CMOS, 2.5Ω Low Voltage, Triple/Quad SPDT Switches

FEATURES

1.8 V to 5.5 V Single Supply
$\pm 2.5 \mathrm{~V}$ Dual Supply
2.5Ω On Resistance
0.5Ω On Resistance Flatness
100 pA Leakage Currents
19 ns Switching Times
Triple SPDT: ADG733
Quad SPDT: ADG734
Small TSSOP and QSOP Packages
Low Power Consumption
TTL/CMOS Compatible Inputs

APPLICATIONS

Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery Powered Systems

GENERAL DESCRIPTION

The ADG733 and ADG734 are low voltage, CMOS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.

Low power consumption and operating supply range of 1.8 V to 5.5 V and dual $\pm 2.5 \mathrm{~V}$ make the ADG733 and ADG734 ideal for battery powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An $\overline{\mathrm{EN}}$ input on the ADG733 is used to enable or disable the device. When disabled, all channels are switched OFF.
These 2-1 multiplexers/SPDT switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths, and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches, and is very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range that extends to the supplies.
The ADG733 is available in small TSSOP and QSOP packages, while the ADG734 is available in a small TSSOP package.

REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A "1" INPUT LOGIC

PRODUCT HIGHLIGHTS

1. Single/Dual Supply Operation. The ADG733 and ADG734 are fully specified and guaranteed with 3 V and 5 V single supply rails and $\pm 2.5 \mathrm{~V}$ dual supply rails.
2. Low On Resistance (2.5Ω typical)
3. Low Power Consumption ($<0.01 \mu \mathrm{~W}$)
4. Guaranteed Break-Before-Make Switching Action

Parameter	B Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON) }}$)	$\begin{aligned} & 2.5 \\ & 4.5 \\ & \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5.0 \\ & 0.1 \\ & 0.4 \\ & \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \text {; }$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 4 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ ADG733 $\quad \mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{S} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	19 7 20 7 13 ± 3 -72 -67 160 11 34	34 12 40 12	ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ;$ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 6 $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ;$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, Test Circuit } 10$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Parameter	B Version		Unit	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON) }}$)	$\begin{aligned} & 6 \\ & 11 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 12 \\ & 0.1 \\ & 0.4 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; }$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 4 \end{aligned}$	$\begin{array}{r} 2.0 \\ 0.8 \\ \\ \pm 0.1 \end{array}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ ADG733 $\quad \mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{S} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 28 \\ & 9 \\ & 29 \\ & 9 \\ & 22 \\ & \\ & \pm 3 \\ & \\ & -72 \\ & -67 \\ & \\ & 160 \\ & 11 \\ & 34 \\ & \hline \end{aligned}$	55 16 60 16	ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \end{aligned}$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, Test Circuit } 10$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

DUAL SUPPLY ($\mathrm{V}_{D D}=+2.5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-2.5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.)

Parameter	B Version		Unit	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	$\begin{aligned} & 2.5 \\ & 4.5 \\ & \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5.0 \\ & 0.1 \\ & 0.4 \\ & \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-1.25 \mathrm{~V} /+2.25 \mathrm{~V} ; \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V} \text {, Test Circuit } 3$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 0.7 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ ADG733 $\quad \mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{S} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 21 \\ & 10 \\ & 21 \\ & 10 \\ & 13 \\ & \\ & \pm 5 \\ & \\ & -72 \\ & -67 \\ & \\ & 200 \\ & 11 \\ & 34 \end{aligned}$	35 16 40 16 1	ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{Test} \mathrm{Circuit} 6^{\mathrm{V}_{\mathrm{S}}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \end{aligned}$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 10 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS I_{DD} I_{SS}	0.001 0.001	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.75 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 2.75 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-2.75 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 2.75 \mathrm{~V} \end{aligned}$

[^0]
ADG733/ADG734

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$ ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)	
V_{DD} to $\mathrm{V}_{\text {SS }}$. 7 V	
V_{DD} to GND	-0.3 V to +7 V
$\mathrm{V}_{\text {SS }}$ to GND	+0.3 V to -3.5 V
Analog Inputs ${ }^{2}$	$. \mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Digital Inputs ${ }^{2}$	$\ldots-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Peak Current, S or D . 100 mA	
	at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
Continuous Current, S or D	
Operating Temperature Range	
Industrial (A, B Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)
V_{DD} to V_{SS}. 7 V
V_{DD} to GND . -0.3 V to +7 V
V_{SS} to GND . +0.3 V to -3.5 V
Analog Inputs ${ }^{2} \ldots V_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First 30 mA, Whichever Occurs First 100 mA
unction Temperature 16-Lead TSSOP, θ_{JA} Thermal Impedance $150.4^{\circ} \mathrm{C} / \mathrm{W}$ 20-Lead TSSOP, θ_{JA} Thermal Impedance $143^{\circ} \mathrm{C} / \mathrm{W}$ 16-Lead QSOP, $\theta_{\text {JA }}$ Thermal Impedance $149.97^{\circ} \mathrm{C} / \mathrm{W}$ Lead Temperature, Soldering (10 sec) $300^{\circ} \mathrm{C}$ IR Reflow, Peak Temperature (<20 sec) $235^{\circ} \mathrm{C}$ NOTES
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at A, EN, IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG733/ADG734 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS

TSSOP

Table I. ADG733 Truth Table

A2	A1	A0	$\overline{\text { EN }}$	ON Switch
X	X	X	1	None
0	0	0	0	D1-S1A, D2-S2A, D3-S3A
0	0	1	0	D1-S1B, D2-S2A, D3-S3A
0	1	0	0	D1-S1A, D2-S2B, D3-S3A
0	1	1	0	D1-S1B, D2-S2B, D3-S3A
1	0	0	0	D1-S1A, D2-S2A, D3-S3B
1	0	1	0	D1-S1B, D2-S2A, D3-S3B
1	1	0	0	D1-S1A, D2-S2B, D3-S3B
1	1	1	0	D1-S1B, D2-S2B, D3-S3B

X = Don't Care.

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential
$\mathrm{V}_{\text {SS }}$	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground close to the device.
I_{DD}	Positive Supply Current
$\mathrm{I}_{\text {S }}$	Negative Supply Current
GND	Ground (0 V) Reference
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
A_{X}	Logic Control Input
$\overline{\mathrm{EN}}$	Active low device enable
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog Voltage on Terminals D and S
R_{ON}	Ohmic Resistance between D and S
$\Delta \mathrm{R}_{\text {ON }}$	On Resistance Match between any Two Channels (i.e., $\mathrm{R}_{\mathrm{ON}} \max$ and $\mathrm{R}_{\mathrm{ON}} \mathrm{min}$)
$\mathrm{R}_{\text {FLat(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$\mathrm{I}_{\text {S }}$ (OFF)	Source Leakage Current with the Switch "OFF"
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel Leakage Current with the Switch "ON"
$\mathrm{V}_{\text {INL }}$	Maximum Input Voltage for Logic "0"
$\mathrm{V}_{\text {INH }}$	Minimum Input Voltage for Logic " 1 "
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input Current of the Digital Input
C_{S} (OFF)	"OFF" Switch Source Capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	"ON" Switch Capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$	Digital Input Capacitance
t_{ON}	Delay Time Measured between the 50\% and 90\% Points of the Digital Inputs and the Switch "ON" Condition
$\mathrm{t}_{\text {OFF }}$	Delay Time Measured between the 50% and 90% Points of the Digital Input and the Switch "OFF" Condition
$\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$	Delay Time between the 50\% and 90\% Points of the EN Digital Input and the Switch "ON" Condition
$\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$	Delay Time between the 50\% and 90\% Points of the EN Digital Input and the Switch "OFF" Condition
topen	"OFF" Time Measured between the 80% Points of Both Switches when Switching from One Address State to Another
Charge	A Measure of the Glitch Impulse Transferred Injection from the Digital Input to the Analog Output during Switching
Off Isolation	A Measure of Unwanted Signal Coupling through an "OFF" Switch.
Crosstalk	A Measure of Unwanted Signal that Is Coupled through from One Channel to Another as a Result of Parasitic Capacitance
On Response	The Frequency Response of the "ON" Switch
Insertion Loss	The Loss Due to the On Resistance of the switch

Typical Performance Characteristics-ADG733/ADG734

TPC 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

TPC 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

TPC 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

TPC 8. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 9. Leakage Currents as a Function of Temperature

ADG733/ADG734

TPC 10. Leakage Currents as a Function of Temperature

TPC 13. Input Current, ID vs.
Switching Frequency

TPC 16. Charge Injection vs. Source Voltage

TPC 11. $t_{\text {ON }} / t_{\text {OFF }}$ Times vs. Temperature

TPC 14. Off Isolation vs. Frequency

TPC 12. On Response vs. Frequency

TPC 15. Crosstalk vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Is (OFF)

Test Circuit 3. $I_{D}(O N)$

Test Circuit 4. Switching Times, ton,$t_{\text {OFF }}$

Test Circuit 5. Enable Delay, $t_{O N}(\overline{E N})$, $t_{\text {OFF }}(\overline{E N})$

*A0, A1, A2 FOR ADG733, IN1-4 FOR ADG734
Test Circuit 6. Break-Before-Make Delay, topen

* IN1-4 FOR ADG734

Test Circuit 7. Charge Injection

Test Circuit 8. Off Isolation

Test Circuit 10. Bandwidth

Test Circuit 9. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-137-AB
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 11. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16)
Dimensions shown in inches and (millimeters)

Figure 12. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

Figure 13. 20-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-20$)
Dimensions shown in millimeters

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG733BRQZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG733BRQZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG733BRU-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG733BRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG733BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG733BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG734BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG734BRU-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG734BRUZ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG734BRUZ-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20
ADG734BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20-Lead Thin Shrink Small Outline Package [TSSOP]	RU-20

${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

REVISION HISTORY

4/14—Rev. A to Rev. B

Updated Outline Dimensions ... 11
Changes to Ordering Guide ... 12
11/02-Data Sheet changed from REV. 0 to REV. A.
Changes to FEATURES .. 1
Changes to PRODUCT HIGHLIGHTS 1
Changes to SPECIFICATIONS.. 2
Changes to ABSOLUTE MAXIMUM RATINGS Note 2 5
Changes to TERMINOLOGY table ... 6
Replaced TPCs 2, 5, 8, and 9 .. 7
Edits to TPCs 6 and 7 .. 7
Replaced TPC 12... 8
Edits to TPCs 13 and 16... 8
Replaced Test Circuits 8 and 9... 10
Added Test Circuit 10 ... 10
Updated OUTLINE DIMENSIONS .. 11

[^0]: NOTES
 ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

