150 mA Voltage Regulator (Wide Input Voltage Range)
No. EA-100-230529

OUTLINE

The R 1154 x is a voltage regulator (VR) featuring high output voltage accuracy and ultra-low supply current. A peak current limit circuit, a short current limit circuit, and a thermal shutdown circuit are built in the R1154x. The regulator output voltage is fixed in the R1154xxxxB, while adjustable type is the R1154x001C. The Output voltage accuracy is $\pm 2.0 \%$.
Since the packages for these ICs are DFN1616-6, SOT-23-5, and SOT-89-5, high density mounting of the ICs on boards is possible.

FEATURES

- Supply Current

Typ. $5.0 \mu \mathrm{~A}$

- Standby Current

Typ. $0.1 \mu \mathrm{~A}$

- Output Current

Min. $140 \mathrm{~mA}\left(\mathrm{~V}_{\text {in }}=\right.$ Vout $+2.0 \mathrm{~V}, 2.5 \mathrm{~V}$ Output type)
Min. 150 mA (Vin $=$ Vout $+2.0 \mathrm{~V}, 3.0 \mathrm{~V}$ Output type)

- Input Voltage Max. 24.0 V
- Wide Output Voltage Range 2.5 V to 12.0 V (0.1 V step) (xxxB)

Adjustable in the range of 2.5 V to V in or 24.0 V (001C)

- Output Voltage Accuracy.
$\pm 2.0 \%$
- Packages

DFN1616-6, SOT-23-5, SOT-89-5

- Built-in Peak Current Limit Circuit
- Built-in Short Current Limit Circuit
- Built-in Thermal Shutdown Circuit

APPLICATIONS

- Power source for home appliances such as refrigerators, rice cookers, Electronic water warmers, etc.
- Power source for car audio equipment, car navigation system, and ETC system.
- Power source for notebook PCs, digital TVs, cordless phones, and LAN system.
- Power source for copiers, printers, facsimiles, and scanners.

SELECTION GUIDE

The output voltage can be selected at the user's request.

Selection Guide

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1154Lxxx*-TR	DFN1616-6	$5,000 \mathrm{pcs}$	Yes	Yes
R1154Nxxx*-TR-FE	SOT-23-5	$3,000 \mathrm{pcs}$	Yes	Yes
R1154Hxxx*-T1-FE	SOT-89-5	$1,000 \mathrm{pcs}$	Yes	Yes

xxx : The output voltage can be designated in the range from $2.5 \mathrm{~V}(025)$ to $12.0 \mathrm{~V}(120)$ in 0.1 V step. If the output voltage includes the 3rd digit, indicate the digit of 0.01 V as follows. 5.25 V: R1154x052x5

The output voltage adjustable type is fixed at 001 (Reference voltage $=2.5 \mathrm{~V}$)

* : (B) Fixed Output Type
(C) Adjustable Output Type

BLOCK DIAGRAMS

R1154xxxxB
Fixed Output Type

PIN DESCRIPTIONS

DFN1616-6 Pin Configuration

SOT-23-5 Pin Configuration

SOT-89-5 Pin Configuration

DFN1616-6 Pin Descriptions

Pin No	Symbol	Description	
1	VDD	Input Pin	
2	NC	No Connection	
3	VOUT	Voltage Regulator Output Pin	
4	CE	Chip Enable Pin	
5	NC	R1154LxxxB	
	ADJ	Ro Connection	
	R1154L001C	Reference Voltage of Adjustable Output Pin	
6	GND	Ground Pin	

SOT-23-5 Pin Descriptions

Pin No	Symbol	Description	
1	VOUT	Voltage Regulator Output Pin	
2	GND	Ground Pin	
3	VDD	Input Pin	
4	NC	R1154NxxxB	No Connection
	ADJ	R1154N001C	Reference Voltage of Adjustable Output Pin
5	CE	Chip Enable Pin	

[^0]| SOT-89-5 Pin Descriptions | | | |
| :---: | :---: | :--- | :---: |
| Pin No | Symbol | Description | |
| 1 | VOUT | Voltage Regulator Output Pin | |
| 2 | GND | Ground Pin | |
| 3 | CE | Chip Enable Pin | |
| 4 | NC | R1154HxxxB | |
| | ADJ | No Connection | |
| 5 | VDD | Input Pin | |

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum Ratings

Symbol	Item			Rating	Unit
VIn	Input Voltage			26	V
$V_{\text {CE }}$	Input Voltage (CE Input Pin)			-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
Vout	Output Voltage			-0.3 to $\mathrm{V}_{\text {IN }}+0.3$	V
VadJ	Output Voltage (ADJ Pin)			-0.3 to VIN +0.3	V
lout	Output Current			250	mA
PD	Power Dissipation ${ }^{(1)}$	DFN1616-6	JEDEC STD. 51-7 Test Land Pattern	2400	mW
		SOT-23-5	JEDEC STD. 51-7 Test Land Pattern	660	mW
		SOT-89-5	JEDEC STD. 51-7 Test Land Pattern	2600	mW
Tj	Junction Temperature Range			-40 to 125	${ }^{\circ} \mathrm{C}$
Tstg	Storage Temperature Range			-55 to 125	${ }^{\circ} \mathrm{C}$

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the lifetime and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Recommended Operating Conditions

Symbol	Item	Rating	Unit
V_{IN}	Input Voltage	Max. 24	V
Ta	Operating Temperature Range	-40 to 105	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.
${ }^{(1)}$ Refer to POWER DISSIPATION for detailed information.

ELECTRICAL CHARACTERISTICS

R1154xxxxB Electrical Characteristics

Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
Vout	Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+2.0 \mathrm{~V}$, lout $=20 \mathrm{~mA}$	x0.98		x1.02	V
lout	Output Current	$\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SET }}=2.0 \mathrm{~V}$	Refer to the Product-specific Electrical Characteristics			
Iss	Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CE }}, \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SET }}=2.0 \mathrm{~V}$		5	10	$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		0.1	1.0	$\mu \mathrm{A}$
Δ Vout/ $^{\prime}$ Δ lout	Load regulation	$\begin{aligned} & \mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {SET }}=2.0 \mathrm{~V}, \\ & 1 \mathrm{~mA} \leq \text { Iout } \leq 40 \mathrm{~mA} \end{aligned}$	Refer to the Product-specific Electrical Characteristics			
Δ Vout/ $^{\prime}$ $\Delta \mathrm{V}_{\mathrm{IN}}$	Line regulation	$\begin{aligned} & \hline \text { lout }=20 \mathrm{~mA} \\ & \mathrm{~V}_{\text {SET }}+1 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V} \end{aligned}$		0.05	0.20	\%/V
VDIF	Dropout Voltage	lout $=20 \mathrm{~mA}$	Refer to the Product-specific Electrical Characteristics			
Isc	Short Current Limit	Vout $=0 \mathrm{~V}$		45		mA
$V_{\text {Ceh }}$	CE "H" Input Voltage		2.1		VIN	V
$V_{\text {cel }}$	CE "L" Input Voltage		0		0.3	V
Tso	Thermal Shutdown Temperature	Junction Temperature		150		${ }^{\circ} \mathrm{C}$
TsR	Thermal Shutdown Released Temperature	Junction Temperature		125		${ }^{\circ} \mathrm{C}$

Product-specific Electrical Characteristics

Product-specific Electrical Characteristics

Product Name	Vout			Iout	Vout/lout		$V_{\text {DIF }}$	
	Min.	Typ.	Max.	Min.	Typ.	Max.	Typ.	Max.
R1154x076x	7.448	7.600	7.752					
R1154x077x	7.546	7.700	7.854					
R1154x078x	7.644	7.800	7.956					
R1154x079x	7.742	7.900	8.058					
R1154x080x	7.840	8.000	8.160					
R1154x081x	7.938	8.100	8.262					
R1154x082x	8.036	8.200	8.364					
R1154x083x	8.134	8.300	8.466					
R1154x084x	8.232	8.400	8.568					
R1154x085x	8.330	8.500	8.670					
R1154x086x	8.428	8.600	8.772					
R1154x087x	8.526	8.700	8.874					
R1154x088x	8.624	8.800	8.976				0.25	0.50
R1154x089x	8.722	8.900	9.078					
R1154x090x	8.820	9.000	9.180					
R1154x091x	8.918	9.100	9.282					
R1154x092x	9.016	9.200	9.384					
R1154x093x	9.114	9.300	9.486					
R1154x094x	9.212	9.400	9.588					
R1154x095x	9.310	9.500	9.690					
R1154x096x	9.408	9.600	9.792					
R1154x097x	9.506	9.700	9.894					
R1154x098x	9.604	9.800	9.996	150	40	115		
R1154x099x	9.702	9.900	10.098					
R1154x100x	9.800	10.000	10.200					
R1154x101x	9.898	10.100	10.302					
R1154x102x	9.996	10.200	10.404					
R1154×103x	10.094	10.300	10.506					
R1154x104x	10.192	10.400	10.608					
R1154x105x	10.290	10.500	10.710					
R1154x106x	10.388	10.600	10.812					
R1154x107x	10.486	10.700	10.914					
R1154x108x	10.584	10.800	11.016					
R1154x109x	10.682	10.900	11.118					
R1154x110x	10.780	11.000	11.220				0.30	0.55
R1154x111x	10.878	11.100	11.322				0.30	0.55
R1154x112x	10.976	11.200	11.424					
R1154x113x	11.074	11.300	11.526					
R1154x114x	11.172	11.400	11.628					
R1154x115x	11.270	11.500	11.730					
R1154x116x	11.368	11.600	11.832					
R1154x117x	11.466	11.700	11.934					
R1154x118x	11.564	11.800	12.036					
R1154x119x	11.662	11.900	12.138					
R1154x120x	11.760	12.000	12.240					

R1154x001C Electrical Characteristics					$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$	
Symbol	Item	Conditions	Min.	Typ.	Max.	Unit
Vout	Output Voltage	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+2.0 \mathrm{~V}$, lout $=20 \mathrm{~mA}$	2.45	2.50	2.55	V
lout	Output Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SET }}+2.0 \mathrm{~V}$,	140			mA
Iss	Supply Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+2.0 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=\mathrm{V}_{\text {IN }}$		5	10	$\mu \mathrm{A}$
Istandby	Standby Current	$\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0 \mathrm{~V}$		0.1	1.0	$\mu \mathrm{A}$
Δ Vout/ Δ lout	Load regulation	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SET }}+2.0 \mathrm{~V}, \\ & 1 \mathrm{~mA} \leq \text { lout } \leq 40 \mathrm{~mA} \end{aligned}$		20	50	mV
Δ Vout/ $\Delta \mathrm{V}_{\mathrm{IN}}$	Line regulation	$\begin{aligned} & \mathrm{V}_{\text {SET }}+1 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 24 \mathrm{~V}, \\ & \text { lout }=20 \mathrm{~mA} \end{aligned}$		0.05	0.20	\%/V
VIIF	Dropout Voltage	lout $=20 \mathrm{~mA}$		0.20	0.40	V
Isc	Short Current Limit	Vout $=0 \mathrm{~V}$		45		mA
$\mathrm{V}_{\text {ceh }}$	CE "H" Input Voltage		2.1		Vin	V
$V_{\text {cel }}$	CE "L" Input Voltage		0		0.3	V
Ttsd	Thermal Shutdown Temperature	Junction Temperature		150		${ }^{\circ} \mathrm{C}$
TTSR	Thermal Shutdown Released Temperature	Junction Temperature		125		${ }^{\circ} \mathrm{C}$

[^1]
THEORY OF OPERATION

Thermal Shutdown

Thermal shutdown function is included in the R1154x, if the junction temperature is equal or more than $+150^{\circ} \mathrm{C}$ (Typ.), the operation of regulator would stop. After that, when the junction temperature is equal or less than $+125^{\circ} \mathrm{C}$ (Typ.), the operation of regulator would restart. Unless the cause of rising temperature would remove, the regulator repeats on and off, and output waveform would be like consecutive pulses.

Notes on Output Voltage Setting of R1154×001C

Figure 1. Adjustable Regulator (R1154x001C)
The Output Voltage of Regulator in R1154xxxxC may be adjustable for any output voltage between its 2.5 V reference and its VDD setting level. An external pair of resistors is required, as shown in Figure 1. The complete equation for the output voltage is described step by step as follows.

$$
\begin{align*}
& I 1=I_{I C}+I 2 \tag{1}\\
& I 2=2.5 / R 2 \tag{2}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\mathrm{I} 1=\mathrm{I}_{\mathrm{I}} \mathrm{C}+2.5 / \mathrm{R} 2 \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\text { Vout }=2.5+\text { R1 x I1 } \tag{4}
\end{equation*}
$$

Put Equation (3) into Equation (4), then

$$
\begin{align*}
V_{\text {OUT }} & =2.5+\mathrm{R} 1 \times\left(\mathrm{l}_{\text {IC }}+2.5 / R 2\right) \\
& =2.5 \times(1+\mathrm{R} 1 / R 2)+\mathrm{R} 1 \times \mathrm{I}_{\text {IC }} . \tag{5}
\end{align*}
$$

In 2nd term, or R1 x lıc will produce an error in Vout.
In Equation (5),

$$
\begin{align*}
& l_{\text {IC }}=2.5 / R_{\text {IC }} \tag{6}\\
& R 1 \times l_{\text {IC }}=R 1 \times 2.5 / R_{\text {IC }} \\
& =2.5 \times \mathrm{R} 1 / \mathrm{RI} \tag{7}
\end{align*}
$$

For better accuracy, choosing R1 (<< Rıc) reduces this error.
$R_{\text {Ic }}$ of the $\mathrm{R} 1154 \times 001 \mathrm{C}$ is approximately Typ. $17 \mathrm{M} \Omega$ ($\mathrm{Ta}=25^{\circ} \mathrm{C}$, guaranteed by design).
RIc could be affected by the temperature, therefore evaluate the circuit taking the actual conditions of use into account when deciding the resistance values for R1 and R2.

APPLICATION INFORMATION

Typical Application

Fixed Output Voltage Type

Adjustable Type

TECHNICAL NOTES

Notes on Selecting Components

Capacitor C_{IN} and Cout

Phase Compensation of the R1154x has been made internally for stable operation even though the load current would vary. Therefore, without the capacitors, CIN and Cout, the output voltage is regulated, however, for more stable operation, use capacitors as $\mathrm{Cin}_{\mathrm{in}}$ and Cout. Especially, if the input line is long and impedance is high, $\mathrm{Cin}_{\mathrm{IN}}$ is necessary, moreover, if you use Cout, transient response will be improved. Recommended value is in the range from $0.1 \mu \mathrm{~F}$ to $2.2 \mu \mathrm{~F}$. Wiring should be made as short as possible.
Connect the capacitor, C_{IN} between V_{DD} pin and GND pin and Cout between Vout and GND as close as possible.

Chip Enable Input

Do not make voltage level of chip enable pin keep floating level, or in between V_{IH} and V_{IL}. Unless otherwise, Output voltage would be unstable or indefinite, or unexpected current would flow internally.

TYPICAL CHARACTERISTICS

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

2) Input Voltage vs. Output Voltage ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1154x050B

R1154x090B

R1154x090B

3) Dropout Voltage vs. Output Current

4) Output Voltage vs. Temperature

R1154x030B
$\mathrm{V} / \mathrm{N}=5.0 \mathrm{~V}$, lout $=20 \mathrm{~mA}$

5) Supply Current vs. Input Voltage $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right)$

R1154x050B

R1154x090B

R1154x090B

6) Supply Current vs. Temperature

7) Input Transient Response (lout $=20 \mathrm{~mA}, \mathrm{Cout}_{\text {out }}=0.1 \mu \mathrm{~F}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

8) Load Transient Response (Cout $=0.1 \mu \mathrm{~F}, \mathrm{Ta}=25^{\circ} \mathrm{C}$)

R1154x025B

R1154x030B

R1154x050B

9) Thermal Shutdown Characteristics

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100\% of 50 mm Square
Through-holes	$\phi 0.2 \mathrm{~mm} \times 25$ pcs

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	2400 mW
Thermal Resistance $(\theta j \mathrm{ja})$	$\theta \mathrm{ja}=41^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter $(\psi j \mathrm{t})$	$\psi j \mathrm{t}=11^{\circ} \mathrm{C} / \mathrm{W}$

Өja: Junction-to-Ambient Thermal Resistance
ψj t: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

DFN1616-6 Package Dimensions (Unit: mm)

* The tab on the bottom of the package shown by blue circle is a substrate potential (GND/VDD). It is recommended that this tab be connected to the ground plane/VDD pin on the board but it is possible to leave the tab floating.

Nisshinbo Micro Devices Inc.

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square
Through-holes	$\quad$$\quad 0.3 \mathrm{~mm} \times 7 \mathrm{pcs}$

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	660 mW
Thermal Resistance $(\theta \mathrm{ja})$	$\theta \mathrm{ja}=150^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter $(\psi \mathrm{j} \mathrm{t})$	$\psi j \mathrm{t}=51^{\circ} \mathrm{C} / \mathrm{W}$

өja: Junction-to-Ambient Thermal Resistance
ψj t: Junction-to-Top Thermal Characterization Parameter

SOT-23-5 Package Dimensions

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7.

Measurement Conditions

Item	Measurement Conditions
Environment	Mounting on Board (Wind Velocity $=0 \mathrm{~m} / \mathrm{s}$)
Board Material	Glass Cloth Epoxy Plastic (Four-Layer Board)
Board Dimensions	$76.2 \mathrm{~mm} \times 114.3 \mathrm{~mm} \times 0.8 \mathrm{~mm}$
Copper Ratio	Outer Layer (First Layer): Less than 95\% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100\% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100\% of 50 mm Square
Through-holes	$\phi 0.3 \mathrm{~mm} \times 13$ pcs

Measurement Result
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Tjmax}=125^{\circ} \mathrm{C}\right)$

Item	Measurement Result
Power Dissipation	2600 mW
Thermal Resistance $(\theta j \mathrm{ja})$	$\theta \mathrm{ja}=38^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Characterization Parameter $(\psi j \mathrm{t})$	$\psi j \mathrm{t}=13^{\circ} \mathrm{C} / \mathrm{W}$

Өja: Junction-to-Ambient Thermal Resistance
ψj t: Junction-to-Top Thermal Characterization Parameter

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

SOT-89-5 Package Dimensions

1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to our sales representatives for the latest information thereon.
2. The materials in this document may not be copied or otherwise reproduced in whole or in part without the prior written consent of us.
3. This product and any technical information relating thereto are subject to complementary export controls (so-called KNOW controls) under the Foreign Exchange and Foreign Trade Law, and related politics ministerial ordinance of the law. (Note that the complementary export controls are inapplicable to any application-specific products, except rockets and pilotless aircraft, that are insusceptible to design or program changes.) Accordingly, when exporting or carrying abroad this product, follow the Foreign Exchange and Foreign Trade Control Law and its related regulations with respect to the complementary export controls.
4. The technical information described in this document shows typical characteristics and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our or any third party's intellectual property rights or any other rights.
5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death should first contact us.

- Aerospace Equipment
- Equipment Used in the Deep Sea
- Power Generator Control Equipment (nuclear, steam, hydraulic, etc.)
- Life Maintenance Medical Equipment
- Fire Alarms / Intruder Detectors
- Vehicle Control Equipment (automotive, airplane, railroad, ship, etc.)
- Various Safety Devices
- Traffic control system
- Combustion equipment

In case your company desires to use this product for any applications other than general electronic equipment mentioned above, make sure to contact our company in advance. Note that the important requirements mentioned in this section are not applicable to cases where operation requirements such as application conditions are confirmed by our company in writing after consultation with your company.
6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
7. The products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this datasheet. Failure to employ the products in the proper applications can lead to deterioration, destruction or failure of the products. We shall not be responsible for any bodily injury, fires or accident, property damage or any consequential damages resulting from misuse or misapplication of the products.
8. Quality Warranty

8-1. Quality Warranty Period
In the case of a product purchased through an authorized distributor or directly from us, the warranty period for this product shall be one (1) year after delivery to your company. For defective products that occurred during this period, we will take the quality warranty measures described in section $8-2$. However, if there is an agreement on the warranty period in the basic transaction agreement, quality assurance agreement, delivery specifications, etc., it shall be followed.
8-2. Quality Warranty Remedies
When it has been proved defective due to manufacturing factors as a result of defect analysis by us, we will either deliver a substitute for the defective product or refund the purchase price of the defective product.
Note that such delivery or refund is sole and exclusive remedies to your company for the defective product.
8-3. Remedies after Quality Warranty Period
With respect to any defect of this product found after the quality warranty period, the defect will be analyzed by us. On the basis of the defect analysis results, the scope and amounts of damage shall be determined by mutual agreement of both parties. Then we will deal with upper limit in Section 8-2. This provision is not intended to limit any legal rights of your company.
9. Anti-radiation design is not implemented in the products described in this document.
10. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
11. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
12. Warning for handling Gallium and Arsenic (GaAs) products (Applying to GaAs MMIC, Photo Reflector). These products use Gallium (Ga) and Arsenic (As) which are specified as poisonous chemicals by law. For the prevention of a hazard, do not burn, destroy, or process chemically to make them as gas or power. When the product is disposed of, please follow the related regulation and do not mix this with general industrial waste or household waste.
13. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information.

Nisshinbo Micro Devices Inc.

Official website

https://www.nisshinbo-microdevices.co.jp/en/

Purchase information

https://www.nisshinbo-microdevices.co.jp/en/buy/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

[^0]: ${ }^{(1)}$ The tab on the bottom of the package enhances thermal performance and is electrically connected to GND (substrate level). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating.

[^1]: The above specifications measured at the condition of $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {ADJ }}$.

