Switching Power Supply
 Type SPD 100W
 DIN rail mounting

Product Description

This SPD is the most compact 100W power supply on the market. Relay output for "power ready" parallel function and PFC are
included. Performances are unique with high efficiencies and the possibility of being used up to $70^{\circ} \mathrm{C}$ with a little derating.

- Installation on DIN Rail 7.5 or 15 mm
- Short circuit protection
- PFC standard
- Power ready output on 24VDC
- LED indicator for DC power ON
- LED indicator for DC low
- Standard parallel function
- Very compact dimensions
- UL, cUL listed and TUV/CE approved
- Class I Div 2 Groups A, B, C, D approved

Ordering Key
Model
Mounting ($\mathrm{D}=$ Din rail)
Output voltage
Output power
Input Type

Input type: 1= single phase

Approvals

Output Performances

MODEL NO.	INPUT VOLTAGE	OUTPUT WATTAGE	OUTPUT VOLTAGE	OUTPUT CURRENT	EFF. (min.)	EFF. (typ.)
Single Output Models						
SPD12100	$90 \sim 264$ VAC	100.8 WATTS	+12 VDC	$8,4 \mathrm{~A}$	82%	84%
SPD24100	$90 \sim 264$ VAC	100.8 WATSS	+24 VDC	$4,2 \mathrm{~A}$	84%	86%
SPD48100	$90 \sim 264$ VAC	100.8 WATTS	+48 VDC	$2,1 \mathrm{~A}$	86%	88%

Output Data

Line regulation	$\pm 1 \%$		
Load regulation		Voltage fall time (lomom Vi nom)	150ms max
Non parallel model	$\pm 1 \%$	Rated continuous loading	
Parallel model	$\pm 5 \%$	12V Model	8.4A @ 12VDC/6.9A @ 14.5VDC
Minimum load	OA	24V Model	4.2A @ 24VDC/3.5A @ 28.5VDC
Turn on time (full resistive load)		48V Model	2.1A @ 48VDC/1.8A @ 56VDC
VI nom, lo nom 12V/24V		Reverse voltage	
models with $7000 \mu \mathrm{~F}$ CAP	1000 ms	12V Model	VDC 18
VI nom, lo nom 48V		24V Model	VDC 35
models with $3500 \mu \mathrm{~F}$ CAP	2000 ms	48V Model	VDC 63
Transient recovery time	2 ms	Capacitor load	7000 $\mu \mathrm{F}$
Ripple and noise	50 mVpp	Voltage rise time	
Output voltage accuracy	$\pm 1 \%$	Vi nom lo nom	
Temperature coefficient	$\pm 0.03 \% /{ }^{\circ} \mathrm{C}$	Vi nom, lo nom 12V/24V	
Hold up time		models with 7000 $\mu \mathrm{F}$ CAP	500 ms
$\mathrm{Vi}=115 \mathrm{VAC}$	15 ms	48 V model with $3500 \mu \mathrm{~F}$ CAP	500 ms
$\mathrm{Vi}=230 \mathrm{VAC}$	30 ms		

Input Data

Rated input voltage	100-240VAC
Voltage range	
AC	90-264VAC
DC	120-375VDC
Rated input current	
(vi:90vac, lo nom) Typ.	2.4A
Inrush current	
Vi= 115VAC	30A
Vi= 230VAC	60A

Power dissipation (vi: 230vac, lo nom) 12V Model 24V Model 48V Model	18.5 W
Frequency range	15 W
Leakage current	$47-63 \mathrm{~Hz}$
Input-Output	0.25 mA
Input-FG	3.5 mA

Controls and Protections

Overload		Over voltage protection	VDC	
12V Model	14.5V to 17.4 V		Min.	Max.
24V Model	30.0 V to 33.0V	12V Model	14.5	16.5
48V Model	60.0 V to 66.0V	24V Model	30	33
Input fuse	T3.15A/250VAC internal1 ${ }^{11}$	48 V Model	60	66
Output short circuit	Fold forward			
Power ready output threshold at start up	217.6-19.4VDC	Internal surge voltage protection (IEC 61000-4-5)	Varistor	
Electrical isolation	500VDC			
Contact rating at60VDC	0.3A			

1) Fuse not replaceable by user

General Data (@ nominal line, full load, $\mathbf{2 5}^{\circ} \mathrm{C}$)

Ambient temperature	$-35^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$
Derating $\left(>61^{\circ} \mathrm{C}\right.$ to $\left.+71^{\circ} \mathrm{C}\right)$	$2.5 \% / \mathrm{C}$
Ambient humidity	$22-95 \% \mathrm{RH}$
Storage temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Protection degree	IP20
Cooling	Free air convection
Pollution degree	2
Switching frequency	$45-60 \mathrm{kHz}$
Vi nom, Io nom	
Isolation voltage Input/output Input/FG Output/FG	$3,000 / 4,242 \mathrm{VAC} / \mathrm{VDC}$
	$1,500 / 2,121 \mathrm{VAC} / \mathrm{VDC}$
	$500 / 710 \mathrm{VAC} / \mathrm{VDC}$

Isolation resistance input/output, @500VDC	$100 \mathrm{M} \Omega$
Altitude during operation	5000 m
Installation position	Vertical
MTB (Bellcore issue 6 @ 40 0°, GB)	
	5V Model 498000 Hours
	12V Model 504000 Hours
	24V Model 520000 Hours
	48V Model 531000 Hours
Plastic: PC, UL94-V0	
Case material	430 g

Norms and Standards

Vibration resistance	meet IEC 60068-2-6	CE	EN 61000-6-3, EN 55022
	(Mounting by rail: $10-500 \mathrm{~Hz}$,		Class B, EN 61000-3-2,
	2 G , along $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ each Axis,		EN 61000-3-3,
	60 min for each Axis)		EN 61000-6-2,
Shock resistance	meet IEC 60068-2-27		EN 55024,
	(15G, 11ms, 3 Axis, 6 faces,		EN 61000-4-2 Level 4,
	3 times for each face)		EN 61000-4-3 Level 3,
UL/cUL	UL508 listed, UL60950-1		EN 61000-4-4 Level 4,
TUV	EN 60950-1, CB scheme		EN 61000-4-5 L-Level 3,
	EN 61558-1, EN 61558-2-		L/N-FG Level 4,
	17 (meet EN 60204)		EN 61000-4-6 Level 3,
ISA	12.12.01 Class I Div 2 Groups A, B, C, D		EN 61000-4-8 Level 4, EN 61000-4-11,
	Groups A, B, C, D		ENV 50204 Level 2,
			EN 61204-3

Block Diagram

Pin Assignement and Front Controls

Pin No.	Designation	Description
$\mathbf{1}$	RDY	A normal open relay contact for DC ON level control
$\mathbf{2}$		Never connect
$\mathbf{3 , 4}$	V+	Positive output terminal
$\mathbf{5 , 6}$	V-	Negative output terminal
$\mathbf{7}$	\boldsymbol{I}	Grounf this terminal to minimize high-frequency emissions
$\mathbf{8}$	N	Input terminals (neutral conductor, no polarity at DC input)
$\mathbf{9}$	L	Input terminals (phase conductor, no polarity at DC input)
	DC ON	Operation indicator LED
	DC LO	DC LOW voltage indicator LED
	Vout ADJ	Trimmer-potentiometer for Vout adjustment

Typ. Efficiency Curve

Derating Diagram

Typ. Current Limited Curve

Installation

\(\left.$$
\begin{array}{c|l}\text { Ventilation and cooling } & \begin{array}{l}\text { Normal convection } \\
\text { All sides 25mm free space } \\
\text { for cooling is recommended }\end{array} \\
\hline \text { Connector size range } & \begin{array}{l}\text { AWG24-14 }\left(0.2 \sim 2 \mathrm{~mm}^{2}\right) \\
\text { flexible/solid cable, 10mm } \\
\text { stripping at cable and } \\
\text { recommends use copper } \\
\text { conductors only, } 60 / 75^{\circ} \mathrm{C}\end{array} \\
\text { Screw terminal } & \begin{array}{l}\text { AWG26-12 (0.2~2.5mm }\end{array}
$$

flexible/solid cable, con nector

can withstand torque at max\end{array}\right\}\)| $0,56 \mathrm{Nm}(5 \mathrm{lbs}-\mathrm{in}) .4 \sim 5 \mathrm{~mm}$ |
| :--- |
| stripping at cable and recom |
| mends use copper conductors |
| monly, $60 / 75^{\circ} \mathrm{C}$ |

Max. torque for terminal Input terminal Output terminal	$0.56 \mathrm{Nm}(5.0 \mathrm{lb}-\mathrm{in})$
General tollerance mm(in.)	$0.56 \mathrm{Nm}(5.0 \mathrm{lb}-\mathrm{in})$
$\mathbf{0 . 0 0 (0 . 0 0) \div 3 0 . 0 0 (1 . 1 8)}$	$\pm 0.30(0.01)$
$\mathbf{3 0 . 0 0 (1 . 1 8) \div 1 2 0 . 0 0 (4 . 7 2)}$	$\pm 0.50(0.02)$

Mechanical Drawings mm (inches)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Carlo Gavazzi:

```
SPD121001 SPD241001
```

