Actuation of Reed Switches with a Permanent Magnet (Examples of switching with the use of a moving magnet.)

A magnet moved perpendicularly towards and away from a Reed Switch turns it off and on once.

In General:

For all Reed Switches the standard pull-in sensitivity is given in the table. Other pull-in sensitivities are available on request.

Contact Form A

Contact Form B

Contact Form B or C

Magnet Biasing Contact

latest information on our products.

All dimensions are nominal, in millimeters unless otherwise stated. If further information is required, individual datasheets are available on our websites. As part of the group's policy of continued product improvement, specifications may change without notice. Our sales office will be pleased to help you with the

Examples of switching through rotational movement.

Indirect Actuation: Shielding

With the stationary arrangement of a Reed Switch and magnet, the contact Reeds are closed. Should the magnetic field be diverted away from the Reed Switch by a shield of ferromagnetic material placed between the switch and the magnet, the contacts will open. When the shield is removed, the contact Reeds become magnetically actuated and close.

Pull-in Sensitivity:

The given pull-in sensitivity of the Reed Switch has a test equipment

Life Expectancy:

specified maximum current.

The life expectancy of a reed switch is dependent upon the load being switched. At maximum rated loads life expectancy is approximately 10th switching cycles. Lower load ratings can increase the life expectancy up to 5x108 operations. The mechanical life expectancy can reach at least 10⁹ operations. Through the switching of inductive, capacitive, and lamps loads, the life expectancy is considerably reduced due to exceeding the

styles. Depending on the application, only one relay type may be suitable. Reed relays have physical contacts that are magnetically actuated to open or close a path. They consist of a coil wrapped around reed switches. The reed switch is composed of two overlapping ferromagnetic blades (called reeds) hermetically sealed withi a glass capsule that is filled with an inert gas. When the coil is energized, the two reeds are drawn together such that they complete a path

apart (open).

A SSR is a semiconductor device that can be used in place of a mechanical relay to switch electricity to a load in many applications. Solid state relays are purely electronic. SSRs typically feature electrical isolation to several thousand volts between the control and load sides Because of this isolation, the load side of the relay is actually powered by the switched line; both line voltage and a load (not to mention a control signal) must be present for the relay to operate

The Comus International product groups:

Gunther / Comus Reed Switches

A reed switch consists of two or three ferromagnetic and specially shaped contact blades (reeds). They are positioned in a hermetically sealed glass tube in a protective atmosphere. The plated contact surfaces are isolated from the outside environment, which protects the contacts from contamination. Reed switches are available as form A (normally open) and form C (changeover) in standard lengths, customer specific modifications or SMD versions.

When customers need a bit more than the standard product offering from Comus we turn to our Smart Sensor line as a possible solution A Smart sensor utilizes multiple sensing technologies and processing techniques in a package uniquely tailored for various environments giving our customers a turnkey package solution that will transmit more information than using independent sensors. These packages typically comprise of one or more existing Comus sensing technology

angle, shock, magnetic field or ferrous metal,

acceleration and g-force.

Smart Sensors

Float Switches These switches are used to monitor liquid levels by opening or closing when a desired action point is reached. A variety of types are available using mercury and non-mercury tilt switches and, also, permanent magnets and reed switches.

Proximity Switches

Proximity switches and sensors use a reed switch and a permanent magnet. Each is encased in a plastic or metal housing for protection and ease of mounting. Proximity switches and sensors are manufactured in a wide variety of packaged styles. There are a number of different technologies determined by the

Reed Relays

application.

Reed relays come in a variety of forms and Tilt switches are used to sense movement (tilt) of a device above and below a horizontal axis. The angle through which the switch must move for proper operation (the differential angle) is measured from the point of just make to just datasheets.

Tip-over switches sense tilt over 360° of a vertical axis. A tip-over switch uses operating angle to describe the angle from vertical to the point of contact operation, subject to a tolerance, i.e. 45° through the relay. When the coil is de-energized ± 10° (35° to 55°). Both normally closed (tilt to the spring force in the reeds pulls the contacts open) and normally open (tilt to close) switches are available as are omnidirectional and one plane only versions.

with high quality and are especially made for security purposes. They come with an extensive product range that includes: recessed cylindrical contact switches, robust aluminum switches, adjustable plunger switches and tamper proof draw switches. Both switches and magnets are available separately.

The Comus International group of companies consists of:

Comus International 454 Allwood Road Clifton New Jersey 07012 U.S.A.

Website: http://www.comus-intl.com

Tel: (1)973 - 777 - 6900 Fax:(1)973 - 777 - 8405 email: info@comus-intl.com

Comus Europe Limited Unit 7, Rice Bridge Industrial Estate Thorpe - Le - Soken

England CO16 0HH Tel: +44 (0)1255 862236 Fax: +44 (0)1255 862014 email: sales@comuseurope.co.uk

Website: http://www.comuseurope.co.uk

Comus Belgium BVBA Overhaamlaan 40 B-3700 Tongeren Belgium

Comus Technology BV Jan Campertstraat 11 6416 SG Heerlen

Tel: +31(0)45-54.39.345 Fax: +31(0)45-54.27.216 email: info@comus-intl.com Website: http://www.dry-reeds.com

18-B Kripes Rd.

East Granby Connecticut 06026

U.S.A.

break; it is specified as a maximum in our

Alarm & Security Switches Alarm and security switches are cost effective

Switching Technologies Gunther B-9, B-10, & C-1 Special Economic Zone (MEPZ) Kadapperi, Tambaram

Chennai 600 045

Comus Electronics and Technologies India Private Limited

Smithfield

Tel: (1)800 - 864 - 2815

Website: http://www.relays-unlimited.com

Comus Relays & Sensors

Rhode Island 02917 U.S.A.

email: bbiernacki@relays-unlimited.com

37 Thurber Boulevard, Suite 102

Tel: (1)401 - 830 - 2100

email: sales@comusrelay.com Website: http://www.comusrelay.com

REED SWITCHES

From the Comus Group of Companies

- President & CEO Robert P Romano

Tel: +32 (0)12 390400 Fax: +32 (0)12 235754 email: info@comus.be Website: http://www.comus.be

COMUS

2nd Floor, 31/33, Anjugam Nagar, 2nd St.

Website: http://www.comusindia.com

Ashok Nagar, Jaferkhanpet, Chennai 600083 Tamil Nadu, India Tel: +(91)-(44)-42023510 Fax: +(91)-(44)-22628198

email: info@comus-intl.com

At Comus we take pride in being renown in the industry as a leader in providing the very best in service to our clients. Our lasting commitment is to meet the ever changing necessities of our customers and the markets they serve; to continually improve our processes and our products. To pioneer developments and sensors that use less power while never sacrificing quality or function. To expand our product knowledge and diversification so that we may continue our mission of "Sensing the world's needs."

OUR MISSION STATEMENT

mus International was founded in June 1978 by our President and CEO, Robert P. Romano.

omus International started out as a manufacturer of glass mercury tilt-switches for residential and commercial thermostats. Immediate success and rapid growth led to new product development and soon the metal mercury switch and, ultimately, the patented nonmercury switch were designed and offered to the market which led to further success.

Today, Comus International is a leading manufacturer of tilt and tip-over switches, motion/vibration sensors, reed switches, reed relays, solid state relays, proximity sensors, float switches and a wide variety of custom turnkey sensors. Success of our product growth and offering has been built with an excellent reputation for quality and service.

Comus has evolved into a world leader in the design, development and manufacture of a wide variety of sensors and sensor-related products. Applications are found in such diverse market segments as medical, automotive, white goods, alarm and security, and military/aerospace.

Our success through the past several decades is a combination of continual organic and acquisition growth, leading to the formation of the Comus Group of companies. Divisions include the following:

Comus Europe and Active Switch and Sensor in Essex – England.

· Comus International BVBA in Belgium

Comus Technology B.V. in The Netherlands. STG India and Comus India.

Computer Components Inc. in the United States.

The Comus Group of Companies is now one of the largest manufacturers in the sensor industry.

Reed Switches consist of two or three ferromagnetic blades (or reeds) hermetically sealed inside a glass envelope. The construction ensures protection from the external environment. Three types are available: Form A (normally open), Form B (normally closed), and Form C (changeover). Form B reed switches are obtained by two methods: By using normally closed blade of a Form C switch, or, by using a Form A switch, and biasing the contacts closed using a small block magnet. The switch is then able to re-open by the use of another stronger external magnet of opposite polarity. Sensitivity of a reed switch is measured in ampere turns (A.T.) and it should be noted that lower switch (A.T.) ratings are more sensitive as they require less magnetic field strength to operate them. Various voltage and current switching levels are available and contact plating materials can be varied to accommodate specific types of load.

Lamp Loads

OPERATION

DESCRIPTION

Reed Switches are operated by a magnetic field, via a magnet or a current carrying coil. When the field is removed the switch reverts to its previous state. Operation by a magnet can be achieved in a large variety of ways, either moving the magnet toward and away from the reed either perpendicularly, or parallel to the glass.

Reed Switches are used in a variety of Comus Group products including Proximity Switches, Float Switches and Reed Relays. They are now available in housed packages affording protection from damage and Surface Mount styles.

A reverse voltage is generated by stored energy in an inductive load when

CONTACT PROTECTION

Inductive Loads

the reed contacts open. This voltage can reach very high levels and is capable of damaging the contacts. An RC network may be used as shown below to give protection.

Capacitive Loads

Unlike inductive loads, capacitive and lamp loads are prone to high inrush currents which can lead to faulty operation and even contact welding. When switching charged capacitors (including cable capacitance) a sudden unloading can occur, the intensity of which is determined by the capacity and length of the connecting leads to the switch. This inrush peak can be reduced by a series of resistors. The value is dependent on the particular application but should be as high as possible to ensure that the inrush current is within the allowable limits.

The above diagram illustrates a resistor/capacitor network for protecting a Reed Switch against high inrush currents. R₁ and/or R₂ are used depending upon circuit conditions.

With lamp load applications it is important to note that cold lamp filament have a resistance 10 times smaller than already glowing filaments. This means that when being turned on, the lamp filament experiences a current flow 10 times greater than when already glowing. This high inrush current can be reduced to an acceptable level through the use of a series of current-limiting resistors. Another possibility is the parallel switching of a resistor across the switch. This allows just enough current to flow to the filament to keep it warm, yet not enough to make it glow.

Lamp load with parallel or current limiting resistor across the switch

Cutting and Bending:

As the Reed Switch blades are part of the magnetic circuit of a Reed Switch shortening the leads results in increased pull-in and drop-out values

When cutting or bending Reed Switches, it is important that the glass body should not be damaged. Therefore, the cutting or bending point should be no closer than 3mm (.118) to the glass body.

As part of the group's policy of continued product improvement, specifications may change without notice. Our sales office will be pleased to help you with the latest information on our products.

We also have a large network of worldwide agents. These can be seen on any of our website.

Com/1/Oct16/Iss.2

REED SWITCHES	A			+		1.80							0.60			0.60 (0.023)	-	1.80	_		7	2.10			2.60	2.6Ø (0.102)		<u> </u>		3.80Ø				1	0.53Ø	0.53Ø (0.020) 2.3Ø max	5.60 (0.220)		
	1.8Ø (0.070) 46 (1.811) 5	1.8Ø (0.070) 46 (1.811) 7		1.8Ø (0.070) 46 (1.811) 10	46	1.8Ø (0.071)		0.6Ø	(1.811) 2.54Ø (0.100)	3	0.65Ø (0.026)	54.8 (2.157) 2.7	2.3Ø mar (0.090) 50.5 (1.988) 14	ax ()		2.3Ø max (0.090) 50.5 (1.988) 14.3	1.8Ø (0.070) 46 (1.811) 10	(0.071) 46 13.5	•	46 (1.811)	2.54Ø (2.1	55 165)	0.5Ø (0.019)	2.30 (0.090)	(0.102)	55 A (2.165) 1 19		55 (2.16)	555) 19 55 2	24.5		79 (3.110) ———————————————————————————————————	—	54.5	(0.020) 2.3Ø max (0.090) 55 (2.165) 14	2.3Ø max (0.090) 55 70 (1.165) 14 (2.755) 36	80 (3.149) 52	83.5 (3.287) - 50.8 (2.000) -	—
	0.45Ø	0.45Ø (0.017)	5) [(0.394)	(1.811)	0.5Ø (0.020)		🛊	14.5 (0.570)	4		(0.807)	(0.563)			(0.563)	(0.394) 0.45Ø (0.017)	(1.811) (0.531) (1.811) (0.531) (1.811) (0.531) (1.811) (0.531) (1.811		(0.570)	(0.100) 1	(0.433)	14.5 (0.570)	 	(2.165) (0.748)	(0.748)			(0.748) (2.165) (0.	.965)				(0.551)	(0.551)	(0.551)	(2.047)	105	
RoHS Compliant	(0.017)	- (0.017)		(0.020)	+												(0.017)	<u> </u>	_		_	0.420 (0.016)	ļ.		0.55Ø (0.021)	0.70 (0.027)	←		0.7Ø (0.027)	0.8Ø (0.031)	5.4Ø (0.212)	2)	2.5 x 0.5 (0.098 x 0.019)		<u> </u>	2.5 x 0.5 (0.098 x 0.019)	2.5 x 0.5 (0.098 x 0.019)	(0.413) (0.21f	3) 1.40 (0.055)
Series	RI-80	RI-70 r	RI-71 RI-6	RI-60 RI-69	RI-69 RI-27	27 RI-29	-29 RI-23	3 RI-21	21 RI-25	RI-26	RI-46	RI-48 RI	RI-48V RI-90	0 Series		RI-91	RI-02	RI-07 R	-01C RI	I-06 RI-03	RI-01B	GC2522 G	GC2322 GC2315	GC2314	GC2722 GC271	7 GC3723	Series		GC3717 GC3823	GC3817	GC1513 G(iC1517 GC	J1523 GC1525	GC3525	GC3336	GC3436 GC1917	GC1625	GC6515 GC6516	<i>з</i> GC6517
Glass Length mm (in)	5.0 (0.196)	7.0 (0.275) 7.0	.0 (0.275) 10.0 /	J (0.394) 10.0 (0	,J.394) 13.5 (0.53*	ر31) 13.5 (0,۶	.531) 14.5 (0.570)	U) 14.5 (0.57°	0.570) 14.5 (0.570)	70) 14.5 (0.570)	20.5 (0.807)	_0.5 (0.807) 20	J.5 (0.807) 14.3 (0.5)	.563) Glass Length	mm /	(in) 14.3 (0.563)	10.0 (0.394)	13.5 (0.531) 13.5	(0.531) 14.5	(0.570) 14.5 (0.570)	14.5 (0.570) 11	1.0 (0.433) 14.	5 (0.570) 14.5 (0.570	14.5 (0.570)	19.0 (0.748) 19.0 (0.7	'48) 19.0 (0.74a	Glass Length	mm (in) 19	.0 (0.748) 24.5 (0.965)) 24.5 (0.965)	52.0 (2.047) 52.0	.0 (2.047) 52.0 ((2.047) 52.0 (2.047)	14.0 (0.551)	14.0 (0.551) 1	14.0 (0.551) 36.0 (1.417	7) 52.0 (2.047)	50.8 (2.000) 50.8 (2.00	J0) 50.8 (2.000)
Contact Form	A	A	A /	A	A A	A	A	A	A	A	A	A	A C	Contact Form		С	А	A	Α	A A	A	А	A A	А	A A	А	Contact Form		A A	А	A	А	A A	С	С	C C	С	A A	A
Contact Material	Sputtered Ru	Sputtered Ru Spir	outtered Ru Sputtr	attered Ru Sputter	red Ru Sputtered	d Ru Sputtere	ed Ru Plated Ru	u Plated B	Ru Sputtered Ru	.u Sputtered Ru	Sputtered Ru Sr	puttered Ru Sp	uttered Ru Ru	Contact Material		Ru	Ru	Ru	Ru F	Ru Ru	Ru	Rh	Rh Rh	Rh	Rh Rh	Rh	Contact Material		Rh Rh	Rh	Rh	Rh F	Rh Rh	Rh	Rh	Rh Rh	Rh	W W	W
Switching Power Max. W/VA	5	10	10	10 20	_0 10	20	ر 10	10	25	20	40	70	70 5	Switching Power	er Max. W/V	√A 10	10	10	10	10 10	10	6	10 10	10	12 10	40	Switching Power	Max. W/VA	40 60	60	120	30 1	120 80	5	20	20 60	60	50 50	50
Switching Voltage Max. VDC/AC	175	170	170 ^	200 20	200 200	200	J 200	200	200	200	250	250 2	250 175	Switching Voltaç	je Max. VDC	/AC 175	200	200	200 2	200	200	140	150 400	400	230 500	230	Switching Voltage	Max. VDC/AC	400 230	400	1500	1500 25	250 250	100	150	150 400	230	5000 7500	10000
Switching Current Max. A	0.35	0.5	0.5	0.5	0 0.5	1.0	J 0.5	0.5	1.0	1.0	1.0	1.0	1.0 0.4	Switching Currer	ent Max. A	0.5	0.5	0.5	0.5	0.4 0.5	0.5	0.5	0.5	0.5	1.0 0.5	2.0	Switching Current	Max. A	2.0 3.0	3.0	3.0	1.0	3.0 1.3	0.5	1.0	1.0 1.0	1.0	2.0 2.0	2.0
Carry Current Max. A	0.5	0.5	0.5 0.5	0.5 1.0	1.0 1.75	1.25	25 2.75	5 2.75	3	1.75	3.0	2.25 2	2.25 0.5	Carry Current	Max. A	A 0.5	0.5	1.75	.75 2	2.5 2.5	1.25	0.8	1.0 1.0	1.0	2.0 1.0	3.0	Carry Current	Max. A	3.0 4.0	4.0	5.0	2.0 5	5.0 2.0	1.0	2.0	2.0 2.0	2.0	3.0 3.0	3.0
Breakdown Voltage Min. VDC	230	210	210	230 2.9	230 180	250	J 200	225	200	275	300	400	1000 200	J Breakdown Volta	age Min. VD	JC 200	200	180	180 2	200	200	200 250	200 350 0 (Pl ≥ 15) 450 (Pl ≥ 15)	500 700 (Pl ≥ 15)	400 1300	200 400 (Pl ≥ 30	Breakdown Voltage	Min. VDC 100	500 400 600 (Pl ≥ 30) 500 (Pl ≥ 50)	850 1000 (PI ≥ 50)	1500 3000 (PI ≥ 75) 300°	1500 5/ 30 (Pl ≥ 75) 800 (500 500 √ (Pl ≥ 75) 800 (Pl ≥ 75)	200	200	750 1000 (PI ≥ F	50) 400	7000 10000	14000
Contact Resistance Max. mOhms	160	150	150	125 12	125 115	115	5 100	100	100	110	90	90	90 140	Contact Resistar	nce Max. mOh	nms 140	150	130	150 1	50 120	100 ²	150	150 150	150	100 100	100	Contact Resistance	Max. mOhms	100 100	100	100	100 1	100 100	150	150	150 100	100	100 100	100
Insulation Resistance Min. Ohms	1012	1012	1012	1012 10	1012 1012	1012	1012	1012	1012	1012	1012	1012	10 ¹² 10°	Insulation Resist	stance Min. Ohm	ms 10 ⁹	1012	1012	1012 1	012 1012	1012	1010	1010 1011	1011	1011 1011	1011	Insulation Resistance	Min. Ohms	1011 1011	1011	1011	1011 1	1011 1011	10 ⁹	10°	10 ⁹ 10 ⁹	10 ⁹	1012 1012	1012
Pull-in Sensitivity AT	5 - 15	7 - 21	7 - 21 7 - 2	7 - 21 7 - 21	7 - 21 10 - 34	34 16 - 34	- 34 8 - 70	0 8 - 70	70 8 - 70	14 - 52	10 - 70 1	15 - 70 15	15 - 70 15 - 30	30 Pull-in Sensitivity	y A ⁻	T 15 - 30	7 - 21	7 - 30 7	- 25 6	- 32 6 - 52	6 - 32	10 - 40 1	10 - 35 10 - 35	10 - 35	20 - 50 20 - 50	0 15 - 50	Pull-in Sensitivity	AT	15 - 50 30 - 70	30 - 70	60 - 95 60	60 - 95 30 -	30 - 95 30 - 95	15 - 50	15 - 30	15 - 30 40 - 100	80 - 120	100 - 170 100 - 18	30 120 - 200
Drop-out Sensitivity AT	2 - 13	3 - 16	3 - 16	3 - 16 3 -	- 16 4 - 19.F	J.5 5 - 19	.9.5 4 - 32	4 - 32	J2 4 - 32	70 - 80%	4 - 22.5	8 - 32	8 - 32 5 M in.	n. Drop-out Sensiti	vity A	.T 5 Min.	3 - 16	3 - 19.5 3	- 18 65 -	75% 3 - 36	3 - 27	5 Min.	5 Min. 5 Min.	5 Min.	5 Min. 5 Min.	. 15 Min.	Drop-out Sensitivity	АТ	15 Min. 15 Min.	15 Min.	30 Min. 25	25 Min. 30 M	30 Min. 25 Min.	8 Min.	5 Min.	5 Min. 20 Min.	20 Min.	1	-
Operate Time Max. ms	0.35	0.15	0.15 0.19	0.15 0.15	0.15 0.25	5 0.25	25 0.25	5 0.25	25 0.25	0.3	0.35	0.35	0.35 1.0	Operate Time	Max. ms	ns 1.0	0.3	0.45).35	0.3 0.25	0.25	1.0	1.0 1.0	1.0	2.0 2.0	2.0	Operate Time	Max. ms	2.0 2.5	2.5	3.5	3.5 3.	3.5 3.5	1.5	2.0	2.0 1.5	1.5	1.8 1.8	1.8
Bounce Time Max. ms	0.1			0.035 0.035			05 0.15		0.15	0.03	0.15		0.15 1.5	Bounce Time	Max. ms		0.1	0.05	0.1 0	.15 0.15	0.15	0.3	0.2 0.2	0.2	0.5 0.5	0.5	Bounce Time	Max. ms	0.5 0.5	0.5	0.5	0.5 0.	0.5 0.5	0.6	0.6	0.6 0.5	0.5	1.8 1.8	1.8
Release Time Max. ms	0.02			0.02 0.02	0.02 0.03	3 0.03	03 0.07	7 0.07	0.07	0.03	0.03	0.03	0.03 1.0	Release Time	Max. ms		0.07	0.03	0.05 0	.07 0.07	0.07	0.05	0.05 0.05	0.05	0.10 0.10	0.10	Release Time	Max. ms	0.10 0.10	0.10	0.2	0.2 0.	0.2 0.2	1.5	2.0	2.0 1.5	1.5	0.5 0.5	0.5
Resonant Frequency Typ. Hz	21300	17900 17	17900 1130	11300 11300	1300 6700	00 6500	500 5500	5500	00 5100	5500	3200	3200 3	3200 TBD	D Resonant Freque	uency Typ. Hz	lz TBD	10800	6700 6	700 55	500 5500	5500	6000	5000 5000	5000	2900 2900	4200	Resonant Frequency	Typ. Hz	4200 2400	2400	900	900 90	900 900	-	-		_		-
Operating Frequency Max. Hz		125 1	125 125	125 125	125 170	0 100	00 170	100	00 50	125	125	125	125 100		uency Max. Hz	lz 100	125	170	100 1	70 170	100	400	200 200	200	200 200	300			300 200	200	100	100 10	100 100	250	250	250 100	100		4 - 7
Vibration (10-1000 Hz) g	1 10	1 10	10	10 1	10 10	10	0 10	10	10	10	10	10	10 -	Vibration (10-100		- ا	10	10	10	10 10	10	35	35 35	35	35 35	35	Vibration (10-1000 Hz)	g	35 35	35	35	35 3	35 35	35	20	20 35	35		-
Shock (11 ms) g	150	100 1	100	100 1	100 150	150	.0 150	150	150	50	500	500	500 -	Shock (11 ms)	ç	-	150	150	150 1	50 150	150	50	50 50	50	50 50	50	Shock (11 ms)	g	50 50	50	50	50	50 50	50	50	50 50	50		-
Capacitance Typ. pF	0.45	0.35 0.	0.35 0.29	0.25 0.25	0.25 0.3	0.3	.3 0.3	0.3	3 0.3	0.3	0.2	0.2	0.2 0.8	3 Capacitance	Typ. pF	F 0.8	0.3	0.3	0.3	0.3	0.3	0.5	0.7 0.7	0.7	0.5 0.5	0.5	Capacitance	Typ. pF	0.5 0.5	0.5	0.8	0.8 0.	0.8 0.8	1.5	0.8	0.8 1.0	1.0	0.5 0.5	0.5
		-55 +125	-55 +125 -55 +1	-55 +125 -55 +7			+75 -55 +125	125 -55 +125	125 -55 +125	5 -55 +125	-55 +125		-55 +125 -55 +12	·	o. Range Deg. °C	C -55 +125	-55 +125		+125 -55	+125 -55 +125	-55 +125	-40 +125 -4	40 +125 -40 +125	-40 +125	-40 +125 -40 +12		Operating Temp. Range	Deg. °C -	-40 +125 -40 +125	-40 +125	-40 +125 -40	40 +125 -40 +	-40 +125	-40 +125	-40 +125	-40 +125 -40 +125	5 -40 +125	-55 +125 -55 +125	25 -55 +125
Test Coil Type				PSC PSC							- 		PSC PSC		Type	PSC	PSC		I	SC PSC			1035 1035	1035	1700 1700				1700 1800				1500 1500	1035		1035 1500		CP-12 CP-12	
	Ideal for ATE Switce SMD Version Avail Custom Cut & Bend	vitching vailable Bend • Idea Swire • Sur • Sur • C	al for ATE itching switch switch special speci	deal for ATE witching Switching SMD Version Available custom Cut & Bend • High Pov Switching Switching • SMD Ver Available • Custom Cut & Be		or ATE Switching Version Available on Cut & Bend	Custom Cut & Bend		or AC oltage Applications Custom Cut & Bend				High Voltage Applications Custom Cut & Bend • Ideal for A Switching • Changeo Switch • Custom Cut & Bend	or ATE ing eover Options / Feature n Bend	es	• Ideal for ATE	• General	General Purpose SMD Version Availab Custom Cut & Bend	• Gene	eral ose e General Purpose rential om Cut & Bend	• General		west Pull-in Sensitivity gh Switching Speed gh Breakdown Voltage stom Cut & Bend				Ge Options / Features	• Hi da • Cu	igh Break- own Voltage ustom ut & Bend • High Switching Current • Custom Cut & Bend	a Llimb	High Break- down Voltage Custom Cut & Bend • High ow • High Swi Vol' • Cus Cus	gh Break- own Voltage gh witching oltage ustom ut & Bend	• General Purpose Switch • Custom Cut & Bend					High Switching Current High Breakdown Voltage Vacuum Technology	