3.3 V ECL ÷2, ÷4, ÷8 Clock Generation Chip

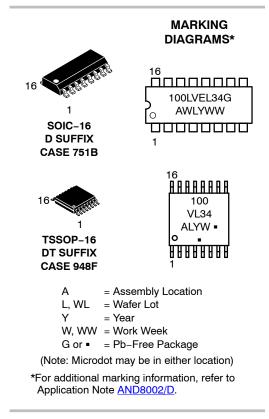
MC100LVEL34

Description

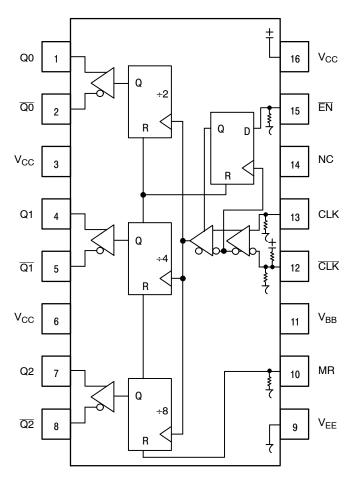
The MC100LVEL34 is a low skew $\div 2$, $\div 4$, $\div 8$ clock generation chip designed explicitly for low skew clock generation applications. The internal dividers are synchronous to each other, therefore, the common output edges are all precisely aligned. The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single–ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 µF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

The common enable (\overline{EN}) is synchronous so that the internal dividers will only be enabled/disabled when the internal clock is already in the LOW state. This avoids any chance of generating a runt clock pulse on the internal clock when the device is enabled/disabled as can happen with an asynchronous control. An internal runt pulse could lead to losing synchronization between the internal divider stages. The internal enable flip-flop is clocked on the falling edge of the input clock; therefore, all associated specification limits are referenced to the negative edge of the clock input.

Upon start-up, the internal flip-flops will attain a random state; the master reset (MR) input allows for the synchronization of the internal dividers, as well as multiple LVEL34s in a system.


Features

- 50 ps Typical Output-to-Output Skew
- Synchronous Enable/Disable
- Master Reset for Synchronization
- 1.5 GHz Toggle Frequency
- The 100 Series Contains Temperature Compensation.
- PECL Mode Operating Range: V_{CC} = 3.0 V to 3.8 V with V_{EE} = 0 V
- NECL Mode Operating Range: $V_{CC} = 0 V$ with $V_{EE} = -3.0 V$ to -3.8 V
- Open Input Default State
- LVDS Input Compatible
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant


ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Table 1. PIN DESCRIPTION

PIN	FUNCTION
CLK*, <u>CLK</u> **	ECL Diff Clock Inputs
EN*	ECL Sync Enable
MR*	ECL Master Reset
Q0, <u>Q0</u>	ECL Diff ÷2 Outputs
Q1, <u>Q1</u>	ECL Diff ÷4 Outputs
Q2, <u>Q2</u>	ECL Diff ÷8 Outputs
V _{BB}	Reference Voltage Output
V _{CC}	Positive Supply
V _{EE}	Negative Supply
NC	No Connect

* Pins will default LOW when left open.

***Pins will default to $V_{CC}/2$ when left open.

Table 2. FUNCTION TABLE

CLK	EN	MR	FUNCTION
Z	L	LLH	Divide
ZZ	H		Hold Q ₀₋₃
X	X		Reset Q ₀₋₃

Z = Low-to-High Transition ZZ = High-to-Low Transition

Table 3. ATTRIBUTES

Characteristics	Value
Internal Input Pulldown Resistor	75 kΩ
Internal Input Pullup Resistor	37.5 kΩ
ESD Protection Human Body Model Machine Model Charged Device Model	> 2 kV > 200 V > 2 kV
Moisture Sensitivity, Indefinite Time Out of Drypack (Note 1)	Pb-Free Pkg
SOIC-16 TSSOP-16	Level 1 Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	210 Devices
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test	

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	NECL Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
I _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			± 0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-16 SOIC-16	100 60	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-16	33 to 36	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-16 TSSOP-16	138 108	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-16	33 to 36	°C/W
T _{sol}	Wave Solder			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. 100LVEL DC CHARACTERISTICS, PECL (V_{CC} = 3.3 V, V_{EE} = 0 V (Note 2))

		-40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	40	50	60	40	50	60	42	52	62	mA
V _{OH}	Output HIGH Voltage (Note 3)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 3)	1305	1570	1725	1305	1570	1725	1305	1570	1725	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	2075		2420	2075		2420	2075		2420	mV
VIL	Input LOW Voltage (Single-Ended)	1305		1675	1305		1675	1305		1675	mV
V _{BB}	Output Voltage Reference	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 4)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary +0.925 V to -0.5 V.
All loading with 50 Ω to V_{CC} - 2.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			–40°C 25°C					85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	23	30	40	23	30	40	23	30	40	mA
I _{EE}	Power Supply Current	40	50	60	40	50	60	42	52	62	mA
V _{OH}	Output HIGH Voltage (Note 6)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 6)	-1995	-1700	-1575	-1995	-1700	-1575	-1995	-1700	-1575	mV
VIH	Input HIGH Voltage (Single-Ended)	-1225		-880	-1225		-880	-1225		-880	mV
VIL	Input LOW Voltage (Single-Ended)	-1995		-1625	-1995		-1625	-1995		-1625	mV
V_{BB}	Output Voltage Reference	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 7)	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	V _{EE}	+ 1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

Table 6. 100LVEL DC CHARACTERISTICS, NECL (V_{CC} = 0 V, V_{EE} = -3.8 V to -3.0 V (Note 5))

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

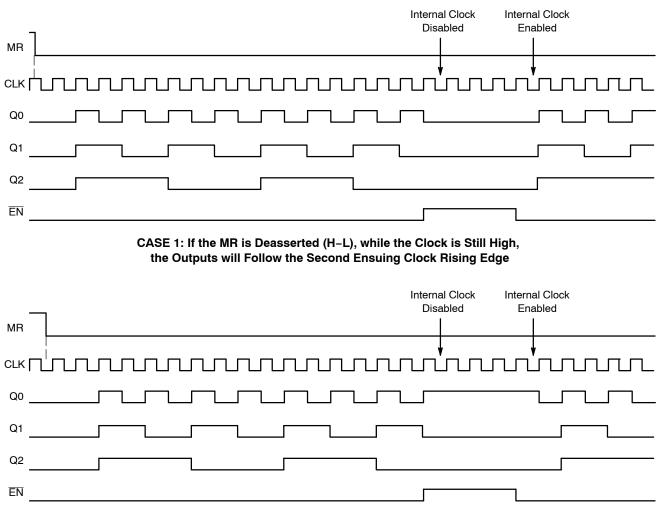
5. Input and output parameters vary 1:1 with V_{CC} .

6. All loading with 50 Ω to V_{CC} – 2.0 V.

7. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 7. AC CHARACTERISTICS $V_{CC} = 0 V$; $V_{EE} = -3.0 V$ to -5.5 V or $V_{CC} = 3.0 V$ to 5.5 V; $V_{EE} = 0 V$ (Note 8)

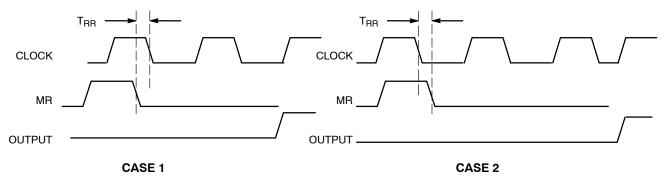
		−40°C			25°C			85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency (Figure 4)	1.5			1.5			1.5			GHz
t _{PLH} t _{PHL}	Propagation Delay to Output CLK to Q0, Q1, Q2 MR to Q	550 500	650 600	1000 1000	600 550	700 650	1000 1000	650 600	750 700	1000 1000	ps
t JITTER	Cycle-to-Cycle Jitter (Figure 4)		< 1			< 1			< 1		ps
t _S	Setup Time EN	150	50		150	50		150	50		ps
t _H	Hold Time EN	200	100		200	100		200	100		ps
t _{RR}	Set/Reset Recovery	300	200		300	200		300	200		ps
V _{PP}	Input Swing (Note 9)	150		1000	150		1000	150		1000	mV
t _r t _f	Output Rise/Fall Times Q (20% - 80%)	120	170	400	140	180	400	160	200	400	ps


NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

8. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC – 2.0 V.

9. VPP(min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of \approx 40.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


There are two distinct functional relationships between the Master Reset and Clock:

CASE 2: If the MR is Deasserted (H–L), after the Clock has Transitioned Low, the Outputs will Follow the Third Ensuing Clock Rising Edge

Figure 2. Timing Diagrams

The \overline{EN} signal will "freeze" the internal divider flip-flops on the first falling edge of CLK after its assertion. The internal divider flip-flops will maintain their state during the freeze. When \overline{EN} is deasserted (LOW), and after the next falling edge of CLK, then the internal divider flip-flops will "unfreeze" and continue to their next state count with proper phase relationships.

Figure 3. Reset Recovery Time

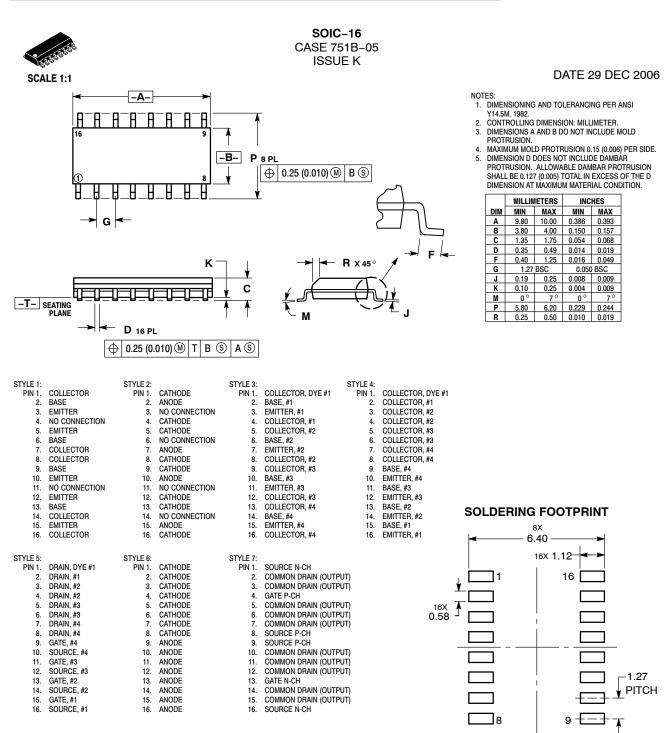


Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note <u>AND8020/D</u> – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping †
MC100LVEL34DR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC100LVEL34DTG	TSSOP-16 (Pb-Free)	96 Units / Rail
MC100LVEL34DTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

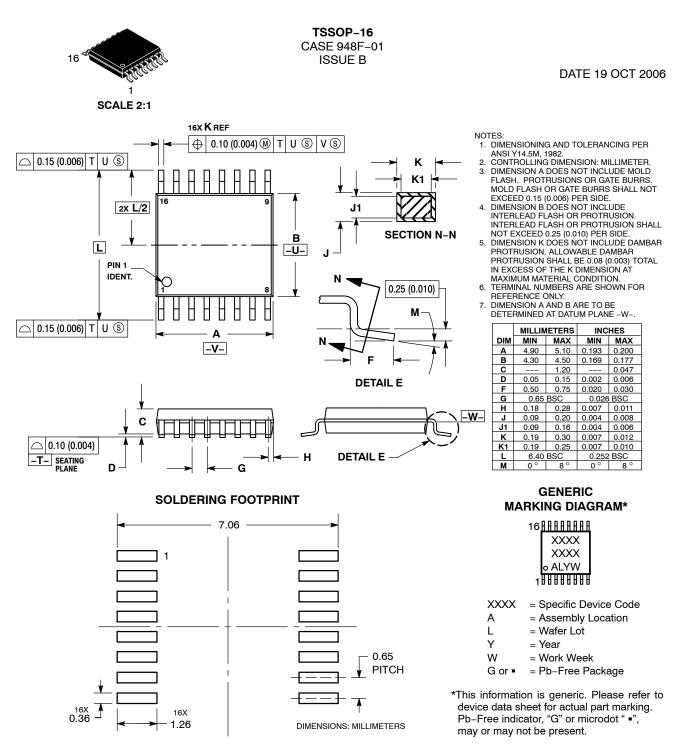
[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.



DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-16		PAGE 1 OF 1				
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding							

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	TSSOP-16		PAGE 1 OF 1					
ON Semiconductor and 🕡 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.								

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi:

MC100LVEL34D MC100LVEL34DG MC100LVEL34DR2 MC100LVEL34DR2G MC100LVEL34DT MC100LVEL34DTG MC100LVEL34DTR2 MC100LVEL34DTR2G