte

21. C2 Interface

C8051F320/1 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

21.1. C2 Interface Registers

The following describes the C 2 registers necessary to perform Flash programming through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 21.1. C2ADD: C2 Address

C2 Register Definition 21.2. C2 Device ID

This read-only register returns the 8-bit device ID: 0x09 (C8051F320/1).

C8051F320/1

C2 Register Definition 21.3. REVID: C2 Revision ID

This read-only register returns the 8-bit revision ID: 0x01 (Revision B).

C2 Register Definition 21.4. FPCTL: C2 Flash Programming Control

C2 Register Definition 21.5. FPDAT: C2 Flash Programming Data

21.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming functions may be performed. This is possible because C 2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (/RST) and C2D (P3.0) pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 21.1.

Figure 21.1. Typical C2 Pin Sharing
The configuration in Figure 21.1 assumes the following:

1. The user input (b) cannot change state while the target device is halted.
2. The /RST pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

C8051F320/1

Document Change List

Revision 1.1 to Revision 1.2

- Updated document with RoHS compliant information.
- Updated Table 3.1, "Global Electrical Characteristics," on page 28.
- Updated package drawings in Section "4. Pinout and Package Definitions" on page 30.
- Updated Figure "5.4 10-Bit ADC Track and Conversion Example Timing" on page 44. ADC takes 14 SAR clocks to convert a sample.
- Added Max and Min values for Offset and Full Scale Error in Table 5.1, "ADCO Electrical Characteristics," on page 54.
- Updated Bias Generator specifications in Table 6.1, "Voltage Reference Electrical Characteristics," on page 56.
- Added Max values for Comparator supply current in Table 7.1, "Comparator Electrical Characteristics," on page 66.
- Updated Section "8. Voltage Regulator (REG0)" with decoupling and bypass capacitor requirements.
- Updated Table 8.1, "Voltage Regulator Electrical Specifications," on page 68.
- Updated how to clear the EA bit in Section "9.3. Interrupt Handler".
- Added Table 11.2, "Flash Security Summary," on page 109.
- Added Section "11.4. Flash Write and Erase Guidelines" on page 110.
- Updated Internal Oscillator Suspend Mode behavior in Section "13.1.2. Internal Oscillator Suspend Mode".
- Updated OSCICN reset value in SFR Definition 13.1. "OSCICN: Internal Oscillator Control" on page 118.
- Corrected maximum SMBus transfer speed in Section "16. SMBus".
- Updated Table 16.4, "SMBus Status Decoding," on page 184.
- Slave Transmitter (0101 0XX)
- Slave Receiver (0001 00X)
- Replaced Tables 17.1 though 17.6 with a single table (Table 17.1, "Timer Settings for Standard Baud Rates Using The Internal Oscillator," on page 194).
- Updated WCOL bit description in SFR Definition 18.2. "SPIOCN: SPIO Control" on page 204.
- Updated references to ITO1CF in SFR Definition 19.1. TCON: Timer Control and SFR Definition 19.2. TMOD: Timer Mode.
- Added Step 7 to Watchdog Timer Usage in Section "20.3.2. Watchdog Timer Usage".
- Changed sample system clock frequencies in Table 20.3, "Watchdog Timer Timeout Intervals ${ }^{1}$," on page 239.
- Removed references to boundary scan in Section "21. C2 Interface".
- Various formatting fixes.

Revision 1.2 to Revision 1.3

- Removed references to "Boundary Scan" in the C2 chapter.
- Updated package drawings to reflect JEDEC-standard nomenclature and supplier variations.
- Relaxed maximum VBUS Detection Input Threshold specification in Table 5.1 from 4.0 to 2.9 V .

Revision 1.3 to Revision 1.4

- Updated Table 8.1 on page 68.
- Updated Table 15.2 on page 144.
- Removed USB Register Definition INMAX.
- Removed USB Register Definition OUTMAX.

C8051F320/1

Notes:

IoT Portfolio www.silabs.com/loT

SWIHW www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

