

Data Sheet

FEATURES

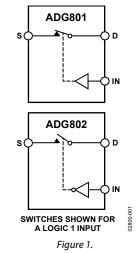
0.4 Ω maximum on resistance at 125°C 0.08 Ω maximum on resistance flatness at 125°C 1.8 V to 5.5 V single supply Automotive temperature range from -40°C to +125°C 400 mA current-carrying capability Tiny 6-lead SOT-23 and 8-lead MSOP packages 35 ns switching times Low power consumption TTL-/CMOS-compatible inputs Pin compatible with ADG701/ADG702

APPLICATIONS

Power routing Cellular phones Modems PCMCIA cards Hard drives Data acquisition systems Communications systems Relay replacement Battery-powered systems

GENERAL DESCRIPTION

The ADG801 and ADG802 are monolithic CMOS, single-pole, single throw (SPST) switches with on resistance of less than 0.4 Ω . These switches are designed using an advanced submicron process that provides extremely low on resistance, high switching speed, and low leakage currents.


The low on resistance of $<0.4 \Omega$ makes these parts ideal for applications where low on resistance switching is critical.

The ADG801 switch is normally open (NO), while the ADG802 is normally closed (NC). Each switch conducts equally well in both directions when on.

$<\!$ 0.4 Ω CMOS 1.8 V to 5.5 V SPST Switches

ADG801/ADG802

FUNCTIONAL BLOCK DIAGRAM

PRODUCT HIGHLIGHTS

- 1. Low on resistance (0.25 Ω typical).
- 2. 1.8 V to 5.5 V single-supply operation.
- 3. Tiny 6-lead SOT-23 and 8-lead MSOP packages.
- 4. 400 mA current-carrying capability.
- 5. Automotive temperature range from -40° C to $+125^{\circ}$ C.
- 6. Pin compatible with ADG701 (ADG801) and ADG702 (ADG802).

Rev. B

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagram1
General Description 1
Product Highlights 1
Revision History 2
Specifications
Absolute Maximum Ratings5

ESD Caution	5
Pin Configurations and Function Descriptions	6
Typical Performance Characteristics	7
Terminology	9
Test Circuits	10
Outline Dimensions	12
Ordering Guide	13

REVISION HISTORY

Deleted 6-Ball WLCSP PackageUniversa	ıl
Added Table Title to Table 3; Renumbered Sequentially	5
Deleted Figure 4; Renumbered Sequentially	6
Changes to Table 5	6
Moved Terminology Section	9
Updated Outline Dimensions 12	2
Deleted Figure 231	3
Changes to Ordering Guide 11	3

3/07—Rev. 0 to Rev. A

Updated Format	.Universal
Added 6-Ball WLCSP Package (Text and Figures)	.Universal
Replaced Typical Performance Characteristics Section	8
Updated Outline Dimensions	12
Changes to Ordering Guide	14

5/02—Revision 0: Initial Version

SPECIFICATIONS

 V_{DD} = 5 V ± 10%, GND = 0 V, unless otherwise noted. The automotive temperature range is -40°C to +125°C.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	0.25			Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$; see Figure 13
	0.3	0.35	0.4	Ωmax	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$; see Figure 13
On Resistance Flatness (R _{FLAT(ON)})	0.05			Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$
		0.07	0.08	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 5.5 V$
Source Off Leakage, I _s (Off)	±0.01			nA typ	$V_{\rm S} = 4.5 \text{V}/1 \text{V}, V_{\rm D} = 1 \text{V}/4.5 \text{V};$ see Figure 14
	±0.25	±3	±30	nA max	$V_{\rm S} = 4.5 \text{V}/1 \text{V}, V_{\rm D} = 1 \text{V}/4.5 \text{V};$ see Figure 14
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{\rm S} = 4.5 \text{V}/1 \text{V}, V_{\rm D} = 1 \text{V}/4.5 \text{V}; \text{ see Figure 14}$
	±0.25	±3	±30	nA max	$V_{\rm S} = 4.5 \text{V}/1 \text{V}, V_{\rm D} = 1 \text{V}/4.5 \text{V};$ see Figure 14
Channel On Leakage, I _D , I _S (On)	±0.01			nA typ	$V_{\text{S}} = V_{\text{D}} = 1 \text{ V}$, or 4.5 V; see Figure 15
	±0.25	±3	±30	nA max	$V_{\text{S}} = V_{\text{D}} = 1 \text{ V}$, or 4.5 V; see Figure 15
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current					
IINL OR IINH	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	35			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	45	50	55	ns max	V _s = 3 V; see Figure 16
toff	9			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	15	18	21	ns max	V _s = 3 V; see Figure 16
Charge Injection	50			pC typ	$V_s = 2.5 V$, $R_s = 0 \Omega$; $C_L = 1 nF$; see Figure 17
Off Isolation	-61			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; $f = 100 kHz$; see Figure 18
Bandwidth –3 dB	12			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 19
Cs (Off)	180			pF typ	f = 1 MHz
C _D (Off)	180			pF typ	f = 1 MHz
C _D , C _s (On)	420			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 5.5 V$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or 5.5 V
	1	1.0	2.0	µA max	

 1 On resistance parameters tested with l_{s} = 10 mA. 2 Guaranteed by design, not subject to production test.

 V_{DD} = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted. The automotive temperature range is -40°C to +125°C.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})	0.4			Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$; see Figure 13
	0.6	0.65	0.7	Ωmax	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$; see Figure 13
On Resistance Flatness (R _{FLAT(ON)})	0.1	0.1	0.1	Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 V$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{\rm S} = 3.3 \text{ V}/1 \text{ V}, V_{\rm D} = 1 \text{ V}/3.3 \text{ V};$ see Figure 14
	±0.25	±3	±30	nA max	$V_{\rm S} = 3.3 \text{ V}/1 \text{ V}, V_{\rm D} = 1 \text{ V}/3.3 \text{ V};$ see Figure 14
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{\rm S} = 3.3 \text{ V}/1 \text{ V}, V_{\rm D} = 1 \text{ V}/3.3 \text{ V};$ see Figure 14
	±0.25	±3	±30	nA max	$V_{\rm S} = 3.3 \text{ V}/1 \text{ V}, V_{\rm D} = 1 \text{ V}/3.3 \text{ V};$ see Figure 14
Channel On Leakage, I _D , Is (On)	±0.01			nA typ	$V_{s} = V_{D} = 1 V$, or 3.3 V; see Figure 15
	±0.25	±3	±30	nA max	$V_{s} = V_{D} = 1 V$, or 3.3 V; see Figure 15
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	40			ns typ	$R_L = 50 \Omega, C_L = 35 pF$
	55	60	65	ns max	$V_s = 1.5 V$; see Figure 16
toff	9			ns typ	$R_L = 50 \ \Omega, \ C_L = 35 \ pF$
	15	18	21	ns max	$V_s = 1.5 V$; see Figure 16
Charge Injection	10			pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 17
Off Isolation	-61			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 18
Bandwidth –3 dB	12			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 19
Cs (Off)	180			pF typ	f = 1 MHz
C _D (Off)	180			pF typ	f = 1 MHz
C _D , C _s (On)	420			pF typ	f = 1 MHz
POWER REQUIREMENTS					V _{DD} = 3.6 V
I _{DD}	0.001			μA typ	Digital inputs = 0 V or 3.6 V
		1.0	2.0	µA max	

 1 On resistance parameters tested with I_{S} = 10 mA. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

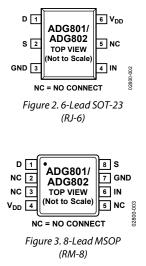
 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	–0.3 V to +7 V
Analog Inputs ¹	–0.3 V to VDD + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	–0.3 V to VDD + 0.3 V or 30 mA, whichever occurs first
Continuous Current, Pin S or Pin D	400 mA
Peak Current, Pin S or Pin D	800 mA, pulsed at 1 ms, 10% duty cycle max
Operating Temperature Range Automotive	−40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature (T _{JMAX})	150°C
Package Power Dissipation	$(T_{JMAX} - T_A)/\Theta_{JA}$
MSOP	
θ_{JA} Thermal Impedance	206°C/W
θ _{JC} Thermal Impedance	44°C/W
SOT-23 (4-Layer Board)	
θ _{JA} Thermal Impedance	119°C/W
θ _{JC} Thermal Impedance	91.99°C/W
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	235°C
Reflow Soldering (Pb-Free)	
PeakTemperature	260(+0/-5)°C
Time at Peak Temperature	10 sec to 40 sec
	VDD to GND Analog Inputs ¹ Digital Inputs ¹ Continuous Current, Pin S or Pin D Peak Current, Pin S or Pin D Operating Temperature Range Automotive Storage Temperature Range Junction Temperature (TJMAX) Package Power Dissipation MSOP θJA Thermal Impedance θJC Thermal Impedance SOT-23 (4-Layer Board) θJA Thermal Impedance Impedance θJC Thermal Impedance IR Reflow, Peak Temperature (<20 sec) Reflow Soldering (Pb-Free) Peak Temperature

¹Overvoltages at Pin IN, Pin S, or Pin D are clamped by internal diodes. Current should be limited to the maximum ratings provided. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Truth Table


ADG801 (Pin IN)	ADG802 (Pin IN)	Switch Condition
0	1	Off
1	0	On

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

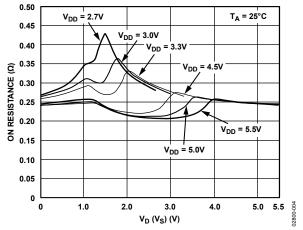

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Table 5. Pin Function Descriptions

Pin	Number				
SOT-23	MSOP	Mnemonic	Description		
1	1	D	Drain Terminal. Can be an input or an output.		
2	8	S	Source Terminal. Can be an input or an output.		
3	7	GND	Ground (0 V) Reference.		
4	6	IN	Logic Control Input.		
5	2, 3, 5	NC	No Connect. Do not connect to this pin.		
6	4	V _{DD}	Most Positive Power Supply Potential.		

TYPICAL PERFORMANCE CHARACTERISTICS

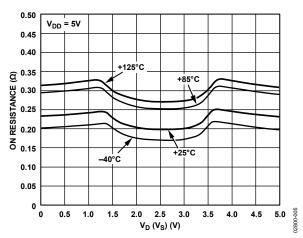


Figure 5. On Resistance vs. V_D (V_S) for Different Temperatures

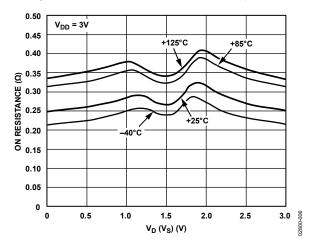


Figure 6. On Resistance vs. V_D (V_s) for Different Temperatures

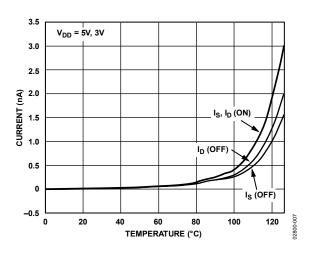


Figure 7. Leakage Current vs. Temperature

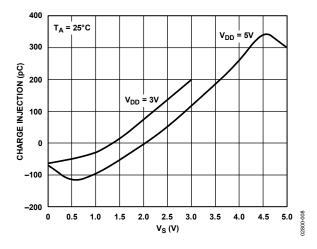


Figure 8. Charge Injection vs. Source Voltage

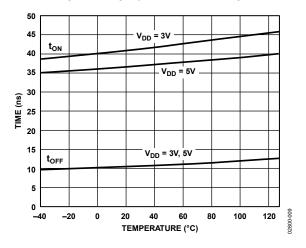
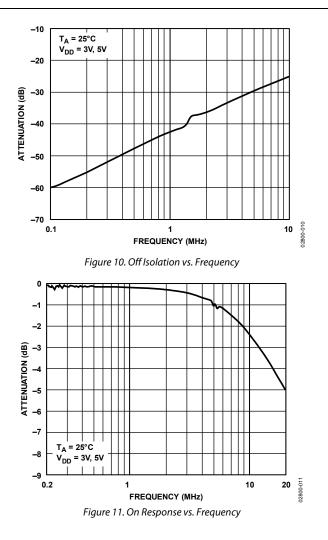
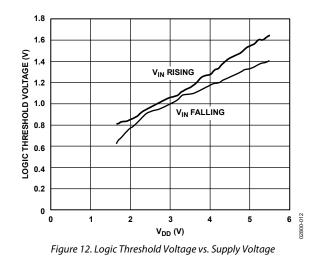




Figure 9. ton/toff Times vs. Temperature

TERMINOLOGY

VDD

The most positive power supply potential.

Idd

Positive supply current.

GND

Ground (0 V) reference.

S

The source terminal can be an input or an output.

D

The drain terminal can be an input or an output.

IN Logic control input.

 $\mathbf{V}_{D}\left(\mathbf{V}s\right)$ Analog voltage on Terminal D and Terminal S.

R_{ON} Ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (Off) Source leakage current with the switch off.

I_D (**Off**) Drain leakage current with the switch off.

 $\mathbf{I}_{\mathrm{D}}, \mathbf{I}_{\mathrm{S}}\left(\mathbf{On}\right)$ Channel leakage current with the switch on.

V_{INL} Maximum input voltage for Logic 0.

V_{INH} Minimum input voltage for Logic 1. I_{INL} (I_{INH}) Input current of the digital input.

Cs (Off) The off switch source capacitance is measured with reference to ground.

 C_D (Off) The off switch drain capacitance is measured with reference to ground.

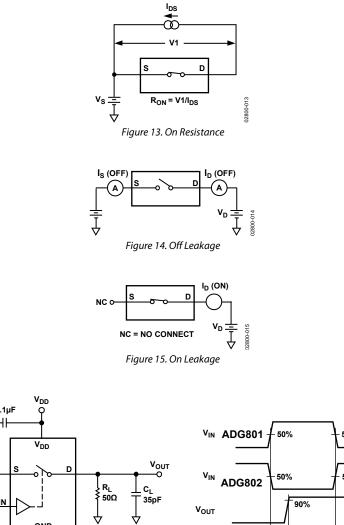
C_D, **C**_S (**On**) The on switch capacitance is measured with reference to ground.

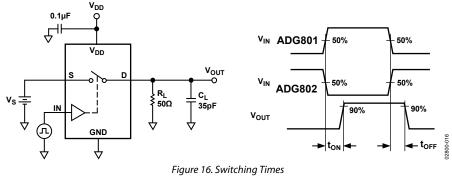
C_{IN} Digital input capacitance.

t_{ON} The delay between applying the digital control input and when the output switches on. See Figure 16.

 $t_{\rm OFF}$ The delay between applying the digital control input and when the output switches off.

Charge Injection A measure of the glitch impulse transferred from the digital input to the analog output during switching.

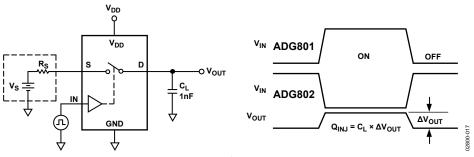
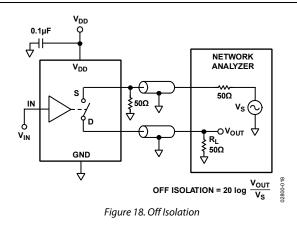
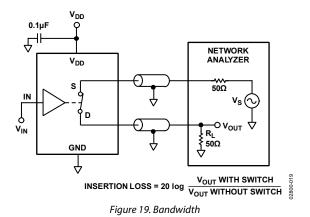

Off Isolation A measure of unwanted signal coupling through an off switch.

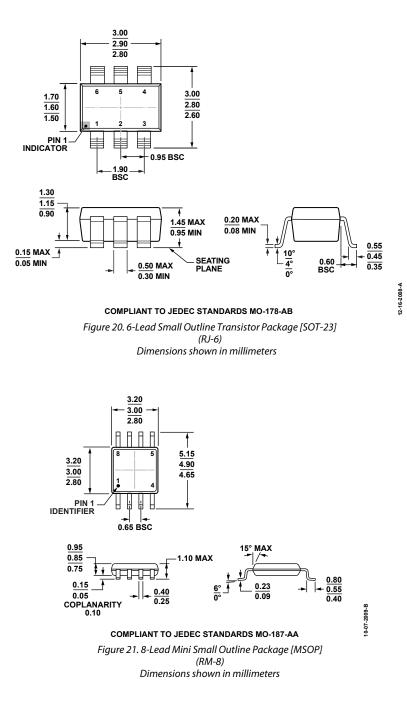

Bandwidth The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

Insertion Loss The loss due to the on resistance of the switch.

TEST CIRCUITS


Figure 17. Charge Injection

Downloaded from Arrow.com.

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding ²
ADG801BRM	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SLB
ADG801BRM-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SLB
ADG801BRM-REEL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SLB
ADG801BRMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S06
ADG801BRMZ-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S06
ADG801BRMZ-REEL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S06
ADG801BRT-500RL7	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SLB
ADG801BRT-REEL7	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SLB
ADG801BRTZ-500RL7	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S06
ADG801BRTZ-REEL	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S06
ADG801BRTZ-REEL7	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S06
ADG802BRM	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SMB
ADG802BRM-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SMB
ADG802BRM-REEL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SMB
ADG802BRMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SOF
ADG802BRMZ-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SOF
ADG802BRMZ-REEL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SOF
ADG802BRT-500RL7	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SMB
ADG802BRTZ-500RL7	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SOF
ADG802BRTZ-REEL	–40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SOF
ADG802BRTZ-REEL7	–40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SOF

¹ Z = RoHS Compliant Part. ² Branding on SOT-23 and MSOP packages is limited to three characters due to space constraints.

NOTES

NOTES

NOTES

©2002–2012 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02800-0-1/12(B)

www.analog.com

Downloaded from Arrow.com.