Parameter	Rating	Units
Blocking Voltage	400	$\mathrm{~V}_{\mathrm{P}}$
Load Current	120	$\mathrm{~mA}_{\mathrm{rms}} / \mathrm{mA}_{\mathrm{DC}}$
On-Resistance (max)	30	Ω

Features

- $1500 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- Small 4-Pin SOP Package
- Low Drive Power Requirements
- High Reliability
- No EMI/RFI Generation
- Tape \& Reel Version Available
- Flammability Rating UL 94 V-0

Applications

- Telecommunications
- Telecom Switching
- Tip/Ring Circuits
- Modem Switching (Laptop, Notebook, Pocket Size)
- Hook Switch
- Dial Pulsing
- Ground Start
- Ringing Injection
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Security
- Industrial Controls

Description

The CPC1025N is a miniature normally-open (1-Form-A) solid state relay in a 4-pin SOP package that employs optically coupled MOSFET technology to provide $1500 \mathrm{~V}_{\text {rms }}$ of input to output isolation. The efficient MOSFET switches and photovoltaic die use IXYS Integrated Circuits Division's patented OptoMOS architecture while the optically coupled output is controlled by a highly efficient infrared LED.

The CPC1025N uses IXYS Integrated Circuits Division's state of the art double-molded vertical construction packaging to produce one of the world's smallest relays. It offers board space savings of at least 20\% over the competitor's larger 4-pin SOP relay.

Approvals

- UL Recognized Component: File E76270
- CSA Certified Component: Certificate 1172007
- TUV EN 62368-1: Certificate \# B 0826670008

Ordering Information

Part \#	Description
CPC1025N	4-Pin SOP (100/tube)
CPC1025NTR	4-Pin SOP (2000/reel)

Pin Configuration

Switching Characteristics of Normally-Open Devices

Absolute Maximum Ratings @ $25^{\circ} \mathrm{C}$

Parameter	Ratings	Units
Blocking Voltage	400	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
	1	A
Input Power Dissipation ${ }^{1}$	70	mW
Total Power Dissipation ${ }^{2}$	400	mW
Capacitance, Input to Output	1	pF
Isolation Voltage, Input to Output	1500	$\mathrm{~V}_{\text {rms }}$
Operational Temperature, Ambient	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate linearly $1.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
${ }^{2}$ Derate output power linearly $3.33 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Typical values are characteristic of the device at $+25^{\circ} \mathrm{C}$, and are the result of engineering evaluations. They are provided for information purposes only, and are not part of the manufacturing testing requirements.

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics						
Blocking Voltage	$\mathrm{I}_{\mathrm{L}}=1 \mu \mathrm{~A}$	$\mathrm{V}_{\text {DRM }}$	400	-	-	V
Load Current Continuous ${ }^{1}$ Peak	-	I_{L}	-	-	120	$m A_{\text {rms }} / \mathrm{mA}_{\text {dc }}$
	$\mathrm{t}=10 \mathrm{~ms}$	L LPK	-	-	± 350	mA_{p}
On-Resistance ${ }^{2}$	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	25	30	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=400 \mathrm{~V}_{\mathrm{P}}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds Turn-On Turn-Off	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	$t_{\text {on }}$	-	-	2	ms
		$\mathrm{t}_{\text {off }}$	-	-	1	
Output Capacitance	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=50 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\mathrm{C}_{\text {OUT }}$	-	77	-	pF
Input Characteristics						
Input Control Current to Activate ${ }^{3}$	$\mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}$	$I_{\text {F }}$	-	0.8	2	mA
Input Control Current to Deactivate	-	$I_{\text {F }}$	0.3	0.6	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.36	1.5	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$\mathrm{I}_{\text {R }}$	-	-	10	$\mu \mathrm{A}$

[^0]
PERFORMANCE DATA*

Typical Turn-On Time

Typical Blocking Voltage Distribution
($\mathrm{N}=50$)

Typical I_{F} for Switch Operation vs. Temperature $\left(\mathrm{I}_{\mathrm{L}}=80 \mathrm{~mA}\right)$

Typical I_{F} for Switch Dropout
$\left(\mathrm{N}=50, \mathrm{I}_{\mathrm{L}}=120 \mathrm{~mA}\right)$

Typical I_{F} for Switch Dropout vs. Temperature $\left(\mathrm{I}_{\mathrm{L}}=80 \mathrm{~mA}\right)$

PERFORMANCE DATA*

*Unless otherwise noted, data presented in these graphs is typical of device operation at $25^{\circ} \mathrm{C}$.

Manufacturing Information

Moisture Sensitivity

All plastic encapsulated semiconductor packages are susceptible to moisture ingression. IXYS Integrated Circuits classifies its plastic encapsulated devices for moisture sensitivity according to the latest version of the joint industry standard, IPC/JEDEC J-STD-020, in force at the time of product evaluation. We test all of our products to the maximum conditions set forth in the standard, and guarantee proper operation of our devices when handled according to the limitations and information in that standard as well as to any limitations set forth in the information or standards referenced below.

Failure to adhere to the warnings or limitations as established by the listed specifications could result in reduced product performance, reduction of operable life, and/or reduction of overall reliability.

This product carries a Moisture Sensitivity Level (MSL) classification as shown below, and should be handled according to the requirements of the latest version of the joint industry standard IPC/JEDEC J-STD-033.

Device	Moisture Sensitivity Level (MSL) Classification
CPC1025N	MSL 3

ESD Sensitivity

This product is ESD Sensitive, and should be handled according to the industry standard JESD-625.

Soldering Profile

Provided in the table below is the IPC/JEDEC J-STD-020 Classification Temperature (T_{C}) and the maximum dwell time the body temperature of these surface mount devices may be $\left(T_{C}-5\right)^{\circ} \mathrm{C}$ or greater. The Classification Temperature sets the Maximum Body Temperature allowed for these devices during reflow soldering processes.

Device	Classification Temperature $\left(\mathrm{T}_{\mathrm{d}}\right)$	Dwell Time $\left(\mathrm{t}_{\mathrm{d}}\right)$	Max Reflow Cycles
CPC1025N	$260^{\circ} \mathrm{C}$	30 seconds	3

Board Wash

IXYS Integrated Circuits recommends the use of no-clean flux formulations. Board washing to reduce or remove flux residue following the solder reflow process is acceptable provided proper precautions are taken to prevent damage to the device. These precautions include but are not limited to: using a low pressure wash and providing a follow up bake cycle sufficient to remove any moisture trapped within the device due to the washing process. Due to the variability of the wash parameters used to clean the board, determination of the bake temperature and duration necessary to remove the moisture trapped within the package is the responsibility of the user (assembler). Cleaning or drying methods that employ ultrasonic energy may damage the device and should not be used. Additionally, the device must not be exposed to halide flux or solvents.
e3

MECHANICAL DIMENSIONS

CPC1025N

Note:

1. Lead dimensions do not include plating: 1000 microinches max.
2. Controlling dimension: mm

CPC1025NTR Tape \& Reel

NOTE: All dimensional tolerances per Standard EIA-481-2 except as noted

For additional information please visit our website at: https://www.ixysic.com

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications.
Read complete Disclaimer Notice at https://www.littelfuse.com/disclaimer-electronics.
Specification: DS-CPC1025N-R10
©Copyright 2021, Littelfuse, Inc.
OptoMOS® is a registered trademark of IXYS Integrated Circuits Division All rights reserved. Printed in USA.
8/5/2021

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

IXYS:

[^0]: 1 Load current derates linearly from 120mA @ $25^{\circ} \mathrm{C}$ to 80 mA @ $85^{\circ} \mathrm{C}$
 2 Measurement taken within 1 second of on-time.
 3 For applications requiring high temperature operation (greater than $60^{\circ} \mathrm{C}$) a minimum LED drive current of 4 mA is recomended.

