ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

Q1PACK Module

NXH50M65L4Q1SG, NXH50M65L4Q1PTG

This high-density, integrated power module combines high-performance IGBTs with rugged anti-parallel diodes.

Features

- Extremely Efficient Trench with Fieldstop Technology
- Low Switching Loss Reduces System Power Dissipation
- Module Design Offers High Power Density
- Low Inductive Layout
- Q1PACK Packages with Solder and Pressfit Pins

Typical Applications

- Solar Inverters
- Uninterruptable Power Supplies

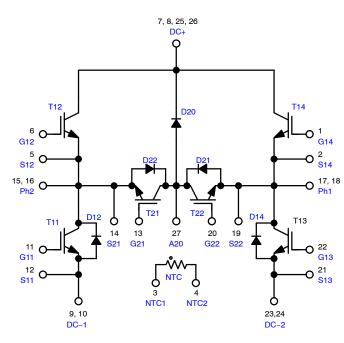
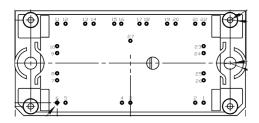
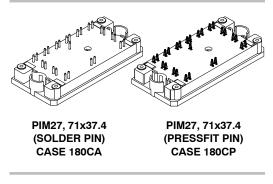
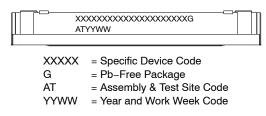


Figure 1. Schematic




Figure 2. Pin Assignments


ON Semiconductor®

www.onsemi.com

50 A, 650 V Module

MARKING DIAGRAM

ORDERING INFORMATION

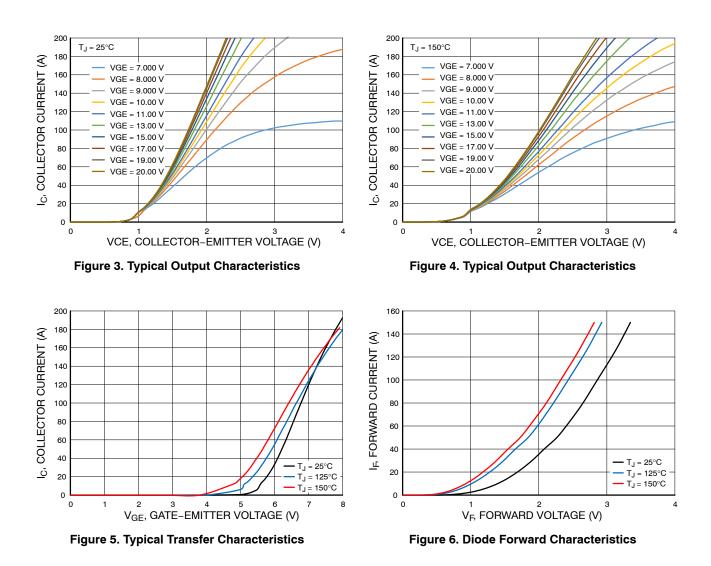
See detailed ordering and shipping information on page 9 of this data sheet.

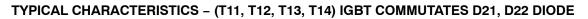
ABSOLUTE MAXIMUM RATINGS

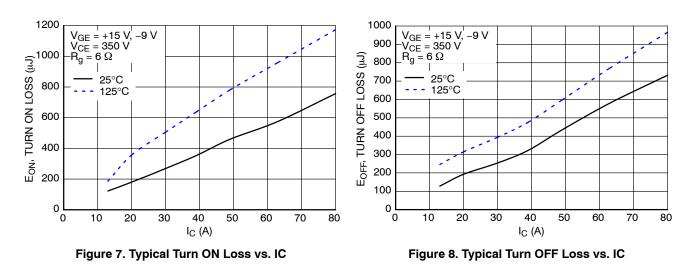
Rating	Symbol	Value	Unit
GBT (T11, T12, T13, T14, T21, T22)		-	
Collector-emitter voltage	V _{CES}	650	V
Collector current @ $T_h = 80^{\circ}C$ (per IGBT)	Ι _C	48	А
Pulsed collector current, T _{pulse} limited by T _{jmax}	I _{CM}	144	Α
Power Dissipation Per IGBT $T_j = T_{jmax}$, $T_h = 80^{\circ}C$	P _{tot}	72	W
Gate-emitter voltage	V _{GE}	±20	V
Maximum Junction Temperature	TJ	175	°C
DIODE (D12, D14, D20, D21, D22)			
Peak Repetitive Reverse Voltage	V _{RRM}	650	V
Forward Current, DC @ $T_h = 80^{\circ}C$ (per Diode)	١ _F	50	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	225	A
Power Dissipation Per Diode $T_j = T_{jmax}, T_h = 80^{\circ}C$	P _{tot}	86	W
Maximum Junction Temperature	TJ	175	°C
HERMAL PROPERTIES		-	
Operating Temperature under switching condition	T _{VJ OP}	–40 to (T _{jmax} – 25)	°C
Storage Temperature range	T _{stg}	-40 to 125	°C
NSULATION PROPERTIES			
Isolation test voltage, t = 2 min, 60 Hz	V _{is}	4000	Vac
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

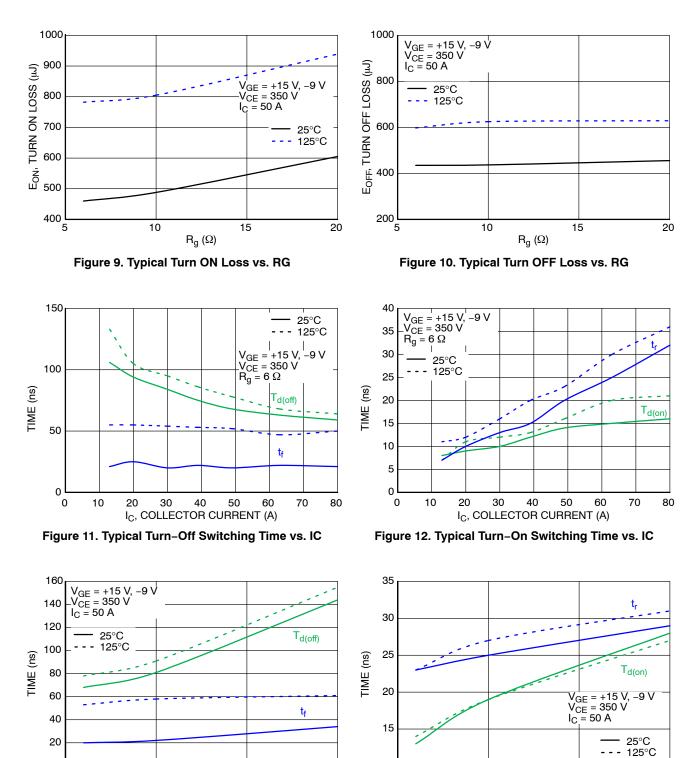
ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise specified)


Parameter	Test Condition	Symbol	Min	Тур	Max	Unit		
GBT (T11, T12, T13, T14, T21, T22)								
Collector-emitter cutoff current	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	-	-	300	μΑ		
Collector-emitter saturation voltage	V_{GE} = 15 V, I _C = 50 A, T _j = 25°C V _{GE} = 15 V, I _C = 50 A, T _j = 150°C	V _{CE(sat)}		1.56 1.76	2.22 _	V		
Gate-emitter threshold voltage	$V_{GE} = V_{CE}, I_C = 50 \text{mA}$	V _{GE(TH)}	3.1	4.45	5.2	V		
Gate leakage current	$V_{GE} = 20 \text{ V}, \text{ V}_{CE} = 0 \text{ V}$	I _{GES}	-	-	400	nA		
Turn-on delay time	T _i = 25°C V _{CE} =350 V, I _C = 50 A	t _{d(on)}	-	14	-	ns		
Rise time	$V_{CE} = 350$ V, I _C = 50 A V _{GE} = 15 V, -9 V, R _G = 6 Ω	t _r	-	20	—			
Turn-off delay time		t _{d(off)}	-	68	-			
Fall time		t _f	-	20	-			
Turn on switching loss		E _{on}	-	0.46	—	mJ		
Turn off switching loss		E _{off}	-	0.44	-			
Turn-on delay time	$T_j = 125^{\circ}C$	t _{d(on)}	-	16	—	ns		
Rise time	V'_{CE} = 350 V, I _C = 50 A V _{GE} = 15 V, -9 V, R _G = 6 Ω	t _r	-	23	-			
Turn-off delay time		t _{d(off)}	-	78	-			
Fall time		t _f	-	52	—			
Turn on switching loss	7	Eon	-	0.78	-	mJ		
Turn off switching loss	7	E _{off}	-	0.60	-			


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified) (continued)


Parameter	Test Condition	Symbol	Min	Тур	Max	Unit
GBT (T11, T12, T13, T14, T21, T22)			-	-		-
Input capacitance	$V_{CE} = 20 \text{ V}, \text{ V}_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$	Cies	-	3137	-	pF
Output capacitance		C _{oes}	-	146	-	
Reverse transfer capacitance		C _{res}	-	17	-	
Gate charge total	V_{CE} = 350 V, I_{C} = 40 A, V_{GE} = ±15 V	Qg	-	180	-	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2.1 Mil	R _{thJH}	-	1.32	-	°C/W
Thermal Resistance - chip-to-case	±2% λ = 2.9 W/mK	R _{thJC}	-	0.96	-	°C/W
IGBT INVERSE DIODE (D12, D14, D21, D2	22)					
Forward voltage	I _F = 50 A, T _j = 25°C I _F = 50 A, T _j = 175°C	V _F		2.25 1.7	2.7 _	V
Reverse Recovery Time		t _{rr}	-	28	-	ns
Reverse Recovery Current	− T _i = 25°C	Q _{rr}	-	281	-	nc
Peak Reverse Recovery Current	V _{CE} = 350 V, I _C = 50 A	I _{rrm}	-	18	-	А
Peak Rate of Fall of Recovery Current	$V_{GE} = 15 \text{ V}, -9 \text{ V}, \text{ R}_{G} = 6 \Omega$	Di/dt _{max}	-	1.42	_	A/μs
Reverse Recovery Energy		E _{rr}	-	33	-	μJ
Reverse Recovery Time		t _{rr}	-	65	-	ns
Reverse Recovery Current		Q _{rr}	-	1094	-	nc
Peak Reverse Recovery Current	$V_{CF} = 350 \text{ V}, \text{ I}_{C} = 50 \text{ A}$	I _{rrm}	-	33	-	А
Peak Rate of Fall of Recovery Current	$V_{GE} = 15 \text{ V}, -9 \text{ V}, \text{ R}_{G} = 6 \Omega$	Di/dt _{max}	-	1.32	-	A/μs
Reverse Recovery Energy		E _{rr}	-	198	-	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2.1 Mil	R _{thJH}	-	1.10	-	°C/W
Thermal Resistance - chip-to-case	±2% λ = 2.9 W/mK	R _{thJC}	-	0.79	-	°C/W
DIODE (D20)	-		-	-		-
Forward voltage	$ I_F = 50 \text{ A}, T_j = 25^{\circ}\text{C} \\ I_F = 50 \text{ A}, T_j = 175^{\circ}\text{C} $	V _F		2.25 1.7	2.7 _	V
Reverse leakage current	$V_{CE} = 650 \text{ V}, V_{GE} = 0 \text{ V}$	I _r	-	-	300	μΑ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness = 2.1 Mil	R _{thJH}	-	1.10	-	°C/W
Thermal Resistance - chip-to-case	±2% λ = 2.9 W/mK	R _{thJC}	-	0.79	_	°C/W
THERMISTOR CHARACTERISTICS	•					
Nominal resistance	T = 25°C	R ₂₅	-	22	-	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	-	1486	-	Ω
Deviation of R25		R/R	-5	-	5	%
Power dissipation		PD	-	200	-	mW
Power dissipation constant			-	2	-	mW/°C
B-value	B (25/50), tol ±3%		-	-	3950	°C
B-value	B (25/100), tol ±3%		-	-	3998	°C
NTC reference	İ.	1	-	-	В	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


TYPICAL CHARACTERISTICS - IGBT (T11, T12, T13, T14, T21, T22)

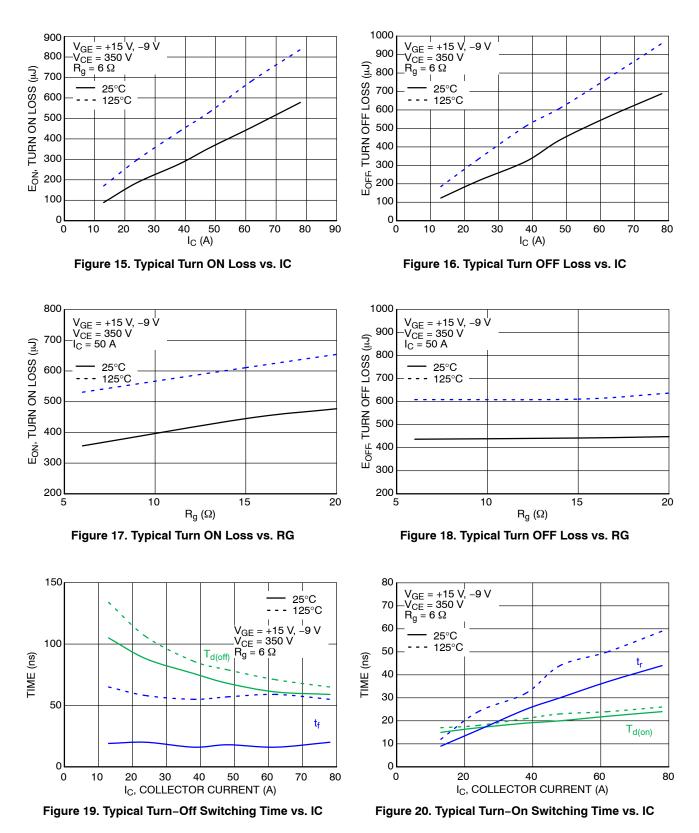
TYPICAL CHARACTERISTICS - (T11, T12, T13, T14) IGBT COMMUTATES D21, D22 DIODE (continued)

0

Figure 14. Typical Turn-On Switching Time vs. Rg

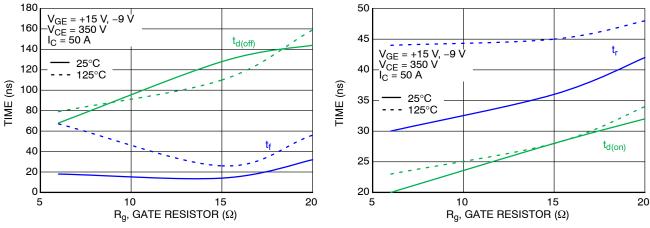
R_a, GATE RESISTOR (Ω)

15


20

10

10


5

TYPICAL CHARACTERISTICS - (T21, T22) IGBT COMMUTATES D20 DIODE

www.onsemi.com 6

TYPICAL CHARACTERISTICS - (T21, T22) IGBT COMMUTATES D20 DIODE (continued)

TYPICAL CHARACTERISTICS – DIODE

Figure 21. Typical Turn-Off Switching Time vs. Rg

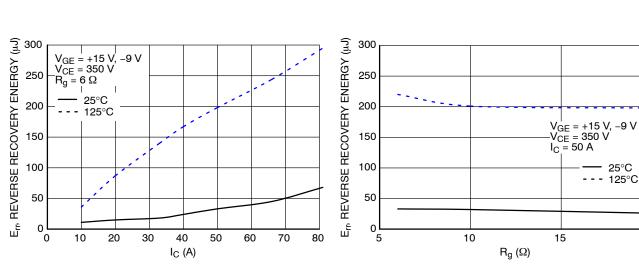
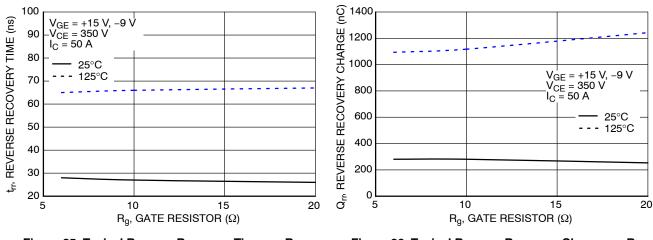
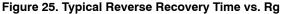
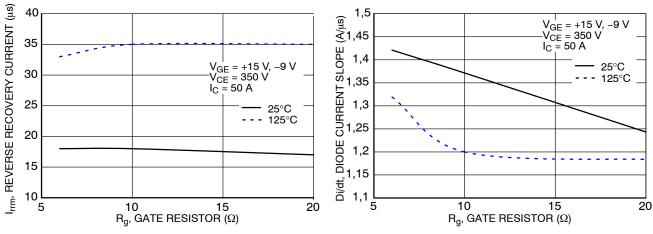
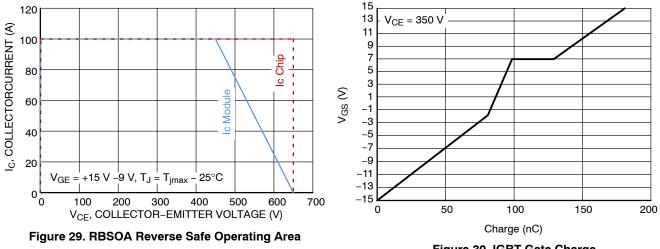
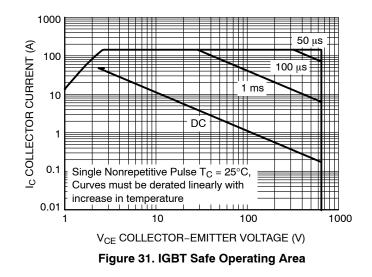




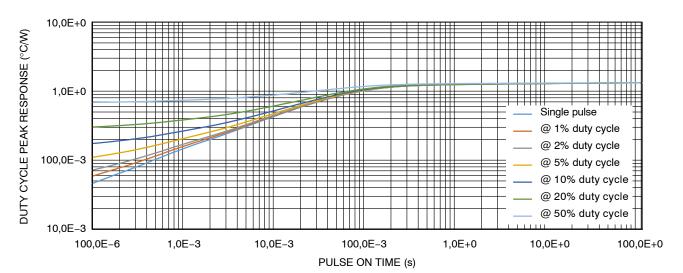
Figure 23. Typical Reverse Recovery Energy Loss vs. IC

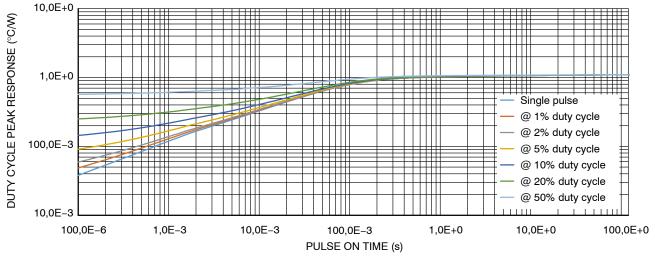
20

TYPICAL CHARACTERISTICS - DIODE (continued)

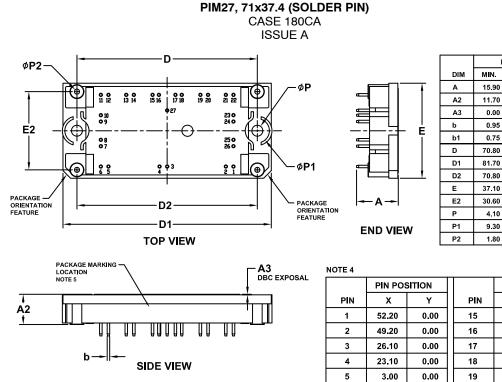



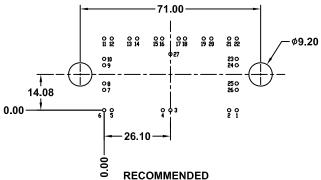

Figure 27. Typical Reverse Recovery Peak Current vs. Rg





TYPICAL THERMAL CHARACTERISTICS




Figure 33. Transient Thermal Impedance – Diode

ORDERING INFORMATION

Device	Package Type	Status	Shipping
NXH50M65L4Q1SG (Solder Pin)	PIM27, 71x37.4 Q1PACK	In Development	21 Units / BTRAY
NXH50M65L4Q1PTG (Pressfit Pin)	PIM27, 71x37.4 Q1PACK	In Development	21 Units / BTRAY

PACKAGE DIMENSIONS

	PIN POSITION			PIN POS	SITION
PIN	х	Y	PIN	x	Y
1	52.20	0.00	15	20.35	28.20
2	49.20	0.00	16	22.85	28.20
3	26.10	0.00	17	29.35	28.20
4	23.10	0.00	18	31.85	28.20
5	3.00	0.00	19	29.20	28.20
6	0.00	0.00	20	42.20	28.20
7	0.00	8.00	21	49.20	28.20
8	0.00	10.50	22	52.20	28.20
9	0.00	17.70	23	52.20	20.20
10	0.00	20.20	24	52.20	17.70
11	0.00	28.20	25	52.20	10.50
12	3.00	28.20	26	52.20	8.00
13	10.00	28.20	27	26.10	22.10
14	13.00	28.20			

MILLIMETERS

NOM.

16.40

11.90

0.20

1.00

0.80

71.00

82.00

71.00

37.40

30.80

4.30

9.50

2.00

0.00

1.80

MAX.

16.90

12.10

0.60

1.05

0.85

71.20

82.30

71.20

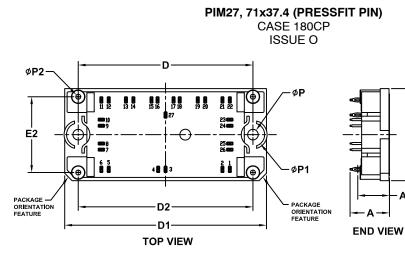
37.70

31.00

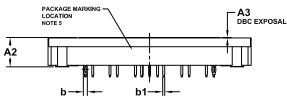
4.50

9.70

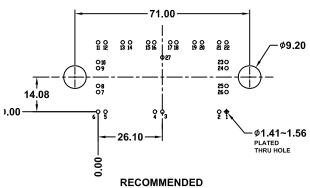
2.20


* For additional Information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MOUNTING PATTERN


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009
- 2. CONTROLLING DIMENSION : MILLIMETERS
- 3. DIMENSIONS b AND b1 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A1
- 4. PIN POSITION TOLERANCE IS ± 0.4mm
- 5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE **OPPOSITE THE PACKAGE ORIENTATION FEATURES**


PACKAGE DIMENSIONS

	MILLIMETERS				
DIM	MIN.	MIN NOM			
A	15.50	16.00	16.50		
A1	12.38	12.88	13.38		
A2	11.70	11.90	12.10		
A3	0.00	0.20	0.60		
b	1.61	1.66	1.71		
b1	0.75	0.80	0.85		
D	70.80	71.00	71.20		
D1	81.70	82.00	82.30		
D2	70.80	71.00	71.20		
E	37.10	37.40	37.70		
E2	30.60	30.80	31.00		
Р	4.10	4.30	4.50		
P1	9.30	9.50	9.70		
P2	1.80	2.00	2.20		

MOUNTING PATTERN

* For additional Information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009
- 2. CONTROLLING DIMENSION : MILLIMETERS
- 3. DIMENSIONS b AND b1 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A1
- 4. PIN POSITION TOLERANCE IS ± 0.4mm
- 5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE **OPPOSITE THE PACKAGE ORIENTATION FEATURES**

		L			.00	2.00	2.20
NOTE 4	NOTE 4						
	PIN POSITION				Р	PIN POSITION	
PIN	х	Y		PIN		х	Y
1	52.20	0.00		15	2	0.35	28.20
2	49.20	0.00	ТГ	16	2	2.85	28.20
3	26.10	0.00		17	2	9.35	28.20
4	23.10	0.00		18	3	1.85	28.20
5	3.00	0.00		19	2	9.20	28.20
6	0.00	0.00		20	4	2.20	28.20
7	0.00	8.00		21	4	9.20	28.20
8	0.00	10.50		22	5	2.20	28.20
9	0.00	17.70		23	5	2.20	20.20
10	0.00	20.20		24	5	2.20	17.70
11	0.00	28.20		25	5	2.20	10.50
12	3.00	28.20		26	5	2.20	8.00
13	10.00	28.20		27	2	6.10	22.10
14	13.00	28.20					

E

A1

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for uses intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconducto

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: NXH50M65L4Q1SG