

MOS FIELD EFFECT POWER TRANSISTOR

2SK1953

SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

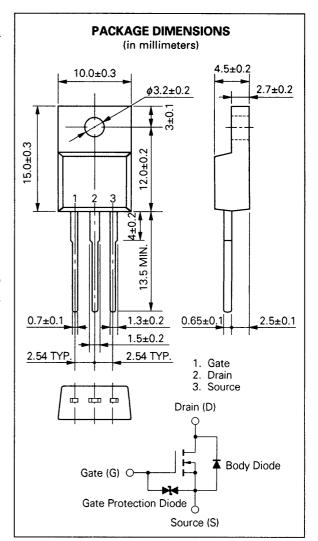
DESCRIPTION

The 2SK1953 is N-channel MOS Field Effect Transistor designed for high voltage switching applications.

FEATURES

- Low On-state Resistance
 - $R_{\text{DS(on)}}$ = 5.0 Ω (Vgs = 10 V, Ip = 1 A)
- Low Ciss Ciss = 275 pF TYP.
- Built-in G-S Gate Protection Diode
- High Avalanche Capability Ratings

QUALITY GRADE

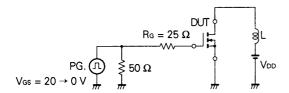

Standard

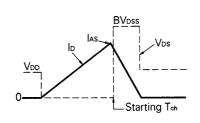
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C)

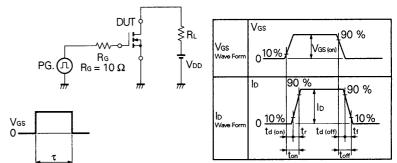
Drain to Source Voltage	Voss	600	٧
Gate to Source Voltage	Vgss	±30	V
Drain Current (DC)	ID(DC)	±2.0	Α
Drain Current (pulse)	D(pulse)#	±6.0	Α
Total Power Dissipation (Tc = 25 °C) Рт1	25	W
Total Power Dissipation (Ta = 25 °C)	Рт2	2.0	W
Channel Temperature	Tch	150	°C
Storage Temperature	Tstg	-55 to +150	٥С
Single Avalanche Current	las**	3.0	Α
Single Avalanche Energy	Eas**	78	mJ

- * PW \leq 10 μ s, Duty Cycle \leq 1 %
- ** Starting Tch = 25 °C, Rg = 25 Ω , Vgs = 20 V \rightarrow 0

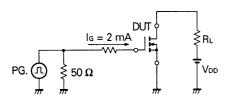



ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

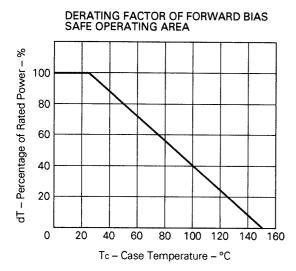
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Drain to Source On-state Resistance	Ros(on)		4.2	5.0	Ω	Vgs = 10 V, lp = 1 A
Gate to Source Cutoff Voltage	VGS(off)	2.0		4.0	V	Vps = 10 V, lp = 1 mA
Forward Transfer Admittance	y fs	0.5			s	Vos = 20 V, Io = 1 A
Drain Leakage Current	loss			100	μΑ	Vps = 600 V, Vgs = 0
Gate to Source Leakage Current	lgss			±10	μΑ	Vgs = ±25 V, Vps = 0
Input Capacitance	Ciss		275		pF	Vps = 10 V
Output Capacitance	Coss		68		рF	V _G s = 0
Reverse Transfer Capacitance	Cres		23		pF	f = 1 MHz
Turn-On Delay Time	td(on)		7		ns	$V_{GS} = 10 \text{ V}$ $V_{DD} = 150 \text{ V}$ $I_D = 1 \text{ A, R}_G = 10 \Omega$ $R_L = 150 \Omega$
Rise Time	tr		4		ns	
Turn-Off Delay Time	td(off)		37		ns	
Fall Time	tr		8		ns	
Total Gate Charge	QG		12		nC	V _G s = 10 V I _D = 2 A
Gate to Source Charge	Qgs		2.2		nC	
Gate to Drain Charge	Qgp		6.2		nC	V _{DD} = 450 V
Diode Forward Voltage	VF(S-D)		0.9		V	IF = 2 A, VGS = 0
Reverse Recovery Time	trr		340		ns	IF = 2 A
Reverse Recovery Charge	Qrr		1.1		μC	di/dt = 50 A/μs

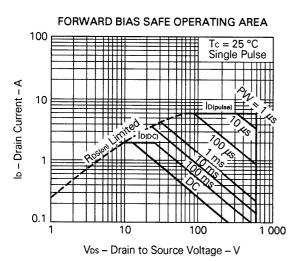

 $τ = 1 \mu s$ Duty Cycle $\le 1\%$

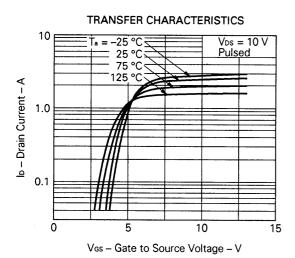
Test Circuit 1: Avalanche Capability

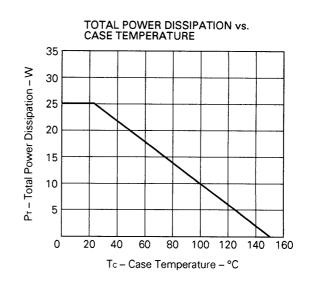


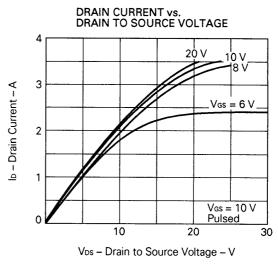
Test Circuit 2: Switching Time

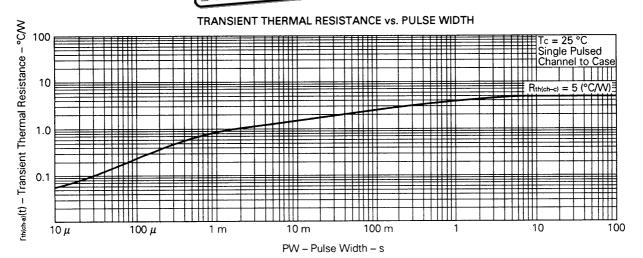


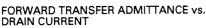

Test Circuit 3: Gate Charge

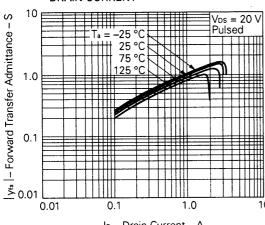


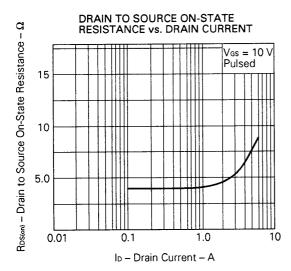


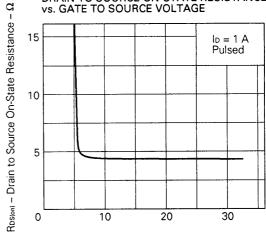

TYPICAL CHARACTERISTICS (Ta = 25 °C)









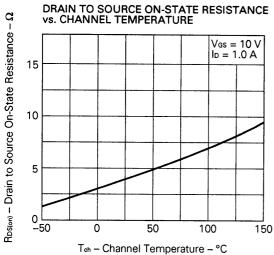


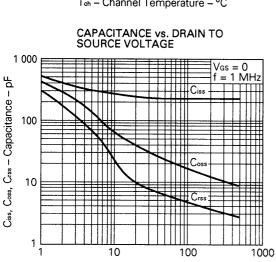
Ib - Drain Current - A

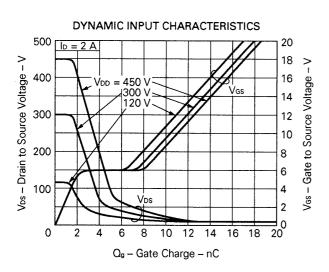
DRAIN TO SOURCE ON-STATE RESISTANCE vs. GATE TO SOURCE VOLTAGE

V_{GS} – Gate to Source Voltage – V

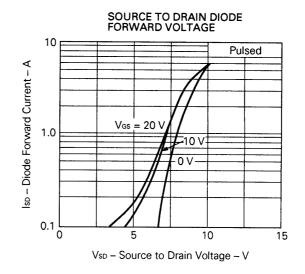
GATE TO SOURCE CUTOFF VOLTAGE vs. CHANNEL TEMPERATURE V_{GS(off)} – Gate to Source Cutoff Voltage – V 3.0 2.0

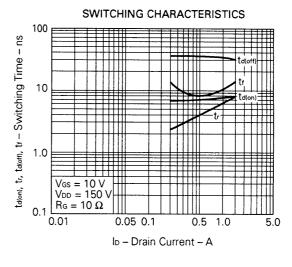

1.0

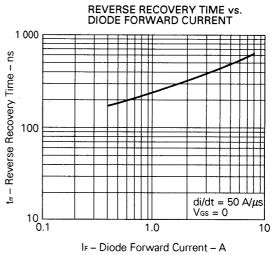

0 -50

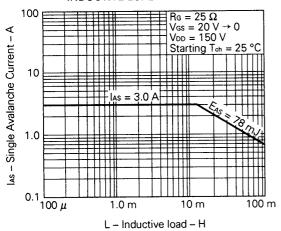

50 Tch - Channel Temperature - °C

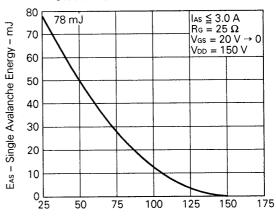
100


150






Vos - Drain to Source Voltage - V



SINGLE AVALANCHE CURRENT vs. INDUCTIVE LOAD

SINGLE AVALANCHE ENERGY vs. STARTING CHANNEL TEMPERATURE

Starting T_{ch} – Starting Channel Temperature – °C

Reference

Application note name	No.
Safe operating area of Power MOS FET.	TEA-1034
Application circuit using Power MOS FET.	TEA-1035
Quality control of NEC semiconductors devices.	TEI-1202
Quality control guide of semiconductors devices.	MEI-1202
Assembly manual of semiconductors devices.	IEI-1207

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.