

Low Skew, Low Additive Jitter, 4 Output LVPECL/LVDS/HCSL Fanout Buffer with one LVCMOS output

Features

- 3 to 1 input Multiplexer: Two inputs accept any differential (LVPECL, HCSL, LVDS, SSTL, CML, LVCMOS) or a single ended signal and the third input accepts a crystal or a single ended signal
- Four differential LVPECL/LVDS/HCSL outputs
- One LVCMOS output
- Ultra-low additive jitter: 24fs (in 12kHz to 20MHz integration band at 625MHz clock frequency)
- Supports clock frequencies from 0 to 1.6GHz
- Supports 2.5V or 3.3V power supplies for LVPECL, LVDS or HCSL outputs
- Supports 1.5V, 1.8V, 2.5V or 3.3V for LVCMOS output
- Embedded Low Drop Out (LDO) Voltage regulator provides superior Power Supply Noise Rejection
- Maximum output to output skew of 40ps
- Device controlled via control pins

Ordering Information

ZL40234LDG1 ZL40234LDF1

32 pin QFN 32 pin QFN

32 pin QFN Tape and Reel Package size: 5 x 5 mm

Travs

-40°C to +85°C

Applications

- General purpose clock distribution
- Low jitter clock trees
- Logic translation
- Clock and data signal restoration
- Wired communications: OTN, SONET/SDH, GE, 10 GE, FC and 10G FC
- PCI Express generation 1/2/3/4 clock distribution
- Wireless communications
- High performance microprocessor clock distribution
- Test Equipment

Figure 1. Functional Block Diagram

Table of Contents

» Microsemi

а 🐼 Міскоснір company

Features	1
Applications	1
Table of Contents	2
Pin Diagram	5
Pin Descriptions	6
Functional Description	8
Clock Inputs	8
Clock Outputs	11
Crystal Oscillator Input	12
Termination of unused inputs and outputs	12
Power Consumption	12
Power Supply Filtering	13
Power Supplies and Power-up Sequence	13
Device Control	14
Typical device performance	15
AC and DC Electrical Characteristics	19
Absolute Maximum Ratings	19
Recommended Operating Conditions	19
Change History	
Package Outline	

List of Figures

Figure 1.	Functional Block Diagram	
Figure 2.	Pin Diagram	5
Figure 3.	Input driven by a single ended output	8
Figure 4.	Input driven by DC coupled LVPECL output	8
Figure 5.	Input driven by DC coupled LVPECL output (alternative termination)	9
Figure 6.	Input driven by AC coupled LVPECL output	9
Figure 7.	Input driven by HCSL output	9
Figure 8.	Input driven by LVDS output	
Figure 9.	Input driven by AC coupled LVDS	
Figure 10.	Input driven by an SSTL output	
Figure 11.	Termination for LVCMOS outputs	
Figure 12.	Driving a load via transformer	
Figure 13.	Crystal Oscillator Circuit	
Figure 14.	Power Supply Filtering	
Figure 15.	156.25MHz LVPECL	
Figure 16.	1.5GHz LVPECL	
Figure 17.	156.25MHz LVDS	
Figure 18.	1.5GHz LVDS	
Figure 19.	100MHz HCSL	
Figure 20.	250MHz HCSL	
Figure 21.	I/O delay vs temperature	
Figure 22.	PSNR vs noise frequency	
Figure 23.	100MHz LVPECL Phase Noise	
Figure 24.	100MHz LVDS Phase Noise	
Figure 25.	25MHz LVDS Phase Noise in Xtal mode	
Figure 26.	100MHz HCSL Phase Noise	
Figure 27.	156.25MHz LVPECL Phase Noise	
Figure 28.	625MHz LVPECL Phase Noise	
Figure 29.	156.25MHz LVDS Phase Noise	
Figure 30.	625MHz LVDS Phase Noise	
Figure 31.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 32.	Output clock noise floor vs input clock slew-rate	
Figure 33.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 34.	Output clock noise floor vs input clock slew-rate	
Figure 35.	Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate	
Figure 36.	Output clock noise floor vs input clock slew-rate	
Figure 37.	Differential Input Voltage Levels	
Figure 38.	Differential Output Voltage Levels	

List of Tables

Table 1 Pin Descriptions	6
Table 2 Input clock selection	
Table 3 Output Type Selection	
Table 4 Absolute Maximum Ratings*	
Table 5 Recommended Operating Conditions*	
Table 6 Current consumption	
Table 7 Input Characteristics*	
Table 8 Crystal Oscillator Characteristics*	
Table 9 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*	
Table 10 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*	22
Table 11 LVCMOS Output Characteristics for VDDO = 3.3V*	22
Table 12 LVCMOS Output Characteristics for VDDO = 2.5V*	
Table 13 LVPECL Output Characteristics for VDDO = 3.3V*	
Table 14 LVPECL Output Characteristics for VDDO = 2.5V*	25
Table 15 LVDS Outputs for VDDO = 3.3V*	
Table 16 LVDS Outputs for VDDO = 2.5V*	
Table 17 HCSL Outputs for VDDO = 3.3V*	
Table 18 HCSL Outputs for VDDO = 2.5V*	
Table 19 LVCMOS Output Phase Noise with 25 MHz XTAL*	30
Table 20 LVPECL Output Phase Noise with 25 MHz XTAL*	30
Table 21 LVDS Output Phase Noise with 25 MHz XTAL	
Table 22 HCSL Output Phase Noise with 25 MHz XTAL	
Table 23 5x5mm QFN Package Thermal Properties	32

Pin Diagram

The device is packaged in a 5x5mm 32-pin QFN.

Figure 2. Pin Diagram

Pin Descriptions

All device inputs and outputs are LVPECL unless described otherwise. The I/O column uses the following symbols: I – input, I_{PU} – input with 300k Ω internal pull-up resistor, I_{APU} – input with 300k Ω internal pull-down resistor, I_{APU} – input with 31k Ω internal pull-up resistor, I_{APD} – input with 30k Ω internal pull-down resistor, $I_{APU/APD}$ – input biased to VDD/2 with 60k Ω internal pull-up and pull-down resistors (30 k Ω equivalent), O – output, I/O – Input/Output pin, NC-No connect pin, P – power supply pin.

Table '	1Pin D	escrip	otions
---------	--------	--------	--------

#	Name	I/O	Description				
Input Refe	rence						
14 15 27 26	IN0_p IN0_n IN1_p IN1_n	I _{APD} I _{APU/APD} I _{APD} I _{APU/APD}	Input Differential or Single Ended References 0 and 1 Input frequency range 0Hz to 1.6GHz. Non- inverting inputs (_p) are pulled down with internal $30k\Omega$ pull-down resistors. Inverting inputs (_n) are pulled up and pulled down with $60k\Omega$ internal resistors ($30k\Omega$ equivalent) to keep inverting input voltages at VDD/2 when inverting inputs are left floating (device fed with a single ended reference).				
Output Cle	ocks						
3 4 6 7 22 21 19 18	OUT0_p OUT0_n OUT1_p OUT1_n OUT2_p OUT2_n OUT3_p OUT3_n	Ο	Ultra-Low Additive Jitter Differential LVPECL/HCSL/LVDS Outputs 0 to 3 Output frequency range 0 to 1.6GHz Type (LVPECL/HCSL/LVDS/High-Z) of the outputs is controlled by OUT_TYPE_SEL0/1 pins.				
29	OUT_LVCMOS	0	Ultra-Low A Output frequ	Additive Jit	ter LVCMOS Output e 0 to 250 MHz		
Control							
13 16	IN_SEL0 IN_SEL1	I _{PD}	Input selec: the output. IN_SEL1 0 0 1	t pins. Logi IN_SEL0 0 1 X	c level on these pins selects which input will be passed to OUTN Input 0 (IN0) Input 1 (IN1) Crystal Oscillator		

Data Sheet

9 32	OUT_TYPE_SEL0 OUT_TYPE_SEL1	I	Output Signal Level: Selects Type of the outputs (Outputs 0 to 4)					
			OUT_TYPE_SEL1	OUT_TYPE_SEL0	Output 0 to 4			
			0	0	LVPECL			
			0	1	LVDS			
			1	0	HCSL			
			1	1	High-Z (Disabled)			
31	LVCMOS_OE	I	LVCMOS Output Ena output is High-Z.	ble: When high LVCMOS	output is enabled,. When low the			
Crystal O	scillator							
11	XIN	I	Crystal Oscillator Inp If crystal oscillator is n	out or crystal bypass mod ot used pull down this pin o	te or crystal overdrive mode or connect it to the ground.			
12	XOUT	0	Crystal Oscillator Output					
No Conne	ect							
25	NC1	NC	No Connects (not connected to the die) Leave unconnected or connect to GND for mechanical support					
Power and	d Ground							
10 28	VDD	Ρ	Positive Supply Volta	age. Connect to 3.3V or 2.8	5V supply.			
30	VDD_LVCMOS	Р	Positive Supply Volta	age for LVCMOS Output (Connect to 3.3V, 2.5V, 1.8V or 1.5V			
2 5	VDDO_A	Ρ	Positive Supply Volt power supply. VDDO_ VDD or VDDO_B. These pins power up of	age for Differential Outp A does not have to be con lifferential outputs OUT0_p	uts Bank A Connect 3.3V or 2.5V nected to the same voltage level as p/n and OUT1_p/n.			
20 23	VDDO_B		Positive Supply Volt power supply. VDDO_ VDD or VDDO_A. These pins power up of	age for Differential Outp B does not have to be con lifferential outputs OUT2_r	uts Bank B Connect 3.3V or 2.5V nected to the same voltage level as v/n and OUT3_p/n.			
1 8 17 24	GND	Ρ	Ground Connect to th	e ground				
E-Pad	GND	Р	Ground. Connect to th	ne ground				

Functional Description

The ZL40234 is a pin configurable low additive jitter, low power 3 x 4 LVPECL/HCSL/LVDS fanout buffer.

Two inputs can accept signal in differential (LVPECL, SSTL, LVDS, HSTL, CML) or single ended (LVPECL or LVCMOS) format and the third input can accept a single ended signal or it can be used to build a crystal oscillator by connecting an external crystal resonator between its XIN and XOUT pins.

The ZL40234 has four LVPECL/HCSL/LVDS outputs in two banks and each bank can independently be powered from 3.3V or 2.5V supply. Differential outputs can be set to be LVPECL, LVDS, HCSL or Hi-Z via control OUT_TYPE_SEL0/1 pins.

The device operates from 2.5V+/-5% or 3.3V+/-5% supply. Its operation is guaranteed over the industrial temperature range -40°C to +85°C.

Clock Inputs

The following blocks diagram shows how to terminate different signals fed to the ZL40234 inputs.

Figure 3 shows how to terminate a single ended output such as LVCMOS. Ideally, resistors R1 and R2 should be 100Ω each and Ro + Rs should be 50Ω so that the transmission line is terminated at both ends with characteristic impedance. If the driving strength of the output driver is not sufficient to drive low impedance, the value of series resistor Rs should be increased. This will reduce the voltage swing at the input but this should be fine as long as the input voltage swing requirement is not violated (Table 7). The source resistors of Rs = 270Ω could be used for standard LVCMOS driver. This will provide 516mV of voltage swing for 3.3V LVCMOS driver with load current of $(3.3V/2) *(1/(270\Omega + 50\Omega)) = 5.16$ mA.

For optimum performance both differential input pins (_p and _n) need to be DC biased to the same voltage. Hence, the ratio R1/R2 should be equal to the ratio R3/R4.

Figure 3. Input driven by a single ended output

Figure 4. Input driven by DC coupled LVPECL output

Figure 6. Input driven by AC coupled LVPECL output

Figure 7. Input driven by HCSL output

Figure 8. Input driven by LVDS output

Figure 9. Input driven by AC coupled LVDS

Figure 10. Input driven by an SSTL output

Clock Outputs

LVCMOS output OUT_LVCMOS require only series termination resistor whose value is depending on LVCMOS output voltage as shown in Figure 11.

Figure 11. Termination for LVCMOS outputs

Differential outputs LVPECL and LVDS should have same termination as corresponding outputs described in previous section. HCSL outputs should be terminated with 33Ω series resistors at the source and 50Ω shunt resistors at the source or at the end on the transmission line. AC coupling and re-biasing is not required at the outputs when driving native HCSL receivers.

The device is designed to drive differential input of semiconductor devices. In applications that use a transformer to convert from the differential to the single ended output (for example driving an oscilloscope 50Ω input), a resistor larger than 10Ω should be added at the center tap of the primary winding to achieve optimum jitter performance as shown in Figure 12 This is to provide a nominal common mode impedance of 10Ω or higher which is typical for differential terminations.

Figure 12. Driving a load via transformer

Crystal Oscillator Input

The crystal oscillator circuit can work with crystal resonators from 8MHz to 60MHz. Load capacitors C1, C2 and series resistors Rs shall be selected as per crystal vendor recommendation. Shunt resistor is implemented inside the device.

Figure 13. Crystal Oscillator Circuit

Termination of unused inputs and outputs

Unused inputs can be left unconnected or alternatively IN_0/1 can be pulled-down by $1k\Omega$ resistor. Unused outputs should be left unconnected.

Power Consumption

 $P_{s} = V_{DD} \times I_{s}$

 $P_{C} = V_{DDO} \times I_{DD CM}$

 $P_{O,DIF} = V_{DDO} \times I_{DD,LVDS} \times N$

The device total power consumption can be calculated as:

$$P_T = P_S + P_{XTAL} + P_C + P_{O_DIF} + P_{O_LVCMOS}$$
 Where:

The core power when XTAL is not used. The current is specified in Table 6. .If XTAL is running this power should be set to zero.

 $P_{XTAL} = V_{DD} \times I_{DD_XTAL}$ The core power when XTAL is used. The current is provided in Table 6. If XTAL is not used this power should be set to zero.

Common output power shared among all ten outputs. The current I_{DD_CM} is specified in Table 6.

Output power where output current (I_{DD_LVDS}) is specified in Table 6. For LVPECL or HCSL just replace I_{DD_LVDS} with I_{DD_LVPECL} or I_{DD_HCSL}. N is either 0 (outputs disabled) or 4 (four differential outputs enabled)

 $P_{O_{LVCMOS}} = V_{DD_{LVCMOS}} \times (I_{DD} \times f / 100MHz + V_{DD_{LVCMOS}} \times C_{LOAD} \times f)$

Dynamic LVCMOS output power. I_{DD} is specified in Table 6. If LVCMOS output is disabled this term is equal to zero.

Data Sheet

Power dissipated inside the device can be calculated by subtracting power dissipated in termination/biasing resistors from the power consumption. For LVDS outputs it is:

 $P_D = P_T - 4 \times P_{LVDS}$

For LVPECL or HCSL just replace PLVDs with corresponding PLVPECL or PHCSL below.

$$P_{LVPECL} = (V_{OH} - V_B)^2 / 50\Omega + (V_{OL} - V_B)^2 / 50\Omega + (V_{OL} - V_B)^2 / 50\Omega$$

$$+ (V_{OH} - V_B) \times V_B / 50\Omega + (V_{OL} - V_B) \times V_B / 50\Omega$$
Voh and Vol are the output high and low voltages respectively for LVPECL output
V_B is LVPECL bias voltage equal to V_DD - 2V

Vsw is voltage swing of LVDS output.

$$P_{HCSL} = \left(V_{SW} / 50\Omega \right)^2 \times \left(33\Omega + 50\Omega \right)$$

 V_{SW} is voltage swing of HCSL output. 50Ω is termination resistance and 33Ω is series resistance of the HCSL output.

Power Supply Filtering

 $P_{IVDS} = V_{SW}^2 / 100\Omega$

Each power pin (VDD and VDDO) should be decoupled with 0.1µF capacitor with minimum equivalent series resistance (ESR) and minimum series inductance (ESL). For example 0402 X5R Ceramic Capacitors with 6.3V minimum rating could be used. These capacitors should be placed as close as possible to the power pins. To reduce the power noise from adjacent digital components on the board each power supply could be further insulated with low resistance ferrite bead with two capacitors. The ferrite bead will also insulate adjacent component from the noise generated from the device. Following figure shows recommended decoupling for each power pin.

Figure 14. Power Supply Filtering

Power Supplies and Power-up Sequence

The device has four different power supplies: VDD, VDDO_A, VDDO_B and VDD_LVCMOS which are mutually independent. Voltages supported by each of these power supplies are specified in Table 1.

The device is not sensitive to the power-up sequence. For example commonly used sequence where higher voltage comes up before or at the same time as the lower voltages can be used (or any other sequence)

Device Control

ZL40234 is controlled via Input Select (IN_SEL0/1) pins which select which one of three inputs is fed to the output and show in Table 2 and OUT_TYPE_SEL0/1 pins which select signal level (LVPECL, LVDS, HCSL or Hi-Z) as shown in Table 3.

All input control pins have low input threshold voltage so they can be driven from the device with low output voltage (FPGA/CPLD). Supported voltages are between 1.2V and VDD (2.5V or 3.3V).

Table 2	2 In	put	clock	selection
---------	------	-----	-------	-----------

IN_SEL1	IN_SEL0	Selected Input
0	0	IN0_p, IN0_n
0	1	IN1_p, IN1_n
1	Х	XIN

Table 3 Output Type Selection

OUT_TYPE_SEL1	OUT_TYPE_SEL0	Output
0	0	LVPECL
0	1	LVDS
1	0	HCSL
1	1	High-Z (Output Disabled)

Typical device performance

The following plots show typical device performances

Figure 16. 1.5GHz LVPECL

100MHz LVPECL Phase Noise Figure 23.

PSNR vs noise frequency

100MHz HCSL Phase Noise Figure 26.

Data Sheet

Figure 27. 156.25MHz LVPECL Phase Noise

Figure 29. 156.25MHz LVDS Phase Noise

625MHz LVPECL Phase Noise

Figure 35. Output RMS jitter (12kHz to 20MHz) vs input clock slew-rate

Figure 32. (

Output clock noise floor vs input clock slew-rate

Figure 34. Output clock noise floor vs input clock slew-rate

e 36. Output clock noise floor vs input clock slew-rate

AC and DC Electrical Characteristics

Absolute Maximum Ratings

Table 4 Absolute Maximum Ratings*

	Parameter	Sym.	Min.	Тур.	Max.	Units	Notes
1	Supply voltage (3.3V)	V_{DD} / V_{DDO}	-0.5		4.6	V	
2	Supply voltage (2.5V)	V _{DD} /V _{DDO}	-0.5		3.5	V	
3	Storage temperature	Тѕт	-55		125	°C	

* Exceeding these values may cause permanent damage * Functional operation under these conditions is not implied

* Voltages are with respect to ground (GND) unless otherwise stated

Recommended Operating Conditions

Table 5 Recommended Operating Conditions*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Supply voltage 3.3V	$V_{DD} / V_{DDO} / V_{DD_LVCMOS}$	3.135	3.30	3.465	V	
2	Supply voltage 2.5V	$V_{DD} / V_{DDO} / V_{DD_LVCMOS}$	2.375	2.50	2.625	V	
3	Supply voltage 1.8V	V _{DD_LVCMOS}	1.6	1.8V	2	V	
4	Supply voltage 1.5V	V _{DD_LVCMOS}	1.35	1.5	1.65	V	
5	Operating temperature	T _A	-40	25	85	°C	
6	Input voltage	V _{DD-IN}	- 0.3		V _{DD} + 0.3	V	

* Voltages are with respect to ground (GND) unless otherwise stated

* The device core supports two power supply modes (3.3V and 2.5V)

Table 6 Current consumption

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1		I _{s_3.3V}		163	197	mA	VDD= 3.3V+5%
1		I _{s_2.5V}		153	187	mA	VDD = 2.5V+5%
_	Core device current (all outputs disabled) XTAL circuit	IDD_XTAL_3.3V		128	154	mA	VDD= 3.3V+5%
2	XOUT	IDD_XTAL_2.5V		124	150	mA	VDD= 2.5V+5%
3	Common output ourropt	IDD_CM_3.3V		13.44	15.05	mA	VDDO= 3.3V+5%
	Common oulput current	IDD_CM_2.5V		12.18	13.65	mA	VDDO= 2.5V+5%
4	Dynamic LVCMOS output current (f = 100MHz) Needs to be scaled for different frequencies by f/100MHz	I _{DD_3.3V}		2.38	2.68	mA	VDDO= 3.3V+5%
4		I _{DD_2.5V}		1.74	1.96	mA	VDDO= 2.5V+5%
5	Current dissipation per LVPECL output	IDD_LVPECL_3.3V		19.36	23.26	mA	VDDO= 3.3V+5%
5		IDD_LVPECL_2.5V		19.38	22.17	mA	VDDO= 2.5V+5%
6	Current discipation per LV/DS output	IDD_LVDSL_3.3V		6.73	8.00	mA	VDDO= 3.3V+5%
0		IDD_LVDS_2.5V		6.87	7.83	mA	VDDO= 2.5V+5%
7	Current dissipation per HCSL output	IDD_HCSL_3.3V		16.43	19.87	mA	VDDO= 3.3V+5%
<i>'</i>		IDD_HCSL_2.5V		17.14	19.18	mA	VDDO= 2.5V+5%

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	CMOS high-level input voltage for control inputs	V _{CIH}	1.05			V	
2	CMOS low-level input voltage for control inputs	V _{CIL}			0.45	V	
3	CMOS input leakage current for control inputs (includes current due to pull down resistors)	IIL.	-25		50	μA	$V_I = V_{DD} \text{ or } 0 \text{ V}$
4	Differential input common mode voltage for IN0_p/n and IN1_p/n	V _{CM}	1		2	V	
5	Differential input voltage difference for IN0_p/n and IN1_p/n f ≤ 1GHz **	VID	0.15		1.3	V	
6	Differential input voltage difference for IN0_p/n and IN1_p/n for 1GHz < f \leq 1.6GHz **	VID	0.35		1.3	V	
7	Differential input leakage current for IN0_p/n and IN1_p/n (includes current due to pull-up and pull-down resistors)	IL	-150		150	μΑ	$V_1 = 2V \text{ or } 0V$
8	Single ended input voltage for IN0_p and IN1_p	V _{SI}	-0.3		2.7	V	VDD = 3.3V or 2.5V
9	Single ended input common mode voltage (IN0_p/n and IN1_p/n)	Vsic	1		2	V	VDD = 3.3V or 2.5V
10	Single ended input voltage swing for IN0_p and IN1_p	V _{SID}	0.3		1.3	V	VDD = 3.3V or 2.5V
11	Input frequency (differential)	f _{IN}	0		1600	MHz	
12	Input frequency (LVCMOS)	f _{IN_CMOS}	0		250	MHz	
13	Input duty cycle	dc	35%		65%		
14	Input slew rate	slew		2		V/ns	
15	Input pull-up/ pull-down resistance	$R_{\text{PU}}/R_{\text{PD}}$		60kΩ			
16	Input pull-down resistance for INx_p	R _{PD}		30kΩ			
				-84			f _{IN} = 100 MHz
47	Input multiplexer isolation IN0_p/n to IN1_p/n and vice versa	1.5.5		-82		-10-	f _{IN} = 200 MHz
17	Power on both inputs 0dBm, $f_{OFFSET} > 50kHz$	ISO		-71		abc	$f_{IN} = 400 \text{ MHz}$
				-67		1	f _{IN} = 800 MHz

Table 7 Input Characteristics*

* Values are over Recommended Operating Conditions * Values are over all two power supply modes ($V_{DD} = 3.3V$ and $V_{DD} = 2.5V$) * Input mux isolation is measured as amplitude of foreset spur in dBc on the output clock phase noise plot **Input differential voltage is calculated as $V_{ID} = V_{IH}-V_{IL}$ where V_{IH} and V_{IL} are input voltage high and low respectively. It should not be confused with $V_{ID} = 2 * (V_{IH}-V_{IL})$ used in some datasheets. Please refer to Figure 37.

Figure 37. **Differential Input Voltage Levels**

Table 8 Crystal Oscillator Characteristics*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Mode of oscillation	mode	F	Fundamental			
2	Frequency	f	8 60			MHz	
3	On chip load capacitance			1		pF	
4	On chip series resistor			0		Ω	
5	On chip shunt resistor	R		500		kΩ	
6	Frequency in overdrive mode ⁽¹⁾	f _{ov}	0.1		250	MHz	Functional but may not meet AC parameters Minimum depends on AC coupling Capacitor (0.1uF assumed)
7	Frequency in bypass mode ⁽²⁾	f _{BP}	0		250	MHz	Functional but may not meet AC parameters

* Values are over Recommended Operating Conditions * Values are over all two power supply modes (V_{DD} = 3.3V and V_{DD} = 2.5V)

(1) Maximum input level is 2V

(2) Maximum output level is VDD

Table 9 Power Supply Rejection Ratio for VDD = VDDO = 3.3V*

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
	PSRR for LVPECL output	PSRRLVPECL		-71.75			f _{IN} = 156.25 MHz
1				-84.45		dBc	$f_{IN} = 312.5 \text{ MHz}$
				-82.11			$f_{IN} = 625 \text{ MHz}$
	PSRR for LVDS output	PSRRLVDS		-95.16			f _{IN} = 156.25 MHz
2				-97.77		dBc	$f_{IN} = 312.5 \text{ MHz}$
				-79.23			$f_{IN} = 625 \text{ MHz}$
	PSRR for HCSL output			-77.15			f _{IN} = 100 MHz
3		PSRR _{HCSL}		-76.75		dBc	f _{IN} = 156.25 MHz
				-80.44			f _{IN} = 312.5 MHz

Values are over Recommended Operating Conditions
 Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVpp
 PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
	PSRR for LVPECL output	PSRRLVPECL		-73.68			f _{IN} = 156.25 MHz
1				-78.88		dBc	f_{IN} = 312.5 MHz
				-71.82			$f_{IN} = 625 \text{ MHz}$
	PSRR for LVDS output	PSRR _{LVDS}		-90.04			f _{IN} = 156.25 MHz
2				-79.99		dBc	$f_{IN} = 312.5 \text{ MHz}$
				-73.45			$f_{IN} = 625 \text{ MHz}$
	PSRR for HCSL output			-92.16			f _{IN} = 100 MHz
3		PSRR _{HCSL}		-74.08		dBc	f _{IN} = 156.25 MHz
				-91.88			f _{IN} = 312.5 MHz

Table 10 Power Supply Rejection Ratio for VDD = VDDO = 2.5V*

* Values are over Recommended Operating Conditions
 * Noise injected to VDDO power supply with frequency 100 kHz and amplitude 100 mVpp
 * PSRR is measured as amplitude of 100 kHz spur in dBc on the output clock phase noise plot

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage (1mA load)	V _{OH}	VDDO-0.1			V	DC Measurement
2	Output low voltage (1mA load)	Vol			0.1	V	DC Measurement
3	Output High Current (Load adjusted to Vout = VDDO/2)	I _{OH}		30		mA	DC Measurement
4	Output Low Current (Load adjusted to Vout = VDDO/2)	Iol		34		mA	DC Measurement
5	Output impedance	Ro		15		Ω	DC Measurement
6	Rise time (20% to 80%)	tr		220	310	ps	
7	Fall time (20% to 80%)	t _f		320	365	ps	
8	Output frequency	Fo	0		250	MHz	
9	Input to output delay	t _{IOD}	1.07	1.28	2.07	ns	
10	Output enable time	t _{EN}			3	cycles	
11	Output disable time	T _{DIS}			3	cycles	
12	Additive RMS jitter in 1MHz to 5MHz band	Т _{ј_1М_5М}		46	80	fs	Input Clock 25MHz
13	Additive RMS jitter in 12kHz to 5MHz band	Т _{ј_12К_5М}		56	90	fs	Input Clock 25MHz
14	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		60	79	fs	Input Clock 125MHz
15	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		65	86	fs	Input Clock 125MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		61	94	fs	Input Clock 156.25MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		66	100	fs	Input Clock 156.25MHz
18				-165	-162	dBc/Hz	Input clock: 25 MHz
19	Noise floor	N _F		-160	-156	dBc/Hz	Input clock: 125 MHz
20				-158	-153	dBc/Hz	Input clock: 156.25 MHz

Table 11 LVCMOS Output Characteristics for VDDO = 3.3V*

* Values are over Recommended Operating Conditions

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage (1mA load)	V _{он}	VDDO-0.1			V	DC Measurement
2	Output low voltage (1mA load)	Vol			0.1	V	DC Measurement
3	Output High Current (Load adjusted to Vout = VDDO/2)	I _{OH}		21		mA	DC Measurement
4	Output Low Current (Load adjusted to Vout = VDDO/2)	lol		25		mA	DC Measurement
5	Output impedance	Ro		15		Ω	DC Measurement
6	Rise time (20% to 80%)	tr		225	310	ps	
7	Fall time (20% to 80%)	tr		320	365	ps	
8	Output frequency	Fo	0		250	MHz	
9	Input to output delay	t _{IOD}	1.10	1.41	2.30	ns	
10	Output enable time	t _{EN}			3	cycles	
11	Output disable time	T _{DIS}			3	cycles	
12	Additive RMS jitter in 1MHz to 5MHz band	Т _{ј_1М_5М}		51	104	fs	Input Clock 25MHz
13	Additive RMS jitter in 12kHz to 5MHz band	T _{j_12k_5M}		62	111	fs	Input Clock 25MHz
14	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		64	81	fs	Input Clock 125MHz
15	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		70	88	fs	Input Clock 125MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		62	94	fs	Input Clock 156.25MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		68	100	fs	Input Clock 156.25MHz
18				-164	-161	dBc/Hz	Input clock: 25 MHz
19	Noise floor	N _F		-159	-155	dBc/Hz	Input clock: 125 MHz
20				-158	-153	dBc/Hz	Input clock: 156.25 MHz

Table 12 LVCMOS Output Characteristics for VDDO = 2.5V
--

* Values are over Recommended Operating Conditions

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVPECL_OH}	1.9	2.08	2.4	V	DC Measurement
2	Output low voltage	V _{LVPECL_OL}	1.2	1.36	1.7	V	DC Measurement
3	Output differential swing**	VLVPECL_SW	0.6	0.72	0.9	V	DC Measurement
4	Variation of $V_{\text{LVPECL}_{\text{SW}}}$ for complementary output states	$\Delta V_{\text{LVPECL}_\text{SW}}$	0	0.02	0.07	V	
5	Common mode output	V _{CM}	1.6	1.72	2.1	V	
7	Output frequency when $V_{LVPECL_SW} \ge 0.6V$	F _{MAX_0.6VSW}			800	MHz	
8	Output frequency when $V_{LVPECL_SW} \ge 0.4V$	F _{MAX_0.4VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	tr, tr		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	t _{ооsк}			40	ps	
12	Device to device output skew	t _{DOOSK}			120	ps	
13	Input to output delay	t _{IOD}	0.73	0.87	1.1	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
				68	96	fs	Input clock: 100 MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		50	64	fs	Input clock: 156.25MHz
				20	32	fs	Input clock: 625 MHz
				71	101	fs	Input clock: 100 MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		55	70	fs	Input clock: 156.25MHz
				25	39	fs	Input clock: 625 MHz
				-161	-159	dBc/Hz	Input clock: 100 MHz
18	Noise floor	NF		-160	-155	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

Table 13 LVPECL	Output Characteristic	s for VDDO = 3.3V*
-----------------	-----------------------	--------------------

* Values are over Recommended Operating Conditions

**Output differential swing is calculated as $V_{SW} = V_{OH} V_{OL}$. It should not be confused with $V_{SW} = 2 * (V_{OH} - V_{OL})$ used in some datasheets. Please refer to Figure 38.

Figure 38. Differential Output Voltage Levels

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVPECL_OH}	1.1	1.28	1.7	V	DC Measurement
2	Output low voltage	V _{LVPECL_OL}	0.4	0.57	0.9	V	DC Measurement
3	Output differential swing**	VLVPECL_SW	0.6	0.71	0.9	V	DC Measurement
4	Variation of V_{LVPECL_SW} for complementary output states	$\Delta V_{\text{LVPECL}_\text{SW}}$	0	0.02	0.05	V	
5	Common mode output	V _{CM}	0.8	0.92	1.2	V	
7	Output frequency when $V_{LVPECL_SW} \ge 0.6V$	F _{MAX_0.6VSW}			800	MHz	
8	Output frequency when $V_{LVPECL_SW} \ge 0.4V$	F _{MAX_0.4VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	tr, tr		120	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	t _{oosk}			40	ps	
12	Device to device output skew	t _{DOOSK}			120	ps	
13	Input to output delay	t _{IOD}	0.75	0.87	1.1	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
				65	91	fs	Input clock: 100 MHz
16	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		50	64	fs	Input clock: 156.25MHz
				20	30	fs	Input clock: 625 MHz
				69	99	fs	Input clock: 100 MHz
17	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		54	75	fs	Input clock: 156.25MHz
				26	41	fs	Input clock: 625 MHz
				-161	-159	dBc/Hz	Input clock: 100 MHz
18	Noise floor	NF		-160	-156	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

Table 14 LVPECL Output Characteristics for VDDO = 2.5V*

* Values are over Recommended Operating Conditions **Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL} It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 38.

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVDS_OH}	1.3	1.39	1.47	V	DC Measurement
2	Output low voltage	V _{LVDS_OL}	1.0	1.07	1.15	V	DC Measurement
3	Output differential swing**	V _{LVDS_SW}	0.25	0.32	0.39	V	DC Measurement
4	Variation of $V_{\text{LVDS}_\text{SW}}$ for complementary output states	$\Delta V_{\text{LVDS}_\text{SW}}$	0	0.002	0.01	V	
5	Common mode output	V _{CM}	1.15	1.23	1.3	V	
6	Variation of $V_{\mbox{\tiny CM}}\mbox{for complementary output states}$	ΔV_{CM}	0	0.001	0.01	V	
7	Output frequency when $V_{LVDS_SW} \ge 250 mV$	F _{MAX_0.25VSW}			800	MHz	
8	Output frequency when $V_{LVDS_SW} \ge 200 mV$	F _{MAX_0.2VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	t _{ооsк}			20	ps	
12	Device to device output skew	t _{DOOSK}			130	ps	
13	Input to output delay	t _{IOD}	0.76	0.86	1.1	ns	
14	Output Short Circuit Current Single Ended	ls	-24		24	mA	Single ended outputs shorted to GND
15	Output Short Circuit Current Differential	I _{SD}	-24		24	mA	Complementary outputs shorted
16	Output enable time	t _{EN}			3	cycles	
17	Output disable time	t _{DIS}			3	cycles	
				110	144	fs	Input clock: 100 MHz
18	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		63	81	fs	Input clock: 156.25MHz
				21	33	fs	Input clock: 625 MHz
				115	150	fs	Input clock: 100 MHz
19	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		73	102	fs	Input clock: 156.25MHz
				26	40	fs	Input clock: 625 MHz
				-158	-156	dBc/Hz	Input clock: 100 MHz
20	Noise floor	N _F		-158	-155	dBc/Hz	Input clock: 156.25 MHz
				-154	-151	dBc/Hz	Input clock: 625 MHz

Table 15 LVDS Outputs for VDDO = 3.3V*

* Values are over Recommended Operating Conditions **Output differential swing is calculated as $V_{SW} = V_{OH}-V_{OL}$ It should not be confused with $V_{SW} = 2 * (V_{OH}-V_{OL})$ used in some datasheets. Please refer to Figure 38.

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{LVDS_OH}	1.3	1.4	1.5	V	DC Measurement
2	Output low voltage	V _{LVDS_OL}	0.97	1.05	1.13	V	DC Measurement
3	Output differential swing**	V _{LVDS_SW}	0.25	0.35	0.44	V	DC Measurement
4	Variation of $V_{\text{LVDS}_\text{SW}}$ for complementary output states	$\Delta V_{\text{LVDS}_\text{SW}}$	0	0.001	0.01	V	
5	Common mode output	V _{CM}	1.15	1.23	1.3	V	
6	Variation of $V_{\mbox{\tiny CM}}\mbox{for complementary output states}$	ΔV_{CM}	0	0.001	0.01	V	
7	Output frequency when $V_{LVDS_SW} \ge 250 mV$	F _{MAX_0.25VSW}			800	MHz	
8	Output frequency when $V_{LVDS_SW} \ge 200 mV$	F _{MAX_0.2VSW}			1600	MHz	
9	Rise or fall time (20% to 80%)	t _r , t _f		110	170	ps	
10	Output frequency	Fo	0		1600	MHz	
11	Output to output skew	toosĸ			20	ps	
12	Device to device output skew	t _{DOOSK}			130	ps	
13	Input to output delay	t _{IOD}	0.78	0.86	1.12	ns	
14	Output Short Circuit Current Single Ended	ls	-24		24	mA	Single ended outputs shorted to GND
15	Output Short Circuit Current Differential	I _{SD}	-24		24	mA	Complementary outputs shorted
16	Output enable time	t _{EN}			3	cycles	
17	Output disable time	t _{DIS}			3	cycles	
				107	140	fs	Input clock: 100 MHz
18	Additive RMS jitter in 1MHz to 20MHz band	T _{j_1M_20M}		62	77	fs	Input clock: 156.25MHz
				20	31	fs	Input clock: 625 MHz
				111	146	fs	Input clock: 100 MHz
19	Additive RMS jitter in 12kHz to 20MHz band	T _{j_12k_20M}		66	83	fs	Input clock: 156.25MHz
				24	36	fs	Input clock: 625 MHz
				-158	-156	dBc/Hz	Input clock: 100 MHz
20	Noise floor	N _F		-159	-155	dBc/Hz	Input clock: 156.25 MHz
				-155	-151	dBc/Hz	Input clock: 625 MHz

* Values are over Recommended Operating Conditions **Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL}. It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 38.

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{HCSL_OH}	0.6	0.85	1.1	V	DC Measurement
2	Output low voltage	V _{HCSL_OL}	-0.05	0	0.05	V	DC Measurement
3	Output differential swing**	V _{HCSL_SW}	0.6	0.85	1.1	V	DC Measurement
4	Variation of V_{HCSL_SW} for complementary output states	$\Delta V_{\text{HCSL}_{\text{SW}}}$	0	0.003	0.05	V	
5	Common mode output	V _{CM}	0.28	0.43	0.55	V	
6	Variation of $V_{\mbox{\tiny CM}}\xspace$ for complementary output states	ΔV_{CM}	0	0.002	0.05	V	
7	Absolute Crossing Voltage	VCROSS	0.320	0.384	0.447	V	
8	Total Variation of V _{CROSS}	ΔV_{CROSS}			0.127	V	
9	Output frequency	F _{MAX}	0		400	MHz	
10	Rise or fall time (20% to 80%)	t _r , t _f		143	309	ps	
11	Output to output skew	t _{ооsк}			21	ps	
12	Device to device output skew	t _{DOOSK}			129	ps	
13	Input to output delay	t _{IOD}	0.73	0.90	1.08	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
16	Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCIe_3.0}		20	40	fs	Input clock: 100MHz
17	Additive RMS litter in 1MHz to 20MHz band	T		73	104	fs	Input clock: 100 MHz
17		1_1M_20M	I j_1M_20M	53	69	fs	Input clock: 156.25MHz
18	Additive BMS litter in 12kHz to 20MHz band	T		77	112	fs	Input clock: 100 MHz
10		I_12K_20M		64	100	fs	Input clock: 156.25MHz
10	Noise floor	N		-161	-159	dBc/Hz	Input clock: 100 MHz
19	Noise floor	INF		-159	-155	dBc/Hz	Input clock: 156.25 MHz

Table 17 HCSL Outputs for VDDO = 3.3V*

* Values are over Recommended Operating Conditions **Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL} It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 38.

	Characteristics	Sym.	Min.	Тур.	Max.	Units	Notes
1	Output high voltage	V _{HCSL_OH}	0.6	0.83	1.1	V	DC Measurement
2	Output low voltage	V _{HCSL_OL}	-0.05	0	0.05	V	DC Measurement
3	Output differential swing**	V _{HCSL_SW}	0.5	0.83	1.1	V	DC Measurement
4	Variation of V_{HCSL_SW} for complementary output states	$\Delta V_{\text{HCSL}_{\text{SW}}}$	0	0.003	0.05	V	
5	Common mode output	V _{CM}	0.28	0.42	0.55	V	
6	Variation of $V_{\mbox{\tiny CM}}\mbox{for complementary output states}$	ΔV_{CM}	0	0.002	0.05	V	
7	Absolute Crossing Voltage	V _{CROSS}	0.260	0.316	0.372	V	
8	Total Variation of V _{CROSS}	ΔV_{CROSS}			0.108	V	
9	Output frequency	F _{MAX}	0		400	MHz	
10	Rise or fall time (20% to 80%)	t _r , t _f		125	162	ps	
11	Output to output skew	t _{ооsк}			21	ps	
12	Device to device output skew	t _{DOOSK}			129	ps	
13	Input to output delay	t _{IOD}	0.76	0.92	1.10	ns	
14	Output enable time	t _{EN}			3	cycles	
15	Output disable time	t _{DIS}			3	cycles	
16	Additive Jitter as per PCIe 3.0 (PLL_BW = 2 to 5MHz, CDR = 10MHz)	T _{jPCIe_3.0}		20	40	fs	Input clock: 100MHz
17	Additive RMS litter in 1MHz to 20MHz band	Turk and		68	95	fs	Input clock: 100 MHz
17	Additive KMS jitter in TMHZ to 20MHZ band	I j_1M_20M	52	66	fs	Input clock: 156.25MHz	
18	Additive BMS litter in 12kHz to 20MHz band	T		72	102	fs	Input clock: 100 MHz
10		I_12k_20M		56	71	fs	Input clock: 156.25MHz
10	Noise floor	N		-161	-158	dBc/Hz	Input clock: 100 MHz
19	NOISE TIOOF	INF		-160	-153	dBc/Hz	Input clock: 156.25 MHz

Table 18 HCSL Outputs for VDDO = 2.5V*

* Values are over Recommended Operating Conditions **Output differential swing is calculated as V_{SW} = V_{OH}-V_{OL} It should not be confused with V_{SW} = 2 * (V_{OH}-V_{OL}) used in some datasheets. Please refer to Figure 38.

	Characteristics	Min.	Тур.	Max.	Units	Notes
1	Jitter RMS in 12kHz to 5MHz band		103		fs	VDD = 3.3V, VDDO = 3.3V
1			117		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-132		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-150		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-162		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-166		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-166		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2			-70		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-102		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-149		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-161		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-165		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-165		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

Table 19 LVCMOS Output Phase Noise with 25 MHz XTAL*

* Values are over Recommended Operating Conditions

Table 20 LVPECL Output Phase Noise with 25 MHz XTAL*

	Characteristics	Min.	Тур.	Max.	Units	Notes
4	Jitter RMS in 12kHz to 5MHz band		265		fs	VDD = 3.3V, VDDO = 3.3V
'			213		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-152		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-157		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-158		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-157		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2			-71		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-103		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

* Values are over Recommended Operating Conditions

	Characteristics	Min.	Тур.	Max.	Units	Notes
4	Jitter RMS in 12kHz to 5MHza band		178		fs	VDD = 3.3V, VDDO = 3.3V
I			190		fs	VDD = 2.5V; VDDO = 2.5V
			-75		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-154		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-161		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-161		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-160		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2			-68		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-103		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-130		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-152		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-161		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-160		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

Table 21 LVDS Output Phase Noise with 25 MHz XTAL

* Values are over Recommended Operating Conditions

Table 22 HCSL Output Phase Noise with 25 MHz XTAL

	Characteristics	Min.	Тур.	Max.	Units	Notes
4	Jitter RMS in 12kHz to 20MHz band		269		fs	VDD = 3.3V, VDDO = 3.3V
'			228		fs	VDD = 2.5V; VDDO = 2.5V
			-76		dBc/Hz	@10Hz , VDD = 3.3V, VDDO = 3.3V
			-107		dBc/Hz	@100Hz, VDD = 3.3V, VDDO = 3.3V
			-133		dBc/Hz	@1kHz, VDD = 3.3V, VDDO = 3.3V
			-152		dBc/Hz	@10kHz, VDD = 3.3V, VDDO = 3.3V
	Noise floor		-157		dBc/Hz	@100kHz, VDD = 3.3V, VDDO = 3.3V
			-157		dBc/Hz	@1MHz, VDD = 3.3V, VDDO = 3.3V
2			-157		dBc/Hz	@5MHz, VDD = 3.3V, VDDO = 3.3V
2			-73		dBc/Hz	@10Hz, VDD = 2.5V; VDDO = 2.5V
			-105		dBc/Hz	@100Hz, VDD = 2.5V; VDDO = 2.5V
			-131		dBc/Hz	@1kHz, VDD = 2.5V; VDDO = 2.5V
			-151		dBc/Hz	@10kHz, VDD = 2.5V; VDDO = 2.5V
			-158		dBc/Hz	@100kHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@1MHz, VDD = 2.5V; VDDO = 2.5V
			-159		dBc/Hz	@5MHz, VDD = 2.5V; VDDO = 2.5V

* Values are over Recommended Operating Conditions

Data Sheet

Table 23 5x5mm QFN Package Thermal Properties

Parameter	Symbol	Conditions	Value	Units
Maximum Ambient Temperature	T _A		85	°C
Maximum Junction Temperature	TJMAX		125	°C
		still air	23.5	
unction to Ambient Thermal Resistance ⁽¹⁾ (Note 1)	θ」Α	θ _{JA} 1m/s airflow 18.9		°C/W
		2.5m/s airflow	17.1	
Junction to Board Thermal Resistance	θ _{JB}		7.9	°C/W
Junction to Case Thermal Resistance	θ _{JC}		16.5	°C/W
Junction to Pad Thermal Resistance ⁽²⁾	θ_{JP}	Still air	3.9	°C/W
Junction to Top-Center Thermal Characterization Parameter	Ψ_{TL}	Still air	0.2	°C/W

(1) Theta-JA (θ_{JA}) is the thermal resistance from junction to ambient when the package is mounted on an 4-layer JEDEC standard test board and dissipating maximum power

(2) Theta-JP (θ_{JP}) is the thermal resistance from junction to the center exposed pad on the bottom of the package)

Change History

June 2017 was the first release of the document.

July 2017 release changes:

• Modified power calculation in the Power Consumption section.

August 2017 release changes:

- Modified "Input driven by HCSL output" figure.
- Modified additive jitter for 156.25MHz input clock.
- Added Figure 37 and Figure 38.

September 2018 release changes:

- Added note in pinout to tie XIN in crystal circuit is not used
- Removed Figures 15 and 16 due to inaccuracy
- Fixed typo in Table 3

Package Outline

Data Sheet

ZL40234

a MICROCHIP company

Microsemi Corporate Headquarters One Enterprise, Aliso Viejo, CA 92656 USA

Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996

E-mail: sales.support@microsemi.com

© 2017 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners.

Microsemi Corporation, a wholly owned subsidiary Microchip Technology Inc. (Nasdaq: MCHP), offers a comprehensive portfolio of semiconductor and system solutions for communications, defense & security, aerospace and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, California. Learn more at www.microsemi.com.

Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.