4-/6-Channel Digital Potentiometers

FEATURES

```
- 256 positions
- Multiple independently programmable channels
- AD5204-4-channel
- AD5206-6-channel
- Potentiometer replacement
- Terminal resistance of 10 k\Omega,50 k\Omega,100 k\Omega
* 3-wire SPI-compatible serial data input
>2.7 V to +5.5 V single-supply operation; }\pm2.7\textrm{V dual-supply
    operation
- Power-on midscale preset
```


APPLICATIONS

- Mechanical potentiometer replacement
- Instrumentation: gain, offset adjustment
- Programmable voltage-to-current conversion
- Programmable filters, delays, time constants
- Line impedance matching

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 2.
data output pin at the opposite end of the serial register (AD5204 only) allows simple daisy chaining in multiple VR applications without requiring additional external decoding logic.
An optional reset ($\overline{\mathrm{PR}})$ pin forces all the AD5204 wipers to the midscale position by loading 0x80 into the VR latch.
The AD5204/AD5206 are available in the 24-lead surface-mount SOIC and TSSOP packages. The AD5204 is also available in a 32-lead, $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ LFCSP package. All parts are guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. For additional single-, dual-, and quad-channel devices, see the AD8400/AD8402/AD8403 data sheets.
fixed A-to-B terminal resistance of $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, or $100 \mathrm{k} \Omega$ has a nominal temperature coefficient of $700 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Each VR has its own VR latch that holds its programmed resistance value. These VR latches are updated from an internal serial-to-parallel shift register that is loaded from a standard 3 -wire serial-input digital interface. Eleven data bits make up the data-word clocked into the serial input register. The first three bits are decoded to determine which VR latch is loaded with the last eight bits of the data-word when the $\overline{C S}$ strobe is returned to logic high. A serial

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams. 1
General Description 1
Specifications 3
Electrical Characteristics. 3
Timing Diagrams 5
Absolute Maximum Ratings 6
Electrostatic Discharge (ESD) Ratings 6
ESD Ratings for AD5204/AD5206. 6
ESD Caution. 6
Pin Configurations and Function Descriptions 7
Typical Performance Characteristics 10
Test Circuits. 12
Theory of Operation. 13
Programming the Variable Resistor 13
Programming the Potentiometer Divider. 14
Digital Interfacing 14
Outline Dimensions 16
Ordering Guide. 17
Evaluation Boards 17

REVISION HISTORY

5/2022—Rev. E to Rev. F
Deleted 24-Lead PDIP (Universal).
Changes to General Description Section 1
Changed 0×40 to Midscale, $0 \times 7 \mathrm{~F}$ to Full Scale, 0×00 to Zero Scale, and V_{DD} Range to V_{DD} Throughout, Table 1 3
Changes to VW Settling Time Parameter, Input Logic High Parameter, and Input Logic Low Parameter, Table 1 3
Deleted PDIP (N-24-1) Parameter, Table 2. 6
Added Electrostatic Discharge (ESD) Ratings Section. 6
Added ESD Ratings for AD5204/AD5206 Section and Table 3; Renumbered Sequentially 6
Moved Test Circuits Section 12
Changed Operation Section to Theory of Operation Section. 13
Moved Programming the Variable Resistor Section 13
Change to Rheostat Operation Section 13
Moved Programming the Potentiometer Divider Section 14
Moved Digital Interfacing Section and Figure 32 14
Updated Outline Dimensions 16
Changes to Ordering Guide 17

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

$V_{D D}=5 \mathrm{~V} \pm 10 \%$ or $3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$, unless otherwise noted.
Table 1.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Parameter \& Symbol \& Test Conditions/Comments \& Min \& Typ \({ }^{1}\) \& Max \& Unit \\
\hline \begin{tabular}{l}
DC CHARACTERISTICS RHEOSTAT MODE \({ }^{2}\) \\
Resistor Differential NL \({ }^{3}\) \\
Resistor Nonlinearity Error \({ }^{3}\) \\
Nominal Resistor Tolerance \({ }^{4}\) \\
Resistance Temperature Coefficient \\
Nominal Resistance Match \\
Wiper Resistance
\end{tabular} \& \begin{tabular}{l}
R-DNL \\
R-INL \\
\(\Delta R_{A B}\) \\
\(\Delta R_{A B} / \Delta T\) \\
\(\Delta R / R_{A B}\) \\
\(R_{W}\)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{R}_{\mathrm{WB}}, \mathrm{V}_{\mathrm{A}}=\) no connect \\
\(R_{\text {WB }}, V_{A}=\) no connect
\[
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
\] \\
\(V_{A B}=V_{D D}\), wiper \(=\) no connect \\
Channel 1 to Channel 2, Channel 3 , and Channel 4, or to Channel 5 and Channel 6 ; \(V_{A B}=V_{D D}\)
\[
I_{W}=1 \mathrm{~V} / \mathrm{R}, \mathrm{~V}_{D D}=5 \mathrm{~V}
\]
\end{tabular} \& \[
\begin{aligned}
\& -1 \\
\& -2 \\
\& -30
\end{aligned}
\] \& \[
\begin{aligned}
\& \pm 0.25 \\
\& \pm 0.5 \\
\& \\
\& 700 \\
\& 0.25 \\
\& \\
\& 50
\end{aligned}
\] \& \begin{tabular}{l}
\(+1\) \\
+2 \\
+30 \\
1.5 \\
100
\end{tabular} \& \begin{tabular}{l}
LSB \\
LSB \\
\% \\
ppm \(/{ }^{\circ} \mathrm{C}\) \\
\% \\
\(\Omega\)
\end{tabular} \\
\hline \begin{tabular}{l}
DC CHARACTERISTICS POTENTIOMETER DIVIDER MODE \({ }^{2}\) \\
Resolution \\
Differential Nonlinearity \({ }^{5}\) \\
Integral Nonlinearity \({ }^{5}\) \\
Voltage Divider Temperature Coefficient \\
Full-Scale Error \\
Zero-Scale Error
\end{tabular} \& \begin{tabular}{l}
N \\
DNL \\
INL \\
\(\Delta V_{W} / \Delta T\) \\
\(V_{\text {WFSE }}\) \\
\(V_{\text {WZSE }}\)
\end{tabular} \& \[
\begin{aligned}
\& \text { Code = midscale } \\
\& \text { Code = full scale } \\
\& \text { Code = zero scale }
\end{aligned}
\] \& \[
\begin{array}{|l}
8 \\
-1 \\
-2 \\
-2 \\
0
\end{array}
\] \& \[
\begin{aligned}
\& \pm 0.25 \\
\& \pm 0.5 \\
\& 15 \\
\& -1 \\
\& 1
\end{aligned}
\] \& \[
\begin{aligned}
\& +1 \\
\& +2 \\
\& 0 \\
\& 2
\end{aligned}
\] \& \begin{tabular}{l}
Bits \\
LSB \\
LSB \\
ppm \(/{ }^{\circ} \mathrm{C}\) \\
LSB \\
LSB
\end{tabular} \\
\hline \begin{tabular}{l}
RESISTOR TERMINALS \\
Voltage Range \({ }^{6}\) \\
Capacitance \({ }^{7}\) Ax, \(B x\) \\
Capacitance \({ }^{7}\) Wx \\
Shutdown Current \({ }^{8}\) \\
Common-Mode Leakage
\end{tabular} \& \[
\begin{aligned}
\& V_{A}, V_{B}, V_{W} \\
\& C_{A}, C_{B} \\
\& C_{W} \\
\& I_{A_{A} S D} \\
\& I_{C M}
\end{aligned}
\] \& \(\mathrm{f}=1 \mathrm{MHz}\), measured to GND , code \(=\) midscale \(\mathrm{f}=1 \mathrm{MHz}\), measured to GND , code \(=\) midscale
\[
V_{A}=V_{B}=V_{W}=0, V_{D D}=+2.7 \mathrm{~V}, V_{S S}=-2.5 \mathrm{~V}
\] \& \& \[
\begin{aligned}
\& 45 \\
\& 60 \\
\& 0.01 \\
\& 1
\end{aligned}
\] \& \[
V_{D D}
\]
\[
5
\] \& \begin{tabular}{l}
V \\
pF \\
pF \\
\(\mu \mathrm{A}\) \\
nA
\end{tabular} \\
\hline \begin{tabular}{l}
DIGITAL INPUTS AND OUTPUTS \\
Input Logic High \\
Input Logic Low \\
Output Logic High \\
Output Logic Low \\
Input Current \\
Input Capacitance \({ }^{7}\)
\end{tabular} \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{H}} \\
\& \mathrm{~V}_{\mathrm{IL}} \\
\& \mathrm{~V}_{\mathrm{OH}} \\
\& \mathrm{~V}_{\mathrm{OL}} \\
\& \mathrm{I}_{\mathrm{LL}} \\
\& \mathrm{C}_{\mathrm{IL}}
\end{aligned}
\] \& \[
\begin{aligned}
\& V_{D D}=5 \mathrm{~V} \\
\& V_{D D}=3 \mathrm{~V} \\
\& V_{D D}=5 \mathrm{~V} \\
\& V_{D D}=3 \mathrm{~V} \\
\& R_{P U L L-U P}=1 \mathrm{k} \Omega \text { to } 5 \mathrm{~V} \\
\& \mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}, \mathrm{~V}_{\text {LOGIC }}=5 \mathrm{~V} \\
\& \mathrm{~V}_{\mathbb{I}}=0 \mathrm{~V} \text { or } 5 \mathrm{~V}
\end{aligned}
\] \& 2.4
2.1

4.9 \& 5 \& $$
\begin{aligned}
& 0.8 \\
& 0.6 \\
& 0.4 \\
& \pm 1
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& V \\
& \mu \mathrm{~A} \\
& \mathrm{VF}
\end{aligned}
$$
\]

\hline | POWER SUPPLIES |
| :--- |
| Power Single-Supply Range |
| Power Dual-Supply Range |
| Positive Supply Current |
| Negative Supply Current |
| Power Dissipation ${ }^{9}$ |
| Power Supply Sensitivity | \& | $V_{D D}$ |
| :--- |
| $V_{D D} / V_{S S}$ |
| $I_{D D}$ |
| lss |
| PDISS |
| PSS | \& \[

$$
\begin{aligned}
& V_{S S}=0 \mathrm{~V} \\
& V_{I H}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\
& \mathrm{~V}_{S S}=-2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=+2.7 \mathrm{~V} \\
& \mathrm{~V}_{I H}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\
& \Delta \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 2.7 \\
& \pm 2.3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 12 \\
& 12 \\
& 0.0002
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 5.5 \\
& \pm 2.7 \\
& 60 \\
& 60 \\
& 0.3 \\
& 0.005
\end{aligned}
$$

\] \& | V |
| :--- |
| V |
| $\mu \mathrm{A}$ |
| $\mu \mathrm{A}$ |
| mW |
| \% \% |

\hline | DYNAMIC CHARACTERISTICS7, 10 |
| :--- |
| Bandwidth -3dB | \& \[

$$
\begin{aligned}
& \text { BW_10K } \\
& \text { BW_50K }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& R_{A B}=10 \mathrm{k} \Omega \\
& R_{A B}=50 \mathrm{k} \Omega
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& 721 \\
& 137
\end{aligned}
$$

\] \& \& \[

$$
\begin{aligned}
& \mathrm{kHz} \\
& \mathrm{kHz}
\end{aligned}
$$
\]

\hline
\end{tabular}

SPECIFICATIONS

Table 1.

Figure 3. Timing Diagram

Figure 4. Detailed Timing Diagram

Figure 5. AD5204 Preset Timing Diagram

ABSOLUTE MAXIMUM RATINGS

$T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 2.

Parameter	Rating
$V_{D D}$ to GND	-0.3 V to +7 V
$V_{S S}$ to GND	0 V to-7 V
$V_{D D}$ to $V_{S S}$	7 V
V_{A}, V_{B}, V_{W} to GND	$V_{S S}, V_{D D}$
I_{A}, I_{B}, l_{W}	
Pulsed ${ }^{1}$	$\pm 20 \mathrm{~mA}$
Continuous	
$10 \mathrm{k} \Omega$ End-to-End Resistance	$\pm 11 \mathrm{~mA}$
$50 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ End-to-End Resistance	$\pm 2.5 \mathrm{~mA}$
Digital Input and Output Voltage to GND	$\begin{aligned} & -0.3 \mathrm{~V} \text { to }\left(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\right) \text { or } 7 \mathrm{~V} \\ & \text { (whichever is less) } \end{aligned}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\mathrm{T}_{\mathrm{J}} \mathrm{max}$)	$150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Reflow Soldering	
Peak Temperature	$260^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec
Package Power Dissipation	$\left(T_{j}\right.$ max $\left.-T_{A}\right) / \theta_{j A}$
Thermal Resistance, $\theta_{\mathrm{JA}}{ }^{2}$	
SOIC (RW-24)	$52^{\circ} \mathrm{C} / \mathrm{W}$
TSSOP (RU-24)	$50^{\circ} \mathrm{C} / \mathrm{W}$
LFCSP (CP-32-13)	$32.5{ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ Maximum terminal current is bounded by the maximum current handling of the switches, maximum power dissipation of the package, and maximum applied voltage across any two of the A, B, and W terminals at a given resistance.
2 Thermal resistance (JEDEC 4-layer (2S2P) board). Paddle soldered to board.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 6. AD5204 SOIC/TSSOP Pin Configuration

Table 4. AD5204 SOIC/TSSOP Pin Function Descriptions

Pin No.	Name	Description
1, 2, 12	NC	Not Connected.
3	GND	Ground.
4	$\overline{C S}$	Chip Select Input (Active Low). When $\overline{\mathrm{CS}}$ returns high, data in the serial input register is decoded based on the address bits, and then it is loaded into the target RDAC latch.
5	$\overline{\text { PR }}$	Preset to Midscale (Active Low). This pin sets the RDAC registers to 0x80.
6	$V_{D D}$	Positive Power Supply. This pin is specified for operation at both 3 V and 5 V . It is the sum of $\left\|\mathrm{V}_{\text {DD }}\right\|+\left\|\mathrm{V}_{S S}\right\|<5.5 \mathrm{~V}$.
7	SHDN	Terminal A Open-Circuit Shutdown (Active Low Input). This pin controls VR 1 through VR 4.
8	SDI	Serial Data Input. Data is input MSB first.
9	CLK	Serial Clock Input. This pin is positive edge triggered.
10	SDO	Serial Data Output. This pin is an open-drain transistor and requires a pull-up resistor.
11	$V_{S S}$	Negative Power Supply. This pin is specified for operation at both 0 V and -2.7 V . It is the sum of $\left\|\mathrm{V}_{\mathrm{DD}}\right\|+\left\|\mathrm{V}_{S S}\right\|<5.5 \mathrm{~V}$.
13	B3	Terminal B RDAC 3.
14	W3	Wiper RDAC 3. Address $=0102$.
15	A3	Terminal A RDAC 3.
16	B1	Terminal B RDAC 1.
17	W1	Wiper RDAC 1. Address $=0002$.
18	A1	Terminal A RDAC 1.
19	A2	Terminal A RDAC 2.
20	W2	Wiper RDAC 2. Address $=0012$.
21	B2	Terminal B RDAC 2.
22	A4	Terminal A RDAC 4.
23	W4	Wiper RDAC 4. Address $=011{ }_{2}$.
24	B4	Terminal B RDAC 4.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 7. AD5204 LFCSP Pin Configuration

Table 5. AD5204 LFCSP Pin Function Descriptions

Pin No.	Name	Description
1	$V_{S S}$	Negative Power Supply. This pin is specified for operation at both 0 V and -2.7 V . It is the sum of $\left\|\mathrm{V}_{\mathrm{DD}}\right\|+\left\|\mathrm{V}_{S S}\right\|<5.5 \mathrm{~V}$.
$\begin{aligned} & 2 \text { to } 5,9,16, \\ & 17,21 \text { to } 24 \end{aligned}$	NC	Not Connected.
6	B3	Terminal B RDAC 3.
7	W3	Wiper RDAC 3. Address $=0102$.
8	A3	Terminal A RDAC 3.
10	B1	Terminal B RDAC 1.
11	W1	Wiper RDAC 1. Address $=0002$.
12	A1	Terminal A RDAC 1.
13	A2	Terminal A RDAC 2.
14	W2	Wiper RDAC 2. Address $=0012$.
15	B2	Terminal B RDAC 2.
18	A4	Terminal A RDAC 4.
19	W4	Wiper RDAC 4. Address $=011{ }_{2}$.
20	B4	Terminal B RDAC 4.
25	GND	Ground.
26	$\overline{C S}$	Chip Select Input (Active Low). When $\overline{\mathrm{CS}}$ returns high, data in the serial input register is decoded based on the address bits, and then it is loaded into the target RDAC latch.
27	$\overline{\mathrm{PR}}$	Preset to Midscale (Active Low). This pin sets the RDAC registers to 0×80.
28	$V_{D D}$	Positive Power Supply. This pin is specified for operation at both 3 V and 5 V . It is the sum of $\left\|\mathrm{V}_{\mathrm{DD}}\right\|+\left\|\mathrm{V}_{S S}\right\|<5.5 \mathrm{~V}$.
29	$\overline{\text { SHDN }}$	Terminal A Open-Circuit Shutdown (Active Low Input). This pin controls VR 1 through VR 4.
30	SDI	Serial Data Input. Data is input MSB first.
31	CLK	Serial Clock Input. This pin is positive edge triggered.
32	SDO	Serial Data Output. This pin is an open-drain transistor and requires a pull-up resistor.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 8. AD5206 SOIC/TSSOP Pin Configuration
Table 6. AD5206 Pin Function Descriptions

Pin No.	Name	Description
1	A6	Terminal A RDAC 6.
2	W6	Wiper RDAC 6. Address $=1012$.
3	B6	Terminal B RDAC 6.
4	GND	Ground.
5	$\overline{C S}$	Chip Select Input (Active Low). When $\overline{\mathrm{CS}}$ returns high, data in the serial input register is decoded based on the address bits, and then it is loaded into the target RDAC latch.
6	$V_{D D}$	Positive Power Supply. This pin is specified for operation at both 3 V and 5 V . It is the sum of $\left\|\mathrm{V}_{\mathrm{DD}}\right\|+\left\|\mathrm{V}_{S S}\right\|<5.5 \mathrm{~V}$.
7	SDI	Serial Data Input. Data is input MSB first.
8	CLK	Serial Clock Input. This pin is positive edge triggered.
9	$V_{S S}$	Negative Power Supply. This pin is specified for operation at both 0 V and -2.7 V . It is the sum of $\left\|\mathrm{V}_{\mathrm{DD}}\right\|+\left\|\mathrm{V}_{S S}\right\|<5.5 \mathrm{~V}$.
10	B5	Terminal B RDAC 5.
11	W5	Wiper RDAC 5. Address $=10{ }_{2}$.
12	A5	Terminal A RDAC 5.
13	B3	Terminal B RDAC 3.
14	W3	Wiper RDAC 3. Address $=010{ }_{2}$.
15	A3	Terminal A RDAC 3.
16	B1	Terminal B RDAC 1.
17	W1	Wiper RDAC 1. Address $=0002$.
18	A1	Terminal A RDAC 1.
19	A2	Terminal A RDAC 2.
20	W2	Wiper RDAC 2. Address $=0012$.
21	B2	Terminal B RDAC 2.
22	A4	Terminal A RDAC 4.
23	W4	Wiper RDAC 4. Address $=011{ }_{2}$.
24	B4	Terminal B RDAC 4.

Figure 9. Incremental On Resistance of the Wiper vs. Voltage

Figure 10. Gain Flatness vs. Frequency

Figure 11. -3 dB Bandwidth vs. Terminal Resistance, 2.7 V Single-Supply Operation

Figure 12. -3 dB Bandwidth vs. Terminal Resistance, ± 2.7 V Dual-Supply Operation

Figure 13. Bandwidth vs. Code, $10 \mathrm{k} \Omega$ Version

Figure 14. Bandwidth vs. Code, $50 \mathrm{k} \Omega$ Version

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. Bandwidth vs. Code, 100 k Ω Version

Figure 16. Digital Input Trip Point vs. Supply Voltage

Figure 17. Supply Current vs. Input Logic Voltage

Figure 18. Supply Current vs. Clock Frequency

Figure 19. Power Supply Rejection vs. Frequency

Figure 20. Total Harmonic Distortion Plus Noise vs. Frequency

TEST CIRCUITS

Figure 21. ESD Protection of Digital Pins

Figure 22. ESD Protection of Resistor Terminals

Figure 23. Potentiometer Divider Nonlinearity Error Test Circuit (INL, DNL)

Figure 24. Resistor Position Nonlinearity Error (Rheostat Operation; R-INL, R-DNL)

Figure 25. Wiper Resistance Test Circuit

Figure 26. Power Supply Sensitivity Test Circuit (PSS, PSRR)

Figure 27. Inverting Programmable Gain Test Circuit

Figure 28. Noninverting Programmable Gain Test Circuit

Figure 29. Gain vs. Frequency Test Circuit

Figure 30. Incremental On-Resistance Test Circuit

THEORY OF OPERATION

The AD5204 provides a 4 -channel, 256 -position digitally controlled VR device, and the AD5206 provides a 6 -channel, 256 -position digitally controlled VR device. Changing the programmed VR settings is accomplished by clocking an 11-bit serial data-word into the SDI pin. The format of this data-word is three address bits, MSB first, followed by eight data bits, MSB first. Table 7 provides the serial register data-word format.

Table 7. Serial Data-Word Format

Address			Data							
B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
A2 MSB 2^{10}	A1	$\begin{aligned} & \text { AO } \\ & \text { LSB } \\ & 2^{8} \end{aligned}$	$\begin{array}{\|l} \hline \text { D7 } \\ \text { MSB } \\ 2^{7} \end{array}$	D6	D5	D4	D3	D2	D1	$\begin{aligned} & \text { DO } \\ & \text { LSB } \\ & 2^{0} \end{aligned}$

See Table 11 for the AD5204/AD5206 address assignments to decode the location of the VR latch receiving the serial register data in Bit B7 through Bit B0. The VR outputs can be changed one at a time in random sequence. The AD5204 presets to midscale by asserting the $\overline{P R}$ pin, simplifying fault condition recovery at power up. Both parts have an internal power-on preset that places the wiper in a preset midscale condition at power on. In addition, the AD5204 contains a power shutdown pin (SHDN) that places the RDAC in a zero power consumption state, where terminals $A x$ are open circuited and wipers $W x$ are connected to terminals $B x$, resulting in only leakage currents being consumed in the VR structure. In shutdown mode, the VR latch settings are maintained so that the $V R$ settings return to their previous resistance values when the device is returned to operational mode from power shutdown.

Figure 31. AD5204/AD5206 Equivalent RDAC Circuit

PROGRAMMING THE VARIABLE RESISTOR

Rheostat Operation

The nominal resistance of the RDAC between Terminal A and Terminal B is available with values of $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$, and $100 \mathrm{k} \Omega$. The last digits of the part number determine the nominal resistance value; for example, $10 \mathrm{k} \Omega=10$ and $100 \mathrm{k} \Omega=100$. The nominal resistance $\left(\mathrm{R}_{\mathrm{AB}}\right)$ of the VR has 256 contact points accessed by the wiper terminal, plus Terminal B contact. The 8-bit data-word in the RDAC latch is decoded to select one of the 256 possible settings.

The first connection of the wiper starts at Terminal B for the 0×00 data. This Terminal B connection has a wiper contact resistance of 45Ω. The second connection (for a $10 \mathrm{k} \Omega$ part) is the first tap point, located at $84 \Omega\left[=R_{A B}\right.$ (nominal resistance)/256 $+R_{W}=39$ $\Omega+45 \Omega]$ for the 0×01 data. The third connection is the next tap point, representing $78+45=123 \Omega$ for the 0×02 data. Each LSB data value increase moves the wiper up the resistor ladder until the last tap point is reached at $10,006 \Omega$. The wiper does not directly connect to Terminal A. See Figure 31 for a simplified diagram of the equivalent RDAC circuit.

The general transfer equation determining the digitally programmed output resistance between the Wx and Bx terminals is
$R_{W B}(D x)=(D x) / 256 \times R_{A B}+R_{W}$
where $D x$ is the data contained in the 8 -bit RDACx latch, and $R_{A B}$ is the nominal end-to-end resistance.

For example, when $\mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}$ and Terminal A is open circuited, the output resistance values are set as outlined in Table 8 for the RDAC latch codes (applies to the $10 \mathrm{k} \Omega$ potentiometer).
Table 8. Output Resistance Values for the RDAC Latch Codes- $V_{B}=0 \mathrm{~V}$ and Terminal A $=$ Open Circuited

$D(\mathrm{Dec})$	$\mathrm{R}_{\text {WB }}(\Omega)$	Output State
255	10006	Full scale
128	5045	Midscale $(\overline{\mathrm{PR}}=0$ condition)
1	84	1 LSB
0	45	Zero scale (wiper contact resistance)

In the zero-scale condition, a finite total wiper resistance of 45Ω is present. Regardless of which setting the part is operating in, care should be taken to limit the current between Terminal A to Terminal B, Wiper W to Terminal A, and Wiper W to Terminal B, to the maximum continuous current of $\pm 5.65 \mathrm{~mA}(10 \mathrm{k} \Omega)$ or $\pm 1.35 \mathrm{~mA}(50$ $\mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$) or pulse current of $\pm 20 \mathrm{~mA}$. Otherwise, degradation or possible destruction of the internal switch contact, can occur.
Like the mechanical potentiometer that the RDAC replaces, the RDAC is completely symmetrical. The resistance between Wiper W and Terminal A produces a digitally controlled resistance, $R_{\text {WA }}$. When these terminals are used, Terminal B should be tied to the wiper. Setting the resistance value for $R_{\text {WA }}$ starts at a maximum value of resistance and decreases as the data loaded to the latch is increased in value. The general transfer equation for this operation is
$R_{W A}(D x)=(256-D x) / 256 \times R_{A B}+R_{W}$
where $D x$ is the data contained in the 8 -bit RDACx latch, and $R_{A B}$ is the nominal end-to-end resistance.

For example, when $V_{A}=0 \mathrm{~V}$ and Terminal B is tied to Wiper W , the output resistance values outlined in Table 9 are set for the RDAC latch codes.

THEORY OF OPERATION

Table 9. Output Resistance Values for the RDAC Latch Codes $-V_{A}=0$ V and Terminal B Tied to Wiper W

$\mathrm{D}(\mathrm{DEC})$	$\mathrm{R}_{\text {WA }}(\Omega)$	Output State
255	84	Full scale
128	5045	Midscale ($\overline{\mathrm{PR}=0 \text { condition })}$
1	10006	1 LSB
0	10045	Zero scale

The typical distribution of R_{AB} from channel to channel matches to within $\pm 1 \%$. However, device-to-device matching is process lot dependent, having a $\pm 30 \%$ variation. The change in $R_{A B}$ in terms of temperature has a $700 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature coefficient.

PROGRAMMING THE POTENTIOMETER DIVIDER

Voltage Output Operation

The digital potentiometer easily generates an output voltage proportional to the input voltage applied to a given terminal. For example, connecting Terminal A to 5 V and Terminal B to ground produces an output voltage at the wiper that can be any value from 0 V up to 1 LSB less than +5 V . Each LSB of voltage is equal to the voltage applied across Terminal A and Terminal B divided by the 256 -position resolution of the potentiometer divider. The general equation defining the output voltage with respect to ground for any given input voltage applied to Terminal A and Terminal B is

$$
\begin{equation*}
V_{W}(D x)=D x / 256 \times V_{A B}+V_{B} \tag{3}
\end{equation*}
$$

Operation of the digital potentiometer in the divider mode results in more accurate operation over temperature. In this mode, the output voltage is dependent on the ratio of the internal resistors, not the absolute value; therefore, the drift improves to $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

DIGITAL INTERFACING

The AD5204/AD5206 each contain a standard 3-wire serial input control interface. The three inputs are clock (CLK), chip select input ($\overline{\mathrm{CS}}$), and serial data input (SDI). The positive-edge-sensitive CLK input requires clean transitions to avoid clocking incorrect data into the serial input register. Standard logic families work well. If mechanical switches are used for product evaluation, they should be debounced by a flip-flop or by other suitable means. Figure 32 shows more detail of the internal digital circuitry. When $\overline{\mathrm{CS}}$ is taken active low, the clock loads data into the serial register on each positive clock edge (see Table 10). When using a positive (V_{DD}) and negative ($V_{S S}$) supply voltage, the logic levels are still referenced to digital ground (GND).

The serial data output (SDO) pin contains an open-drain n-channel FET. This output requires a pull-up resistor to transfer data to the SDI pin of the next package. The pull-up resistor termination voltage can be larger than the $V_{D D}$ supply of the AD5204. For example, the $\mathrm{AD5204}$ can operate at $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, and the pull-up for the interface to the next device can be set at 5 V . This allows for
daisy chaining several RDACs from a single-processor serial data line.

If a pull-up resistor is used to connect the SDI pin of the next device in the series, the clock period must be increased. Capacitive loading at the daisy-chain node (where SDO and SDI are connected) between the devices must be accounted for to successfully transfer data. When daisy chaining is used, the $\overline{\mathrm{CS}}$ should be kept low until all the bits of every package are clocked into their respective serial registers, ensuring that the address bits and data bits are in the proper decoding locations. This requires 22 bits of address and data complying with the data-word format outlined in Table 7 if two AD5204 4-channel RDACs are daisy-chained. During shutdown (SHDN), the SDO output pin is forced to the off (logic high state) position to disable power dissipation in the pull-up resistor. See Figure 34 for the equivalent SDO output circuit schematic.

Figure 32. Block Diagram
Table 10. Input Logic Control Truth Table ${ }^{1}$

CLK	$\overline{\text { CS }}$	$\overline{\text { PR }}$	$\overline{\text { SHDN }}$	Register Activity
L	L	H	H	No SR effect; enables SDO pin.
P	L	H	H	Shift one bit in from the SDI pin. The $11^{\text {th }}$ bit entered is shifted out of the SDO pin.
X	P	H	H	Load SR data into the RDAC latch based on A2, A1, A0 decode (Table 11).
X	H	H	H	No operation.
X	X	L	H	Sets all RDAC latches to midscale; wiper centered and SDO latch cleared.
X	H	P	H	Latches all RDAC latches to 0x80.
X	H	H	L	Open circuits all A resistor terminals, connects Wiper W to Terminal B, and turns off the SDO output transistor.

[^0]
THEORY OF OPERATION

Table 11. Address Decode Table

A2	A1	A0	Latch Decoded
0	0	0	$\operatorname{RDAC} 1$
0	0	1	$\operatorname{RDAC} 2$
0	1	0	$\operatorname{RDAC} 3$
0	1	1	$\operatorname{RDAC~4}$
1	0	0	$\operatorname{RDAC} 5$ AD5206 only
1	0	1	$\operatorname{RDAC} 6$ AD5206 only

The data setup and data hold times in the specification table determine the data valid time requirements. The last 11 bits of the data-word entered into the serial register are held when $\overline{\mathrm{CS}}$ returns high. When $\overline{C S}$ goes high, the address decoder is gated, enabling one of four or six positive-edge-triggered RDAC latches (see Figure 33 for details).

Figure 33. Equivalent Input Control Logic
The target RDAC latch is loaded with the last eight bits of the serial data-word, completing one DAC update. Four separate 8-bit data-words must be clocked in to change all four VR settings.

Figure 34. Detail SDO Output Schematic of the AD5204
All digital pins ($\overline{C S}, S D I, S D O, \overline{P R}, \overline{S H D N}$, and CLK) are protected with a series input resistor and a parallel Zener ESD structure (see Figure 21).

Figure 35. 24-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-24)
Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MO-153-AD
Figure 36. 24-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-24)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WHHD.
Figure 37. 32-Lead Lead Frame Chip Scale Package [LFCSP] $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ Body and 0.75 mm Package Height (CP-32-13)
Dimensions shown in millimeters

OUTLINE DIMENSIONS

Updated: May 11, 2022

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Packing Quantity	Package Option
AD5204BCPZ10-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead LFCSP ($5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.75 \mathrm{~mm}$ w/ EP)	Reel, 5000	CP-32-13
AD5204BCPZ10-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32-Lead LFCSP ($5 \mathrm{~mm} \times 5 \mathrm{~mm} \times 0.75 \mathrm{~mm}$ w/ EP)	Reel, 1500	CP-32-13
AD5204BRUZ10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Tube	RU-24
AD5204BRUZ100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Tube	RU-24
AD5204BRUZ100-R7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Reel, 1000	RU-24
AD5204BRUZ10-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Reel, 1000	RU-24
AD5204BRUZ50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Tube	RU-24
AD5204BRUZ50-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Reel, 1000	RU-24
AD5204BRZ10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC (Wide)	Tube	RW-24
AD5204BRZ100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC (Wide)	Tube	RW-24
AD5204BRZ10-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC (Wide)	Reel, 1000	RW-24
AD5204BRZ50-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC (Wide)	Reel, 1000	RW-24
AD5206BRUZ10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Tube	RU-24
AD5206BRUZ100-RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Reel, 1000	RU-24
AD5206BRUZ10-RL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Reel, 1000	RU-24
AD5206BRUZ50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Tube	RU-24
AD5206BRUZ50-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead TSSOP	Reel, 1000	RU-24
AD5206BRZ10	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC (Wide)	Tube	RW-24
AD5206BRZ100	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC (Wide)	Tube	RW-24
AD5206BRZ10-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC (Wide)	Reel, 1000	RW-24
AD5206BRZ50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	24-Lead SOIC (Wide)	Tube	RW-24

${ }^{1} Z=$ RoHS Compliant Part.

EVALUATION BOARDS

Model	Description
EVAL-AD5204SDZ ${ }^{1}$	Evaluation Board
1 Z $=$ RoHS Compliant Part.	

[^1]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Analog Devices Inc.:
EVAL-AD5204SDZ AD5204BRZ10 AD5204BRZ100 AD5204BRUZ50 AD5204BRUZ100 AD5204BRUZ10 AD5204BCPZ10-REEL AD5204BCPZ10-REEL7 AD5204BRUZ100-R7 AD5204BRUZ10-REEL7 AD5204BRUZ50-

REEL7 AD5204BRZ50-REEL AD5204BRZ10-REEL

[^0]: $1 P=$ positive edge, $X=$ don't care, $S R=$ shift register.

[^1]: 1 Z = RoHS Compliant Part.

