

Oxx40xx Series

Description

The 40 Amp bi-directional solid state switch series is designed for AC switching and phase control applications such as motor speed, temperature modulation controls, lighting controls, and static switching relays.

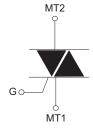
Alternistor type components only operate in quadrants I, II, & III and are used in circuits requiring high dv/dt capability.

Standard type devices operate in quadrants I,II,III & IV.

Agency Approval

Agency	Agency File Number
71	E71639*

^{* -} K and J Packages


Features & Benefits

- RoHS Compliant
- Glass passivated junctions
- Voltage capability up to 1000V
- Surge capability up to 400A
- Electrically isolated
 K & J -Packages are UL
 Recognized for 2500Vrms

Main Features

Symbol	Value	Unit
I _{T(RMS)}	40	А
V_{DRM}/V_{RRM}	400 to 1000	V
I _{GT (Q1)}	35 to 100	mA

Schematic Symbol

Applications

Excellent for AC switching and phase control applications such as heating, lighting, and motor speed controls.

Typical applications are AC solid-state switches, industrial power tools, exercise equipment, white goods and commercial appliances.

Alternistor Triacs (no snubber required) are used in applications with extremely inductive loads requiring highest commutation performance.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Symbol	Parameter			Value	Unit
I _{T(RMS)}	RMS on-state current (full sine wave)	Qxx40x7 Qxx40xH6	T _c = 75 °C	40	А
	Non repetitive surge peak on-state current	f = 50 Hz	t = 20 ms	335	^
I _{TSM}	(full cycle, TJ initial = 25°C)	f = 60 Hz	t = 16.7 ms	400	Α
l²t	I2t Value for fusing		$t_p = 8.3 \text{ ms}$	664	A ² s
di/dt	Critical rate of rise of on-state current (IG = $2 \times IGT$, tr $\leq 100 \text{ ns}$)	f = 120 Hz	T _J = 125 °C	150	A/µs
I _{GTM}	Peak gate trigger current	t _p =20μs	T _J = 125 °C	4	А
P _{G(AV)}	Average gate power dissipation $T_J = 125 ^{\circ}\text{C}$			0.5	W
T _{stg}	Storage temperature range			-40 to 150	°C
T _J	Operating jund	ction temperature range		-40 to 125	°C

Absolute Maximum Ratings – Standard Triac (4 Quadrants)

Symbol	Parameter	Test C	onditions	Value	Unit
I _{T(RMS)}	RMS on-state current	Qxx40x3/Qxx40x4	T _c = 75 °C	40	А
1	Dool, non ronatiti a curso surrent	f = 50 Hz	t = 20 ms	335	^
TSM	Peak non-repetitive surge current	f = 60 Hz	t = 16 ms	400	Α
l²t	I²t Value for fusing		t _p = 8.3 ms	664	A ² s
di/dt	Critical rate-of-rise of on-state current	f = 120 H	Iz; T _J =125 °C	150	A/µs
I _{GTM}	Peak gate current	t _ρ =20μs	T _J = 125 °C	4	А
P _{G(AV)}	Average gate power dissipation	T _J =	= 125°C	0.5	W
T _{stg}	Storage temperature range			-40 to 150	°C
T _J	Operating junction temperature range			-40 to 125	°C

Electrical Characteristics (T_j = 25°C, unless otherwise specified) — Alternistor Triac (3 Quadrants)

Symbol	Test Conditions	Quadrant			Value		Unit
Зутаоі	lest Conditions	Quadr	ant	Qxx40xH6	Qxx40K5	Qxx40x7	Unit
I _{GT}	$V_D = 12V R_L = 60 \Omega$	1 – 11 – 111	MAX.	80	50	100	mA
V _{GT}	$V_D = 12V R_L = 60 \Omega$	1 – 11 – 111	MAX.	1.3	1.3	2.0	V
$V_{\sf GD}$	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 125^{\circ}\text{C}$	1 – 11 – 111	MIN.		0.2		V
I _H	I _T = 400mA		MAX.	80	75	100	mA
		400V		600	500	700	
dv/dt	V V Cata Open T 1259C	600V	NAINI	500	475	625	\// ₁ , , o
αν/αι	$V_D = V_{DRM}$ Gate Open $T_J = 125$ °C	800V	MIN.	475	400	575	V/µs
		1000V		1000	800	1200	
(dv/dt)c	$(di/dt)c = 21.6 \text{ A/ms } T_J = 125^{\circ}\text{C}$		MIN.	30	20	50	V/µs
t _{gt}	$I_{G} = 2 \times I_{GT} \text{ PW} = 15 \mu \text{s} I_{T} = 56.6 \text{A(pk)}$		TYP.		5		μs

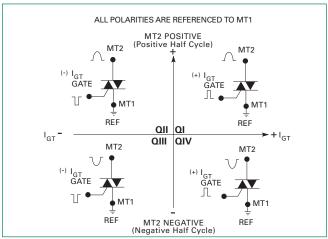
© 2020 Littelfuse, Inc. Specifications are subject to change without notice. Revised: GD. 12/17/20

Electrical Characteristics (T_J = 25°C, unless otherwise specified) — Standard Triac (4 Quadrants)

					Value		
Symbol	Test Conditions	Quadrant		Qxx40x3	Qxx40x4	Unit	
	V 12V B 00.0	1 – 11 – 111	MAX.	35	50	A	
I _{GT}	$V_D = 12 \text{ V}; \ R_L = 60 \Omega$	IV	MAX.	70	100	- mA	
V _{GT}	$V_D = 12 \text{ V}; \ \ R_L = 60 \ \Omega$	ALL	MAX.	1.3	1.3	V	
V _{GD}	$V_D = V_{DRM}$; $R_L = 3.3 \text{ k}\Omega$; $T_J = 125 \text{ °C}$	ALL	MIN.	0.2	0.2	V	
I _H	$I_T = 400 \text{mA} \text{ (initial)}$		MAX.	80	80	mA	
		400V		400	400		
dv/dt	$V_D = V_{DRM}$; Gate Open; $T_J = 125 ^{\circ}C$	600V	MIN.	400	400	V/µs	
		800V		400	400		
(dv/dt)c	(di/dt)c = 4.3 A/ms; T _J = 125 °C		MIN.	10	10	V/µs	
t _{gt}	$I_{G} = 2 \times I_{GT}$; PW = 15 μ s; $I_{T} = 35.4 \text{ A}$		TYP.	5	5	μs	
dv/dt	VD=VDRM,Gate Open, TJ=100°C 100	00V	-	-	300	V/µs	

Static Characteristics

Symbol	Test Conditions				Value	Unit
V _{TM}	$I_{TM} = 56.6A t_p = 380 \mu s$	T _J = 25°C		MAX.	1.8	V
	$V_{\rm D} = V_{\rm DRM} / V_{\rm RRM}$	T _J = 25°C	400 –1000V	MAX.	20	μА
1		T _J = 125°C	400 – 800V	MAX.	5	mA
'RRM		T _J = 100°C	1000V	MAX.	5	mA


Thermal Resistances

Symbol	Parameter			Value	Unit
R _{e(J-C)}	Junction to case (AC)		Qxx40KH6 Qxx40K5/7 Qxx40K4/J4 Qxx40K3	0.97	°C/W
			Qxx40JH6 Qxx40J7	0.95	

Note: xx = voltage

Figure 1: Definition of Quadrants

Note: Alternistors will not operate in QIV

Figure 2: Normalized DC Gate Trigger Current for All Quadrants vs. Junction Temperature

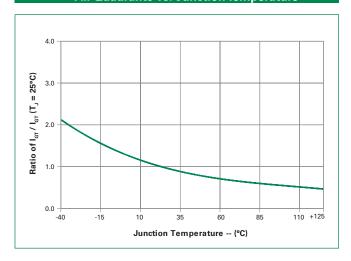


Figure 3: Normalized DC Holding Current vs. Junction Temperature

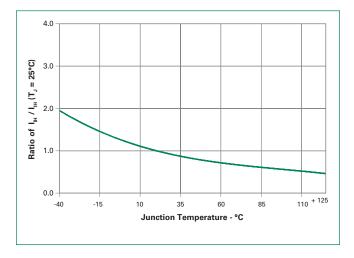


Figure 4: Normalized DC Gate Trigger Voltage for All Quadrants vs. Junction Temperature

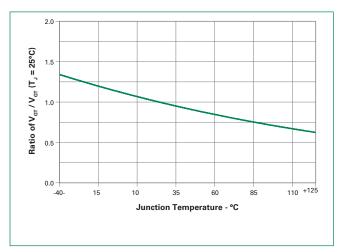


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

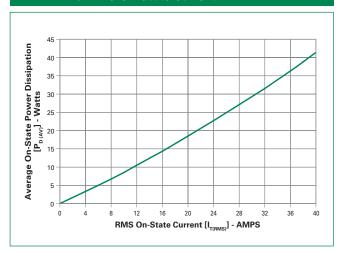


Figure 6: Maximum Allowable Case Temperature vs. On-State Current

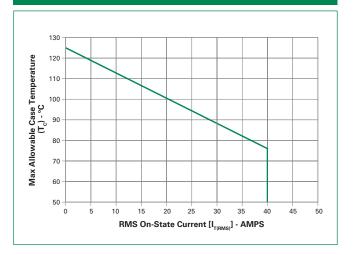


Figure 7: On-State Current vs. On-State Voltage (Typical)

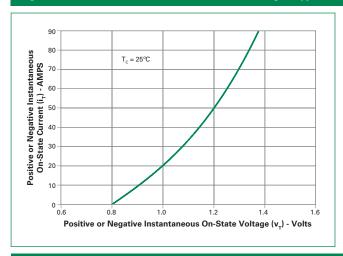
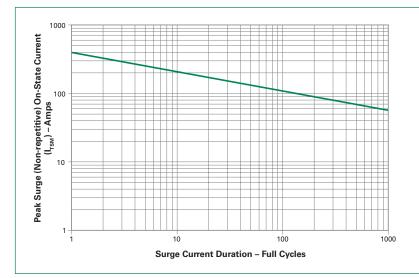



Figure 8: Surge Peak On-State Current vs. Number of Cycles

Supply Frequency: 60Hz Sinusoidal Load: Resistive

RMS On-State [$I_{T(RMS)}$]: Max Rated Value at

Specific Case Temperature

Notes:

1) Gate control may be lost during and

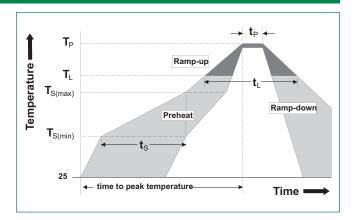
immediately following surge current interval. 2) Overload may not be repeated until junction

temperature has returned to steady-state

rated value.

© 2020 Littelfuse, Inc. Specifications are subject to change without notice. Revised: GD. 12/17/20

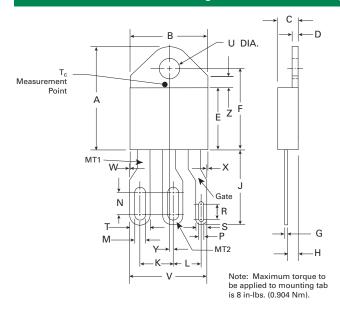
Soldering Parameters


Reflow Con	dition	Pb – Free assembly	
	-Temperature Min (T _{s(min)})	150°C	
Pre Heat	-Temperature Max (T _{s(max)})	200°C	
	-Time (min to max) (t _s)	60 – 180 secs	
Average ran peak	np up rate (Liquidus Temp) (T _L) to	5°C/second max	
T _{S(max)} to T _L -	Ramp-up Rate	5°C/second max	
Reflow	-Temperature (T _L) (Liquidus)	217°C	
nellow	-Time (min to max) (t _s)	60 - 150 seconds	
Peak Tempe	rature (T _P)	260 ^{+0/-5} °C	
Time withir (t _p)	n 5°C of actual peak Temperature	20 – 40 seconds	
Ramp-down Rate		5°C/second max	
Time 25°C t	o peak Temperature (T _P)	8 minutes Max.	
Do not exce	ed	280°C	

Terminal Finish	100% Matte Tin-plated.
Body Material	UL Recognized compound meeting flammability rating V-0
Lead Material	Copper Alloy

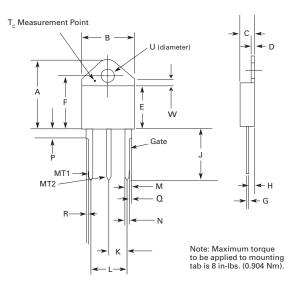
Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.



Environmental Specifications

AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage @ 125°C for 1008 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/Humidity	EIA / JEDEC, JESD22-A101 1008 hours; 320V - DC: 85°C; 85% rel humidity
High Temp Storage	MIL-STD-750, M-1031, 1008 hours; 150°C
Low-Temp Storage	1008 hours; -40°C
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Lead Bend	MIL-STD-750, M-2036 Cond E



Dimensions — TO-218X (J Package) — Isolated Mounting Tab

a: .	Inc	hes	Millimeters		
Dimension	Min	Max	Min	Max	
А	0.810	0.835	20.57	21.21	
В	0.610	0.630	15.49	16.00	
С	0.178	0.188	4.52	4.78	
D	0.055	0.070	1.40	1.78	
Е	0.487	0.497	12.37	12.62	
F	0.635	0.655	16.13	16.64	
G	0.022	0.029	0.56	0.74	
Н	0.075	0.095	1.91	2.41	
J	0.575	0.625	14.61	15.88	
K	0.256	0.264	6.50	6.71	
L	0.220	0.228	5.58	5.79	
М	0.080	0.088	2.03	2.24	
Ν	0.169	0.177	4.29	4.49	
Р	0.034	0.042	0.86	1.07	
R	0.113	0.121	2.87	3.07	
S	0.086	0.096	2.18	2.44	
Т	0.156	0.166	3.96	4.22	
U	0.161	0.165	4.10	4.20	
V	0.603	0.618	15.31	15.70	
W	0.000	0.005	0.00	0.13	
X	0.003	0.012	0.07	0.30	
Υ	0.028	0.032	0.71	0.81	
Z	0.085	0.095	2.17	2.42	

Dimensions — TO-218AC (K Package) — Isolated Mounting Tab

Dimension	Inc	hes	Millimeters		
Difficusion	Min	Max	Min	Max	
А	0.810	0.835	20.57	21.21	
В	0.610	0.630	15.49	16.00	
С	0.178	0.188	4.52	4.78	
D	0.055	0.070	1.40	1.78	
Е	0.487	0.497	12.37	12.62	
F	0.635	0.655	16.13	16.64	
G	0.022	0.029	0.56	0.74	
Н	0.075	0.095	1.91	2.41	
J	0.575	0.625	14.61	15.88	
K	0.211	0.219	5.36	5.56	
L	0.422	0.437	10.72	11.10	
М	0.058	0.068	1.47	1.73	
N	0.045	0.055	1.14	1.40	
Р	0.095	0.115	2.41	2.92	
Q	0.008	0.016	0.20	0.41	
R	0.008	0.016	0.20	0.41	
U	0.161	0.165	4.10	4.20	
W	0.085	0.095	2.17	2.42	

© 2020 Littelfuse, Inc. Specifications are subject to change without notice. Revised: GD. 12/17/20

Thyristors40 Amp Alternistor (High Commutation) and Standard Triacs

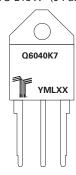
Product Selector

Part Number	Voltage		Gate Sensitivity Quadrants			T	Package		
Part Number	400V	600V	800V	1000V	1 – 11 – 111	IV	T(RMS)	Туре	rackage
Qxx40KH6	X	Х	Х	Χ	80 mA	-	40 A	Alternistor Triac	TO-218AC
Qxx40JH6	X	X	X	-	80 mA	-	40 A	Alternistor Triac	TO-218X
Qxx40K5	X	Х	X	X	50 mA	-	40 A	Alternistor Triac	TO-218AC
Qxx40K7	X	X	X	X	100 mA	-	40 A	Alternistor Triac	TO-218AC
Qxx40J7	X	X	X	-	100 mA	-	40 A	Alternistor Triac	TO-218X
Qxx40K4	X	X	X	X	50 mA	100 mA	40 A	Standard Triac	TO-218AC
Qxx40K3	-	-	Х	-	35 mA	70 mA	40 A	Standard Triac	TO-218AC
Qxx40J4	-	-	-	Х	50mA	100mA	40 A	Standard Triac	TO-218X

Note: xx = Voltage

Packing Options

Part Number	Marking	Weight	Packing Mode	Base Quantity
Qxx40KH6TP	Qxx40KH6	4.40 g	Tube Pack	250 (25 per tube)
Qxx40JH6TP	Qxx40JH6	5.23 g	Tube Pack	250 (25 per tube)
Qxx40K5TP	Qxx40K5	4.40 g	Tube Pack	250 (25 per tube)
Qxx40K7TP	Qxx40K7	4.40 g	Tube Pack	250 (25 per tube)
Qxx40J7TP	Qxx40J7	5.23 g	Tube Pack	250 (25 per tube)
Qxx40K4TP	Qxx40K4	4.40 g	Tube Pack	250 (25 per tube)
Qxx40K3TP	Qxx40K3	4.40g	Tube Pack	250(25 per tube)
Qxx40J4TP	Qxx40J4	5.23g	Tube Pack	250(25 per tube)


Note: xx = Voltage

Part Numbering System

Q 60 40 K 7 **DEVICE TYPE SENSITIVITY & TYPE** Q: Triac or Alternistor **Standard Triac:** 3: 35mA (QI,QII,QIII) 70mA(QIV) **VOLTAGE** 4: 50mA(QI,QII,QIII) **40:** 400V 100mA(QIV) **60:**600V **Alternistor Triac:** H6: 80mA (QI, QII, QIII) **80:800V** 7: 100mA (QI, II, III) **K0:** 1000V 5: 50mA (QI, QII, QIII) PACKAGE TYPE K: TO-218AC Isolated CURRENT J: T0-218X Isolated **40**: 40A

Part Marking System

TO-218 AC - (K Package) TO-218 X - (J Package)

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at https://www.littlefuse.com/disclaimer-electronics.