Main applications

- Packaging Machinery
- Thermoforming
- Plastic extrusion lines
- Industrial ovens and furnaces
- Control application with high switching speed

Main features

- Alternating current solid state relay
- Zero crossing switching
- Copper/semiconductor coupling technology
- 15, 25, 50 and 90Arms nominal current
- Non-repetitive voltage: up to 1600Vp
- Nominal Voltage: up to 600 Vac
- Control voltage : 3...32Vcc and 20...260Vac/Vcc with connector
- Isolation ((input-output) 4000 Vrms
- Red LED drive active signal
- Internal MOV (option)

PROFILE

Zero crossing relay with antiparallel thyristor output is the most used solid state relay in industrial applications.
In fact, it can be used for resistive, inductive and capacity loads.
"Zero crossing" relay is energised when voltage meets the zero point and disenergised when current meets the zero point, depending on the signal control on the input circuit.
This relay has been designed to stand high-value transitory applications.
When the relay has to stand high currents for a long period, it is necessary to grant a proper dissipation and an adequate electrical connection between relay terminals and the load.
Varistors, fuses, thermostats and fans are available as fittings.
Use the relay with an opportune heatsink (see section accessories).

TECHNICAL DATA

General features

Rated frequency: $45 . .65 \mathrm{~Hz}$
Activation time:
GQ...-D- $\leq 1 / 2$ cicle GQ...-A- ≤ 1 cicle Deactivation time:
GQ...-D- $\leq 1 / 2$ cicle GQ...-A- ≤ 1 cicle Power factor: $\geq 0,5$
Protection level: IP20

- $\mathrm{U}_{\mathrm{imp}}=4,8 \mathrm{KV}$
- $U_{i}=660 \mathrm{~V}$
- Overload current profile $=10$
- Conditional short circuit current $=5 K A$ with type 1 coordination and respective fuse protections.
GQ15/25 fuse type aM6A
GQ50 fuse type aM16A
GQ90 fuse type aM20A
GQ...- 24-
Nominal voltage: 24...230 Vac
(max range 20...253Vac)
Non-repetitive voltage: $\geq 600 \mathrm{Vp}$
Zero switching voltage: $\leq 20 \mathrm{~V}$
GQ...- 48-
Nominal voltage: 48... 480 Vac (max range $40 . . .528 \mathrm{Vac})$
Non-repetitive voltage: $\geq 1200 \mathrm{Vp}$
Zero switching voltage: $\leq 40 \mathrm{~V}$

GQ...- 60-

Nominal voltage: 48... 600 Vac
(max range $40 . . .660 \mathrm{Vac})$
Non-repetitive voltage: $\geq 1200 \mathrm{Vp}$
Zero switching voltage: $\leq 40 \mathrm{~V}$

Control input A1-A2

GQ...-D-
Control voltage: $3 . . .32 \mathrm{Vcc}$
Turn ON voltage: $\geq 2,7 \mathrm{Vc}$.c
Turn OFF voltage: $\leq 1 \mathrm{Vcc}$
Reverse voltage: < 36Vcc
Consumption: $\leq 13 \mathrm{~mA} @ 32 \mathrm{~V}$
GQ...-A-
Control voltage: $20 \ldots 260 \mathrm{Vac} / \mathrm{Vcc}$
Turn ON voltage: $\geq 15 \mathrm{Vac} / \mathrm{Vcc}$
Turn OFF voltage: $\leq 6 \mathrm{Vac} / \mathrm{Vcc}$
Consumption: $\leq 8 \mathrm{mAac} / \mathrm{cc} @ 260 \mathrm{Vac} / \mathrm{Vcc}$
Series connection of control inputs: max. no. GQ...-A in series $=$ Vcontrol $-10 \% / 20$

Output L1-T1

GQ-15-
Nominal current: AC51: 15Arms;
AC53A (*): 3Arms
Min load current: 0,1Arms
Repetitive overcurrent $\mathrm{t}=1 \mathrm{~s}: \leq 35$ Arms
Non-repetitive overcurrent $\mathrm{t}=20 \mathrm{~ms}: 200 \mathrm{Ap}$
Current drop at nominal voltage and fre-
quencies: $\leq 8 \mathrm{mArms}$
${ }^{12}$ t for fusing $t=1-10 \mathrm{~ms}: \leq 200 A^{2} s$
Critical dl/dt: $\geq 100 \mathrm{~A} / \mu \mathrm{s}$

Voltage drop at nominal current: $\leq 1,45 \mathrm{Vrms}$
Critical dV/dt off-state: $\geq 1000 \mathrm{~V} / \mu \mathrm{s}$
$I_{\text {th }}=15 \mathrm{~A}$

GQ-25-

Nominal current :
AC51: 25Arms; AC53A (*): 5Arms
Min load current: 0,3Arms
Repetitive overcurrent $\mathrm{t}=1 \mathrm{~s}: \leq 60 \mathrm{Arms}$
Non-repetitive overcurrent $t=20 \mathrm{~ms}: 300 \mathrm{Ap}$
Current drop at nominal voltage and frequencies: $\leq 8 \mathrm{mArms}$
${ }^{2}$ 2t for fusing $t=1-10 \mathrm{~ms}$: $\leq 450 A^{2} s$
Critical dl/dt: $\geq 100 \mathrm{~A} / \mu \mathrm{s}$
Voltage drop at nominal current: $\leq 1,45 \mathrm{Vrms}$
Critical dV/dt off-state $: \geq 1000 \mathrm{~V} / \mu \mathrm{s}$
$l_{\text {th }}=25 \mathrm{~A}$
GQ-50-
Nominal current :
AC51: 50Arms; AC53A (*): 15Arms
Min load current: 0,3Arms
Repetitive overcurrent $\mathrm{t}=1 \mathrm{~s}: \leq 125$ Arms
Non-repetitive overcurrent $\mathrm{t}=20 \mathrm{~ms}$: 600Ap
Current drop at nominal voltage and fre-
quencies: $\leq 8 \mathrm{mArms}$
${ }^{22 t}$ for fusing $t=1-10 \mathrm{~ms}: \leq 1800 A^{2} \mathrm{~s}$
Critical dl/dt: $\geq 100 \mathrm{~A} / \mu \mathrm{s}$
Voltage drop at nominal current: $\leq 1,35 \mathrm{Vrms}$
Critical dV/dt off-state: $\geq 1000 \mathrm{~V} / \mu \mathrm{s}$
$l_{\text {th }}=50 \mathrm{~A}$

GQ-50B -

(with high ${ }^{22 t}$ fusing current)
Nominal current : AC51: 50Arms;
AC53A (*): 18Arms
Min load current: 0,4Arms
Repetitive overcurrent $\mathrm{t}=1 \mathrm{~s}: \leq 140 \mathrm{Arms}$
Non-repetitive overcurrent $t=20 \mathrm{~ms}$: 1150Ap
Current drop at nominal voltage and fre-
quencies: $\leq 10 \mathrm{mArms}$
${ }^{22 t}$ for fusing $t=1-10 \mathrm{~ms}: \leq 6600 A^{2} \mathrm{~s}$
Critical dl/dt: $\geq 100 \mathrm{~A} / \mu \mathrm{s}$
Voltage drop at nominal current: $\leq 1,2 \mathrm{Vrms}$ Critical dV/dt off-state: $\geq 1000 \mathrm{~V} / \mu \mathrm{s}$
$I_{\text {th }}=50 \mathrm{~A}$

GQ-90 -
Nominal current AC51: 90Arms; AC53A (*): 20Arms
Min load current: 0,5Arms
Repetitive overcurrent $\mathrm{t}=1 \mathrm{~s}: \leq 150$ Arms
Non-repetitive overcurrent t=20ms: 1500 Ap Current drop at nominal voltage and frequencies: $\leq 10 \mathrm{mArms}$
${ }^{2 t}$ for fusing $t=1-10 \mathrm{~ms}: \leq 11200 A^{2} s$
Critical dl/dt: $\geq 100 \mathrm{~A} / \mu \mathrm{s}$
Voltage drop at nominal current: $\leq 1,35 \mathrm{Vrms}$
Critical dV/dt off-state: $\geq 1000 \mathrm{~V} / \mu \mathrm{s}$
$l_{\text {th }}=90 \mathrm{~A}$
(*) Only versions: GQ-XX-24-X-1
GQ-XX-48-X-1

Insulation

Nominal insulation voltage Input/output: ≥ 4000 Vac
Nominal insulation voltage Output/case: ≥ 2500 Vac
Insulation resistance Input/output: $\geq 10^{10} \Omega$ Insulation resistance Output/case: $\geq 10^{10} \Omega$ Insulation capacity Input/Output: $\leq 8 \mathrm{pF}$ Insulation capacity Output/case: $\leq 100 \mathrm{pF}$

Ambient conditions

- Ambient temeparure: $-25 \ldots+80^{\circ} \mathrm{C}$
- Storage Temperature: $-55 \ldots+100^{\circ} \mathrm{C}$
- Maximum relative humidity: 50% a $40^{\circ} \mathrm{C}$
- Maximum installation height: 2000 slm
- Pollution level: 2

Thermal features

GQ - XX -
Junction Temperature: $\leq 125^{\circ} \mathrm{C}$
Rth junction/ambient: $\leq 12 \mathrm{~K} / \mathrm{W}$
GQ-15-/ GQ-25-
Rth junction/case: $\leq 1,25 \mathrm{~K} / \mathrm{W}$
GQ-50-
Rth junction/case: $\leq 0,65 \mathrm{~K} / \mathrm{W}$

GQ-50B-
Rth junction/case: $\leq 0,33 \mathrm{~K} / \mathrm{W}$

GQ-90-

Rth junction/case: $\leq 0,3 \mathrm{~K} / \mathrm{W}$

Solid State Relay Dissipated Power Calculation

Single phase state relay
Pd GQ .. 15/25 = 1,45. Irms [W]
Pd GQ .. 50/90 = 1,35. Irms [W]
$\mathrm{Pd} G Q . .50 \mathrm{~B}=1,2 . \mathrm{Irms}[\mathrm{W}]$
IRMS = single-phase load current

Heatsink Thermal Resistance Calculation

Rth $=\left(90^{\circ} \mathrm{C}-\mathrm{T} . \mathrm{amb} . \max \right) / \mathrm{Pd}$
where $\mathrm{Pd}=$ dissipated power
Max. amb. T = max air temperature inside the electrical cabinet.
Use a heatsink with thermal resistance inferior to the calculated one (Rth).

Installation notes

The device must be protected by a high speed fuse (accessory).
Applications with power solid state relays must also have a switch to isolate the power line.
Protect the solid state relay against overheating by using a heatsink (accessory).
The heatsink must be sized according to room temperature and load current (see technical data).
Heatsink installation procedure:
spread 1 gram of thermoconductive silicone paste (we recommend DOW CORNING 340) on the dissipative metal surfaces of the module.
The surfaces must be clean and the thermoconductive paste must not contain any impurities. As alternative it is also possible to use the slide SIL-GQ available as accessory.

DIMENSIONS

Dimensions in mm, (inc)
(*) See installation notes

* 30.5 (1.2) with option "command signal Terminal" $=4$

Alternately tighten the two fastening screws until reaching a torque of 0.4...0.6 Nm.
Wait 5 minutes for any excess paste to run off.
Alternately tighten the two fastening screws until reaching a torque of 1.2...1.4 Nm.

Attention

The contact surface of the heatsink module may have a maximum planarity error of 0.1 mm and maximum roughness of 0.02 mm .
The fastening holes on the heatsink must
be threaded and countersunk.
The heatsink must be grounded.

Short circuit protection

The product variants listed in the table "SCCR COORDINATION FUSES" are "Suitable For Use On A Circuit Capable Of Delivering Not More Than 100,000 A rms Symmetrical Amperes, 600 Volts Maximum when Protected by fuses.

Attention: the opening of the branch-circuit
protective device may be an indication tha a fault has been interrupted. To reduce the risk of firee or electric shocks, currentcarryng parts and other components of the device should be examinated and replaced if damaged. If burnout of the device occurs, the complete device must be replaced or equivalent.

ELECTRICAL CONNECTIONS

Functional Diagram

GQ-xx-xx-D-x-x

GQ-xx-xx-A-x-x

(1): Only GQ-xx-60-x-1-x
(2): Only GQ-xx-xx-x-1-x

Description	$\begin{array}{lc} \text { Power terminals } \\ 1-L 1 & 2-T 2 \end{array}$	2 poles command terminals 3-A1/4-A2			
Terminal type	screw (M4) contact area (LxP) $13 \times 11 \mathrm{~mm}$	with self-locking spring MORS1 extractable	with spring double connection MORS2 extractable	with screw M3 MORS3 extractable	with screw M3 MORS4 not extractable
Stripped wire	$1 \times 2.5 \ldots 6 \mathrm{~mm}^{2}$ $2 \times 1.5 . .2 .5 \mathrm{~mm}^{2}$ $2 \times 2.5 \ldots 6 \mathrm{~mm}^{2}$ Stripped 11 mm	$\begin{gathered} 1 \times 0.2 \ldots 2.5 \mathrm{~mm}^{2} \\ 2 \times 0.5 \ldots 0.75 \mathrm{~mm}^{2}(\#) \\ \text { Stripped } 10 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 2 \times\left(1 \times 0.2 \ldots 2.5 \mathrm{~mm}^{2}\right) \\ 2 \times\left(2 \times 0.2 \ldots 0.75 \mathrm{~mm}^{2}\right)(\#) \\ \text { Stripped } 10 \mathrm{~mm} \end{gathered}$	$\begin{gathered} 1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2} \\ 2 \times 0.25 \ldots 1 \mathrm{~mm}^{2}(\#) \\ \text { Stripped } 7 \mathrm{~mm} \end{gathered}$	$1 \times 0.5 \ldots 1.5 \mathrm{~mm}^{2}$ Stripped 6 mm
Prod cable	$\begin{gathered} 1 \times 1.5 \ldots 6 \mathrm{~mm}^{2} \\ 2 \times 1.5 \ldots 2.5 \mathrm{~mm}^{2} \\ 2 \times 2.5 \ldots 6 \mathrm{~mm}^{2} \\ \hline \end{gathered}$	$\begin{gathered} 1 \times 0.2 \ldots 1.5 \mathrm{~mm}^{2} \\ 2 \times 0.2 \ldots 0.75 \mathrm{~mm}^{2}(\#) \end{gathered}$	$\begin{gathered} 2 \times\left(1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2}\right) \\ 2 \times\left(2 \times 0.25 \ldots 0.75 \mathrm{~mm}^{2}\right)(\#) \end{gathered}$	$\begin{gathered} 1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2} \\ 2 \times 0.25 \ldots 1 \mathrm{~mm}^{2}(\#) \end{gathered}$	---
Prod cable with collar	$1 \times 1.5 \ldots 10 \mathrm{~mm}^{2}$ $2 \times 1.5 \ldots 2.5 \mathrm{~mm}^{2}$ $2 \times 2.5 \ldots 6 \mathrm{~mm}^{2}$	$1 \times 0.2 \ldots .1 .5 \mathrm{~mm}^{2}$	1x0.25...1.5mm²	$\begin{gathered} 1 \times 0.25 \ldots 2.5 \mathrm{~mm}^{2} \\ 2 \times 0.25 \ldots 1.5 \mathrm{~mm}^{2}(\#) \end{gathered}$	---
Fork or eyelet cable	$1 \times 2.5 . .25 \mathrm{~mm}^{2}$	---	---	---	---
Locking torque / screwdriver type	slot $1 \times 5 . . .6 \mathrm{~mm}$ cross $\varnothing 5$... 6 mm 2-2,4 Nm (18-21,3 lb.in)	with slot $0,6 \times 3,5 \mathrm{~mm}$ for contact opening thrust	with slot $0,6 \times 3,5 \mathrm{~mm}$ for contact opening thrust (with flexible stripped cable)	with slot $0,6 \times 3,5 \mathrm{~mm}$ with cross ø $3 . .3,8 \mathrm{~mm}$ $\begin{gathered} \text { 0,5-0,6 Nm } \\ (4,4-5,3 \mathrm{lb} . \mathrm{in}) \end{gathered}$	with slot $0.6 \times 3.5 \mathrm{~mm}$ $0,4 \mathrm{Nm}(3,5 \mathrm{lb} . \mathrm{in})$
(\#) When inserting tw minal they must have Note: The minimum shown refer to unipol in PVC.	ads in the same tersame cross-section maximum sections pper wires isolated				

FUSES/ FUSES HOLDER

HIGH SPEED FUSES					FUSE HOLDER		
Model	Size $I^{2} T$	Code Format	Model Code	Dissipated power @ In	Model Code Approval	Max power dissipated	Max continuative current
GQ15...	$\begin{gathered} \hline 16 A \\ 150 A^{2} S \end{gathered}$	$\begin{gathered} \hline \text { FUS-016 } \\ 10 \times 38 \end{gathered}$	$\begin{gathered} \hline \text { FWC16A10F } \\ 338470 \end{gathered}$	3,5W	$\begin{gathered} \text { PFI-10x38 } \\ 337134 \\ \text { UR 30A@690V } \end{gathered}$	3W	13A
GQ25...	$\begin{gathered} 25 A \\ 390 A^{2} S \end{gathered}$	$\begin{gathered} \text { FUS-025 } \\ 10 \times 38 \end{gathered}$	$\begin{gathered} \text { FWC25A10F } \\ 338474 \end{gathered}$	6W			13A
	$375 A^{2}$ S	$\begin{gathered} \text { FUS-026 } \\ 14 \times 51 \end{gathered}$	$\begin{gathered} \text { FWC25A14F } \\ 338130 \end{gathered}$	7W	$\begin{gathered} \text { PFI-14x51 } \\ 337503 \\ \text { UR } 50 \mathrm{~A} @ 600 \mathrm{~V} \end{gathered}$	5W	18A
GQ50...	$\begin{gathered} 50 \mathrm{~A} \\ 1800 \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$	$\begin{gathered} \text { FUS-051 } \\ 14 \times 51 \end{gathered}$	$\begin{gathered} \text { FWC50A14F } \\ 338079 \end{gathered}$	9W			27A
	$\begin{gathered} 50 A \\ 1600 A^{2} S \end{gathered}$	$\begin{gathered} \text { FUS-050 } \\ 22 \times 58 \\ \hline \end{gathered}$	$\begin{gathered} \text { FWC50A22F } \\ 338127 \end{gathered}$	9,5W	$\begin{gathered} \text { PFI-22x58 } \\ 337223 \\ \text { UR 80A@600V } \end{gathered}$	9,5W	50A
GQ90...	$\begin{gathered} 80 \mathrm{~A} \\ 6600 \mathrm{~A}^{2} \mathrm{~S} \\ \hline \end{gathered}$	$\begin{gathered} \text { FUS-080 } \\ 22 \times 58 \\ \hline \end{gathered}$	$\begin{gathered} \text { FWP80A22F } \\ 338199 \end{gathered}$	14W			50A
	$\begin{gathered} 100 \mathrm{~A} \\ 12500 \mathrm{~A}^{2} \mathrm{~S} \end{gathered}$	$\begin{gathered} \hline \text { FUS-100 } \\ 22 \times 58 \end{gathered}$	$\begin{gathered} \text { FWP100A22F } \\ 338478 \end{gathered}$	16W			60A

SCCR COORDINATION FUSES

SCCR COORDINATION FUSES				
Model	Short circuit current [Arms]	Max fuse size [A]	Bussmann Model Number	Max Voltage [VAC]
GQ 15	100.000	25	DFJ-25	
GQ 25	100.000	25	DFJ-25	600
GQ 50	100.000	50	DFJ-50	600
GQ 90	100.000	100	DFJ-100	600

The fuses on the above table are representative of all the Bussmann DFJ fuses with lower current ratings
The devices protected with the fuses reported above, still be functional after the short circuit

HEATSINK/ THERMAL RESISTANCE

Model	GEFRAN HEATSINK (see accessories)	THERMAL RESISTANCE
GQ15...	DIS 25GD	$R_{\text {th }} \geq 2,8 \mathrm{~K} / \mathrm{W}$
GQ25...	DIS 50G	$R_{\text {th }} \geq 0,83 \mathrm{~K} / \mathrm{W}$
GQ50...	DIS 50G	$\mathrm{R}_{\text {th }} \geq 0,83 \mathrm{~K} / \mathrm{W}$
GQ90...	DIS 90G	$\mathrm{R}_{\text {th }} \geq 0,56 \mathrm{~K} / \mathrm{W}$

Data relating to $40^{\circ} \mathrm{C}$ ambient temperature, heatsink in vertical position with 15 cm of free air above and below.

SECTION CABLE

Model	Section
GQ15...	$2,5 \mathrm{~mm}^{2}$
GQ25...	$6 \mathrm{~mm}^{2}$
GQ50...	$12 \mathrm{~mm}^{2}$
GQ90...	$25 \mathrm{~mm}^{2}$

Minimum allowed rated section based on the rated currents of the power solid state relays, for copper leads isolated in PVC in continuous use and at room temperature of $40^{\circ} \mathrm{C}$, according to standards CEI 44-5, CEI 17-11, IEC 408 pursuant to standard EN60204-1.
Power terminals in compliance with standard EN60947-1

EMC Emission	
EN 61000-6-4 Emissions conducted at radiofrequency	Class A (Industrial devices)
EN 61000-6-4 Emissions irradiated at radiofrequency	Class A (Industrial devices)
The product is designed for type A environments. Use of noise. In this case, the user should take appropriate step	in type B environments may cause undesired electromagnetic ment.
EMC Immunity	
EN 61000-6-2 Immunity for industrial environments	
EN 61000-4-2 Electrostatic discharges	4 kV by contact; 8 kV in air. Performance criterion 2.
$\begin{array}{ll}\text { EN 61000-4-6 } & \text { Electromagnetic field at radiofrequency } \\ & 0,15-80 \mathrm{MHz}\end{array}$	Test level 3. Performance criterion 1.
$\begin{array}{ll}\text { EN 61000-4-3 } & \text { Electromagnetic field at radiofrequency } \\ & 80-1000 \mathrm{MHz}\end{array}$	Test level 10V/m. Performance criterion 1.
EN 61000-4-4 Immunity to burst	LTest level 2kV/100 KHz. Performance criterion 2.
EN 61000-4-5 Immunity to surge	Test level: 2kV (Phase-ground); 1kV (Phase-phase). Performance criterion 2.
Safety	
EN 61010-1 Safety requirements	

DISSIPATION CURVES

(*) Version with high I²t fusing current (short-circuit proof, using a specific magnetothermic switch)
${ }^{(* *)}$ Available only in versions GQ-XX-60-X-1-X (overloading protection always present

		CONNECTORS
	0	Without connector
	1	(MORS1) Two-pin spring connector,enclosed
	2	(MORS2) Two-pin double spring connector, enclosed
	3	(MORS3) Two-pin screw connector, enclosed
	4	(MORS4) Two-pin screw connector, low profile enclosed
		RVOLTAGE PROTECTION
	0	External
	1	Internal

Please, contact GEFRAN sales people for the codes availability

GEFRAN spa reserves the right to make any kind of design or functional modification at any moment without prior notice

-WARNINGS

WARNING: this symbol indicates danger.

Before installation, please read the following advices:

- follow the indications of the manual scrupulously when making the connections to the instrument.
- use a cable that is suitable for the ratings of voltage and current indicated in the technical specifications.
- if the instrument is used in applications where there is risk of injury to persons and damage to machines or materials, it is essential that it is used with an auxiliary alarm device.
- It is advisable to verify frequently that the alarm device is functional even during the normal operation of the equipment.
- The instrument must NOT be used in environments where there could be the presence of dangerous atmospheres (inflammable or explosive)
- During continuous operation, the heatsink may reach $100^{\circ} \mathrm{C}$ and remain at a high temperature due to thermal inertia even after the device is
switched off. Therefore, DO NOT touch the heat sink or the electrical wires.
- do not operate on the power circuit untless the main supply is disconnected.
- DO NOT open the cover if device is "ON"!

Installation:

- connect the device to the ground using the proper ground terminal;
- the power supply wiring must be kept separate from that of inputs and outputs of the instrument; always check that the supply voltage corresponds to that indicated on the instrument cover;
- keep away from dust, humidity, corrosive gases and heat sources;
- is recommended in the electrical panel containing the GQ, install a fan near the group of GQ that keep air in movement.

Maintenance

- Check the correct operation of the cooling fans at regular intervals; clean the ventilation air filters of the installation at regular intervals
- Repairs must be performed only by specialized or appropriately trained personnel. Cut off power to the device before accessing internal parts.
- Do not clean the box with solvents derived from hydrocarbons (trichloroethylene, gasoline, etc.).

Using such solvents will compromise the mechanical reliability of the device. To clean external plastic parts, use a clean cloth wet with ethy alcohol or water

Technical service:

GEFRAN has a technical service department. Defects caused by use not conforming to the instructions are excluded from the warranty.
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { In conformity to ECC 2014/30/EU and 2014/35/EU and following modification with reference to standard EN 60947-4-2 } \\ \text { (Low voltage equipment - AC Semiconductor starters and contactors) }\end{array} \\ \hline \text { In Conformity with UL508 - File: E243386 } \\ \hline \text { SCCR RMS SYM } & \text { Conformity C/CSA/US CoFC no 70047999 } \\ \hline 100 K A / 600 V\end{array}\right]$

