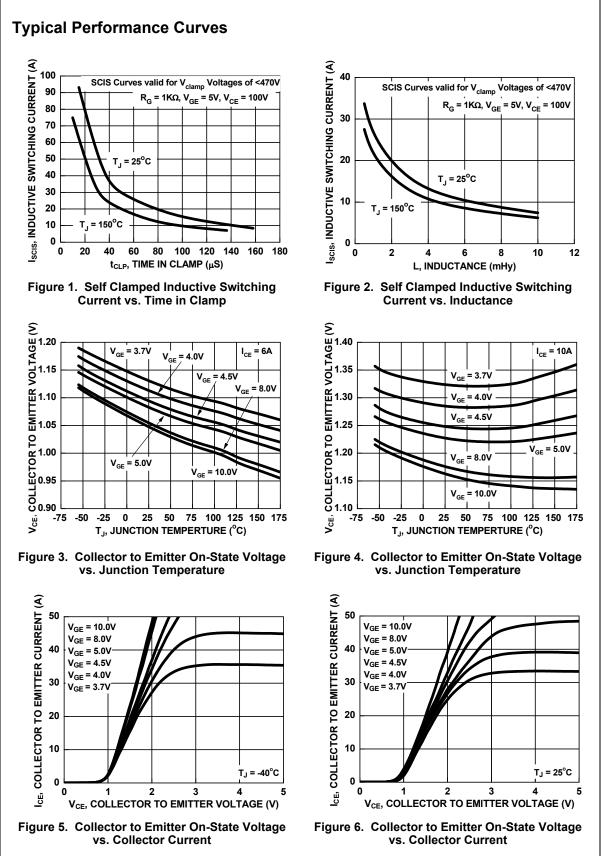
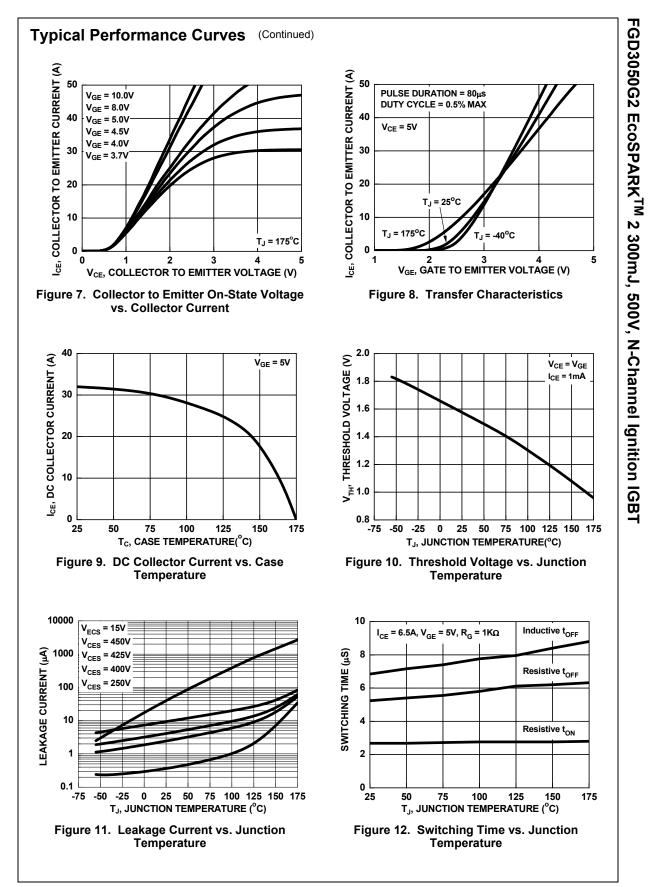

ON Semiconductor

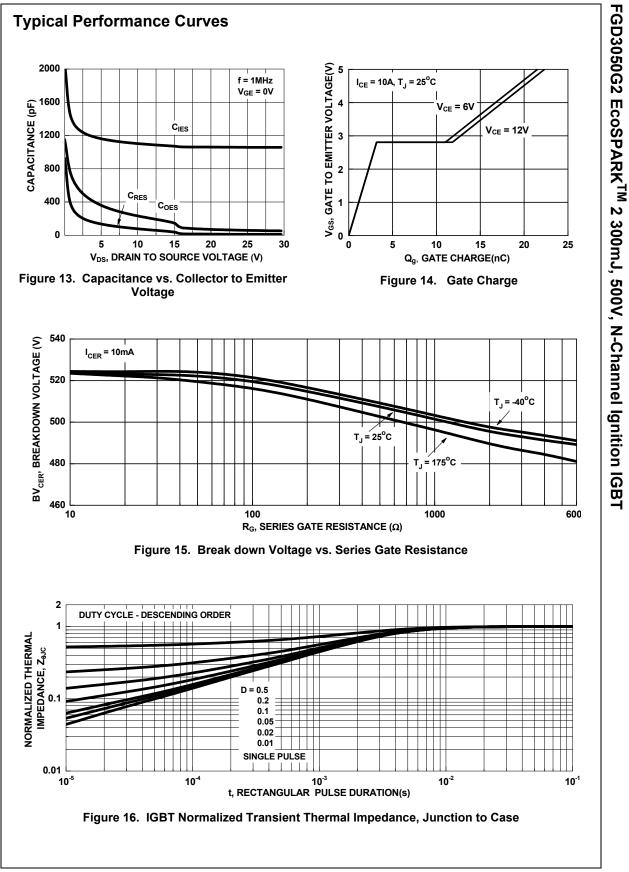
Is Now

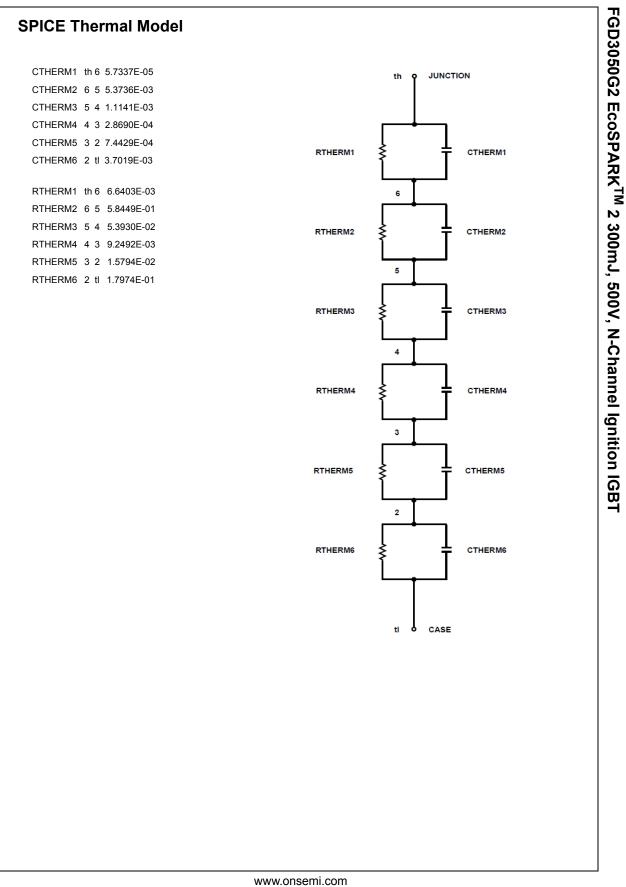
Onsemi

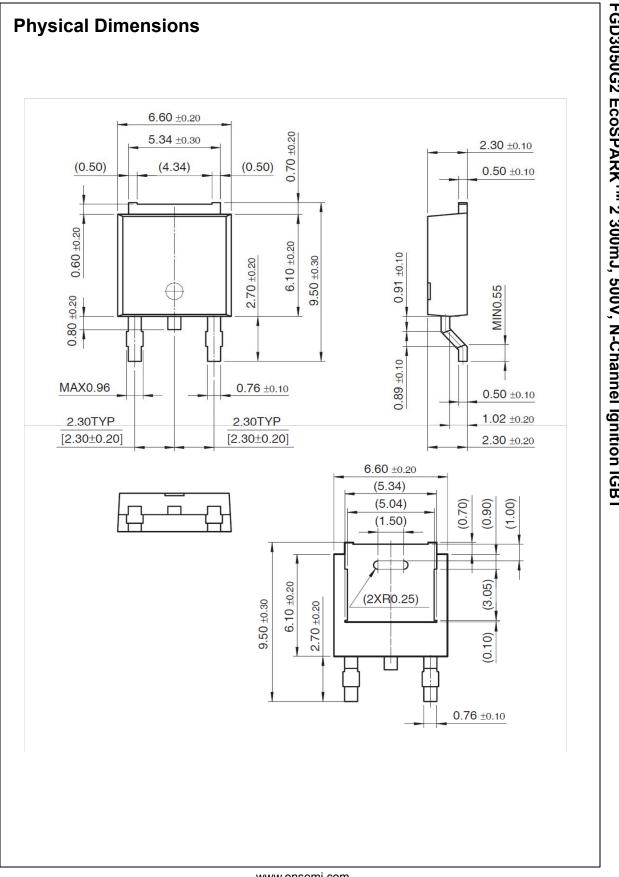
To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>


onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari




Absolute Maximum Ratings T_C = 25°C unless otherwise noted


Symbol	Parameter	Ratings	Units	
BV _{CER}	Collector to Emitter Breakdown Voltage (I _C = 1mA)	500	V	
BV _{ECS}	Emitter to Collector Voltage - Reverse Battery Condition (I _C = 10	mA)	20	V
E _{SCIS25}	I_{SCIS} = 14.2A, L = 3.0mHy, R_{GE} = 1K Ω	T _C = 25°C	300	mJ
E _{SCIS150}	I_{SCIS} = 11.0A, L = 3.0mHy, R_{GE} = 1K Ω	T _C = 150°C	180	mJ
I _{C25}	Collector Current Continuous, at T _C = 25°C, V _{GE} = 5.0V	32	Α	
I _{C110}	Collector Current Continuous, at T _C = 110°C, V _{GE} = 5.0V		27	Α
V _{GEM}	Gate to Emitter Voltage Continuous		±10	V
Р	Power Dissipation Total	T _C = 25°C	150	W
P _D	Power Dissipation Derating	T _C > 25°C	1.1	W/ºC
TJ	Operating Junction Temperature Range	-40 to +175	°C	
T _{STG}	Storage Junction Temperature Range		-40 to +175	°C
ΤL	Max Lead Temp for soldering (Leads at 1.6mm from case for 10	300	°C	
T _{PKG}	Max Lead Temp for soldering (Package Body for 10s)		260	°C
ESD	Electrostatic Discharge Voltage at 100pF, 1500 Ω		4	kV


$R_{ extsf{ heta}JC}$	Thermal Resistance Junction to Case						0.9			°C/W	
Electr	ical Ch	aracteristics	of the	IGBT	T _C = 25°C unles	ss other	wise noted	d			
Symbol		Parameter			Test Condit	ions		Min	Тур	Max	Units
Off Cha	aracterist	tics									
BV _{CER}	Collector to	o Emitter Breakdown	Voltage	$V_{GE} = 0V, I_{CE} = 2mA,$ $R_{GE} = 1K\Omega,$ $T_{J} = -40$ to 150°C			470	-	530	V	
BV _{CES}	Collector to	o Emitter Breakdown	Voltage	$V_{GE} = 0V, I_{CE} = 10mA,$ $R_{GE} = 0\Omega,$ $T_{J} = -40$ to 150°C				495	-	555	V
BV _{ECS}	Emitter to	Collector Breakdown	Voltage	V _{GE} = 0V T _J = 25°C	V _{GE} = 0V, I _{CE} = -75mA,			20	-	-	V
BV _{GES}	Gate to En	nitter Breakdown Volt	age	I _{GES} = ±5				±12	±14	-	V
			-			T _J = 2	5°C	- 1	-	25	μA
ICER	Collector to	o Emitter Leakage Cu	urrent	$v_{CE} = 250$	0V, R _{GE} = 1KΩ	T _J = 1		-	-	1	mA
	F			· · · ·	,	T _J = 2		-	-	1	
I _{ECS}	Emitter to	Collector Leakage Cu	urrent	V _{EC} =15V		T _J = 1		-	-	40	mA
R ₁	Series Gat	e Resistance				. ·		-	111	-	Ω
On Cha	Gate to En					-		10K	-	30K	Ω
On Cha V _{CE(SAT)} V _{CE(SAT)}	Gate to En aracterist Collector to Collector to		/oltage	V _{GE} = 4.5	, I _{CE} = 6A IV, I _{CE} = 10A IV, I _{CE} = 15A	$T_J = 2$ $T_J = 1$ $T_J = 1$	50°C	- - -	- 1.1 1.3 1.6	30K 1.2 1.45 1.75	Ω V V V
V _{CE(SAT)} V _{CE(SAT)} V _{CE(SAT)} Dynam	Gate to En aracterist Collector to Collector to Collector to ic Chara	DEMITTER Saturation N DEMITTER Saturation N DEMITTER Saturation N DEMITTER Saturation N Cteristics	/oltage	V _{GE} = 4.5 V _{GE} = 4.5	V, I _{CE} = 10A V, I _{CE} = 15A	T _J = 1 T _J = 1	50°C	-	1.3 1.6	1.2 1.45	V V V
On Cha V _{CE(SAT)} V _{CE(SAT)} V _{CE(SAT)} Dynam	Gate to En aracterist Collector to Collector to Collector to	DEMITTER Saturation N DEMITTER Saturation N DEMITTER Saturation N DEMITTER Saturation N Cteristics	/oltage	V _{GE} = 4.5 V _{GE} = 4.5	V, I _{CE} = 10A	T _J = 1 T _J = 1 = 10A	50°C 50°C		1.3 1.6 22	1.2 1.45 1.75	V V
On Cha V _{CE(SAT)} V _{CE(SAT)} V _{CE(SAT)} Dynam Q _{G(ON)} V _{GE(TH)}	Gate to En aracterist Collector to Collector to Collector to Collector to Gate Chara Gate to Er	tics b Emitter Saturation \ b Emitter Saturation \ b Emitter Saturation \ cteristics ge nitter Threshold Volta	/oltage /oltage ge	V _{GE} = 4.5 V _{GE} = 4.5 V _{GE} = 5V, I _{CE} = 1m/	$V, I_{CE} = 10A$ $V, I_{CE} = 15A$ $V_{CE} = 12V, I_{CE}$ $V_{CE} = 12V, I_{CE}$ $A, V_{CE} = V_{GE}$	T _J = 1 T _J = 1	50°C 50°C 50°C	-	1.3 1.6 22 1.6 1.1	1.2 1.45	V V V nC
On Cha V _{CE(SAT)} V _{CE(SAT)} V _{CE(SAT)} Dynam Q _{G(ON)} V _{GE(TH)}	Gate to En aracterist Collector to Collector to Collector to Collector to Gate Chara Gate to Er	tics b Emitter Saturation \ b Emitter Saturation \ b Emitter Saturation \ cteristics ge	/oltage /oltage ge	V _{GE} = 4.5 V _{GE} = 4.5 V _{GE} = 5V, I _{CE} = 1m/	V, I _{CE} = 10A V, I _{CE} = 15A V _{CE} = 12V, I _{CE}	T _J = 1 T _J = 1 = 10A T _J = 2	50°C 50°C 50°C	- - - 1.3	1.3 1.6 22 1.6	1.2 1.45 1.75 - 2.2	V V V
Dn Cha V _{CE(SAT)} V _{CE(SAT)} V _{CE(SAT)} Dynam Q _{G(ON)} V _{GE(TH)} V _{GEP}	Gate to En aracterist Collector to Collector to Collector to Collector to Gate Chara Gate to Er Gate to Er	tics b Emitter Saturation \ b Emitter Saturation \ b Emitter Saturation \ cteristics ge nitter Threshold Volta	/oltage /oltage ge	V _{GE} = 4.5 V _{GE} = 4.5 V _{GE} = 5V, I _{CE} = 1m/	$V, I_{CE} = 10A$ $V, I_{CE} = 15A$ $V_{CE} = 12V, I_{CE}$ $V_{CE} = 12V, I_{CE}$ $A, V_{CE} = V_{GE}$	T _J = 1 T _J = 1 = 10A T _J = 2	50°C 50°C 50°C	- - 1.3 0.75	1.3 1.6 22 1.6 1.1	1.2 1.45 1.75 - 2.2	V V V nC
On Cha $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ Dynam $Q_{G(ON)}$ $V_{GE(TH)}$ V_{GEP} Switch	Gate to En aracterist Collector to Collector	tics b Emitter Saturation N b Emitter Saturation N c Emitter Saturation N cteristics ge nitter Threshold Volta nitter Plateau Voltage acteristics	/oltage /oltage ge	$V_{GE} = 4.5$ $V_{GE} = 4.5$ $V_{GE} = 5V_{e}$ $I_{CE} = 1m/e$ $V_{CE} = 12V_{e}$	$V, I_{CE} = 10A$ $V, I_{CE} = 15A$ $V_{CE} = 12V, I_{CE}$ $A, V_{CE} = V_{GE}$ $V, I_{CE} = 10A$	T _J = 1 T _J = 1 = 10A T _J = 2	50°C 50°C 50°C	- - 1.3 0.75	1.3 1.6 22 1.6 1.1	1.2 1.45 1.75 - 2.2	V V V nC
Dn Cha $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ Dynam $Q_{G(ON)}$ $V_{GE(TH)}$ V_{GEP} Switch $t_{d(ON)R}$	Gate to En aracterist Collector to Collector to Collector to ic Chara Gate Chara Gate to Er Gate to Er ing Char Current Tu	tics b Emitter Saturation \ b Emitter Saturation \ b Emitter Saturation \ cteristics ge nitter Threshold Volta nitter Plateau Voltage	/oltage /oltage ge	$V_{GE} = 4.5$ $V_{GE} = 4.5$ $V_{GE} = 5V_{e}$ $I_{CE} = 1m/e$ $V_{CE} = 12V$ $V_{CE} = 14V$	$V, I_{CE} = 10A$ $V, I_{CE} = 15A$ $V_{CE} = 12V, I_{CE}$ $A, V_{CE} = V_{GE}$ $V, I_{CE} = 10A$	T _J = 1 T _J = 1 = 10A T _J = 2	50°C 50°C 50°C	- - 1.3 0.75 -	1.3 1.6 22 1.6 1.1 2.7	1.2 1.45 1.75 - 2.2 1.8 -	V V V V V
Dn Cha $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ Dynam $Q_{G(ON)}$ $V_{GE(TH)}$ V_{GEP} Switch $t_{d(ON)R}$ t_{R}	Gate to En aracterist Collector to Collector	tics b Emitter Saturation V b Emitter Saturation V b Emitter Saturation V cteristics ge nitter Threshold Volta nitter Plateau Voltage acteristics Irn-On Delay Time-Re	/oltage /oltage ge esistive	$V_{GE} = 4.5$ $V_{GE} = 4.5$ $V_{GE} = 5V_{e}$ $I_{CE} = 1m/2$ $V_{CE} = 12V_{e}$ $V_{CE} = 14V_{e}$ $V_{GE} = 5V_{e}$	$\frac{V, I_{CE} = 10A}{V, I_{CE} = 15A}$ $\frac{V_{CE} = 12V, I_{CE}}{A, V_{CE} = V_{GE}}$ $\frac{V, I_{CE} = 10A}{V, I_{CE} = 10A}$ $\frac{V, R_{L} = 1\Omega}{K_{\Omega}}$	T _J = 1 T _J = 1 = 10A T _J = 2	50°C 50°C 50°C	- - 1.3 0.75 -	1.3 1.6 22 1.6 1.1 2.7	1.2 1.45 1.75 - 2.2 1.8 - 4	V V V V V
On Cha $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ Dynam $Q_{G(ON)}$ $V_{GE(TH)}$ V_{GEP} Switch $t_{d(ON)R}$ t_{rR} $t_{d(OFF)L}$	Gate to En aracterist Collector to Collector	tics D Emitter Saturation N D Emitter Saturation N D Emitter Saturation N D Emitter Saturation N Cteristics ge nitter Threshold Volta nitter Plateau Voltage acteristics urn-On Delay Time-Resistive	/oltage /oltage ge esistive	$V_{GE} = 4.5$ $V_{GE} = 4.5$ $V_{GE} = 5V_{e}$ $I_{CE} = 1m/2$ $V_{CE} = 12V$ $V_{CE} = 14V$ $V_{GE} = 5V$ $V_{CE} = 300$	$V, I_{CE} = 10A$ $V, I_{CE} = 15A$ $V_{CE} = 12V, I_{CE}$ $V_{CE} = V_{GE},$ $V, I_{CE} = 10A$ $V, R_{L} = 10A$	T _J = 1 T _J = 1 = 10A T _J = 2	50°C 50°C 50°C	- - 1.3 0.75 -	1.3 1.6 22 1.6 1.1 2.7 0.9 1.6	1.2 1.45 1.75 - 2.2 1.8 - 4 7	V V V V ν ν μs
On Cha $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ Dynam $Q_{G(ON)}$ $V_{GE(TH)}$ V_{GEP} Switch $t_{d(ON)R}$ t_{rR} $t_{d(OFF)L}$ t_{fL}	Gate to En aracterist Collector to Collector to Collector to ic Chara Gate Chara Gate to Er Gate to Er ing Char Current Tu Current Tu Current Fa	tics D Emitter Saturation N D Emitter Saturation N D Emitter Saturation N D Emitter Saturation N Cteristics ge nitter Threshold Volta nitter Plateau Voltage acteristics Irn-On Delay Time-Re se Time-Resistive Irn-Off Delay Time-Ind	/oltage /oltage ge esistive	$V_{GE} = 4.5$ $V_{GE} = 4.5$ $V_{GE} = 5V_{e}$ $I_{CE} = 1m/2$ $V_{CE} = 12V$ $V_{CE} = 14V$ $V_{GE} = 5V$ $V_{CE} = 300$	$\frac{V, I_{CE} = 10A}{V, I_{CE} = 15A}$ $\frac{V}{V_{CE} = 12V, I_{CE}}$ $\frac{V}{V_{CE} = V_{GE}}$ $\frac{V, I_{CE} = 10A}{V, I_{CE} = 10A}$ $\frac{V, R_{L} = 1\Omega}{V, R_{G} = 1K\Omega}$ $\frac{V, L = 2mH}{V, L = 2mH, L}$	T _J = 1 T _J = 1 = 10A T _J = 2	50°C 50°C 50°C	- - 1.3 0.75 -	1.3 1.6 22 1.6 1.1 2.7 0.9 1.6 5.4	1.2 1.45 1.75 - 2.2 1.8 - - 4 7 15	V V V V V μs μs μs
On Cha $V_{CE(SAT)}$ $V_{CE(SAT)}$ $V_{CE(SAT)}$ Dynam $Q_{G(ON)}$ $V_{GE(TH)}$ V_{GEP} Switchi $t_{d(ON)R}$ t_{rR} $t_{q(OFF)L}$ t_{fL} Order	Gate to En aracterist Collector to Collector to Collector to ic Chara Gate Chara Gate to Er Gate to Er ing Char Current Tu Current Tu Current Fa	ics b Emitter Saturation \ b Emitter Saturation \ b Emitter Saturation \ b Emitter Saturation \ cteristics ge nitter Threshold Volta nitter Plateau Voltage acteristics Irn-On Delay Time-Resistive Irn-Off Delay Time-Inductive	/oltage /oltage ge esistive ductive	$V_{GE} = 4.5$ $V_{GE} = 4.5$ $V_{GE} = 5V_{e}$ $I_{CE} = 1m/2$ $V_{CE} = 12V$ $V_{CE} = 14V$ $V_{GE} = 5V$ $V_{CE} = 300$	$\frac{V, I_{CE} = 10A}{V, I_{CE} = 15A}$ $\frac{V}{V_{CE} = 12V, I_{CE}}$ $\frac{V}{V_{CE} = V_{GE}}$ $\frac{V, I_{CE} = 10A}{V, I_{CE} = 10A}$ $\frac{V, R_{L} = 1\Omega}{V, R_{G} = 1K\Omega}$ $\frac{V, L = 2mH}{V, L = 2mH, L}$	$T_{J} = 1$ $T_{J} = 1$ $T_{J} = 1$ $T_{J} = 2$ $T_{J} = 1$	50°C 50°C 50°C	- - 1.3 0.75 - -	1.3 1.6 22 1.6 1.1 2.7 0.9 1.6 5.4 1.4	1.2 1.45 1.75 - 2.2 1.8 - - 4 7 15	V V V V V μs μs μs μs

FGD3050G2 EcoSPARKTM 2 300mJ, 500V, N-Channel Ignition IGBT

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

onsemi: FGD3050G2