1.5A, Low Noise, Fast Transient Response LDO Regulators

feATURES

- Optimized for Fast Transient Response
- Output Current: 1.5A
- Dropout Voltage: 340 mV
- Low Noise: $40 \mu \mathrm{~V}_{\text {RMS }}$ (10 Hz to 100 kHz)
- 1mA Quiescent Current
- No Protection Diodes Needed
- Controlled Quiescent Current in Dropout
- Fixed Output Voltages: 1.5V, 1.8V, 2.5V, 3.3V
- Adjustable Output from 1.21V to 20V
- <1 $\mu \mathrm{A}$ Quiescent Current in Shutdown
- Stable with $10 \mu \mathrm{~F}$ Output Capacitor*
- Stable with Ceramic Capacitors*
- Reverse Battery Protection
- No Reverse Current
- Thermal Limiting
- 5-Lead TO-220, DD, 3-Lead SOT-223 and 8-Lead SO Packages
- AEC-Q100 Qualified for Automotive Applications

APPLICATIONS

- 3.3 V to 2.5 V Logic Power Supplies
- Post Regulator for Switching Supplies

DESCRIPTIOn

The LT ${ }^{\top}$ 1963A series are low dropout regulators optimized for fast transient response. The devices are capable of supplying 1.5 A of output current with a dropout voltage of 340 mV . Operating quiescent current is 1 mA , dropping to $<1 \mu A$ in shutdown. Quiescent current is well controlled; it does not rise in dropout as it does with many other regulators. In addition to fast transient response, the LT1963A regulators have very low output noise which makes them ideal for sensitive RF supply applications.
Output voltage range is from 1.21 V to 20V. The LT1963A regulators are stable with output capacitors as low as $10 \mu \mathrm{~F}$. Internal protection circuitry includes reverse battery protection, current limiting, thermal limiting and reverse current protection. The devices are available in fixed output voltages of $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ and as an adjustable device with a 1.21 V reference voltage. The LT1963A regulators are available in 5 -lead TO-220, DD, 3 -lead SOT-223, 8 -lead SO and 16-lead TSSOP packages.

All registered trademarks and trademarks are the property of their respective owners. Protected by U.S. patents, including 6118263, 6144250.
*See Applications Information Section.

TYPICAL APPLICATION

3.3V to 2.5V Regulator

Dropout Voltage

LT1963A Series

ABSOLUTE MAXIMUM RATINGS

(Note 1)

IN Pin Voltage ... $\pm 20 \mathrm{~V}$
OUT Pin Voltage... 20 V
Input to Output Differential Voltage (Note 2)........... $\pm 20 \mathrm{~V}$
SENSE Pin Voltage .. $\pm 20 \mathrm{~V}$
ADJ Pin Voltage .. $\pm 7 \mathrm{~V}$
SHDN Pin Voltage .. $\pm 20 \mathrm{~V}$
Output Short-Circuit Duration Indefinite
Operating Junction Temperature Range (Note 3)LT1963AE.. $40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AI.

$$
-40^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}
$$

LT1963AMP $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Storage Temperature Range.

\qquad
$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PIn COnfiguration

LT1963A Series

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1963AEQ\#PBF	LT1963AEQ\#TRPBF	LT1963AEQ	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AIQ\#PBF	LT1963AIQ\#TRPBF	LT1963AIQ	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AMPQ\#PBF	LT1963AMPQ\#TRPBF	LT1963AMPQ	5-Lead Plastic DD-Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEQ-1.5\#PBF	LT1963AEQ-1.5\#TRPBF	LT1963AEQ-1.5	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEQ-1.8\#PBF	LT1963AEQ-1.8\#TRPBF	LT1963AEQ-1.8	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEQ-2.5\#PBF	LT1963AEQ-2.5\#TRPBF	LT1963AEQ-2.5	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEQ-3.3\#PBF	LT1963AEQ-3.3\#TRPBF	LT1963AEQ-3.3	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET\#PBF	LT1963AET\#TRPBF	LT1963AET	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AIT\#PBF	LT1963AIT\#TRPBF	LT1963AIT	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET-1.5\#PBF	LT1963AET-1.5\#TRPBF	LT1963AET-1.5	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET-1.8\#PBF	LT1963AET-1.8\#TRPBF	LT1963AET-1.8	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET-2.5\#PBF	LT1963AET-2.5\#TRPBF	LT1963AET-2.5	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET-3.3\#PBF	LT1963AET-3.3\#TRPBF	LT1963AET-3.3	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE\#PBF	LT1963AEFE\#TRPBF	1963AEFE	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AIFE\#PBF	LT1963AIFE\#TRPBF	1963AIFE	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE-1.5\#PBF	LT1963AEFE-1.5\#TRPBF	1963AEFE15	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE-1.8\#PBF	LT1963AEFE-1.8\#TRPBF	1963AEFE18	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE-2.5\#PBF	LT1963AEFE-2.5\#TRPBF	1963AEFE25	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE-3.3\#PBF	LT1963AEFE-3.3\#TRPBF	1963AEFE33	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-1.5\#PBF	LT1963AEST-1.5\#TRPBF	963A15	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-1.8\#PBF	LT1963AEST-1.8\#TRPBF	963A18	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-2.5\#PBF	LT1963AEST-2.5\#TRPBF	963A25	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-3.3\#PBF	LT1963AEST-3.3\#TRPBF	963A33	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8\#PBF	LT1963AES8\#TRPBF	1963A	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AIS8\#PBF	LT1963AIS8\#TRPBF	1963A	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AMPS8\#PBF	LT1963AMPS8\#TRPBF	963AMP	8-Lead Plastic S0	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8-1.5\#PBF	LT1963AES8-1.5\#TRPBF	963 A15	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8-1.8\#PBF	LT1963AES8-1.8\#TRPBF	963 A18	8-Lead Plastic S0	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8-2.5\#PBF	LT1963AES8-2.5\#TRPBF	963A25	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8-3.3\#PBF	LT1963AES8-3.3\#TRPBF	963A33	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LEAD BASED FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1963AEQ	LT1963AEQ\#TR	LT1963AEQ	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AIQ	LT1963AIQ\#TR	LT1963AIQ	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AMPQ	LT1963AMPQ\#TR	LT1963AMPQ	5-Lead Plastic DD-Pak	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEQ-1.5	LT1963AEQ-1.5\#TR	LT1963AEQ-1.5	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEQ-1.8	LT1963AEQ-1.8\#TR	LT1963AEQ-1.8	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEQ-2.5	LT1963AEQ-2.5\#TR	LT1963AEQ-2.5	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEQ-3.3	LT1963AEQ-3.3\#TR	LT1963AEQ-3.3	5-Lead Plastic DD-Pak	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET	LT1963AET\#TR	LT1963AET	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AIT	LT1963AIT\#TR	LT1963AIT	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

LT1963A Series

ORDER InFORMATION

LEAD BASED FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT1963AET-1.5	LT1963AET-1.5\#TR	LT1963AET-1.5	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET-1.8	LT1963AET-1.8\#TR	LT1963AET-1.8	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET-2.5	LT1963AET-2.5\#TR	LT1963AET-2.5	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AET-3.3	LT1963AET-3.3\#TR	LT1963AET-3.3	5-Lead Plastic T0-220	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE	LT1963AEFE\#TR	1963AEFE	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AIFE	LT1963AIFE\#TR	1963AIFE	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE-1.5	LT1963AEFE-1.5\#TR	1963AEFE15	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE-1.8	LT1963AEFE-1.8\#TR	1963AEFE18	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE-2.5	LT1963AEFE-2.5\#TR	1963AEFE25	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEFE-3.3	LT1963AEFE-3.3\#TR	1963AEFE33	16-Lead Plastic TSSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-1.5	LT1963AEST-1.5\#TR	963A15	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-1.8	LT1963AEST-1.8\#TR	963A18	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-2.5	LT1963AEST-2.5\#TR	963A25	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-3.3	LT1963AEST-3.3\#TR	963A33	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8	LT1963AES8\#TR	1963A	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AIS8	LT1963AIS8\#TR	1963A	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AMPS8	LT1963AMPS8\#TR	963AMP	8-Lead Plastic SO	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8-1.5	LT1963AES8-1.5\#TR	963A15	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8-1.8	LT1963AES8-1.8\#TR	963A18	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8-2.5	LT1963AES8-2.5\#TR	963A25	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AES8-3.3	LT1963AES8-3.3\#TR	963A33	8-Lead Plastic SO	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
AUTOMOTIVE PRODUCTS**				
LT1963AEST-1.5\#WPBF	LT1963AEST-1.5\#WTRPBF	963A15	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-1.8\#WPBF	LT1963AEST-1.8\#WTRPBF	963A18	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-2.5\#WPBF	LT1963AEST-2.5\#WTRPBF	963A25	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT1963AEST-3.3\#WPBF	LT1963AEST-3.3\#WTRPBF	963A33	3-Lead Plastic SOT-223	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Contact the factory for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.
**Versions of this part are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. These models are designated with a \#W suffix. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

ELECTRICAL CHARACTERISTICS The e denotes specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 3)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Minimum Input Voltage (Notes 4,12)	$\begin{aligned} & l_{\text {LOAD }}=0.5 \mathrm{~A} \\ & \mathrm{l}_{\text {LOAD }}=1.5 \mathrm{~A} \end{aligned}$		\bullet		$\begin{aligned} & 1.9 \\ & 2.1 \end{aligned}$	2.5	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Regulated Output Voltage (Note 5)	LT1963A-1.5	$\begin{aligned} & V_{I N}=2.21 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 2.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<1.5 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 1.477 \\ & 1.447 \end{aligned}$	$\begin{aligned} & 1.500 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 1.523 \\ & 1.545 \end{aligned}$	V
	LT1963A-1.8	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 2.8 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<1.5 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 1.773 \\ & 1.737 \end{aligned}$	$\begin{aligned} & 1.800 \\ & 1.800 \end{aligned}$	$\begin{aligned} & 1.827 \\ & 1.854 \end{aligned}$	V
	LT1963A-2.5	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 3.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<1.5 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & \hline 2.462 \\ & 2.412 \end{aligned}$	$\begin{aligned} & 2.500 \\ & 2.500 \end{aligned}$	$\begin{aligned} & \hline 2.538 \\ & 2.575 \end{aligned}$	V
	LT1963A-3.3	$\begin{aligned} & \mathrm{V}_{\text {IN }}=3.8 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 4.3 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<1.5 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 3.250 \\ & 3.200 \end{aligned}$	$\begin{aligned} & 3.300 \\ & 3.300 \end{aligned}$	$\begin{aligned} & 3.350 \\ & 3.400 \end{aligned}$	V
ADJ Pin Voltage (Notes 4, 5)	LT1963A	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.21 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & 2.5 \mathrm{~V}<\mathrm{V}_{\text {IN }}<20 \mathrm{~V}, 1 \mathrm{~mA}<\mathrm{I}_{\text {LOAD }}<1.5 \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 1.192 \\ & 1.174 \end{aligned}$	$\begin{aligned} & 1.210 \\ & 1.210 \end{aligned}$	$\begin{aligned} & 1.228 \\ & 1.246 \end{aligned}$	V
Line Regulation	LT1963A-1.5 LT1963A-1.8 LT1963A-2.5 LT1963A-3.3 LT1963A (Note 4)	$\begin{aligned} & \quad \Delta V_{I N}=2.21 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta V_{I N}=2.3 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta V_{I N}=3 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta V_{I N}=3.8 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \\ & \Delta V_{I N}=2.21 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~mA} \end{aligned}$	$\stackrel{\bullet}{\bullet}$		$\begin{aligned} & 2.0 \\ & 2.5 \\ & 3.0 \\ & 3.5 \\ & 1.5 \end{aligned}$	$\begin{gathered} \hline 6 \\ 7 \\ 10 \\ 10 \\ 5 \end{gathered}$	$m V$ $m V$ $m V$ $m V$ $m V$
Load Regulation	LT1963A-1.5	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \Delta \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \Delta I_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$	\bullet		2	$\begin{gathered} 9 \\ 18 \end{gathered}$	mV mV
	LT1963A-1.8	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.8 \mathrm{~V}, \Delta \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=2.8 \mathrm{~V}, \Delta I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$	\bullet		2	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	mV mV
	LT1963A-2.5	$\begin{aligned} & V_{I N}=3.5 \mathrm{~V}, \Delta \Delta_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \\ & V_{I N}=3.5 \mathrm{~V},\left.\Delta\right\|_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$	\bullet		2.5	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	mV mV
	LT1963A-3.3	$\begin{aligned} & \mathrm{V}_{\text {IN }}=4.3 \mathrm{~V}, \Delta \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=4.3 \mathrm{~V}, \Delta I_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$	\bullet		3	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	mV mV
	LT1963A (Note 4)	$\begin{aligned} & \mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}, \Delta \mathrm{~L}_{\mathrm{LOAD}}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \Delta I_{\text {LOAD }}=1 \mathrm{~mA} \text { to } 1.5 \mathrm{~A} \end{aligned}$	-		2	$\begin{gathered} \hline 8 \\ 15 \end{gathered}$	mV mV
Dropout Voltage $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL }}$ (Notes 6, 7, 12)	$\begin{aligned} & l_{\mathrm{LOAD}}=1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{LOAD}}=1 \mathrm{~mA} \\ & \hline \end{aligned}$		\bullet		0.02	$\begin{aligned} & 0.06 \\ & 0.10 \end{aligned}$	V
	$\begin{aligned} & I_{\text {LOAD }}=100 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=100 \mathrm{~mA} \end{aligned}$		\bullet		0.10	$\begin{aligned} & \hline 0.17 \\ & 0.22 \end{aligned}$	V
	$\begin{aligned} & l_{\text {LOAD }}=500 \mathrm{~mA} \\ & \mathrm{I}_{\text {LOAD }}=500 \mathrm{~mA} \end{aligned}$		\bullet		0.19	$\begin{aligned} & 0.27 \\ & 0.35 \end{aligned}$	V
	$\begin{aligned} & \mathrm{I}_{\mathrm{LOAD}}=1.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{LOAD}}=1.5 \mathrm{~A} \\ & \hline \end{aligned}$		\bullet		0.34	$\begin{aligned} & \hline 0.45 \\ & 0.55 \end{aligned}$	V
GND Pin Current $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL) }}+1 \mathrm{~V}$ (Notes 6, 8)	$\begin{aligned} & l_{\text {LOAD }}=0 \mathrm{~mA} \\ & l_{\text {LOAD }}=1 \mathrm{~mA} \\ & I_{\text {LOAD }}=100 \mathrm{~mA} \\ & I_{\text {LOAD }}=500 \mathrm{~mA} \\ & I_{\text {LOAD }}=1.5 \mathrm{~A} \end{aligned}$		$\begin{aligned} & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \\ & \bullet \end{aligned}$		$\begin{aligned} & 1.0 \\ & 1.1 \\ & 3.8 \\ & 15 \\ & 80 \end{aligned}$	$\begin{gathered} 1.5 \\ 1.6 \\ 5.5 \\ 25 \\ 120 \\ \hline \end{gathered}$	mA mA mA mA mA
Output Voltage Noise	$\mathrm{C}_{\text {OUT }}=10 \mu \mathrm{~F}, \mathrm{I}_{\text {LOAD }}=1.5 \mathrm{~A}, \mathrm{BW}=10 \mathrm{~Hz}$ to 100 kHz				40		$\mu V_{\text {RMS }}$
ADJ Pin Bias Current	(Notes 4, 9)				3	10	$\mu \mathrm{A}$
Shutdown Threshold	$\begin{array}{\|l\|l} V_{\text {OUT }}=0 \mathrm{ff} \text { to } 0 \mathrm{n} \\ \mathrm{~V}_{\text {OUT }}=0 \mathrm{n} \text { to } 0 \mathrm{ff} \\ \hline \end{array}$		\bullet	0.25	$\begin{aligned} & \hline 0.90 \\ & 0.75 \end{aligned}$	2	V
$\overline{\overline{S H D N}}$ Pin Current (Note 10)	$\begin{aligned} & V_{\overline{S H D N}}=0 \mathrm{~V} \\ & V_{\overline{S H D N}}=20 \mathrm{~V} \end{aligned}$				$\begin{gathered} 0.01 \\ 3 \end{gathered}$	$\begin{gathered} 1 \\ 30 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
Quiescent Current in Shutdown	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=0 \mathrm{~V}$				0.01	1	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS The odenotes speciifications which apply ver the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. (Note 3)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Ripple Rejection	$\begin{aligned} & V_{\text {IN }}-V_{\text {OUT }}=1.5 \mathrm{~V}(\mathrm{Avg}), \mathrm{V}_{\text {RIPPLE }}=0.5 \mathrm{~V}_{\text {P-P }}, \\ & \mathrm{f}_{\text {RIPPLE }}=120 \mathrm{~Hz}, \mathrm{I}_{\text {LOAD }}=0.75 \mathrm{~A} \end{aligned}$		55	63		dB
Current Limit	$\begin{aligned} & V_{\text {IN }}=7 \mathrm{~V}, V_{\text {OUT }}=0 \mathrm{~V} \\ & V_{\text {IN }}=V_{\text {OUT (NOMINAL })}+1 \mathrm{~V}, \Delta V_{\text {OUT }}=-0.1 \mathrm{~V} \end{aligned}$	\bullet	1.6	2		A
Input Reverse Leakage Current (Note 13)	Q, T, S8 Packages $V_{\text {IN }}=-20 \mathrm{~V}, V_{\text {OUT }}=0$ ST Package $V_{\text {IN }}=-20 \mathrm{~V}, V_{\text {OUT }}=0$	\bullet			1	mA mA
Reverse Output Current (Note 11)	LT1963A-1.5 $V_{\text {OUT }}=1.5 \mathrm{~V}, \mathrm{~V}_{\text {II }}<1.5 \mathrm{~V}$ LT1963A-1.8 $V_{\text {OUT }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<1.8 \mathrm{~V}$ LT1963A-2.5 $V_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{~V}_{\text {IIN }}<2.5 \mathrm{~V}$ LT1963A-3.3 $V_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<3.3 \mathrm{~V}$ LT1963A (Note 4) $V_{\text {OUT }}=1.21 \mathrm{~V}, \mathrm{~V}_{\text {IN }}<1.21 \mathrm{~V}$			$\begin{aligned} & 600 \\ & 600 \\ & 600 \\ & 600 \\ & 300 \end{aligned}$	$\begin{aligned} & 1200 \\ & 1200 \\ & 1200 \\ & 1200 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Absolute maximum input to output differential voltage can not be achieved with all combinations of rated IN pin and OUT pin voltages. With the IN pin at 20V, the OUT pin may not be pulled below OV. The total measured voltage from IN to OUT can not exceed $\pm 20 \mathrm{~V}$.
Note 3: The LT1963A regulators are tested and specified under pulse load conditions such that $T_{J} \approx T_{A}$. The LT1963AE is 100% tested at $T_{A}=25^{\circ} \mathrm{C}$. Performance at $-40^{\circ} \mathrm{C}$ and $125^{\circ} \mathrm{C}$ is assured by design, characterization and correlation with statistical process controls. The LT1963AI is guaranteed over the full $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range. The LT1963AMP is 100% tested and guaranteed over the $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operating junction temperature range.
Note 4: The LT1963A (adjustable version) is tested and specified for these conditions with the ADJ pin connected to the OUT pin.
Note 5: Operating conditions are limited by maximum junction temperature. The regulated output voltage specification will not apply for all possible combinations of input voltage and output current. When operating at maximum input voltage, the output current range must be limited. When operating at maximum output current, the input voltage range must be limited.

Note 6: To satisfy requirements for minimum input voltage, the LT1963A (adjustable version) is tested and specified for these conditions with an external resistor divider (two 4.12k resistors) for an output voltage of 2.4 V . The external resistor divider will add a $300 \mu \mathrm{~A}$ DC load on the output.
Note 7: Dropout voltage is the minimum input to output voltage differential needed to maintain regulation at a specified output current. In dropout, the output voltage will be equal to: $V_{I N}-V_{\text {DROPOUT }}$.
Note 8: GND pin current is tested with $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT(NOMINAL) }}+1 \mathrm{~V}$ and a current source load. The GND pin current will decrease at higher input voltages.
Note 9: ADJ pin bias current flows into the ADJ pin.
Note 10: $\overline{\text { SHDN }}$ pin current flows into the $\overline{\text { SHDN }}$ pin.
Note 11: Reverse output current is tested with the IN pin grounded and the OUT pin forced to the rated output voltage. This current flows into the OUT pin and out the GND pin.
Note 12: For the LT1963A, LT1963A-1.5 and LT1963A-1.8 dropout voltage will be limited by the minimum input voltage specification under some output voltage/load conditions.
Note 13: For the ST package, the input reverse leakage current increases due to the additional reverse leakage current for the SHDN pin, which is tied internally to the IN pin.

TYPICAL PERFORMANCE CHARACTERISTICS

1963A G01

1963A G02

1963A G03

Quiescent Current

1963A G04

LT1963A-1.5 Output Voltage

1963A G40

LT1963A-1.8 Output Voltage

1963A G06

LT1963A-3.3 Output Voltage

LT1963A ADJ Pin Voltage

LT1963A Series

TYPICAL PERFORMANCG CHARACTERISTICS

1963A G41

LT1963A-3.3 Quiescent Current

1963A G11

LT1963A-1.8 Quiescent Current

1963A G09

LT1963A Quiescent Current

1963A G12

LT1963A-2.5 Quiescent Current

1963A G10

LT1963A-2.5 GND Pin Current

LT1963A-3.3 GND Pin Current

TYPICAL PERFORMANCE CHARACTERISTICS

1963A G16

LT1963A-2.5 GND Pin Current

1963A G18

1963A G43

LT1963A-1.8 GND Pin Current

1963A G17

LT1963A-3.3 GND Pin Current

1963A G19
$\overline{\text { SHDN }}$ Pin Threshold (On-to-Off)

LT1963A GND Pin Current

LT1963A Series

TYPICAL PERFORMANCE CHARACTERISTICS

LT1963A Series

TYPICAL PERFORMANCE CHARACTERISTICS

Ripple Rejection

1963A G31

Ripple Rejection

LT1963A Minimum Input Voltage

1963A G32
1963A G33

RMS Output Noise vs Load Current (10 Hz to 100 kHz)

Output Noise Spectral Density

LT1963A-3.3 10Hz to 100kHz Output Noise

LT1963A Series

TYPICAL PERFORMANCE CHARACTERISTICS

LT1963A Series

PIn functions

OUT: Output. The output supplies power to the Ioad. A minimum output capacitor of $10 \mu \mathrm{~F}$ is required to prevent oscillations. Larger output capacitors will be required for applications with large transient loads to limit peak voltage transients. See the Applications Information section for more information on output capacitance and reverse output characteristics.

SENSE: Sense. For fixed voltage versions of the LT1963A (LT1963A-1.5/LT1963A-1.8/LT1963A-2.5/LT1963A-3.3), the SENSE pin is the input to the error amplifier. Optimum regulation will be obtained at the point where the SENSE pin is connected to the OUT pin of the regulator. In critical applications, small voltage drops are caused by the resistance (R_{P}) of PC traces between the regulator and the load. These may be eliminated by connecting the SENSE pin to the output at the load as shown in Figure 1 (Kelvin Sense Connection). Note that the voltage drop across the external PC traces will add to the dropout voltage of the regulator. The SENSE pin bias current is $600 \mu \mathrm{~A}$ at the nominal rated output voltage. The SENSE pin can be pulled below ground (as in a dual supply system where the regulator load is returned to a negative supply) and still allow the device to start and operate.

ADJ: Adjust. For the adjustable LT1963A, this is the input to the error amplifier. This pin is internally clamped to $\pm 7 \mathrm{~V}$. It has a bias current of $3 \mu \mathrm{~A}$ which flows into the pin. The ADJ pin voltage is 1.21 V referenced to ground and the output voltage range is 1.21 V to 20 V .
$\overline{\text { SHDN }}$: Shutdown. The $\overline{\text { SHDN }}$ pin is used to put the LT1963A regulators into a low power shutdown state.

The output will be off when the $\overline{\text { SHDN }}$ pin is pulled low. The SHDN pin can be driven either by 5 V logic or opencollector logic with a pull-up resistor. The pull-up resistor is required to supply the pull-up current of the opencollector gate, normally several microamperes, and the $\overline{\text { SHDN }}$ pin current, typically $3 \mu \mathrm{~A}$. If unused, the $\overline{\text { SHDN }}$ pin must be connected to $\mathrm{V}_{\text {IN }}$. The device will be in the low power shutdown state if the $\overline{\text { SHDN }}$ pin is not connected.
IN: Input. Power is supplied to the device through the IN pin. A bypass capacitor is required on this pin if the device is more than six inches away from the main input filter capacitor. In general, the output impedance of a battery rises with frequency, so it is advisable to include a bypass capacitor in battery-powered circuits. A bypass capacitor in the range of $1 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$ is sufficient. The LT1963A regulators are designed to withstand reverse voltages on the IN pin with respect to ground and the OUT pin. In the case of a reverse input, which can happen if a battery is plugged in backwards, the device will act as if there is a diode in series with its input. There will be no reverse current flow into the regulator and no reverse voltage will appear at the load. The device will protect both itself and the load.

Figure 1. Kelvin Sense Connection

LT1963A Series

APPLICATIONS INFORMATION

The LT1963A series are 1.5A low dropout regulators optimized for fast transient response. The devices are capable of supplying 1.5 A at a dropout voltage of 350 mV . The low operating quiescent current (1 mA) drops to less than $1 \mu \mathrm{~A}$ in shutdown. In addition to the low quiescent current, the LT1963A regulators incorporate several protection features which make them ideal for use in battery-powered systems. The devices are protected against both reverse input and reverse output voltages. In battery backup applications where the output can be held up by a backup battery when the input is pulled to ground, the LT1963A-X acts like it has a diode in series with its output and prevents reverse current flow. Additionally, in dual supply applications where the regulator load is returned to a negative supply, the output can be pulled below ground by as much as 20 V and still allow the device to start and operate.

Adjustable Operation

The adjustable version of the LT1963A has an output voltage range of 1.21 V to 20 V . The output voltage is set by the ratio of two external resistors as shown in Figure 2. The device servos the output to maintain the voltage at the ADJ pin at 1.21 V referenced to ground. The current in R1 is then equal to $1.21 \mathrm{~V} / \mathrm{R} 1$ and the current in R 2 is the current in R1 plus the ADJ pin bias current. The ADJ pin bias current, $3 \mu \mathrm{~A}$ at $25^{\circ} \mathrm{C}$, flows through R 2 into the ADJ pin. The output voltage can be calculated using the formula in Figure 2. The value of R1 should be less than 4.17 k to minimize errors in the output voltage caused by the ADJ pin bias current. Note that in shutdown the output is turned off and the divider current will be zero.

The adjustable device is tested and specified with the ADJ pin tied to the OUT pin for an output voltage of 1.21V. Specifications for output voltages greater than 1.21 V will be proportional to the ratio of the desired output voltage to 1.21 V : $\mathrm{V}_{\text {OUT }} / 1.21 \mathrm{~V}$. For example, Ioad regulation for an output current change of 1 mA to 1.5 A is -3 mV typical at $V_{\text {OUT }}=1.21 \mathrm{~V}$. At $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, load regulation is:
$(5 \mathrm{~V} / 1.21 \mathrm{~V})(-3 \mathrm{mV})=-12.4 \mathrm{mV}$

Output Capacitors and Stability

The LT1963A regulator is a feedback circuit. Like any feedback circuit, frequency compensation is needed to

Figure 2. Adjustable Operation
make it stable. For the LT1963A, the frequency compensation is both internal and external-the output capacitor. The size of the output capacitor, the type of the output capacitor, and the ESR of the particular output capacitor all affect the stability.

In addition to stability, the output capacitor also affects the high frequency transient response. The regulator loop has a finite band width. For high frequency transient loads, recovery from a transient is a combination of the output capacitor and the bandwidth of the regulator. The LT1963A was designed to be easy to use and accept a wide variety of output capacitors. However, the frequency compensation is affected by the output capacitor and optimum frequency stability may require some ESR, especially with ceramic capacitors.
For ease of use, low ESR polytantalum capacitors (POSCAP) are a good choice for both the transient response and stability of the regulator. These capacitors have intrinsic ESR that improves the stability. Ceramic capacitors have extremely low ESR, and while they are a good choice in many cases, placing a small series resistance element will sometimes achieve optimum stability and minimize ringing. In all cases, a minimum of $10 \mu \mathrm{~F}$ is required while the maximum ESR allowable is 3Ω.

The place where ESR is most helpful with ceramics is low output voltage. At low output voltages, below 2.5 V , some ESR helps the stability when ceramic output capacitors are used. Also, some ESR allows a smaller capacitor value to be used. When small signal ringing occurs with ceramics due to insufficient ESR, adding ESR or increasing the capacitor value improves the stability and reduces the ringing. Table 1 gives some recommended values of ESR to minimize ringing caused by fast, hard current transitions.

APPLICATIONS INFORMATION

Table 1. Capacitor Minimum ESR

$\mathrm{V}_{\text {OUT }}$	$\mathbf{1 0 \mu \mathrm { F }}$	$\mathbf{2 2 \mu \mathrm { F }}$	$\mathbf{4 7} \boldsymbol{\mu \mathrm { F }}$	$\mathbf{1 0 0 \mu \mathrm { F }}$
1.2 V	$20 \mathrm{~m} \Omega$	$15 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$5 \mathrm{~m} \Omega$
1.5 V	$20 \mathrm{~m} \Omega$	$15 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$5 \mathrm{~m} \Omega$
1.8 V	$15 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$10 \mathrm{~m} \Omega$	$5 \mathrm{~m} \Omega$
2.5 V	$5 \mathrm{~m} \Omega$	$5 \mathrm{~m} \Omega$	$5 \mathrm{~m} \Omega$	$5 \mathrm{~m} \Omega$
3.3 V	$0 \mathrm{~m} \Omega$	$0 \mathrm{~m} \Omega$	$0 \mathrm{~m} \Omega$	$5 \mathrm{~m} \Omega$
$\geq 5 \mathrm{~V}$	$0 \mathrm{~m} \Omega$	$0 \mathrm{~m} \Omega$	$0 \mathrm{~m} \Omega$	$0 \mathrm{~m} \Omega$

Figure 3 through Figure 8 shows the effect of ESR on the transient response of the regulator. These scope photos show the transient response for the LT1963A at three different output voltages with various capacitors and various values of ESR. The output load conditions are the same for all traces. In all cases there is a DC load of 500 mA . The load steps up to 1A at the first transition and steps back to 500 mA at the second transition.

At the worst case point of $1.2 \mathrm{~V}_{\text {out }}$ with $10 \mu \mathrm{~F}$ Cout (Figure 3), a minimum amount of ESR is required. While $20 \mathrm{~m} \Omega$ is enough to eliminate most of the ringing, a value closer to $50 \mathrm{~m} \Omega$ provides a more optimum response. At 2.5 V output with $10 \mu \mathrm{~F} \mathrm{C}_{\text {out }}$ (Figure 4) the output rings at the transitions with 0Ω ESR but still settles to within 10 mV in $20 \mu \mathrm{~s}$ after the 0.5 A load step. Once again a small value of ESR will provide a more optimum response.
At $5 \mathrm{~V}_{\text {Out }}$ with $10 \mu \mathrm{~F}$ Cout (Figure 5) the response is well damped with 0Ω ESR.
With a Cout of $100 \mu \mathrm{~F}$ at $0 \Omega \mathrm{ESR}$ and an output of 1.2 V (Figure 6), the output rings although the amplitude is only $20 \mathrm{mV} V_{\text {p-p }}$. With Cout of $100 \mu \mathrm{Fit}$ takes only $5 \mathrm{~m} \Omega$ to $20 \mathrm{~m} \Omega$ of ESR to provide good damping at 1.2 V output. Performance at 2.5 V and 5 V output with $100 \mu \mathrm{~F}$ Cout shows similar characteristics to the $10 \mu \mathrm{~F}$ case (see Figure 7 - Figure 8). At $2.5 \mathrm{~V}_{\text {Out }} 5 \mathrm{~m} \Omega$ to $20 \mathrm{~m} \Omega$ can improve transient response. At $5 \mathrm{~V}_{\text {Out }}$ the response is well damped with 0Ω ESR.
Capacitor types with inherently higher ESR can be combined with $0 \mathrm{~m} \Omega$ ESR ceramic capacitors to achieve both good high frequency bypassing and fast settling time. Figure 9 illustrates the improvement in transient response that can be seen when a parallel combination of ceramic and POSCAP capacitors are used. The output voltage is
at the worst case value of 1.2 V . Trace A , is with a $10 \mu \mathrm{~F}$ ceramic output capacitor and shows significant ringing with a peak amplitude of 25 mV . For Trace $\mathrm{B}, \mathrm{a} 22 \mu \mathrm{~F} / 45 \mathrm{~m} \Omega$ POSCAP is added in parallel with the $10 \mu \mathrm{~F}$ ceramic. The output is well damped and settles to within 10 mV in less than $20 \mu \mathrm{~s}$.
For Trace C, a $100 \mu \mathrm{~F} / 35 \mathrm{~m} \Omega$ POSCAP is connected in parallel with the $10 \mu \mathrm{~F}$ ceramic capacitor. In this case the peak output deviation is less than 20 mV and the output settles in about 10us. For improved transient response the value of the bulk capacitor (tantalum or aluminum electrolytic) should be greater than twice the value of the ceramic capacitor.

Tantalum and Polytantalum Capacitors

There is a variety of tantalum capacitor types available, with a wide range of ESR specifications. Older types have ESR specifications in the hundreds of $\mathrm{m} \Omega$ to several Ohms. Some newer types of polytantalum with multi-electrodes have maximum ESR specifications as low as $5 \mathrm{~m} \Omega$. In general the lower the ESR specification, the larger the size and the higher the price. Polytantalum capacitors have better surge capability than older types and generally lower ESR. Some types such as the Sanyo TPE and TPB series have ESR specifications in the $20 \mathrm{~m} \Omega$ to $50 \mathrm{~m} \Omega$ range, which provide near optimum transient response.

Aluminum Electrolytic Capacitors

Aluminum electrolytic capacitors can also be used with the LT1963A. These capacitors can also be used in conjunction with ceramic capacitors. These tend to be the cheapest and lowest performance type of capacitors. Care must be used in selecting these capacitors as some types can have ESR which can easily exceed the 3Ω maximum value.

Ceramic Capacitors

Extra consideration must be given to the use of ceramic capacitors. Ceramic capacitors are manufactured with a variety of dielectrics, each with different behavior over temperature and applied voltage. The most common dielectrics used are Z5U, Y5V, X5R and X7R. The Z5U and

LT1963A Series

APPLICATIONS InFORMATION

Figure 3.

Figure 4.

Figure 5.

Figure 6.

$V_{\text {OUT }}=2.5 \mathrm{~V}$
IOUT $=500 \mathrm{~mA}$ WITH
500 mA PULSE
$C_{\text {OUT }}=100 \mu \mathrm{~F}$

Figure 7.

Figure 8.

Figure 9.

LT1963A Series

APPLICATIONS INFORMATION

Y5V dielectrics are good for providing high capacitances in a small package, but exhibit strong voltage and temperature coefficients as shown in Figure 10 and Figure 11. When used with a 5 V regulator, a $10 \mu \mathrm{~F} \mathrm{Y} 5 \mathrm{~V}$ capacitor can exhibit an effective value as low as $1 \mu \mathrm{~F}$ to $2 \mu \mathrm{~F}$ over the operating temperature range. The X5R and X7R dielectrics result in more stable characteristics and are more suitable for use as the output capacitor. The X7R type has better stability across temperature, while the X5R is less expensive and is available in higher values.

Voltage and temperature coefficients are not the only sources of problems. Some ceramic capacitors have a piezoelectric response. A piezoelectric device generates voltage across its terminals due to mechanical stress, similar to the way a piezoelectric accelerometer or microphone works. For a ceramic capacitor the stress can be induced by vibrations in the system or thermal transients.

"FREE" Resistance with PC Traces

The resistance values shown in Table 2 can easily be made using a small section of PC trace in series with the output capacitor. The wide range of non-critical ESR makes it easy to use PC trace. The trace width should be sized to handle the RMS ripple current associated with the load. The output capacitor only sources or sinks current for a few microseconds during fast output current transitions. There is no DC current in the output capacitor. Worst case ripple current will occur if the output load is a high frequency $(>100 \mathrm{kHz})$ square wave with a high peak value and fast edges $(<1 \mu \mathrm{~s})$. Measured RMS value for this case is 0.5 times the peak-to-peak current change. Slower edges or lower frequency will significantly reduce the RMS ripple current in the capacitor.

Table 2. PC Trace Resistors

		$10 \mathrm{~m} \Omega$	$20 \mathrm{~m} \Omega$	$\mathbf{3 0 \mathrm { m } \Omega}$
$0.50 z \mathrm{C}_{U}$	Width	$0.011^{\prime \prime}(0.28 \mathrm{~mm})$	$0.011^{\prime \prime}(0.28 \mathrm{~mm})$	$0.011^{\prime \prime}(0.28 \mathrm{~mm})$
	Length	$0.102^{\prime \prime}(2.6 \mathrm{~mm})$	$0.204^{\prime \prime}(5.2 \mathrm{~mm})$	$0.307^{\prime \prime}(7.8 \mathrm{~mm})$
$1.0 \mathrm{oz} \mathrm{C}_{U}$	Width	$0.006^{\prime \prime}(0.15 \mathrm{~mm})$	$0.006^{\prime \prime}(0.15 \mathrm{~mm})$	$0.006^{\prime \prime}(0.15 \mathrm{~mm})$
	Length	$0.110^{\prime \prime}(2.8 \mathrm{~mm})$	$0.220^{\prime \prime}(5.6 \mathrm{~mm})$	$0.330^{\prime \prime}(8.4 \mathrm{~mm})$
$2.0 \mathrm{oz} \mathrm{C}_{U}$	Width	$0.006^{\prime \prime}(0.15 \mathrm{~mm})$	$0.006^{\prime \prime}(0.15 \mathrm{~mm})$	$0.006^{\prime \prime}(0.15 \mathrm{~mm})$
	Length	$0.224^{\prime \prime}(5.7 \mathrm{~mm})$	$0.450^{\prime \prime}(11.4 \mathrm{~mm})$	$0.670^{\prime \prime}(17 \mathrm{~mm})$

1963A F10
Figure 10. Ceramic Capacitor DC Bias Characteristics

Figure 11. Ceramic Capacitor Temperature Characteristics

APPLICATIONS INFORMATION

This resistor should be made using one of the inner layers of the PC board which are well defined. The resistivity is determined primarily by the sheet resistance of the copper laminate with no additional plating steps. Table 2 gives some sizes for 0.75A RMS current for various copper thicknesses. More detailed information regarding resistors made from PC traces can be found in Application Note 69, Appendix A.

Overload Recovery

Like many IC power regulators, the LT1963A-X has safe operating area protection. The safe area protection decreases the current limit as input-to-output voltage increases and keeps the power transistor inside a safe operating region for all values of input-to-output voltage. The protection is designed to provide some output current at all values of input-to-output voltage up to the device breakdown.

When power is first turned on, as the input voltage rises, the output follows the input, allowing the regulator to start up into very heavy loads. During the start-up, as the input voltage is rising, the input-to-output voltage differential is small, allowing the regulator to supply large output currents. With a high input voltage, a problem can occur wherein removal of an output short will not allow the output voltage to recover. Other regulators, such as the LT1085, also exhibit this phenomenon, so it is not unique to the LT1963A-X.

The problem occurs with a heavy output load when the input voltage is high and the output voltage is low. Common situations are immediately after the removal of a short-circuit or when the shutdown pin is pulled high after the input voltage has already been turned on. The load line for such a load may intersect the output current curve at two points. If this happens, there are two stable output operating points for the regulator. With this double intersection, the input power supply may need to be cycled down to zero and brought up again to make the output recover.

Output Voltage Noise

The LT1963A regulators have been designed to provide low output voltage noise over the 10 Hz to 100 kHz bandwidth while operating at full load. Output voltage noise is typically $40 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ over this frequency bandwidth for the LT1963A (adjustable version). For higher output voltages (generated by using a resistor divider), the output voltage noise will be gained up accordingly. This results in RMS noise over the 10 Hz to 100 kHz bandwidth of $14 \mu \mathrm{~V}_{\mathrm{RMS}}$ for the LT1963A increasing to $38 \mu \mathrm{~V}_{\text {RMS }}$ for the LT1963A-3.3.
Higher values of output voltage noise may be measured when care is not exercised with regard to circuit layout and testing. Crosstalk from nearby traces can induce unwanted noise onto the output of the LT1963A-X. Power supply ripple rejection must also be considered; the LT1963A regulators do not have unlimited power supply rejection and will pass a small portion of the input noise through to the output.

Thermal Considerations

The power handling capability of the device is limited by the maximum rated junction temperature $\left(125^{\circ} \mathrm{C}\right)$. The power dissipated by the device is made up of two components:

1. Output current multiplied by the input/output voltage differential: $\left(l_{\text {OUT }}\right)\left(V_{\text {IN }}-V_{\text {OUT }}\right)$, and
2. GND pin current multiplied by the input voltage: (IGND) $\left(V_{\text {IN }}\right)$.
The GND pin current can be found using the GND Pin Current curves in the Typical Performance Characteristics. Power dissipation will be equal to the sum of the two components listed above.

The LT1963A series regulators have internal thermal limiting designed to protect the device during overload conditions. For continuous normal conditions, the maximum junction temperature rating of $125^{\circ} \mathrm{C}$ must not be exceeded. It is important to give careful consideration to all sources of thermal resistance from junction to ambient. Additional heat sources mounted nearby must also be considered.

APPLICATIONS INFORMATION

For surface mount devices, heat sinking is accomplished by using the heat spreading capabilities of the PC board and its copper traces. Copper board stiffeners and plated through-holes can also be used to spread the heat generated by power devices.
The following tables list thermal resistance for several different board sizes and copper areas. All measurements were taken in still air on 1/16" FR-4 board with one ounce copper.

Table 3. Q Package, 5-Lead DD

COPPER AREA			THERMAL RESISTANCE TOPSIDE*
BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)	

*Device is mounted on topside
Table 4. SO-8 Package, 8-Lead SO

COPPER AREA			$\begin{array}{c}\text { THERMAL RESISTANCE } \\ \text { TOPSIDE* }\end{array}$
BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)	

*Device is mounted on topside
Table 5. SOT-223 Package, 3-Lead SOT-223

COPPER AREA			THERMAL RESISTANCE TOPSIDE*
BACKSIDE	BOARD AREA	(JUNCTION-TO-AMBIENT)	

*Device is mounted on topside

T Package, 5-Lead T0-220

Thermal Resistance (Junction-to-Case) $=4^{\circ} \mathrm{C} / \mathrm{W}$

Calculating Junction Temperature

Example: Given an output voltage of 3.3 V , an input voltage range of 4 V to 6 V , an output current range of 0 mA
to 500 mA and a maximum ambient temperature of $50^{\circ} \mathrm{C}$, what will the maximum junction temperature be?
The power dissipated by the device will be equal to:

$$
I_{\text {OUT(MAX) }}\left(V_{\operatorname{IN}(M A X)}-V_{\text {OUT }}\right)+I_{G N D}\left(V_{\text {IN(MAX }}\right)
$$

where,

$$
\begin{aligned}
& I_{\text {OUT }}(\mathrm{MAX})=500 \mathrm{~mA} \\
& \mathrm{~V}_{\text {IN(MAX }}=6 \mathrm{~V} \\
& \mathrm{I}_{\text {GND }} \text { at }\left(\mathrm{I}_{\text {OUT }}=500 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=6 \mathrm{~V}\right)=10 \mathrm{~mA}
\end{aligned}
$$

So,

$$
P=500 \mathrm{~mA}(6 \mathrm{~V}-3.3 \mathrm{~V})+10 \mathrm{~mA}(6 \mathrm{~V})=1.41 \mathrm{~W}
$$

Using a DD package, the thermal resistance will be in the range of $23^{\circ} \mathrm{C} / \mathrm{W}$ to $33^{\circ} \mathrm{C} / \mathrm{W}$ depending on the copper area. So the junction temperature rise above ambient will be approximately equal to:

$1.41 \mathrm{~W}\left(28^{\circ} \mathrm{C} / \mathrm{W}\right)=39.5^{\circ} \mathrm{C}$

The maximum junction temperature will then be equal to the maximum junction temperature rise above ambient plus the maximum ambient temperature or:

$$
\mathrm{T}_{\mathrm{JMAX}}=50^{\circ} \mathrm{C}+39.5^{\circ} \mathrm{C}=89.5^{\circ} \mathrm{C}
$$

Protection Features

The LT1963A regulators incorporate several protection features which make them ideal for use in battery-powered circuits. In addition to the normal protection features associated with monolithic regulators, such as current limiting and thermal limiting, the devices are protected against reverse input voltages, reverse output voltages and reverse voltages from output to input.
Current limit protection and thermal overload protection are intended to protect the device against current overload conditions at the output of the device. For normal operation, the junction temperature should not exceed $125^{\circ} \mathrm{C}$.
The input of the device will withstand reverse voltages of 20V. Current flow into the device will be limited to less than 1 mA (typically less than $100 \mu \mathrm{~A}$) and no negative voltage will appear at the output. The device will protect both itself and the load. This provides protection against batteries that can be plugged in backward.

LT1963A Series

APPLICATIONS InFORMATION

The output of the LT1963A can be pulled below ground without damaging the device. If the input is left open circuit or grounded, the output can be pulled below ground by 20V. For fixed voltage versions, the output will act like a large resistor, typically 5k or higher, limiting current flow to typically less than $600 \mu \mathrm{~A}$. For adjustable versions, the output will act like an open circuit; no current will flow out of the pin. If the input is powered by a voltage source, the output will source the short-circuit current of the device and will protect itself by thermal limiting. In this case, grounding the SHDN pin will turn off the device and stop the output from sourcing the short-circuit current.
The ADJ pin of the adjustable device can be pulled above or below ground by as much as 7 V without damaging the device. If the input is left open circuit or grounded, the ADJ pin will act like an open circuit when pulled below ground and like a large resistor (typically 5 k) in series with a diode when pulled above ground.
In situations where the ADJ pin is connected to a resistor divider that would pull the ADJ pin above its 7 V clamp voltage if the output is pulled high, the ADJ pin input current must be limited to less than 5 mA . For example, a resistor divider is used to provide a regulated 1.5 V output from the 1.21 V reference when the output is forced to 20 V . The top resistor of the resistor divider must be chosen to limit the current into the ADJ pin to less than 5 mA when the ADJ pin is at 7 V . The 13 V difference between OUT and ADJ pins divided by the 5 mA maximum current into the ADJ pin yields a minimum top resistor value of 2.6 k .

In circuits where a backup battery is required, several different input/output conditions can occur. The output voltage may be held up while the input is either pulled to ground, pulled to some intermediate voltage, or is left open circuit. Current flow back into the output will follow the curve shown in Figure 12.
When the IN pin of the LT1963A is forced below the OUT pin or the OUT pin is pulled above the IN pin, input current will typically drop to less than $2 \mu \mathrm{~A}$. This can happen if the input of the device is connected to a discharged (low voltage) battery and the output is held up by either a backup battery or a second regulator circuit. The state of the SHDN pin will have no effect on the reverse output current when the output is pulled above the input.

Figure 12. Reverse Output Current

TYPICAL APPLICATIONS

SCR Pre-Regulator Provides Efficiency Over Line Variations

Paralleling of Regulators for Higher Output Current

LT1963A Series

PACKAGE DESCRIPTION

Q Package
5-Lead Plastic DD Pak
(Reference LTC DWG \# 05-08-1461 Rev F)

RECOMMENDED SOLDER PAD LAYOUT NOTE:

1. DIMENSIONS IN INCH/(MILLIMETER)
2. DRAWING NOT TO SCALE

RECOMMENDED SOLDER PAD LAYOUT FOR THICKER SOLDER PASTE APPLICATIONS

PACKAGE DESCRIPTION

S8 Package

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610 Rev G)

LT1963A Series

PACKAGE DESCRIPTION

ST Package
3-Lead Plastic SOT-223
(Reference LTC DWG \# 05-08-1630)

PACKAGE DESCRIPTION

T-Package

5-Lead Plastic TO-220 (Standard)
(Reference LTC DWG \# 05-08-1421)

LT1963A Series

PACKAGE DESCRIPTION

FE Package
16-Lead Plastic TSSOP (4.4mm)
(Reference LTC DWG \# 05-08-1663 Rev L)

Exposed Pad Variation BB

REVISIO HISTORY (Revision history begins at Rev E)

REV	DATE	DESCRIPTION	PAGE NUMBER
E	$02 / 11$	Updated FE and Q package drawings in Package Description section.	22,26
F	$09 / 13$	Replaced graphs with correct versions.	16
G	$02 / 21$	Added AEC-Q100 Qualified for Automotive Applications to Features table.	1
		Changed TJMAX in the Pin Configuration section from $150^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. 2 Added automotive products table (\#W).	4

LT1963A Series

TYPICAL APPLICATION

Adjustable Current Source

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1175	500 mA , Micropower, Negative LDO	$\mathrm{V}_{\text {IN: }}-20 \mathrm{~V} \text { to }-4.3 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=-3.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0.50 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=45 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}} 10 \mu \mathrm{~A} \text {, }$ DD, SOT-223, PDIP8 Packages
LT1185	3A, Negative LDO	$\mathrm{V}_{\text {IN : }}-35 \mathrm{~V} \text { to }-4.2 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=-2.40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0.80 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=2.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A} \text {, }$ TO220-5 Package
LT1761	100mA, Low Noise Micropower, LDO	$\begin{aligned} & \mathrm{V}_{\text {IN: }} 1.8 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=1.22 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0.30 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A} \\ & \text { ThinSOTTM Package } \end{aligned}$
LT1762	150mA, Low Noise Micropower, LD0	$\mathrm{V}_{\text {IN: }} 1.8 \mathrm{~V}$ to 20V, $\mathrm{V}_{\text {OUT(MIN }}=1.22 \mathrm{~V}, \mathrm{~V}_{\text {DO }}=0.30 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=25 \mu \mathrm{~A}, \mathrm{I}_{\text {SD }}<1 \mu \mathrm{~A}, \mathrm{MS8}$ Package
LT1763	500mA, Low Noise Micropower, LD0	$\mathrm{V}_{\text {IN }}: 1.8 \mathrm{~V}$ to 20V, $\mathrm{V}_{\text {OUT(MIN }}=1.22 \mathrm{~V}, \mathrm{~V}_{\text {DO }}=0.30 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{~S} 8$ Package
LT1764/ LT1764A	3A, Low Noise, Fast Transient Response, LDO	$\mathrm{V}_{\text {IN: }}$: 2.7 V to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN }}=1.21 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0.34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, DD, TO220 Packages
LTC1844	150mA, Very Low Drop-Out LDO	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 6.5 \mathrm{~V} \text { to } 1.6 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0.08 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \\ & \text { ThinSOT Package } \end{aligned}$
LT1962	300mA, Low Noise Micropower, LDO	$\mathrm{V}_{\text {IN: }}: 1.8 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN }}=1.22 \mathrm{~V}, \mathrm{~V}_{\text {DO }}=0.27 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \mathrm{MS8}$ Package
LT1964	200mA, Low Noise Micropower, Negative LDO	$\begin{aligned} & \mathrm{V}_{\text {IN: }}-0.9 \mathrm{~V} \text { to }-20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}=-1.21 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0.34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=30 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}} 3 \mu \mathrm{~A} \text {, } \\ & \text { ThinSOT Package } \end{aligned}$
LT1965	1.1A, Low Noise, Low Dropout Linear Regulator	290 mV Dropout Voltage, Low Noise: $40 \mu \mathrm{~V}_{\text {RMS }}, \mathrm{V}_{\text {IN }}$: 1.8 V to $20 \mathrm{~V}, \mathrm{~V}_{\text {Out: }} 1.2 \mathrm{~V}$ to 19.5 V , stable with ceramic caps, TO-220, DD-Pak, MSOP and $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN Packages
LT3020	100 mA , Low Voltage V LDO, $\mathrm{V}_{\text {IN }(\mathrm{MIN})}=0.9 \mathrm{~V}$	$\mathrm{V}_{\text {IN: }}: 0.9 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=0.20, \mathrm{~V}_{D 0}=0.15 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=120 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<3 \mu \mathrm{~A}$, DFN, MS8 Packages
LT3023	Dual, $2 \times 100 \mathrm{~mA}$, Low Noise Micropower, LDO	$\begin{aligned} & \mathrm{V}_{\text {IN: }}: 1.8 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN }}=1.22 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0.30 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}, \\ & \text { DFN, MS10 Packages } \end{aligned}$
LT3024	Dual, $100 \mathrm{~mA} / 500 \mathrm{~mA}$, Low Noise Micropower, LDO	$\mathrm{V}_{\text {IN: }} 1.8 \mathrm{~V}$ to $20 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN })}=1.22 \mathrm{~V}, \mathrm{~V}_{\mathrm{DO}}=0.30 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=60 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{SD}}<1 \mu \mathrm{~A}$, DFN, TSSOP Packages
$\begin{aligned} & \text { LT3080/ } \\ & \text { LT3080-1 } \end{aligned}$	1.1A, Parallelable, Low Noise, Low Dropout Linear Regulator	300 mV Dropout Voltage (2-Supply Operation), Low Noise: $40 \mu \mathrm{~V}_{\text {RMS }}, \mathrm{V}_{\text {IN: }} 1.2 \mathrm{~V}$ to 36 V , $\mathrm{V}_{\text {OUT: }}$: 0 V to 35.7 V , current-based reference with 1 -resistor $\mathrm{V}_{\text {OUT }}$ set; directly parallelable (no op amp required), stable with ceramic caps, TO-220, SOT-223, MSOP and $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ DFN Packages; "-1" version has integrated internal ballast resistor

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

