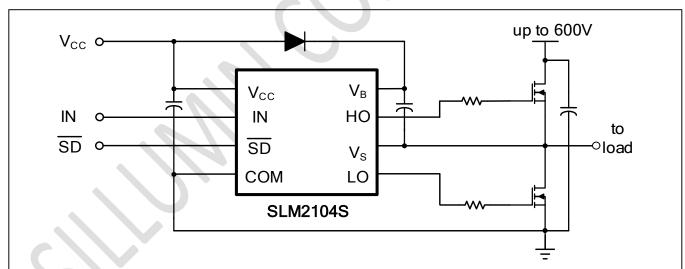


600V Half-Bridge Driver

PRODUCT SUMMARY

Voffset 600 V max.
 Io+/- 130 mA/270 mA
 Vout 10 V - 20 V
 ton/off (typ.) 680 ns/150 ns

• Deadtime (typ.) 520 ns


GENERAL DESCRIPTION

The SLM2104S is a high voltage, high speed power MOSFET and IGBT drivers with dependent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

FEATURES

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V logic compatible
- Cross-conduction prevention logic
- · Matched propagation delay for both channels
- Internal set deadtime
- Shutdown input turns off both channels
- RoHS compliant
- SOIC-8 and PDIP-8 package

TYPICAL APPLICATION CIRCUIT

(Refer to Lead Assignments for correct configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.

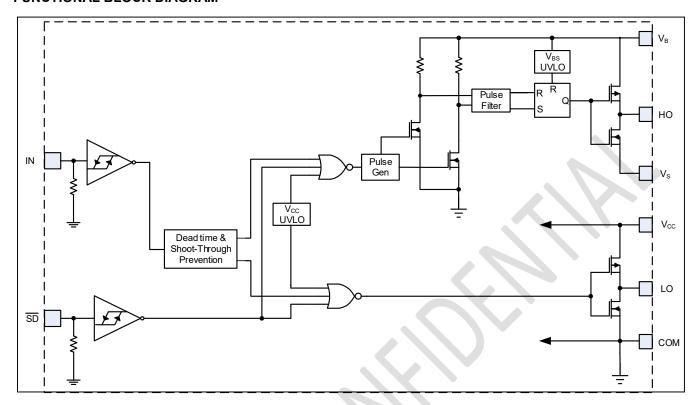
Typical Application Circuit

PIN CONFIGURATION

Package	Pin Configuration (Top View)	
	1 V _{cc}	V _B 8
SOIC-8	2 IN	HO 7
PDIP-8	3 SD	V _s 6
	4 COM	LO 5

PIN DESCRIPTION

No.	Pin	Description
1	Vcc	Low-side and logic fixed supply
2	IN	Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO
3	SD	Logic input for shutdown
4	СОМ	Low-side return
5	LO	Low-side gate drive output
6	Vs	High-side floating supply return
7	НО	High-side gate drive output
8	V _B	High-side floating supply


ORDERING INFORMATION

Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM2104SCA-13GTR	SOIC8, Pb-Free	2500/Reel
SLM2104SCA-GT	SOIC8, Pb-Free	100/Tube
SLM2104SDA-GT	PDIP8, Pb-Free	100/Tube

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition	Min.	Max.	Units	
V_{B}	High-side floating absolute voltage		-0.3	625	
Vs	High-side floating supply offset vo	Itage	V _B - 25	V _B + 0.3	
Vно	High-side floating output voltag	je	Vs - 0.3	V _B + 0.3	v
Vcc	Low-side and logic fixed supply vo	ltage	-0.3	25	V
V _{LO}	Low-side output voltage		-0.3	Vcc + 0.3	
VIN	Logic input voltage (IN & SD)	-0.3	Vcc + 0.3		
dV _S /dt	Allowable offset supply voltage transient			50	V/ns
Б	PDIP-8			1.0	10/
P _D	Package power dissipation @ T _A ≤ +25°C SOIC-8			0.625	W
D41-	Th	PDIP-8		125	°0.44
Rth _{JA}	Thermal resistance, junction to ambient SOIC-8		/	200	°C/W
TJ	Junction temperature		\-\	150	
Ts	Storage temperature		-55	150	°C
T∟	Lead temperature (soldering, 10 se	conds)		300	

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATIONG CONDITIONS

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating absolute voltage	V _S + 10	V _S + 20	
Vs	High-side floating supply offset voltage	Note 1	600	
Vно	High-side floating output voltage	Vs	V _B	V
Vcc	Low-side and logic fixed supply voltage	10	20	V
V _{LO}	Low-side output voltage	0	Vcc	
Vin	Logic input voltage (IN & SD)	0	Vcc	
TA	Ambient temperature	- 40	125	°C

Note:

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15 V differential.

DYNAMIC ELECTRICAL CHARACTERISTICS

V_{BIAS} (V_{CC}, V_{BS}) = 15 V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ton	Turn-on propagation delay	Vs = 0 V		680	820	
t _{off}	Turn-off propagation delay	V _S = 600 V		150	220	
t _{sd}	Shutdown propagation delay			160	220	
tr	Turn-on rise time			70	170	ns
t _f	Turn-off fall time			35	90	
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off		400	520	650	
MT	Delay matching, HS & LS turn-on/off		-		60	

STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , V_{BS}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM. The V_O and I_O parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{IH}	Logic "1" input voltage		2.5			
V _{IL}	Logic "0" input voltage	V _{CC} = 10 V to 20V			0.8	
VSD, TH+	SD input positive going threshold	VCC = 10 V to 20 V	2.5			V
VSD, TH-	SD input negative going threshold				0.8	
V _{OH}	High level output voltage, V _{BIAS} - V _O	l _O = 2 mA		0.05	0.2	
V _{OL}	Low level output voltage, Vo	10 – 2 IIIA		0.02	0.1	
I _{LK}	Offset supply leakage current	V _B = V _S = 600 V			50	
I _{QBS}	Quiescent V _{BS} supply current	V _{IN} = 0 V or 5 V		60	75	
Iqcc	Quiescent V _{CC} supply current	VIN - U V OI 3 V		170	270	μΑ
I _{IN+}	Logic "1" input bias current	V _{IN} = 5 V		3	10	
I _{IN} -	Logic "0" input bias current	V _{IN} = 0 V			5	
V _{CCUV+} V _{BSUV+}	V _{CC} & V _{BS} supply undervoltage positive going threshold		8	8.9	9.8	V
V _{CCUV} - V _{BSUV} -	V _{CC} & V _{BS} supply undervoltage negative going threshold		7.4	8.2	9	V
l ₀₊	Output high short circuit pulsed current	$V_0 = 0 \text{ V}, V_{IN} = V_{IH}$ $PW \leqslant 10 \mu \text{s}$	130	290		m A
l _O -	Output low short circuit pulsed current	V_0 = 15 V, V_{IN} = V_{IL} PW \leq 10 μs	270	600		mA

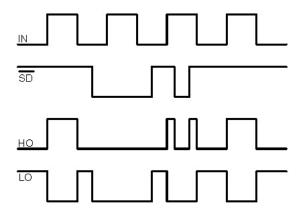


Figure 1. Input/Output Timing Diagram

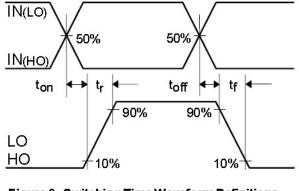


Figure 2. Switching Time Waveform Definitions

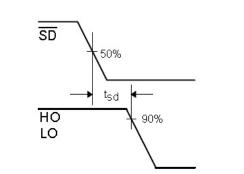


Figure 3. Shutdown Waveform Definitions

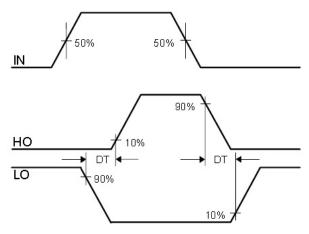


Figure 4. Deadtime Waveform Definitions

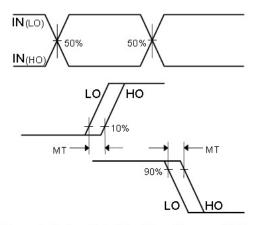


Figure 5. Delay Matching Waveform Definitions

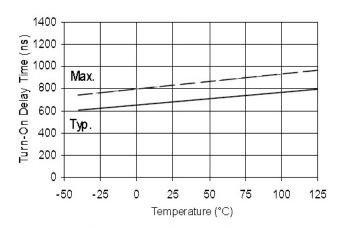


Figure 6A. Turn-On Time vs. Temperature

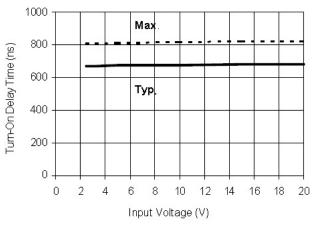


Figure 6C. Turn-On Time vs. Input Voltage

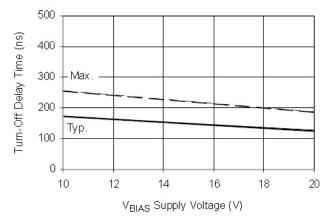


Figure 7B. Turn-Off Time vs. Supply Voltage

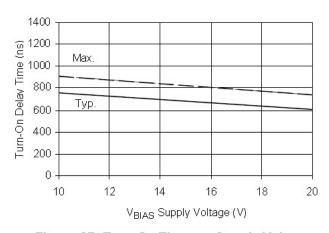


Figure 6B. Turn-On Time vs. Supply Voltage

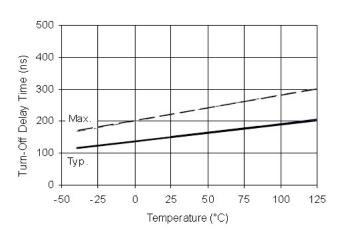


Figure 7A. Turn-Off Time vs. Temperature

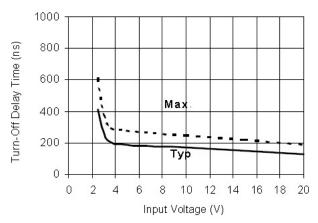


Figure 7C. Turn-Off Time vs. Input Voltage

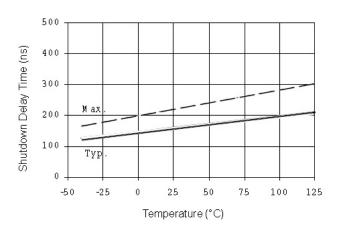


Figure 8A. Shutdown Time vs. Temperature

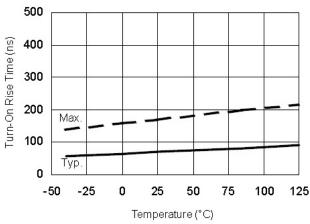


Figure 9A. Turn-On Rise Time vs. Temperature

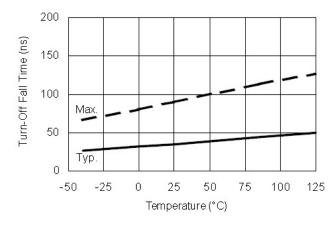


Figure 10A. Turn-Off Fall Time vs. Temperature

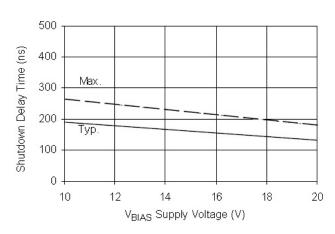


Figure 8B. Shutdown Time vs. Voltage

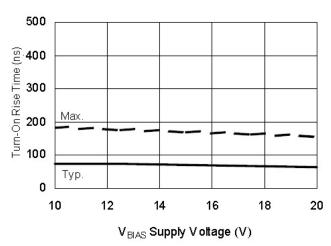


Figure 9B. Turn-On Rise Time vs. Voltage

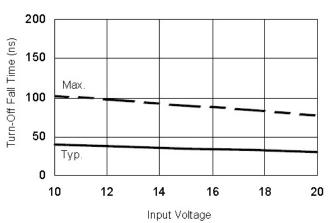


Figure 10B. Turn-Off Fall Time vs. Input Voltage

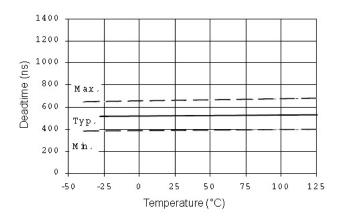


Figure 11A. Deadtime vs. Temperature

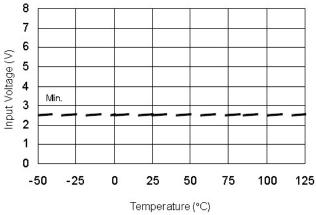


Figure12A. Logic "1" Input Voltage vs. Temperature

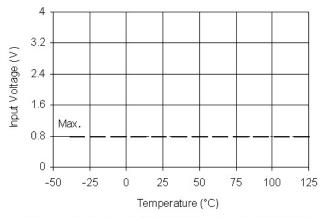


Figure 13A. Logic "0" (HO) & Logic "1" (LO) & Active SD Input Voltage vs. Temperature

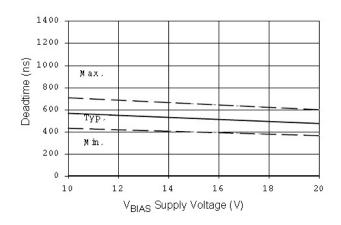


Figure 11B. Deadtime vs. Voltage

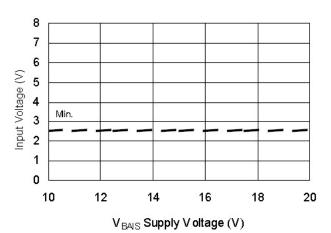


Figure 12B. Logic "1" Input Voltage vs. Supply Voltage

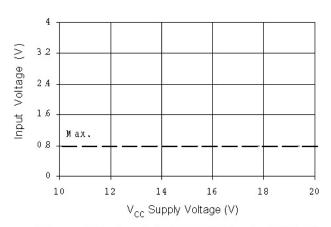


Figure 13B. Logic "0" (HO) & Logic "1" (LO) & Active SD Input Voltage vs. Voltage

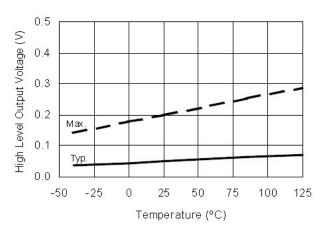


Figure 14A. High Level Output Voltage vs. Temperature

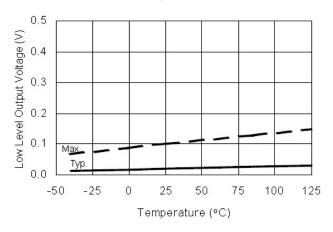


Figure 15A. Low Level Output Voltage vs. Temperature

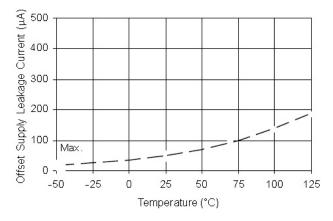


Figure 16A. Offset Supply Current vs. Temperature

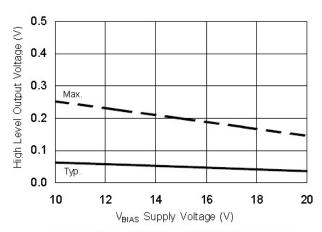


Figure 14B. High Level Output Voltage vs. Supply Voltage

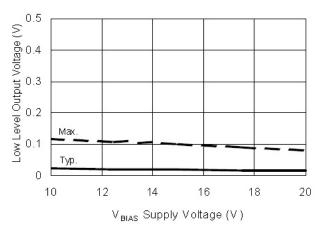


Figure 15B. Low Level Output Voltage vs. Supply Voltage

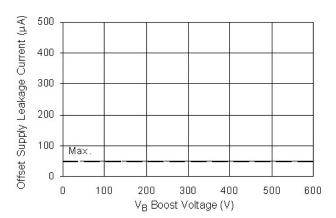


Figure 16B. Offset Supply Current vs. Voltage

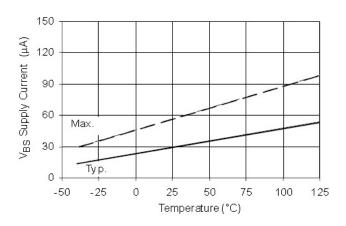


Figure 17A. V_{BS} Supply Current vs. Temperature

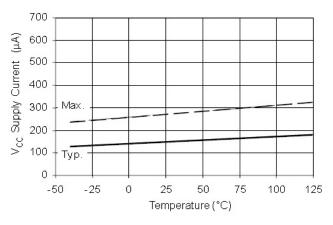


Figure 18A. V_{CC} Supply Current vs. Temperature

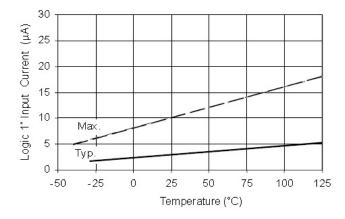


Figure 19A. Logic"1" Input Current vs. Temperature

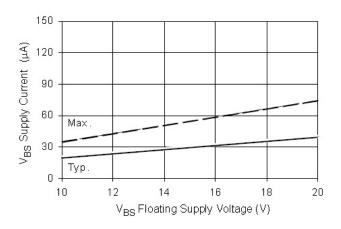


Figure 17B. V_{BS} Supply Current vs. Voltage

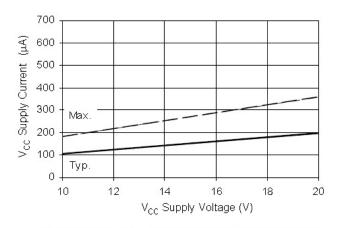


Figure 18B. V_{CC} Supply Current vs. Voltage

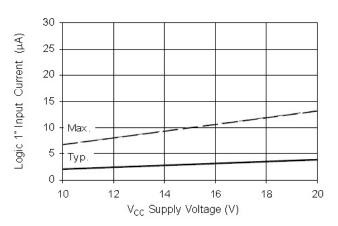


Figure 19B. Logic"1" Input Current vs. Voltage

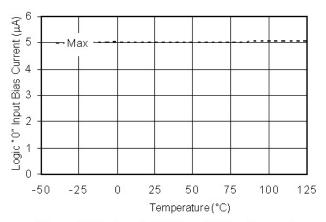


Figure 20A. Logic "0" Input Bias Current vs. Temperature

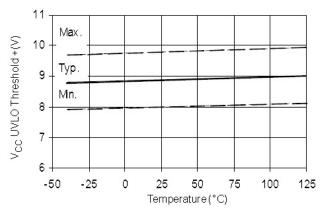


Figure 21A. V_{CC} Undervoltage Threshold(+) vs. Temperature

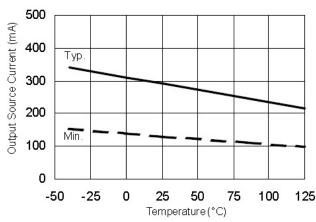


Figure 22A. Output Source Current vs. Temperature

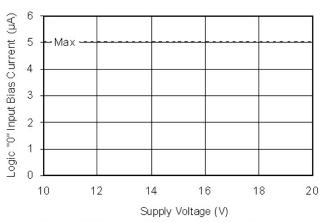


Figure 20B. Logic "0" Input Bias Current vs. Voltage

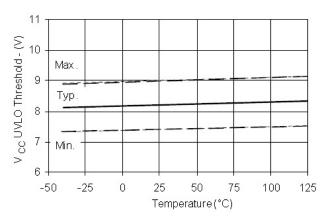


Figure 21B. V_{CC} Undervoltage Threshold(-) vs. Temperature

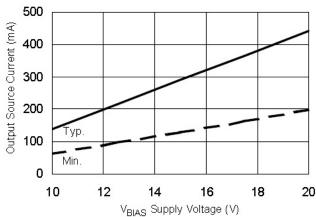
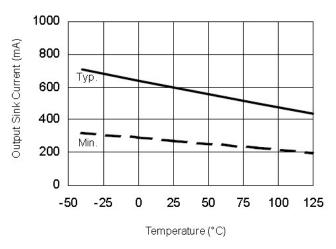
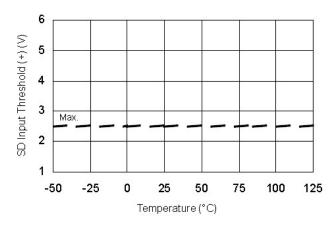



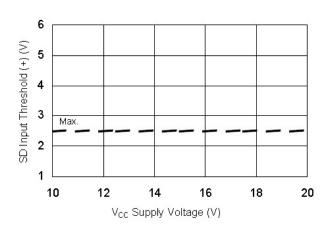
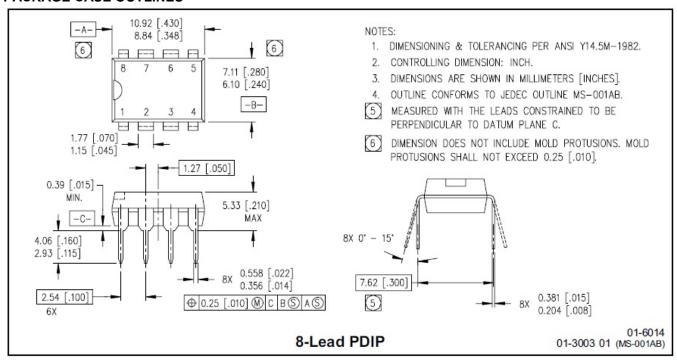
Figure 22B. Output Source Current vs. Voltage



1000 Output Sink Current (mA) 800 600 400 Тур 200 Min. 0 12 10 14 16 18 20 V_{BIAS} Supply Voltage (V)

Figure 23A. Output Sink Current vs. Temperature

Figure 23B. Output Sink Current vs. Supply Voltage

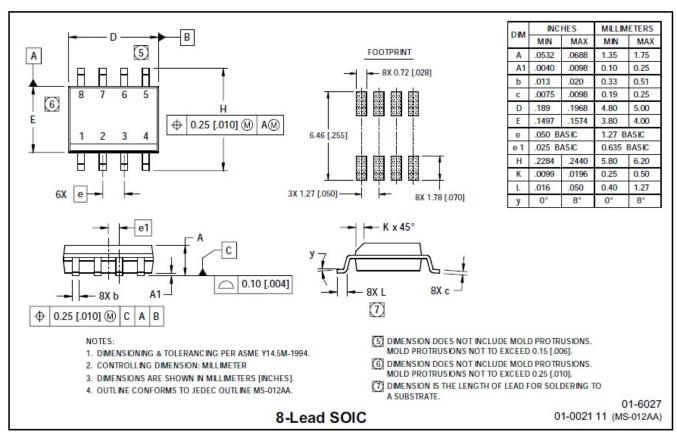
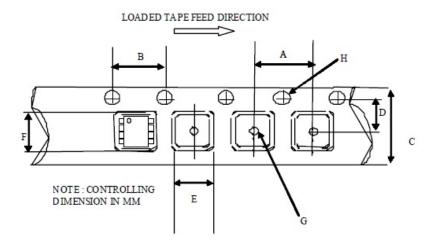
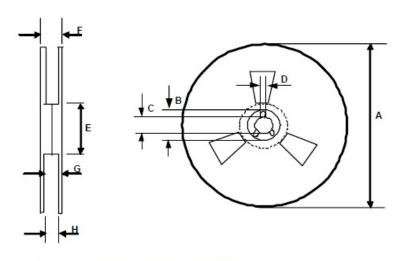

Figure 24A. SD Input Positive Going Threshold (+) vs. Temperature

Figure 24B. SD Input Positive Going Threshold (+) vs. Supply Voltage


PACKAGE CASE OUTLINES



Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

CARRIER TAPE DIMENSION FOR 03010N					
l l	M etric		lm perial		
Code	Min	Max	Min	Max	
A	7.90	8.10	0.311	0.318	
В	3.90	4.10	0.153	0.161	
C	11.70	12.30	0.46	0.484	
D	5.45	5.55	0.214	0.218	
E	6.30	6.50	0.248	0.255	
F	5.10	5.30	0.200	0.208	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.062	

REEL DIMENSIONS FOR 8SOICN

	Metric		Im p	erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Revision History

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	Subjects (major changes since previous revision)		
Rev 1.0 datasheet,	, 2019-8-27		
Whole document	New company logo released		
Page 1	Removed "Figure 1." and "May 2019"		
Page 5	Add UVLO threshold for V _{BS} voltage		