USB Type-C Analog Audio Switch with Protection Function

FSA4476

Description

FSA4476 is a high performance USB Type-C port multimedia switch which supports analog audio headsets. FSA4476 allows the sharing of a common USB Type-C port to pass USB2.0 signal, analog audio, sideband use wires and analog microphone signal. FSA4476 also supports high voltage on CC port, SBU port and USB port on USB Type-C receptacle side. In addition, FSA4476 supports USB Type-C dead battery application and dual power supply with VBAT rail and VBUS rail.

Features

- Power Management
- Primary Power Supply: VBAT, 2.7 V to 5.5 V
- Second Power Supply VBUS, 4.0 V to 20 V
- USB High Speed (480 Mbps) Switch:
- -3 dB Bandwidth: 1 GHz
- $3 \Omega \mathrm{R}_{\mathrm{ON}}$ Typical
- Audio Switch
- Negative Rail Capability: -3 V to +3 V
- $\mathrm{THD}+\mathrm{N}=-110 \mathrm{~dB} ; 1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, 32 \Omega \mathrm{Load}$
- $0.6 \Omega \mathrm{R}_{\mathrm{ON}}$ Typical
- High Voltage Protection
- 20 V DC Protection on CC Port and SBU Port
- 16 V DC Protection on DP/R and DN/L Port
- Over Voltage Protection:
- 5.8 V (Typ) on CC Port
- 4.5 V (Typ) on SBU Port
- 4.5 V (Typ) on DP/R and DN/L Port
- OMTP and CTIA Pinout Support
- Support Audio Sense Path
- Support Dead Battery
- 25-ball WLCSP Package ($2.03 \mathrm{~mm} \times 2.03 \mathrm{~mm}$)
- This is a $\mathrm{Pb}-$ Free Device

Applications

- Mobile Phone, Tablet, Notebook PC, Media Player

WLCSP25, 2.03×2.03x0.586 CASE 567UP

ORDERING INFORMATION

See detailed ordering and shipping information on page 12 of this data sheet.

FSA4476

Figure 1. Application Block Diagram

PIN CONFIGURATION

Figure 2. Pin Assignment (Top Through View)

PIN DESCRIPTIONS

Name	Ball	Description
VBUS	A1	Power Supply
VBAT	A2	Power Supply
GND	D1	Ground
DP/R	D5	USB Positive Data/Right Audio Common Line
DN/L	C5	USB Negative Data/Left Audio Common Line
DP	E4	Positive DataLine for USB signals
DN	E5	Negative DataLine for USB signals
L	C4	Left Line for Audio Signals
R	D4	Right Line for Audio Signals
SBU1	E2	Sideband Use Wire 1 Common Line
SBU2	E1	Sideband Use Wire 2 Common Line
MIC	D2	Microphone, connects to microphone pre-amplifier
GND_M	C1	Sense Pin to Detect GND offset
SBU1_H	B2	Host Side Sideband Use Wire 1
SBU2_H	B1	Host Side Sideband Use Wire 2
CC1	B5	Configuration Channel 1
CC2	B4	Configuration Channel 2
CC1_H	A5	Host Side Configuration Channel 1
CC2_H	A4	Host Side Configuration Channel 2
INT	A3	OVP Interrupt Output, active low (open drain)
INT1	C2	Interrupt Output Signal; During EN1=1, INT1 is low active (open drain output) when CC1_H < 1.2 V and CC2_H < 1.2 V .
ENN	C3	Chip Enable, active low, internal pull-down by 1Mohm.
EN1	D3	Logic Configuration Input 1
EN2	E3	Logic Configuration Input 2
NC	B3	No Connect

TRUTH TABLE

Power	ENN	EN1,EN2	CC Switch	Headset Detection	USB Switch	Audio Switch	MIC SW / GND_M SW	SBU Bypass Switch
OFF	X	XX	Dead battery	OFF	OFF	OFF	OFF	OFF
ON	H	XX	OFF	OFF	OFF	OFF	OFF	OFF
ON	L	00	ON	OFF	ON: DP/R to DP DN/L to DN	OFF	OFF	ON: SBU1 to SBU1_H SBU2 to SBU2_H
ON	L	01	ON	OFF	ON: DP/R to DP DN/L to DN	OFF	OFF	ON: SBU1 to SBU2_H SBU2 to SBU1_H
ON	L	10	ON	ON	OFF	ON: DP/R to R DN/L to L	ON: SBU1 to MIC SBU2 to GND_M SBU2 to GND	OFF ON
L	11	ON	ON	OFF	ON: DP/R to R DN/L to L	ON: SBU2 to MIC SBU1 to GND_M SBU1 to GND	OFF	

FSA4476

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min	Max	Unit
$\mathrm{V}_{\text {BAT }}$	Supply Voltage from VBAT		-0.5	6.5	V
VBUS	Supply Voltage from VBUS		-0.5	28	V
$\mathrm{V}_{\text {VICC }}$	$V_{\text {CCx }}$, to GND		-0.5	20	V
V Vcc_H	$\mathrm{V}_{\text {CCx_H }}$, to GND		-0.5	6.5	V
$\mathrm{V}_{\text {SW_U }}$ USB/Audio	$\mathrm{V}_{\mathrm{DP} \text { _ }}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{DN} \text {-L }}$ to GND		-3.5	16	V
$\mathrm{V}_{\text {SW_USB }}$	V_{DP} to $G N D, \mathrm{~V}_{\mathrm{DN}}$ to GND		-0.5	6.5	V
V SW_Audio	V_{L} to GND, V_{R} to GND		-3.5	+3.5	V
$\mathrm{V}_{\text {VSBU }}$	$\mathrm{V}_{\text {SBU1 }}$ to $\mathrm{GND}, \mathrm{V}_{\text {SBU2 }}$ to GND		-0.5	20	V
$\mathrm{V}_{\text {VSBU_H }}$	$\mathrm{V}_{\text {SBU1_H }}$ to $\mathrm{GND}, \mathrm{V}_{\text {SBU2_H }}$ to GND		-0.5	6.5	V
$\mathrm{V}_{1 / \mathrm{O}}$	MIC,GND_M, INT,INT1to GND		-0.5	6.5	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage	ENN, ENx	-0.5	6.5	V
Iccsw	CC Switch Current		-	1.25	A
ISW_Audio	Switch I/O Current, Audio Path		-250	250	mA
ISw_USB	Switch I/O Current, USB Path		-	100	mA
ISW_MIC	Switch I/O Current, MIC to SBU1 or SBU2		-	50	mA
ISW_GND_M	Switch I/O Current, GND_M to SBU1 or SBU2		-	100	mA
ISW_GND	Switch I/O Current, GND to SBU1 or SBU2		-	500	mA
I_{K}	DC Input Diode Current		-50	-	mA
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	Connector Side and Power Pins: VBUS, $V_{B A T}, C C 1, C C 2, S B U 1, S B U 2, D P / R, D N / L$	4	-	kV
		Host Side Pins: The Rest Pins	2	-	
	Charged Device Model, JEDEC: JESD22-C101		1	-	
$\mathrm{T}_{\text {A }}$	Absolute Maximum Operating Temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

| Symbol | Parameter | Min | Max | Max | Unit |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |

VOWER	Supply Voltage	2.7	-	5.5	V
VBUS	Supply Voltage	4.0	-	20	V

USB SWITCH

VSW_USB	$V_{D P}$ to $G N D, V_{D N}$ to $G N D, V_{D P / R t o} G N D, V_{D N / L}$ to $G N D$	0	-	4.0	V

AUDIO SWITCH

VSW_Audio	$V_{\text {DP/Rto }}$ GND, V $_{\text {DN/L }}$ to $G N D, V_{\mathrm{L}}$ to GND, V_{R} to GND	-3	-	+3	V
VSW_MIC	MIC to GND	0	-	3.6	V

SBU SWITCH

| VVSBU | $V_{\text {SBU1 }}$ to $G N D, V_{\text {SBU2 }}$ to $G N D, V_{\text {SBU1_H }}$ to $G N D, V_{S B U 2 _H}$ to $G N D$ | 0 | - | 4.0 | V |
| :---: | :--- | :---: | :---: | :---: | :---: | CC SWITCH

VVICC	V $_{\text {CCx }, ~ t o ~ G N D ~}^{*}$	0	-	5.5	V
VVCC_H	V $_{\text {CCx_H, to GND }}$	0	-	5.5	V
ICCSW	CC Switch Current		-	1.25	A

CONTROL VOLTAGE (ENN, ENX)

VIH	Input Voltage High	1.3	-	-	V
VIL	Input Voltage Low	-	-	0.5	V

OPERATING TEMPERATURE

TA	Ambient Operating Temperature	-40	25	+85
${ }^{\circ} \mathrm{C}$				

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC CHARACTERISTICS (VBAT $=2.7 \mathrm{~V}$ to 5.5 V or VBUS $=4.0 \mathrm{~V}$ to 20 V , VBAT (Typ.) $=4.3 \mathrm{~V}$ or VBUS (Typ.) $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 1)

Symbol	Parameter	Condition	Power	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	
ICC	VBAT Supply Current		VBAT $=4.3 \mathrm{~V}$	-	25	-	$\mu \mathrm{A}$
ICCz	Quiescent Current		VBAT $=4.3 \mathrm{~V}$	-	5	-	$\mu \mathrm{A}$

USB/AUDIO COMMON PINS

loz	Off Leakage Current of Port DP/R and DN/L	DN/L, DP/R $=-3 \mathrm{~V}$ to 4.0 V	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-3.0	-	3.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current of Port DP/R and DN/L	$\mathrm{DN} / \mathrm{L}, \mathrm{DP} / \mathrm{R}=0 \mathrm{~V}$ to 4.0 V	Power off	-3.0	-	3.0	$\mu \mathrm{A}$
VoV_TRIP	Input OVP Lockout	Rising edge	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	4.2	4.5	4.8	V
V ${ }_{\text {OV_HYS }}$	Input OVP Hysteresis			-	0.3	-	V

AUDIO SWITCH

IoN	On Leakage Current of Audio Switch	DN/L, DP/R = -3 V to 3.0 V , DP, DN, R, L = Float	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-2.0	0.1	2.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current on L and R	$\mathrm{L}, \mathrm{R}=0 \mathrm{~V}$ to 3 V	Power off	-1.0	-	1.0	$\mu \mathrm{A}$
RON	Switch On Resistance	$\begin{aligned} & \text { IsW }=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SW}}=-3 \mathrm{~V} \\ & \text { to } 3 \mathrm{~V} \end{aligned}$	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-	0.6	-	Ω
RSHUNT	Pull Down Resistor on R/L Pin when Audio Switch is Off	$\mathrm{L}=\mathrm{R}=3 \mathrm{~V}$		6	10	14	k Ω

USB SWITCH

IoN	On Leakage Current of USB Switch	$\begin{aligned} & \text { DN/L, DP/R }=0 \mathrm{~V} \text { to } 4.0 \mathrm{~V} \text {, } \\ & \text { DP, DN, R, } \mathrm{L}=\text { Float } \end{aligned}$	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-3.0	1.0	3.0	$\mu \mathrm{A}$
l OZ	Off Leakage Current of Port DP and DN	DN, DP = 0 V to 4.0 V		-3.0	-	3.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current on DP and DN	DN, DP = 0 V to 4.0 V	Power off	-3.0	-	3.0	$\mu \mathrm{A}$
RON_USB	USB Switch On Resistance	$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SW}}=0.4 \mathrm{~V}$	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-	3	-	Ω

CC SWITCH

IoN	On Leakage Current of CC Switch	Vsw from 0 V to 3.6 V	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-1.5	-	2.0	$\mu \mathrm{A}$
RON	CC Path On Resistance	$\mathrm{l}_{\text {OUT }}=200 \mathrm{~mA}, \mathrm{~V}_{\text {SW }}=5 \mathrm{~V}$		-	300	-	$\mathrm{m} \Omega$
$\mathrm{V}_{\text {OV_TRIP }}$	Input OVP Lockout	Rising edge		5.6	5.8	6.1	V
$\mathrm{V}_{\text {OV_HYS }}$	Input OVP Hysteresis			-	0.3	-	V
R_{d}	Dead Battery Pull Down Resistance	$350 \mu \mathrm{~A}$ on CCx pin	VBAT < 2.4 V and VBUS $<3.5 \mathrm{~V}$	4.08	5.1	6.12	$\mathrm{k} \Omega$
VTHR_H	CCx_H High Threshold under Headset Detection	EN1 = H	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-	1.5	-	V
$\mathrm{V}_{\text {THR_L }}$	CCx_Hlow Threshold under Headset Detection	$\mathrm{EN} 1=\mathrm{H}$		-	1.2	-	V

SBU COMMON PINS

loz	Off Leakage Current of Port SBUx	SBUx $=0 \mathrm{~V}$ to 4 V	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-3.0	-	3.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current of Port SBUx	SBUx $=0 \mathrm{~V}$ to 4 V	Power off	-3.0	-	3.0	$\mu \mathrm{A}$
V ${ }_{\text {OV_TRIP }}$	Input OVP Lockout	Rising edge	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	4.2	4.5	4.8	V
Vov_HYS	Input OVP Hysteresis			-	0.3	-	V

DC CHARACTERISTICS (VBAT $=2.7 \mathrm{~V}$ to 5.5 V or VBUS $=4.0 \mathrm{~V}$ to 20 V , VBAT (Typ.) $=4.3 \mathrm{~V}$ or VBUS (Typ.) $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.) (Note 1) (continued)

	Parameter	Condition	Power	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
Symbol				Min	Typ	Max	

MIC SWITCH

Ion	On Leakage Current of MIC Switch	SBUx $=0 \mathrm{~V}$ to 3.6 V , MIC is floating	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-3.0	-	3.0	$\mu \mathrm{A}$
Ioz	Off Leakage Current on MIC	MIC $=0 \mathrm{~V}$ to 3.6 V		-1.0	-	1.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current on MIC	MIC $=0 \mathrm{~V}$ to 3.6 V	Power off	-1.0	-	1.0	$\mu \mathrm{A}$
RON	MIC Switch On Resistance	$\begin{aligned} & \mathrm{MIC}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \\ & \mathrm{Isw}=30 \mathrm{~mA} \end{aligned}$	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-	2	-	Ω

GND_M SWITCH

IOZ	Off Leakage on GND_M	GND_M = 0 V to 3.6 V	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-2.0	-	2.0	$\mu \mathrm{~A}$
lofF	Power Off Leakage Current on GND_M	GND_M = 0 V to 3.6 V	Power off	-1.0	-	1.0	$\mu \mathrm{~A}$
RON	GND_M Switch On Resistance	Isw $=30 \mathrm{~mA}$	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-	0.5	-	Ω

SBU BYPASS SWITCH

Ion	On Leakage Current of SBU Bypass Switch	SBUx= 0 V to 4 V , SBUx_H is floating	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-1.0	-	2.0	$\mu \mathrm{A}$
l Oz	Off Leakage Current on SBUx_H	SBUx_H $=0 \mathrm{~V}$ to 4 V		-1.0	-	1.0	$\mu \mathrm{A}$
RON	SBU Bypass Switch On Resistance	$\begin{aligned} & \text { SBUx=0 V to } 3.6 \mathrm{~V}, \\ & \mathrm{Isw}=50 \mathrm{~mA} \end{aligned}$		-	3	-	Ω

INTERNAL GND SWITCH

$R_{\text {ON }}$	Internal GND Switch On Re- sistance	Isw = 200 mA	VBAT: 2.7 V to 5.5 V or VBUS: 4 V to 20 V	-	75	110 (Note 2)	$\mathrm{m} \Omega$

1. Limits over the recommended temperature operating range $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ are correlated by statistical quality.
2. Guaranteed by characterization, not production tested.

AC CHARACTERISTICS (VBAT $=2.7 \mathrm{~V}$ to 5.5 V or VBUS $=4.0 \mathrm{~V}$ to 20 V , VBAT (Typ.) $=4.3 \mathrm{~V}$ or VBUS (Typ.) $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} . \mathrm{T}_{\text {A }}$ (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Condition	Power	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	

AUDIO SWITCH

ton	Turn On Time (Note 3)	$\begin{aligned} & \mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	VBAT: 4.3 V or VBUS: 5 V	-	55	-	$\mu \mathrm{s}$
toff	Turn OFF Time (Note 3)	$\begin{aligned} & \mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		-	2	-	$\mu \mathrm{s}$
$\mathrm{X}_{\text {TALK }}$	Cross Talk (Adjacent) (Note 3)	$\begin{aligned} & f=1 \mathrm{kHz}, R_{L}=50 \Omega, \\ & V_{S W}=1 V_{\text {RMS }} \end{aligned}$		-	-110	-	dB
BW	-3 dB Bandwidth (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	950	-	MHz
OIRR	Off Isolation (Note 3)	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-100	-	dB
THD+N	Total Harmonic Distortion + Noise Performance with A- Weighting Filter (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \\ & \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=2 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-110	-	dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=32 \Omega, \\ & \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-110	-	dB
		$\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=16, \\ & \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=0.5 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-108	-	dB

USB SWITCH

ton	Turn-on Time (Note 3)	$\begin{aligned} & \mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	VBAT: 4.3 V or VBUS: 5 V	-	40	-	$\mu \mathrm{s}$
tofF	Turn-off Time (Note 3)	$\begin{aligned} & \mathrm{DP} / \mathrm{R}=\mathrm{DN} / \mathrm{L}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		-	1	-	$\mu \mathrm{s}$
BW	-3 dB Bandwidth (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	1	-	GHz
$\mathrm{O}_{\text {IRR }}$	Off Isolation (Note 3) between DP, DN and Common Node Pins	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}, \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-100	-	dB
tovp	DP/R and DN/L Pins OVP Response Time (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{Vsw}=3.5 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$		-	0.5	1.5	$\mu \mathrm{S}$

CC SWITCH

ton	Turn-On Time (Note 3)	$\mathrm{V}_{\mathrm{ICCx}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	VBAT: 4.3 V or VBUS: 5 V	-	0.5	-	ms
toff	Turn-Off Time (Note 3)	$\mathrm{V}_{\text {ICCx }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$		-	3	-	$\mu \mathrm{s}$
BW	PD Traffic Bandwidth (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	25	-	MHz
tovp	CCx Pins OVP Response Time (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=25 \Omega, \mathrm{C}_{\mathrm{L}}=200 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{SW}}: 4 \mathrm{~V} \text { to } 7 \mathrm{~V} \end{aligned}$		-	0.6	1	$\mu \mathrm{S}$

SBUX BYPASS SWITCH

tovp	SBUx Pins OVP Response Time (Note 3)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{Vsw}=3.5 \mathrm{~V} \text { to } \\ & 5.5 \mathrm{~V} \end{aligned}$	VBAT: 4.3 V or VBUS: 5 V	-	0.6	1	$\mu \mathrm{s}$
ton	Turn-On Time (Note 3)	Isw on SBUx = 1 mA and clamp to 2 V , RLon MIC and SBUx_H = $1 \mathrm{k} \Omega$, GND_M $=100 \mathrm{mV}$, series 50Ω on GND_M pin	VBAT: 4.3 V or VBUS: 5 V	-	12	-	$\mu \mathrm{S}$
toff	Turn-OFF Time (Note 3)			-	1	-	
BW	Bandwidth (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	25	-	MHz

AC CHARACTERISTICS (VBAT $=2.7 \mathrm{~V}$ to 5.5 V or VBUS $=4.0 \mathrm{~V}$ to 20 V , VBAT (Typ.) $=4.3 \mathrm{~V}$ or VBUS (Typ.) $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}$ (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.) (continued)

Symbol	Parameter	Condition	Power	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit
				Min	Typ	Max	

MIC/GND_M/INTERNAL GND SWITCH

ton_mic	Turn-On Time (Note 3)	Isw on $\mathrm{SBUx}=1 \mathrm{~mA}$ and clamp to $2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ on MIC and SBUx $H=1 \mathrm{k} \Omega$, GND_M $=100 \mathrm{mV}$, series 50Ω on GND_M pin	VBAT: 4.3 V or VBUS: 5 V	-	10	-	us
ton_GND_M				-	60	-	
ton_GND				-	950	-	
toff_MIC	Turn-OFF Time (Note 3)				1	-	
toff_GND_M				-	1	-	
toff_GND				-	1	-	
BW	MIC Switch Bandwidth (Note 3)	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	25	-	MHz

INTERRUPT DELAY

TDELAY_INT	INT Response Delay (Note 3)	INT pull up by 10k resistor to valid power	VBAT: 4.3 V or VBUS: 5 V	-	5	-	$\mu \mathrm{S}$
T DELAY_INT1	INT1 Response Delay (Note 3)	INT1 pull up by 10k resistor to valid power		-	5	-	

3. Guaranteed by characterization, not production tested

CAPACITANCE (Unless otherwise stated VBAT $=2.7 \mathrm{~V}$ to 5.5 V or VBUS $=4.0 \mathrm{~V}$ to 20 V , VBAT (Typ.) $=4.3 \mathrm{~V}$ or VBUS (Typ.) $=5 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$.)

Symbol	Parameter	Condition		Power	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit	
				Min	Typ	Max			
Con_usb/Audio	On Capacitance (Common Port) (Note 4)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{PK}_{\mathrm{PKK}}, \\ & 100 \mathrm{mV} \text { DC bias } \end{aligned}$			VBAT: 4.3 V or VBUS: 5 V	-	7	-	pF
COFF_USB/Audio	Off Capacitance (Common Port) (Note 4)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \text { PK-PK, }$ 100 mV DC bias		-		7	-	pF	
CofF_USB	Off Capacitance (Non-Common Ports) (Note 4)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{~m} V_{\text {PK-PK }},$$100 \mathrm{mV} \mathrm{DC} \text { bias Figure } 12$		-		2	-	pF	
COFF_SBUx_H	Off Capacitance (Non-Common Ports) (Note 4)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{PK}_{\mathrm{PKK}}, \\ & 100 \mathrm{mV} \text { DC bias } \end{aligned}$		-		12	-	pF	
Coff_SBUx	Off Capacitance (Common Ports) (Note 4)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{P}_{\text {PK-PK }},$$100 \mathrm{mV} \text { DC bias }$		-		140	-	pF	
Con_SBUx	On Capacitance (Common Port) (Note 4)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{~V}_{\mathrm{PK}-\mathrm{PK}}, \\ & 100 \mathrm{mV} \text { DC bias } \end{aligned}$		-		150	-	pF	
$\mathrm{C}_{\text {CNTRL }}$	Control Input Pin Capacitance (ENx) (Note 4)	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{VP}_{\mathrm{P}},$ $100 \mathrm{mV} \text { DC bias }$	ENx, ENN	-		6	-	pF	

[^0]
APPLICATION INFORMATION

Dead Battery

FSA44776 supports dead battery application. When power is not applied to FSA4476 and it is attached to a Source device, then the Source would pull up the CC line connected through the cable. FSA4476 in response would turn on the pull-down that will bring the CC voltage to a range that the Source can detect an attach event and turn on VBUS.

Headset detection

FSA4476 integrates headset unplug detection function by detecting the CCx_H voltage. The headset detection is only active during audio switch on status(EN1 = 1). When headset is attached (both CC1_H and CC2_H are Low), the flag signal is sent low to host controller by INT1 (INT1 = low). Once either of CCx_H = High (CCx_H > 1.5 V), INT1 will be released to high by external pull up resistor.

POWER SUPPLY CONFIGURATION

VBUS	VBAT	Power Supply
Invalid	Invalid	Max (VBAT, VBUS)
Valid	Invalid	VBUS
Invalid	Valid	VBAT
Valid	Valid	VBAT

TEST DIAGRAMS

Figure 3. On Resistance

Figure 5. On Leakage

Figure 7. Test Circuit Load

Figure 9. Bandwidth

**Each switch port is tested separately
Figure 4. Off Leakage (loz)

${ }^{* *}$ Each switch port is tested separately
Figure 6. Power Off Leakage (loff)

Figure 8. Turn On/Off Waveforms

Figure 10. Channel Off Isolation

R_{S} and R_{T} are function of application environment (see AC/DC Tables)

Figure 11. Adjacent Channel Crosstalk

Figure 13. Channel On Capacitance

Figure 12. Channel Off Capacitance

C_{L} includes test fixture and stray capacitance
Figure 14. Total Harmonic Distortion (THD+N)

ORDERING INFORMATION

Part Number	Top Mark	Package Description	Shipping †
FSA4476UCX	GR	25 Ball WLCSP25, 2.03×2.03×0.586 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

WLCSP25, 2.03×2.03x0.586
 CASE 567UP
 ISSUE A

DATE 21 MAY 2019
SCALE 4:1
NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DATUM C APPLIES TO THE SPHERICAL CROWN OF THE SOLDER BALLS NDEX AREA

DETAIL A

DIM	MIN.	NOM.	MAX.
A	0.547	0.586	0.625
A1	0.188	0.208	0.228
A2	0.337	0.353	0.369
A3	0.022	0.025	0.028
b	0.24	0.26	0.28
D	2.00	2.03	2.06
E	2.00	2.03	2.06
e	0.40 BASIC		
x	0.200	0.215	0.230
y	0.200	0.215	0.230

*FOR ADDITIONAL INFORMATION ON OUR Pb-FREE
STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON64860G | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | WLCSP25, 2.03x2.03×0.586 | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
onsemi:
FSA4476UCX

[^0]: 4. Guaranteed by characterization, not production tested
