FEATURES

16 Independently Addressable Voltage Outputs
Full-Scale Set by External Reference
$2 \mu \mathrm{~s}$ Settling Time
Double Buffered 8-Bit Parallel Input
High Speed Data Load Rate
Data Readback
Operates from Single +5 V
Optional ± 6 V Supply Extends Output Range

APPLICATIONS
Phased Array Ultrasound \& Sonar Power Level Setting Receiver Gain Setting
Automatic Test Equipment
LCD Clock Level Setting

FUNCTIONAL BLOCK DIAGRAM

At system power up or during fault recovery the reset ($\overline{\mathrm{RS}}$) pin forces all DAC registers into the zero state which places zero volts at all DAC outputs.
The AD 8600 is offered in the PLCC-44 package. The device is designed and tested for operation over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Figure 1. Equivalent DAC Channel

[^0]One Technology Way, P.O. Box 9106, Nonwood. MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

AD8600- SPECIFICATIONS

SINGLE SUPPLY (@ $V_{D D 1}=V_{D D 2}=V_{C C}=+5 \mathrm{~V} \pm 5 \%, V_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+2.500 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$, unless otherwise noted)

Parameter	Symbol	Condition	Min	Typ	Max	Units
STATIC PERFORM ANCE ${ }^{1}$ Resolution Relative Accuracy ${ }^{2}$ Differential N onlinearity ${ }^{2}$ Full-Scale Voltage Full-Scale T empco Zero Scale Error Reference Input Resistance	N INL DNL $V_{F S}$ TCV ${ }_{\text {FS }}$ $V_{\text {ZSE }}$ $V_{\text {ZSE }}$ $\mathrm{R}_{\text {REF }}$	$\begin{aligned} & \text { Guaranteed } \mathrm{M} \text { onotonic } \\ & \text { D ata }=\mathrm{FF}_{\mathrm{H}} \\ & \text { D ata }=\mathrm{FF}_{\mathrm{H}} \\ & \text { D ata }=00_{\mathrm{H}}, \overline{\mathrm{RS}}=" 0, " \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { D ata }=00_{H}, \overline{\mathrm{RS}}=" 0 \text { " } \\ & \text { D ata }=\mathrm{AB} \end{aligned}$	$\begin{aligned} & 8 \\ & -1 \\ & -1 \\ & 2.480 \end{aligned}$ 1.2	$\begin{aligned} & \pm 1 / 2 \\ & \pm 1 / 4 \\ & 2.490 \\ & \pm 20 \\ & \\ & 2 \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & 2.500 \\ & +3.5 \\ & +5 \end{aligned}$	Bits LSB LSB V $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ LSB LSB $\mathrm{k} \Omega$
ANALOG OUTPUT O utput Voltage Range ${ }^{2}$ O utput Current C apacitive L oad	$\begin{aligned} & \text { OVR }{ }_{\text {SS }} \\ & \text { Iout }^{\text {Cot }} \\ & C_{L} \end{aligned}$	$\begin{aligned} & V_{\text {REF }}=+2.5 \mathrm{~V} \\ & \mathrm{D} \text { ata }=80_{\mathrm{H}} \\ & \text { No O scillation } \end{aligned}$	0.000	$\begin{aligned} & \pm 2 \\ & 50 \end{aligned}$	2.500	V mA pF
LOGIC INPUTS Logic Input Low Voltage Logic Input High Voltage L ogic Input C urrent Logic Input Capacitance ${ }^{3}$	$\begin{array}{\|l} V_{I L} \\ V_{I H} \\ I_{I L} \\ C_{I L} \end{array}$		2.4		$\begin{aligned} & 0.8 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
LOGIC OUTPUTS Logic Out High Voltage Logic Out Low Voltage	$\begin{array}{\|l} \mathrm{V}_{\text {OH }} \\ \mathrm{V}_{\text {OL }} \end{array}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-0.4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$	3.5		0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
AC CHARACTERISTICS ${ }^{3}$ Slew Rate Voltage Output Settling T ime 2 Voltage Output Settling Time ${ }^{2}$	$\begin{aligned} & \mathrm{SR} \\ & \mathrm{t}_{\mathrm{s} 1} \\ & \mathrm{t}_{\mathrm{s}} \end{aligned}$	For $\Delta \mathrm{V}_{\text {REF }}$ or FS Code Change ± 1 LSB of F inal V alue, Full-Scale D ata C hange $\pm 1 \mathrm{LSB}$ of F inal Value, $\Delta \mathrm{V}_{\mathrm{REF}}=1 \mathrm{~V}$, D ata $=\mathrm{FF}_{\mathrm{H}}$		$\begin{aligned} & 7 \\ & 2 \\ & 2 \end{aligned}$		$\begin{array}{\|l} \hline V / \mu \mathrm{S} \\ \mu \mathrm{~S} \\ \mu \mathrm{~S} \\ \hline \end{array}$
POWER SUPPLIES Positive Supply Current L ogic Supply C urrents Power D issipation Power Supply Sensitivity L ogic Power Supply Range Positive Power Supply Range ${ }^{3}$	$I_{C C}$ $I_{\text {DD 1\&2 }}$ PDISS PSS $V_{\text {DDR }}$ $V_{\text {CCR }}$	$\begin{aligned} & \mathrm{V}_{\text {IH }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{~N} \text { o L oad } \\ & \mathrm{V}_{\text {IH }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{~N} \text { L Load } \\ & \mathrm{V}_{\text {IH }}=5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{~N} \text { L oad } \\ & \Delta \mathrm{V}_{\mathrm{CC}}= \pm 5 \% \end{aligned}$	$\begin{aligned} & 4.75 \\ & V_{D D} \end{aligned}$	$\begin{aligned} & 24 \\ & 120 \end{aligned}$	$\begin{aligned} & 35 \\ & 0.1 \\ & 175 \\ & 0.007 \\ & 5.25 \\ & 7.0 \end{aligned}$	mA mA mW \%/\% V V

NOTES

${ }^{1}$ When $\mathrm{V}_{\text {REF }}=2.500 \mathrm{~V}, 1 \mathrm{LSB}=9.76 \mathrm{mV}$.
${ }^{2}$ Single supply operation does not include the final 2 LSBs near analog ground. If this performance is critical, use a negative supply (V_{EE}) pin of at least -0.7 V to -5.25 V . N ote that for the INL measurement zero-scale voltage is extrapolated using codes 7_{10} to 80_{10}.
${ }^{3}$ Guaranteed by design not subject to production test.
Specifications subject to change without notice.

Parameter	Symbol	Condition	Min	Typ	Max	Units
STATIC PERFORMANCE ${ }^{1}$ Resolution T otal Unadjusted Error Relative Accuracy D ifferential N onlinearity Full-Scale Voltage Full-Scale V oltage Error Full-Scale T empco Zero Scale E rror Zero Scale Error Zero Scale Error Zero Scale T empco R eference Input Resistance Reference Input C apacitance ${ }^{2}$	N TUE INL DNL V_{FS} $V_{\text {FSE }}$ $\mathrm{TCV}_{\text {FS }}$ $V_{\text {ZSE }}$ $V_{\text {ZSE }}$ $V_{\text {ZSE }}$ $\mathrm{TCV}_{\text {zs }}$ $\mathrm{R}_{\text {ReF }}$ $C_{\text {ReF }}$	All Other DACs L oaded with D ata $=55_{\mathrm{H}}$ $\begin{aligned} & \text { G uaranteed M onotonic } \\ & \text { D ata }=\mathrm{FF}_{\mathrm{H}}, \mathrm{~V}_{\text {REF }}=+3.5 \mathrm{~V} \\ & \text { D ata }=\mathrm{FF}_{\mathrm{H}}, \mathrm{~V}_{\text {REF }}=+3.5 \mathrm{~V} \\ & \text { D ata }=\mathrm{FF}_{\mathrm{H}}, \mathrm{~V}_{\text {REF }}=+3.5 \mathrm{~V} \\ & \text { D ata }=00_{\mathrm{H}}, \mathrm{RS}=\text { " } 0, " \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \text { D ata }=00_{\mathrm{H}}, \mathrm{All} \text { Other DAC S D ata }=00_{\mathrm{H}} \\ & \text { D ata }=00_{\mathrm{H}}, \mathrm{All} \text { Other DACs D ata }=55_{\mathrm{H}} \\ & \text { D ata }=00_{\mathrm{H}}, \mathrm{~V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ & \text { D ata }=A \mathrm{AB}_{\mathrm{H}} \\ & \text { D ata }=A B_{\mathrm{H}} \end{aligned}$	$\begin{array}{\|l} 8 \\ -1 \\ -1 \\ -1 \\ 3.473 \\ -1 \\ \\ -2 \\ -1 \\ \\ 1.2 \end{array}$	$\begin{aligned} & \pm 3 / 4 \\ & \pm 1 / 2 \\ & \pm 1 / 4 \\ & 3.486 \\ & \\ & \pm 20 \\ & \pm 1 \\ & \\ & \pm 1 / 2 \\ & \pm 10 \\ & 2 \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & +1 \\ & 3.500 \\ & +1 \\ & +2 \\ & +1 \\ & \\ & \\ & 240 \end{aligned}$	$\begin{aligned} & \mathrm{Bits} \\ & \mathrm{LSB} \\ & \mathrm{LSB} \\ & \mathrm{LSB} \\ & \mathrm{~V} \\ & \mathrm{LSB} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{mV} \\ & \mathrm{LSB} \\ & \mathrm{LSB} \\ & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
ANALOG OUTPUT O utput Voltage R ange O utput Voltage Range ${ }^{2}$ O utput C urrent C apacitive Load ${ }^{2}$	$\begin{aligned} & \mathrm{OVR}_{1} \\ & \mathrm{OVR}_{2} \\ & \mathrm{I}_{\text {out }} \\ & \mathrm{C}_{\mathrm{L}} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{REF}}=+3.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD} 2}=+7 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V} \\ & \mathrm{D} \text { ata }=80_{\mathrm{H}} \\ & \text { No O scillation } \end{aligned}$	$\begin{aligned} & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & \pm 2 \\ & 50 \end{aligned}$	$\begin{aligned} & 3.500 \\ & 5.000 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~mA} \\ & \mathrm{pF} \end{aligned}$
LOGIC INPUTS Logic Input L ow Voltage Logic Input High Voltage L ogic Input C urrent Logic Input C apacitance ${ }^{2}$	$\begin{aligned} & V_{I L} \\ & V_{I H} \\ & I_{I L} \\ & C_{I L} \end{aligned}$		2.4		$\begin{aligned} & 0.8 \\ & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
LOGIC OUTPUTS Logic Out High Voltage Logic Out Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OH}} \\ & \mathrm{~V}_{\mathrm{OL}} \end{aligned}$	$\begin{aligned} & I_{\mathrm{OH}}=-0.4 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA} \end{aligned}$	3.5		0.4	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
AC CHARACTERISTICS ${ }^{2}$ Reference In Bandwidth Slew Rate V oltage N oise Density D igital F eedthrough Voltage Output Settling Time ${ }^{3}$ Voltage Output Settling Time ${ }^{3}$	$\begin{aligned} & \mathrm{BW} \\ & \mathrm{SR} \\ & \mathrm{e}_{\mathrm{N}} \\ & \mathrm{FT} \\ & \mathrm{t}_{\mathrm{S} 1} \\ & \mathrm{t}_{\mathrm{S} 2} \end{aligned}$	$\begin{aligned} & -3 \mathrm{~dB} \text { F requency, } \mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}_{\mathrm{DC}}+0.1 \mathrm{~V}_{\mathrm{AC}} \\ & \mathrm{For} \Delta \mathrm{~V}_{\text {REF }} \text { or } \mathrm{FS} \text { Code } \mathrm{C} \text { hange } \\ & \mathrm{f}=1 \mathrm{kH} \mathrm{z}, \mathrm{~V}_{\text {REF }}=0 \mathrm{~V} \\ & \text { Digital Inputs to DAC Outputs } \\ & \pm 1 \mathrm{LSB} \text { of Final Value, } \mathrm{FS} \text { D ata C hange } \\ & \pm 1 \mathrm{LSB} \text { of Final Value, } \Delta \mathrm{V}_{\text {REF }}=1 \mathrm{~V}, \mathrm{D} \text { ata }=\mathrm{FF} \mathrm{~F}_{\mathrm{H}} \end{aligned}$		$\begin{aligned} & 7 \\ & 46 \\ & 10 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	kHz V/ $\mu \mathrm{s}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ nVs $\mu \mathrm{S}$ $\mu \mathrm{s}$
POWER SUPPLIES Positive Supply Current N egative Supply C urrent L ogic Supply C urrents Power Dissipation ${ }^{4}$ Power Supply Sensitivity Logic Power Supply Range Pos Power Supply Range ${ }^{2}$ N eg Power Supply Range ${ }^{2}$	$I_{C C}$ I_{EE} $I_{\text {DD1\&2 }}$ $P_{\text {DISS }}$ PSS $V_{\text {DDR }}$ $V_{\text {CCR }}$ $\mathrm{V}_{\mathrm{EER}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~N} \text { o Load } \\ & \mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~N} o \text { Load } \\ & \mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{~N} o \text { Load } \\ & \mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}, \mathrm{~V}_{I L}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}, \mathrm{NoL} \text { oad } \\ & \Delta \mathrm{V}_{\mathrm{CC}} \& \Delta \mathrm{~V}_{\mathrm{EE}}= \pm 5 \% \end{aligned}$	4.75 $V_{D D}$ -5.25	$\begin{aligned} & 22 \\ & 22 \\ & 225 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \\ & 0.1 \\ & 350 \\ & 0.007 \\ & 5.25 \\ & 7.0 \\ & 0.0 \end{aligned}$	mA mA mA mW \%/\% V V V

NOTES
${ }^{1}$ When $\mathrm{V}_{\text {Ref }}=+3.500 \mathrm{~V}, 1 \mathrm{LSB}=13.67 \mathrm{mV}$.
${ }^{2} \mathrm{G}$ uaranteed by design not subject to production test.
${ }^{3}$ Settling time test is performed using $R_{L}=50 \mathrm{k} \Omega$ and $C_{L}=35 \mathrm{pF}$.
${ }^{4}$ Power D issipation is calculated using $5 \mathrm{~V} \times\left(I_{D D}+\left|I_{S S}\right|+I_{D D 1}+I_{D D 2}\right)$.
Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS $\left.\begin{array}{c}\left(@ V_{\text {und }}=V_{\text {und }}=V_{\text {ot }}=+5 \mathrm{~V} w i s e ~ n o t e d\right)\end{array}\right)$

Parameter	Symbol	Condition	Min	Typ	Max	Units
INTERFACE TIM ING ${ }^{1,2}$						
Clock ($\overline{\mathrm{EN}}$) F requency	$\mathrm{f}_{\text {CLK }}$	D ata Loading			12.5	M Hz
Clock (EN) High Pulse Width	t_{CH}		40			ns
Clock (EN) LowPulse Width	t_{CL}		40			ns
D ata Setup Time	t_{DS}		40			ns
D ata H old T ime	$\mathrm{t}_{\text {DH }}$		10			ns
Address Setup Time	$\mathrm{t}_{\text {AS }}$		0			ns
Address H old T ime	$\mathrm{t}_{\text {AH }}$		0			ns
Valid Address to D ata Valid	t_{AD}				160	ns
Load Enable Setup Time	$\mathrm{t}_{\text {LS }}$		0			ns
Load Enable H old T ime	$\mathrm{t}_{\text {LH }}$		0			ns
Read/Write to Clock ($\overline{\mathrm{EN}}$)	$\mathrm{t}_{\mathrm{RWC}}$		30			ns
Read/W rite to D ataBus Hi-Z	$t_{\text {RWz }}$				120	ns
Read/Write to D ataBus Active	$\mathrm{t}_{\text {RWD }}$				120	ns
Clock ($\overline{\mathrm{EN}}$) to Read/Write	$\mathrm{t}_{\text {TWH }}$		0			ns
Clock ($\overline{\mathrm{EN}}$) to Chip Select	$\mathrm{t}_{\text {T }} \mathrm{CH}$		0			ns
Chip Select to Clock (EN)	$\mathrm{t}_{\text {csc }}$		30			ns
Chip Select to D ata Valid	$\mathrm{t}_{\text {cSD }}$				120	ns
Chip Select to D ataBus Hi-Z	$\mathrm{t}_{\text {csz }}$				150	ns
Reset Pulse Width	$\mathrm{t}_{\text {RS }}$		25			ns

NOTES

${ }^{1}$ Guaranteed by design not subject to production test.
${ }^{2}$ All logic input signals have maximum rise and fall times of 2 ns .
Specifications subject to change without notice.

Figure 2. Write Timing

Figure 3. Readback Timing

Figure 4. Write to DAC Register \& Voltage Output Settling Timing ($\overline{C S}=$ High, Prevents Input Register Changes)

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)	
V ${ }_{\text {DD1 }}$ (Digital Supply) to GND $-0.3 \mathrm{~V},+7 \mathrm{~V}$	
V ${ }_{\text {DD2 } 2}$ (DAC Buffer/D river Supply) -0.3 V , +7 V	
$\mathrm{V}_{\text {CC }}$ (Analog Supply) to GND -0.3 V , +7 V	
$\mathrm{V}_{\text {EE }}$ (Analog Supply) to GND $+0.3 \mathrm{~V},-7 \mathrm{~V}$	
$\mathrm{V}_{\text {REF }}$ to GND $-0.3 \mathrm{~V}, \mathrm{~V}_{\text {CC }}+0.3 \mathrm{~V}$	
$\mathrm{V}_{\text {DD } 2}$ to $\mathrm{V}_{\text {REF }}$	
$V_{\text {OUT }}$ to GND	
Short Circuit D uration	
$V_{\text {OUt }}$ to GND or Power Supplies ${ }^{1}$	Continuous
Digital Input/Output Voltage to G ND ... -0.3 V, V ${ }_{\text {DD }}+0.3 \mathrm{~V}$	
T hermal R esistance-T heta Junction-to-Ambient (θ_{JA})	
Package Power Dissipation $\left(\mathrm{T}_{J}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\mathrm{J}}$	
M aximum Junction T emperature T_{j} max $150^{\circ} \mathrm{C}$	
Operating Temperature R ange $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage T emperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (Soldering, 10 sec) $+300^{\circ} \mathrm{C}$	
NOTE	
more than four outputs may be shorted	GND simultaneously

PIN CONFIGURATION

NC = NO CONNECT

ORDERING GUIDE

Model	Temperature	Package Description	Package Option
AD 8600AP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$44-$ Lead PLCC D ie*	P-44A
AD 8600C hips	$+25^{\circ} \mathrm{C}$		
*F or die specifications contact your local Analog D evices sales office.			

PIN DESCRIPTION

Pin No.	Name	Description
1	NC	No Connection
2	$\mathrm{V}_{\text {Ref }}$	Reference input voltage common to all DACs.
3	DACGND	DAC Analog G round Return. Sets analog zero-scale voltage.
4	$\mathrm{V}_{\text {cc }}$	Output Amplifier Positive Supply
5	$\mathrm{V}_{\text {EE }}$	Output Amplifier N egative Supply
6	07	D AC Channel Output No. 7
7	06	DAC Channel Output No. 6
8	05	DAC Channel Output No. 5
9	04	DAC C hannel Output No. 4
10	03	DAC Channel Output No. 3
11	02	DAC Channel Output No. 2
12	01	DAC Channel Output No. 1
13	00	DAC Channel Output No. 0
14	$\mathrm{V}_{\text {D } 11}$	Digital Logic Power Supply
15	$\overline{\mathrm{RS}}$	Active Low Reset Input Pin
16	DB0	D ata Bit Zero I/O (LSB)
17	DB1	D ata Bit I/O
18	DB2	D ata Bit I/O
19	DB3	D ata Bit I/O
20	DB4	D ata Bit I/O
21	DB5	D ata Bit I/O
22	DB6	D ata Bit I/O
23	DB7	M ost Significant D ata Bit I/O (M SB)
24	A0	Address Bit Zero (LSB)
25	A1	Address Bit
26	A2	Address Bit
27	A3	M ost Significant Addr Bit (M SB)
28	$\mathrm{R} / \overline{\mathrm{W}}$	Read/Write Select C ontrol Input
29	$\overline{\mathrm{EN}}$	Active Low Enable Clock Strobe
30	$\overline{\mathrm{CS}}$	C hip Select Input
31	$\overline{\mathrm{LD}}$	D AC Register Load Strobe
32	DGND1	Digital Ground Input No. 1
33	015	D AC Channel Output No. 15
34	014	DAC Channel Output No. 14
35	013	DAC Channel Output No. 13
36	012	DAC Channel Output No. 12
37	011	D AC C hannel Output No. 11
38	010	DAC Channel Output No. 10
39	09	DAC Channel Output No. 9
40	08	DAC Channel Output No. 8
41	$\mathrm{V}_{\text {EE }}$	Output Amplifier N egative Supply
42	$\mathrm{V}_{\text {cc }}$	Output Amplifier Positive Supply
43	DGND2	Digital G round Input No. 2
44	$\mathrm{V}_{\text {DD } 2}$	D AC Analog Supply Voltage

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 8600 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

TRANSFER EQUATIONS

Output Voltage

$$
O_{i}=D \times \frac{V_{R E F}}{256}
$$

where i is the DAC channel number and D is the decimal value of the DAC register data.

Table I. Truth Table

$\overline{\overline{E N}}$	R// $\overline{\mathbf{W}}$	$\overline{\mathrm{CS}}$	$\overline{\mathbf{L D}}$	$\overline{\mathbf{R S}}$	Operation
					W rite to DAC R egister
-	X	H	L	H	U pdate DAC Register
L	X	H	-	H	U pdate DAC R egister
+	X	H	L	H	L atches DAC Register
L	X	H	+	H	L atches DAC Register
L	L	L	L	H	DAC Register T ransparent W rite to Input R egister
L	L	L	H	H	L oad D ata to Input Register at D ecoded Address
+	L	L	H	H	L atches D ata in Input Register at D ecoded Address
L	L	+	H	H	L atches D ata in Input Register at D ecoded Address R eadback Input Registers
X	H	L	H	H	Input Register Readback (D ata Access)
X	H	+	H	H	Hi-Z Readback Disconnects from Bus
X	X	H	X	X	$\mathrm{Hi}-\mathrm{Z}$ on D ata Bus
					R eset
X	X	X	X	L	C lear All Registers to Zero, $V_{\text {OUT }}=0 \mathrm{~V}$
X	X	H	H	+	L atches All Registers to Zero
L	X	L	H	+	$\overline{\mathrm{CS}}=\mathrm{L}$ ow; Input Register Ready for $\overline{\mathrm{R}} / \mathrm{W}, \mathrm{DAC}$ Register L atched to Zero

NOTES
${ }^{1}+$ symbol means positive edge of control input line.
${ }^{2}$ - symbol means negative edge of control input line.

Decoded DAC Register

$$
O_{i}=A
$$

where A is the decimal value of the decoded address bits $A 3$, A2, A1, A0 (LSB).
Address, $\overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{W}}$ and data inputs should be stable prior to activation of the active low $\overline{\mathrm{EN}}$ input. Input registers are transparent when $\overline{\mathrm{EN}}$ is low. When $\overline{\mathrm{EN}}$ returns high, data is latched into the decoded input register. When the load strobe $\overline{\mathrm{LD}}$ and $\overline{\mathrm{EN}}$ pins are active low, all input register data is transferred to the DAC registers. The DAC registers are transparent while they are enabled.

Table II. Address Decode Table

A3 (MSB)	A2 (Binary)	A1 (LSB)	Addr Code (Hex)	DAC Updated	
0	0	0	0	0	00
0	0	0	1	1	01
0	0	1	0	2	02
0	0	1	1	3	03
0	1	0	0	4	04
0	1	0	1	5	05
0	1	1	0	6	06
0	1	1	1	7	07
1	0	0	0	8	08
1	0	0	1	9	09
1	0	1	0	A	010
1	0	1	1	B	011
1	1	0	0	C	012
1	1	0	1	D	013
1	1	1	0	E	014
1	1	1	1	F	015

Typical Performances Characteristics- AD8600

Figure 5. Linearity Error vs.
Digital Code

Figure 8. Output Current vs. Voltage

Figure 11. Gain \& Phase vs. Frequency

Figure 6. Full-Scale Voltage vs. Temperature

TIME - 250ns/DIV
Figure 9. Full-Scale Settling Time

Figure 12. AC Feedthrough vs. Frequency

Figure 7. Zero-Scale Voltage vs. Temperature

Figure 10. Voltage Noise Density vs. Frequency

Figure 13. PSRR vs. Frequency

Figure 14. Supply Current vs. Temperature

Figure 15. Output Voltage Drift Accelerated by Burn-In

Operation

The AD 8600 is a 16 -channel voltage output, 8 -bit digital to analog converter. The AD 8600 operates from a single +5 V supply, or for a wider output swing range, the part can operate from dual supplies of $\pm 5 \mathrm{~V}$ or $\pm 6 \mathrm{~V}$ or a single supply of +7 V . The DAC s are based upon a unique R-2R ladder structure* that removes the possibility of current injection from the reference to ground during code switching. Each of the 8-bit DACs has an output amplifier to provide 16 low impedance outputs. With a single external reference, 16 independent dc output levels can be programmed through a parallel digital interface. The interface includes 4 bits of address (A0-A3), 8 bits of data (D B0-DB7), a read/write select pin (R/W), an enable clock strobe ($\overline{\mathrm{EN}}$), a DAC register load strobe ($\overline{\mathrm{LD}})$, and a chip select pin ($\overline{\mathrm{CS}}$). Additionally a reset pin ($\overline{\mathrm{RS}}$) is provided to asynchronously reset all 16 DACs to 0 V output.

D/A Converter Section

The internal DAC is an 8-bit voltage mode device with an output that swings from DACGND to the external reference voltage, $\mathrm{V}_{\text {REF }}$. The equivalent schematic of one of the DAC s is shown in Figure 16. The DAC uses an R-2R ladder to ensure accuracy and linearity over the full temperature range of the part. The switches shown are actually N and P -channel M OSFET s to allow maximum flexibility and range in the choice of reference

Figure 16. Equivalent Schematic of Analog Channel voltage. The switches' low ON resistance and matching is important in maintaining the accuracy of the R-2R ladder.

Amplifier Section

The output of the DAC ladder is buffered by a rail-to-rail output amplifier. This amplifier is configured as a unity gain follower as shown in Figure 16. The input stage of the amplifier contains a PN P differential pair to provide low offset drift and noise. The output stage is shown in Figure 17. It employs complementary bipolar transistors with their collectors connected to the output to provide rail-to-rail operation. The N PN transistor enters into saturation as the output approaches the negative rail. Thus, in single supply, the output low voltage is limited by the saturation voltage of the transistor. For the transistors used in the AD 8600, this is approximately 40 mV . The AD 8600 was not designed to swing to the positive rail in contrast to some of ADI's other DACs (for example, the AD 8582). The output stage of the amplifier is actually capable of swinging to the positive rail, but the input stage limits this swing to approximately 1.0 V below V_{cc}.

Figure 17. Equivalent Analog Output Circuit
D uring normal operation, the output stage can typically source and sink $\pm 1 \mathrm{~mA}$ of current. H owever, the actual short circuit current is much higher. In fact, each DAC is capable of sourcing 20 mA and sinking 8 mA during a short condition. The absolute maximum ratings state that, at most, four DAC s can be shorted simultaneously. This restriction is due to current densities in the metal traces. If the current density is too high, voltage drops in the traces will cause a loss in linearity performance for the other DAC s in the package. Thus to ensure longterm reliability, no more than four DAC should be shorted simultaneously.

Power Supply and Grounding Considerations

The low power consumption of the AD 8600 is a direct result of circuit design optimizing using a CBCM OS process. The overall power dissipation of 120 mW translates to a total supply current of only 24 mA for 16 DAC s. Thus, each DAC consumes only 1.5 mA . Because the digital interface is comprised entirely of CM OS logic, the power dissipation is dependent upon the logic input levels. As expected for CM OS, the lowest power dissipation is achieved when the input level is either close to ground or +5 V . Thus, to minimize the power consumption, CM OS logic should be used to interface to the AD 8600.
The AD 8600 has multiple supply pins. $V_{C C}$ (Pins 4 and 42) is the output amplifiers' positive supply, and V_{EE} (Pins 5 and 41) the amplifiers' negative supply. The digital input circuitry is powered by $V_{D D 1}$ (Pin 14), and finally the DAC register and R 2R ladder switches are powered by $\mathrm{V}_{\mathrm{DD} 2}$ (Pin 44). To minimize noise feedthrough from the supplies, each supply pin should be decoupled with a $0.1 \mu \mathrm{~F}$ ceramic capacitor close to the pin. When applying power to the device, it is important for the digital supply, $\mathrm{V}_{\text {DD2 }}$, to power on before the reference voltage and for $\mathrm{V}_{\text {REF }}$ to remain less than 0.3 V above $\mathrm{V}_{\mathrm{DD} 2}$ during normal operation. Otherwise, an inherent diode will energize, and it could damage the AD 8600.
In order to improve ESD resistance, the AD 8600 has several ESD protection diodes on its various pins. These diodes shunt ESD energy to the power supplies and protect the sensitive active circuitry. During normal operation, all the ESD diodes are reversed biased and do not affect the part. H owever, if overvoltages occur on the various inputs, these diodes will energize. If the overvoltage is due to ESD , the electrical spike is typically short enough so that the part is not damaged. H owever, if the overvoltage is continuous and has sufficient current, the part could be damaged. T o protect the part, it is important not to forward bias any of the ESD protection diodes during normal operation or during power up. Figure 18 shows the location of these diodes. For example, the digital inputs have diodes connected to V_{C} and from DGND 1. Thus, the voltage on any digital input should never exceed the analog supply or drop below ground, which is also indicated in the absolute maximum ratings.

Figure 18. ESD Protection Diode Locations
Attention should be paid to the ground pins of the AD 8600 to ensure that noise is not introduced to the output. The pin labeled DACGND (Pin 3) is actually the ground for the R-2R ladder, and because of this, it is important to connect this pin to a high quality analog ground. Ideally, the analog ground should be an actual ground plane. This helps create a low impedance, low noise ground to maintain accuracy in the analog circuitry.
The digital ground pins (DGND1 at Pin 32 and DGND2 at Pin 43) provide the ground reference for the internal digital circuitry and latches. The first thought may be to connect both of these pins to the system digital ground. H owever, this is not the best choice because of the high noise typically found on a system's digital ground. This noise can feed through to the output through the DAC's ground pins. Instead, DGND 1 and DGND 2 should be connected to the analog ground plane. The actual switching current in these pins is small and should not degrade the analog ground.

5 V Output Swing

The output swing is limited to 1.0 V below the positive supply. This gives a maximum output of +4.0 V on a +5 V supply. To increase the output range, the analog supply, V_{CC}, and the DAC ladder supply, $\mathrm{V}_{\text {DD2 }}$, can be increased to +7 V . This allows an output of +5 V with a 5 V reference. $\mathrm{V}_{\mathrm{DD} 1}$ should remain at +5 V to ensure that the input logic levels do not change.

Reference Input Considerations

The AD 8600 is designed for one reference to drive all 16 DACs. The reference pin ($\mathrm{V}_{\text {REF }}$) is connected directly to the $\mathrm{R}-2 \mathrm{R}$ ladders of each DAC. With 16 DACs in parallel, the input impedance is typically $2 \mathrm{k} \Omega$ and a minimum of $1.2 \mathrm{k} \Omega$. The input resistance is code dependent. Thus, the chosen reference device must be able to drive this load. Some examples of +2.5 V references that easily interface to the AD 8600 are the REF 43, AD 680, and AD 780. The unique architecture ensures that the reference does not have to supply "shoot through" current, which is a condition in some voltage mode DACs where the reference is momentarily connected to ground through the CM OS switches. By eliminating this possibility, all 16 DACs in the AD 8600 can easily be driven from a single reference.

AD8600

Interface Timing and Control

The AD 8600 employs a double buffered DAC structure with each DAC channel having a unique input register and DAC register as shown in the diagram entitled "Equivalent DAC C hannel" on the first page of the data sheet. This structure allows maximum flexibility in loading the DAC s. F or example, each DAC can be updated independently, or, if desired, all 16 input registers can be loaded, followed by a single $\overline{\mathrm{LD}}$ strobe to update all 16 DAC s simultaneously. An additional feature is the ability to read back from the input register to verify the DAC's data.

Figure 19. Logic Interface Circuit for DAC Channel 0
The interface logic for a single D AC channel is shown in Figure 19. This figure specifically shows the logic for C hannel 0 ; however, by changing the address input configuration to gate N 1 , the other 15 channels are achieved. All of the logic for the AD 8600 is level sensitive and not edge triggered. F or example, if all the control inputs ($\overline{\mathrm{CS}}, \mathrm{R} / \overline{\mathrm{W}}, \overline{\mathrm{EN}}, \overline{\mathrm{LD}}$) are low, the input and DAC registers are transparent and any change in the digital inputs will immediately change the DAC's R-2R ladder.
Table I details the different logic combinations and their effects. Chip Select ($\overline{\mathrm{CS}}$), Enable ($\overline{\mathrm{EN}}$) and R/W must be low to write the input register. During this time that all three are low, any data on D B7-D B0 changes the contents of the input register. This data is not latched until either EN or $\overline{\mathrm{CS}}$ returns high. The data setup and hold times shown in the timing diagrams must be observed to ensure that the proper data is latched into the input register.

T o load multiple input registers in the fastest time possible, both $\mathrm{R} / \overline{\mathrm{W}}$ and $\overline{\mathrm{CS}}$ should remain low, and the $\overline{\mathrm{EN}}$ line be used to "clock" in the data. As the write timing diagram shows, the address should be updated at the same time as $\overline{\mathrm{EN}}$ goes low. Before $\overline{\mathrm{EN}}$ returns high, valid data must be present for a time equal to the data setup time ($t_{D S}$), and after $\overline{\mathrm{EN}}$ returns high, the data H old T ime (t_{DH}) must be maintained. If these minimum times are violated, invalid data may be latched into the input register. This cycle can be repeated 16 times to load all of the DACs. The fastest interface time is equal to the sum of the low and high times (t_{CL} and t_{CH}) for the $\overline{\mathrm{EN}}$ input, which gives a minimum of 80 ns . Because the $\overline{\mathrm{EN}}$ input is used to clock in the data, it is often referred to as the clock input, and the timing specifications give a maximum clock frequency of 12.5 M Hz , which is just the reciprocal of 80 ns .
A fter all the input registers have been loaded, a single load strobe will transfer the contents of the input registers to the DAC registers. $\overline{\text { EN must also be low during this time. If the }}$ address or data on the inputs could change, then $\overline{\mathrm{CS}}$ should be high during this time to ensure that new data is not loaded into an input register. Alternatively, a single D AC can be updated by first loading its input register and then transferring that to the DAC register without loading the other 15 input registers.

The final interface option is to read data from the DAC's input registers, which is accomplished by setting $\mathrm{R} / \overline{\mathrm{W}}$ high and bringing $\overline{\mathrm{CS}}$ low. Read back allows the microprocessor to verify that correct data has been loaded into the D ACs. During this time $\overline{\mathrm{EN}}$ and $\overline{\mathrm{LD}}$ should be high. After a delay equal to $\mathrm{t}_{\mathrm{RWD}}$, the data bus becomes active and the contents of the input register are read back to the data pins, DB0-D B7. The address can be changed to look at the contents of all the input registers. N ote that after an address change, the valid data is not available for a time equal to $t_{A D}$. The delay time is due to the internal readback buffers needing to charge up the data bus (measured with a 35 pF load). T hese buffers are low power and do not have high current to charge the bus quickly. W hen $\overline{\mathrm{CS}}$ returns high, the data pins assume a high impedance state and control of the data lines or bus passes back to the microprocessor.

Unipolar Output Operation

The AD 8600 is configured to give unipolar operation. The fullscale output voltage is equivalent to the reference input voltage minus 1 LSB. The output is dependent upon the digital code and follows T able III. The actual numbers given for the analog output are calculated assuming a +2.5 V reference.

Table III. Unipolar Code Table

DAC Binary Input MSB LSB	Analog Output
11111111	$+\mathrm{V}_{\text {REF }}(255 / 256)=+2.49 \mathrm{~V}$
10000001	$+\mathrm{V}_{\text {REF }}(129 / 256)=+1.26 \mathrm{~V}$
10000000	$+\mathrm{V}_{\text {REF }}(128 / 256)=+1.25 \mathrm{~V}$
01111111	$+\mathrm{V}_{\text {Ref }}(127 / 256)=+1.24 \mathrm{~V}$
00000001	$+\mathrm{V}_{\text {REF }}(001 / 256)=+0.01 \mathrm{~V}$
00000000	$+\mathrm{V}_{\text {REF }}(000 / 256)=+0.00 \mathrm{~V}$

Bipolar Output Operation

The AD 8600 can be configured for bipolar operation with the addition of an op amp for each output as shown in Figure 20. The output will now have a swing of $\pm \mathrm{V}_{\mathrm{REF}}$, as detailed in T able IV. This modification is only needed on those channels that require bipolar outputs. F or channels which only require unipolar output, no external amplifier is needed. The OP495 quad amplifier is chosen for the external amplifier because of its low power, rail-to-rail output swing, and DC accuracy. A gain, the values calculated for the analog output are based upon an assumed +2.5 V reference.

Figure 20. Circuit for Bipolar Output Operation

Table IV. Bipolar Code Table

DAC Binary Input MSB LSB	Analog Output
11111111	$+2 \mathrm{~V}_{\text {REF }}(255 / 256)-\mathrm{V}_{\text {REF }}=+2.49 \mathrm{~V}$
10000001	$+2 \mathrm{~V}_{\text {REF }}(129 / 256)-\mathrm{V}_{\text {REF }}=+0.02 \mathrm{~V}$
10000000	$+2 \mathrm{~V}_{\text {REF }}(128 / 256)-\mathrm{V}_{\text {REF }}=+0.00 \mathrm{~V}$
01111111	$+2 \mathrm{~V}_{\text {REF }}(127 / 256)-\mathrm{V}_{\text {REF }}=-0.02 \mathrm{~V}$
00000001	$+2 \mathrm{~V}_{\text {REF }}(001 / 256)-\mathrm{V}_{\text {REF }}=-2.48 \mathrm{~V}$
00000000	$+2 \mathrm{~V}_{\text {REF }}(000 / 256)-\mathrm{V}_{\text {REF }}=-2.50 \mathrm{~V}$

Interfacing to the $\mathbf{6 8 H C} 11$ Microcontroller

The 68 HC 11 is a popular microcontroller from M otorola, which is easily interfaced to the AD 8600. The connections between the two components are shown in Figure 21. Port C of the 68 HC 11 is used as a bidirectional input/output data port to write to and read from the AD 8600. Port B is used for addressing and control information. The bottom 4 LSBs of Port B are the address, and the top 4 M SBs are the control lines ($\overline{\mathrm{LD}}, \overline{\mathrm{CS}}$, $\overline{\mathrm{EN}}$, and $\mathrm{R} / \overline{\mathrm{W}})$. The microcode for the 68 HC 11 is shown in Figure 22. The comments in the program explain the function of each step. Three routines are included in this listing: read from the AD 8600, write to the AD 8600, and a continuous loop that generates a saw-tooth waveform. This loop is used in the application below.

Figure 21. Interfacing the $68 \mathrm{HC11}$ to the AD8600

```
* This program contains subroutines to read and write
* to the AD8600 from the 68HC11. Additionally, a ramp
* program has been included, to continuously ramp the
* output giving a triangle wave output.
*
* The following connections need to be made:
* 68HC11 AD8600
* GND DGND1,2
* PC0-PC7 DB0-DB7 respectively, data port
* PB0-PB3 A0-A3 respectively, address port
* PB4 LD
* PB5 EN
* PB6 R/W
* PB7 CS
*
portc equ $1003 define port addresses
portb equ $1004
ddrc equ $1007
*
    org $C000
read lds #$CFFF subroutine to read from AD8600
*
    ldaa #$00 initialize port c to 00000000
        staa ddrc configures PCO-PC7 as inputs.
* stamen
        ldx #$00 points to DAC address in 68HC11 memory
        ldaa 0,x put the address in the accumulator
        adda #$70 add the control bits to the address
* R/W, LD, EN are high, CS is low.
        staa portb output control and address on port b.
*
        inx points to memory location to store the data
        ldaa portc read data from DAC
        staa 0,x Store this data in memory at address "x"
*
        ldy #$1000
        bset portb,y $f0 Set CS, LD, EN high
        jmp $e000 Return to BUFFALO
*
*
write lds #$cfff routine to write to AD8600
    ldaa #$ff initialize port c to 11111111
        staa ddrc configures PC0-PC7 as outputs.
*
    ldx #$00 points to DAC address in 68HC11 mem
    ldaa 0,x puts the address in the accumulator
    adda #$30 set CS, R/W low and LD, EN high
    staa portb output to portb for control and address
*
    inx points to memory location to store the data
    ldaa 0,x load the data into the accumulator
    staa portc write the data to the DAC
*
    ldy #$1000
    bclr portb,y $30 Set LD, EN low to latch data
    bset portb,y $b0 Bring LD, EN, CS high, write is complete
*
    jmp $e000 Return to BUFFALO
*
ramp lds #$cfff routine to generate a triangle wave
    ldaa #$ff configure port c as outputs
```

```
    ldx #$00 set x to point to the DAC address
    ldaa 0,x load the address from 68HC11 mem
    staa portb set the address on portb
LD, CS, EN, R/W are all low for
transparent DAC loading
set accumulator b to 255
start the triangle wave at zero
write the data to the AD8600
*
load inca increase the data by one
staa portc send the new data to the AD8600
cba compare a to b
bne load we haven't reached 255 yet
jmp loop we have reached 255, so start over
```

Figure 22. 68HC11 Microcode to Interface to the AD8600.

Time Dependent Variable Gain Amplifier Using the AD600 T he AD 8600 is ideal for generating a control signal to set the gain of the AD 600, a wideband, low noise variable gain amplifier. The AD 600 (and similar parts such as the AD 602 and AD 603) is often used in ultrasound applications, which require the gain to vary with time. When a burst of ultrasound is applied, the reflections from near objects are much stronger than from far objects. T o accurately resolve the far objects, the gain must be greater than for the near objects. Additionally, the signals take longer to reach the ultrasound sensor when reflected from a distant object. Thus, the gain must increase as the time increases.
The AD 600 requires a dc voltage to adjust its gain over a 40 dB range. Since it is a dual, the two variable gain amplifiers can be cascaded to achieve 80 dB of gain. The AD 8600 is used to generate a ramped output to control the gain of the AD 600. The slope of the ramp should correspond to the time delay of the ultrasound signal. Since ultrasound applications often require multiple channels, the AD 8600 is ideal for this application.
The circuit to achieve a time dependent variable gain amp is shown in Figure 23. The AD 600's gain is controlled by differential inputs, C1LO and C1HI, with a gain constant of $32 \mathrm{~dB} / \mathrm{V}$. Thus for 40 dB of gain, the differential control input
needs to be 1.25 V . In this application, the C1LO input is set at the midscale voltage of 0.625 V , which is generated by a simple voltage divider from the REF 43. The AD 8600's output is divided in half, generating a 0 V to 1.25 V ramp, and then applied to C 1 HI . This ramp sweeps the gain from 0 dB to 40 dB .

Figure 23. Ultrasound Amplifier with Digitally Controlled Variable Gain

AD8600

The functionality of this circuit is shown in the scope photo in Figure 24 The top trace is the control ramp, which goes from 0 V to 1.25 V . The bottom trace is the output of the AD 600. The input is actually a $12 \mathrm{mV} \mathrm{p-p,10kHz} \mathrm{sine} \mathrm{wave}. \mathrm{Thus}$, bottom trace shows the envelop of this waveform to illustrate the increase in gain as time progresses. This ramp was generated under control of the 68HC11 using the "ramp" subroutine as mentioned above. The slope of the ramp can easily be lengthened by adding some delay in the loop, or the slope can be increased by stepping by 2 or more LSBs instead of the current 1 LSB changes.

Figure 24. Time Dependent Gain of the AD600

Glitch Impulse

A specification of interest in many DAC applications is the glitch impulse. This is the amount of energy contained in any overshoot when a DAC changes at its major carry transition, in other words, when the DAC switches from code 01111111 to code 10000000. This point is the most demanding because all of the R-2R ladder switches are changing state. The AD 8600's glitch impulse is shown in Figure 25. C alculating the value of the glitch is accomplished by calculating the area of the pulse, which for the AD 8600 is: Glitch Impulse $=(1 / 2) \times(100 \mathrm{mV}) \times$ $(200 \mathrm{~ns})=10 \mathrm{nV} \mathrm{sec}$.

Figure 25. Glitch Impulse

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

44-Lead Plastic Lead Chip Carrier (PLCC) Package
 (P-44A)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

