Data Sheet

FEATURES

4.7Ω maximum on resistance at $25^{\circ} \mathrm{C}$
0.5Ω on-resistance flatness
Up to 190 mA continuous current
Fully specified at $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$
3 V logic-compatible inputs
Rail-to-rail operation
Break-before-make switching action
16-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Relay replacement

Audio and video routing
Automatic test equipment

Data acquisition systems

Temperature measurement systems
Avionics

Battery-powered systems

Communication systems
Medical equipment

GENERAL DESCRIPTION

The ADG1408/ADG1409 are monolithic CMOS * analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG1408 switches one of eight inputs to a common output, as determined by the 3-bit binary address lines, A0, A1, and A2. The ADG1409 switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines, A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched off.

The industrial CMOS (iCMOS) modular manufacturing process combines high voltage complementary metal-oxide semiconductor (CMOS) and bipolar technologies. It enables the development of a wide range of high performance analog ICs capable of 33 V operation in a footprint that no other generation of high voltage devices has been able to achieve. Unlike analog ICs using conventional CMOS processes, i CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

The ultralow on resistance and on resistance flatness of these switches make them ideal solutions for data acquisition and gain switching applications where low distortion is critical. i CMOS construction ensures ultralow power dissipation, making the devices ideally suited for portable and batterypowered instruments.

PRODUCT HIGHLIGHTS

1. 4Ω on resistance.
2. 0.5Ω on-resistance flatness.
3. 3 V logic compatible digital input, $\mathrm{V}_{\mathrm{IH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.8 \mathrm{~V}$.
4. \quad 16-lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP.

Table 1. Related Devices

Device No.	Description
ADG1208/ADG1209	Low capacitance, low charge injection, and low leakage 4-/8-channel $\pm 15 \mathrm{~V}$ multiplexers

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
15 V Dual Supply 3
12 V Single Supply5
5 V Dual Supply 7
REVISION HISTORY
6/2016—Rev. C to Rev. D
Changes to Analog Inputs Parameter, Table 6 9
Added Digital Inputs Parameter, Table 6 9
5/2016-Rev. B to Rev. C
Changed CP-16-13 to CP-16-26 Throughout
Changes to Figure 3 10
Changes to Figure 5 11
Updated Outline Dimensions 19
Changes to Ordering Guide 20
3/2009—Rev. A to Rev. B
Change to I ${ }_{\text {DD }}$ Parameter, Table 2 4
Change to I ID Parameter, Table 3 6
8/2008—Rev. 0 to Rev. A
Changes to Features. 1
Added Table 5; Renumbered Sequentially 8
Changes to Table 6 9
Added Exposed Pad Notation to Figure 3 10
Added Exposed Pad Notation to Figure 5 11
Added Exposed Pad Notation to Outline Dimensions 19
Continuous Current per channel, S or D 8
Absolute Maximum Ratings 9
Thermal Resistance 9
ESD Caution 9
Pin Configurations and Function Descriptions 10
Typical Performance Characteristics 12
Terminology 16
Test Circuits 17
Outline Dimensions 19
Ordering Guide 19

8/2006-Revision 0: Initial Version

SPECIFICATIONS

15 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \hline-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On Resistance Match Between Channels (Δ Ron) On-Resistance Flatness (Relation)	$\begin{aligned} & 4 \\ & 4.7 \\ & 0.2 \\ & \\ & 0.78 \\ & 0.5 \\ & 0.72 \end{aligned}$	$\begin{aligned} & 5.7 \\ & \\ & 0.85 \\ & 0.77 \end{aligned}$	$V_{S S}$ to $V_{D D}$ 6.7 1.1 0.92	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, lo (Off) Channel On Leakage, $I_{D}, I_{S}(O n)$	$\begin{aligned} & \pm 0.04 \\ & \pm 0.2 \\ & \pm 0.04 \\ & \pm 0.45 \\ & \pm 0.1 \\ & \pm 1.5 \end{aligned}$	$\begin{aligned} & \pm 0.6 \\ & \pm 2 \\ & \pm 3 \end{aligned}$	$\begin{aligned} & \pm 5 \\ & \pm 30 \\ & \pm 30 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 28 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VINL Input Current Digital Input Capacitance, C_{IN}	$\begin{aligned} & \pm 0.005 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$					
Transition Time, ttransition Break-Before-Make Time Delay, t $_{\text {ввм }}$ ton (EN) toff (EN) Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion Plus Noise (THD + N) -3 dB Bandwidth ADG1408 ADG1409 Insertion Loss C_{s} (Off) C_{D} (Off) ADG1408 ADG1409	140 170 50 100 120 100 120 -50 -70 -70 0.025 60 115 0.24 14 80 40	$\begin{aligned} & 210 \\ & 150 \\ & 150 \end{aligned}$	240 30 165 170	ns typ ns max ns typ ns min ns typ ns max ns typ ns max pC typ dB typ dB typ \% typ MHz typ MHz typ dB typ pF typ pF typ pF typ	

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$	Unit	Test Conditions/Comments
$\begin{array}{r} \hline \mathrm{C}_{\mathrm{D}} \mathrm{C}_{\mathrm{S}}(\mathrm{On}) \\ \text { ADG1408 } \\ \text { ADG1409 } \\ \hline \end{array}$	$\begin{aligned} & 135 \\ & 90 \end{aligned}$			$\begin{aligned} & \text { pF typ } \\ & \text { pF typ } \end{aligned}$	$\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS ldo Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 0.002 \\ & 220 \\ & 0.002 \end{aligned}$		1 380 1 $\pm 4.5 / \pm 16.5$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max V min/max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{S S}=-16.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \text { Digital inputs }=5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V}, 5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \end{aligned}$

${ }^{1}$ Temperature range: Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \\ & \hline \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ron) On-Resistance Flatness (Rflation)	$\begin{aligned} & 6 \\ & 8 \\ & 0.2 \\ & 0.82 \\ & 1.5 \\ & 2.5 \end{aligned}$	9.5 0.85 2.5	0 to $V_{D D}$ 11.2 1.1 2.8	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, ID, Is (On)	$\begin{aligned} & \pm 0.04 \\ & \pm 0.2 \\ & \pm 0.04 \\ & \pm 0.45 \\ & \pm 0.06 \\ & \pm 0.44 \end{aligned}$	$\begin{aligned} & \pm 0.6 \\ & \pm 1 \\ & \pm 1.3 \end{aligned}$	± 5 ± 37 ± 32	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 27 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 10 \mathrm{~V} \text {; see Figure } 28 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathrm{INH}}$ Input Low Voltage, VinL Input Current Digital Input Capacitance, $\mathrm{Clin}^{\mathrm{I}}$	± 0.005 5		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$					
Transition Time, ttransition	200			ns typ	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	260	330	380	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 29
Break-Before-Make Time Delay, tввм	90			ns typ	$\mathrm{RL}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
			40	ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=8 \mathrm{~V}$; see Figure 30
ton (EN)	160			ns typ	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	210	250	285	ns max	$\mathrm{V}_{\mathrm{s}}=8 \mathrm{~V}$; see Figure 31
toff (EN)	115			ns typ	$\mathrm{RL}=100 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}$
	145	180	200	ns max	$\mathrm{V}_{5}=8 \mathrm{~V}$; see Figure 31
Charge Injection	-12			pC typ	$\mathrm{V}_{S}=6 \mathrm{~V}, \mathrm{R}_{S}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 32
Off Isolation	-70			dB typ	$\mathrm{RL}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 33
Channel-to-Channel Crosstalk -3 dB Bandwidth	-70			dB typ	$\begin{aligned} & R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \text { see Figure } 34 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF} \text {; see Figure } 35 \end{aligned}$
ADG1408	36			MHz typ	
ADG1409	72			MHz typ	
Insertion Loss	0.5			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 35
C_{5} (Off)	25			pF typ	$\mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)					$\mathrm{f}=1 \mathrm{MHz}$
ADG1408	165			pF typ	
ADG1409	80			pF typ	
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{On})$					$\mathrm{f}=1 \mathrm{MHz}$
ADG1408 ADG1409	$\begin{aligned} & 200 \\ & 100 \end{aligned}$			pF typ pF typ	

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$
ldo	0.002			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
	220			$\mu \mathrm{A}$ typ	Digital inputs $=5 \mathrm{~V}$
			380	$\mu \mathrm{A}$ max	
$V_{\text {DD }}$			5/16.5	V min/max	$\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$

[^0]${ }^{2}$ Guaranteed by design, not subject to production test.

5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

ADG1408/ADG1409

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}^{1} \end{aligned}$	Unit	Test Conditions/Comments
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$
IdD	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}, 5 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 4.5 / \pm 16.5$	\checkmark min/max	

${ }^{1}$ Temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5.

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT, S or D ${ }^{1}$					
15 V Dual Supply					$V_{\text {DD }}=+13.5 \mathrm{~V}, \mathrm{~V}_{5 S}=-13.5 \mathrm{~V}$
ADG1408	190	105	50	mA max	
ADG1409	140	85	45	mA max	
12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
ADG1408	160	95	50	mA max	
ADG1409	120	75	40	mA max	
5 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$
ADG1408	155	90	45	mA max	
ADG1409	115	70	40	mA max	

[^1]
ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 6.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	35 V
V ${ }_{\text {d }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND - 0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Continuous Current, S or D	Table 5 data + 10\%
Peak Current, S or D (Pulsed at 1 ms , 10\% Duty Cycle Maximum)	350 mA
Operating Temperature Range Industrial (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature (RoHS Compliant)	$260(+0 /-5)^{\circ} \mathrm{C}$

${ }^{1}$ Overvoltages at A, EN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.
Only one absolute maximum rating can be applied at any one time.

THERMAL RESISTANCE

θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 7. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}$	$\boldsymbol{\theta}_{\boldsymbol{\prime}}$	Unit
16-Lead TSSOP	150.4	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP	30.4		${ }^{\circ} \mathrm{C} / \mathrm{W}$

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged deviecs and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage
may occur on devices subjected to high energy ESD.	
Therefore, proper ESD precautions should be taken to	
avoid performance degradation or loss of functionality.	

ESD (electrostatic discharge) sensitive device Charged devices and circuit boards can discharge patented may occur on devices subjected to high energy ESD. precautions should be taken avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. ADG1408 Pin Configuration (TSSOP)

NOTES

1. THE EXPOSED PAD IS

CONNECTED INTERNALLY. FOR INCREASED RELIABILITY OF THE OLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT'THE PAD BE SOLDERED TO THE SUBSTRATE, $\mathbf{V}_{\text {SS }}$.
Figure 3. ADG1408 Pin Configuration (LFCSP)

Table 8. ADG1408 Pin Function Descriptions

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	15	A0	Logic Control Input. 2
	16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	1	VSs	Most Negative Power Supply Potential. In single supply applications, it can be connected to ground.
4	2	S1	Source Terminal 1. Can be an input or an output.
5	3	S2	Source Terminal 2. Can be an input or an output.
6	4	S3	Source Terminal 3. Can be an input or an output.
7	5	S4	Source Terminal 4. Can be an input or an output.
8	6	D	Drain Terminal. Can be an input or an output.
9	7	S8	Source Terminal 8. Can be an input or an output.
10	8	S7	Source Terminal 7. Can be an input or an output.
11	9	S6	Source Terminal 6. Can be an input or an output.
12	10	S5	Source Terminal 5. Can be an input or an output.
13	11	VD	Most Positive Power Supply Potential.
14	12	GND	Ground (0 V) Reference.
15	13	A2	Logic Control Input.
16	14	A1	Logic Control Input.
Not	0	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and
applicable			

Table 9. ADG1408 Truth Table

A2	A1	A0	EN	On Switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	3
0	1	0	1	4
0	1	0	5	
1	0	1	6	6
1	0	0	1	7
1	1	1	8	
1	1	1		

Figure 4. ADG1409 Pin Configuration (TSSOP)

NOTES

1. THE EXPOSED PAD IS

CONNECTED INTERNALLY. FOR
INCREASED RELIABILITY OF THE
INCREASED RELIABILITY OF THE
SOLDER JOINTS AND MAXIMUM
THERMAL CAPABILITY, IT IS
RECOMMENDED THAT' THE PAD BE
SOLDERED TO THE SUBSTRATE, $\mathbf{V}_{\text {SS }}$.
Figure 5. ADG1409 Pin Configuration (LFCSP)

Table 10. ADG1409 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	1	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential. In single supply applications, it can be connected to ground.
4	2	S1A	Source Terminal 1A. Can be an input or an output.
5	3	S2A	Source Terminal 2A. Can be an input or an output.
6	4	S3A	Source Terminal 3A. Can be an input or an output.
7	5	S4A	Source Terminal 4A. Can be an input or an output.
8	6	DA	Drain Terminal A. Can be an input or an output.
9	7	DB	Drain Terminal B. Can be an input or an output.
10	8	S4B	Source Terminal 4B. Can be an input or an output.
11	9	S3B	Source Terminal 3B. Can be an input or an output.
12	10	S2B	Source Terminal 2B. Can be an input or an output.
13	11	S1B	Source Terminal 1B. Can be an input or an output.
14	12	VDD	Most Positive Power Supply Potential.
15	13	GND	Ground (0V) Reference.
16	14	A1	Logic Control Input.
Not applicable	0	EPAD	Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{ss}.

Table 11. ADG1409 Truth Table

A1	A0	EN	On Switch Pair
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. On Resistance vs. V_{D}, V_{S}; Dual Supply

Figure 7. On Resistance vs. V_{D}, V_{S}; Dual Supply

Figure 8. On Resistance vs. V_{D}, V_{s}; Single Supply

Figure 9. On Resistance vs. V_{D}, V_{S} for Different Temperatures; 15 V Dual Supply

Figure 10. On Resistance vs. V_{D}, V_{s} for Different Temperatures; 5 V Dual Supply

Figure 11. On Resistance vs. V_{D}, V_{S} for Different Temperatures;
12 V Single Supply

Figure 12. Leakage Current vs. Temperature;
15 V Dual Supply

Figure 13. Leakage Current vs. Temperature;
15 V Dual Supply

Figure 14. Leakage Current vs. Temperature;
5 V Dual Supply

Figure 15. Leakage Current vs. Temperature;
12 V Single Supply

Figure 16. Positive Supply Current vs. Logic Level

Figure 17. Charge Injection vs. Source Voltage

Figure 18. Transition Time vs. Temperature

Figure 19. Off Isolation vs. Frequency

Figure 20. ADG1408 Crosstalk vs. Frequency

Figure 21. ADG1409 Crosstalk vs. Frequency

Figure 22. ADG1408 On Response vs. Frequency

Figure 23. ADG1409 On Response vs. Frequency

Figure 24. Total Harmonic Distortion Plus Noise vs. Frequency

Figure 25. AC Power Supply Rejection Ratio vs. Frequency

TERMINOLOGY

Ron
Ohmic resistance between D and S .
$\Delta R_{\text {on }}$
Difference between the R R_{ON} of any two channels.
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured.
I_{s} (Off)
Source leakage current when the switch is off.
I_{D} (Off)
Drain leakage current when the switch is off.

$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathbf{O n})$

Channel leakage current when the switch is on.
V_{D} (Vs)
Analog voltage on Terminal D and Terminal S.
Cs (Off)
Channel input capacitance for off condition.
C_{d} (Off)
Channel output capacitance for off condition.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
On switch capacitance.
C_{IN}
Digital input capacitance.

ton (EN)

Delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {OFF }}$ (EN)
Delay time between the 50% and 90% points of the digital input and switch off condition.
t transition
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

$t_{\text {bBM }}$

Off time measured between the 80% point of both switches when switching from one address state to another.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}, \mathrm{I}_{\text {INH }}$
Input current of the digital input.
\mathbf{I}_{DD}
Positive supply current.
Iss
Negative supply current.

Off Isolation

A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

Frequency at which the output is attenuated by 3 dB .

On Response

Frequency response of the on switch.
Total Harmonic Distortion Plus Noise (THD + N)
Ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of a device to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p -p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

TEST CIRCUITS

Figure 29. Address to Output Switching Times, $t_{\text {transition }}$

Figure 30. Break-Before-Make Delay, $t_{B B M}$

Figure 31. Enable Delay, toN (EN), tofF (EN)

Figure 32. Charge Injection

Figure 33. Off Isolation

Figure 34. Channel-to-Channel Crosstalk

Figure 35. Insertion Loss

Figure 36. $T H D+N$

OUTLINE DIMENSIONS

Figure 37. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 38. 16-Lead Lead Frame Chip Scale Package [LFCSP]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body and 0.75 mm Package Height
(CP-16-26)
Dimensions shown in millimeters
ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Description	Package Option
ADG1408YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1408YRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1408YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1408YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26
ADG1409YRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1409YRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1409YRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1409YCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-26

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Temperature range for Y version: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

