

0.5 A high-side driver intelligent power switch

Datasheet - production data

Features

- 0.5 A output current
- 8 to 35 V supply voltage range
- Internal current limit
- Non-dissipative short-circuit protection
- Thermal shutdown
- Undervoltage lockout with hysteresis
- Internal negative voltage clamping for fast demagnetization
- Differential inputs with large common mode range and threshold hysteresis
- Open load detection
- Two diagnostic outputs
- Open ground protection

- Output status LED driver
 - Immunity against burst transient (IEC 61000-4-4)
- ESD protection (human body model ±2 kV)

Description

The L6375S is a monolithic intelligent power switch in multipower BCD technology to drive inductive, capacitive or resistive loads with controlled output voltage slew rate and short-circuit protection. An internal clamping diode enables the fast demagnetization of inductive loads. Diagnostic for CPU feedback and extensive use of electrical protections make this device robust and suitable for industrial automation applications.

Table 1: Device summary

Order code	Temperature range	Package	Packing
L6375S			Tube
L6375STR	-25 to +125 °C	SO-8	Tape and reel

L6375S

Contents

	_		4	_	_	4	_
C	n	n	T	e	n	T	S

1	Pin con	nnections	5
2		um ratings	
3		cal characteristics	
	3.1	Schematic diagram	
	3.2	Input section	
	3.3	Overtemperature protection	10
	3.4	Undervoltage protection	10
	3.5	Overcurrent operation	10
	3.6	Diagnostic logic	11
	3.7	Demagnetization of inductive loads	11
	3.8	Diagnostic truth table	12
4	Applica	ation circuits	13
5	Packag	ge information	15
	5.1	SO-8 package information	15
	5.2	SO-8 packing information	
6	Revisio	on history	

L6375S List of tables

List of tables

Table 1: Device summary	
Table 2: Pin description	
Table 3: Absolute maximum ratings	
Table 4: Thermal data	
Table 5: Electrical characteristics	7
Table 6: Diagnostic truth table	12
Table 7: SO-8 package mechanical data	15
Table 8: SO-8 tape and reel mechanical data	17
Table 9: SO-8 tube mechanical data	18
Table 10: Document revision history	19

List of figures L6375S

List of figures

Figure 1: Pin connections (top view)	5
Figure 2: Block diagram	
Figure 3: Switching waveforms	
Figure 4: Short-circuit operation waveforms	
Figure 5: Input comparator hysteresis	
Figure 6: External demagnetization circuit (versus ground)	
Figure 7: External demagnetization circuit (versus VS)	
Figure 8: Application schematic	
Figure 9: SO-8 package outline	
Figure 10: SO-8 recommended footprint	
Figure 11: SO-8 tape and reel outline	
Figure 12: SO-8 tube outline	

L6375S Pin connections

1 Pin connections

Figure 1: Pin connections (top view)

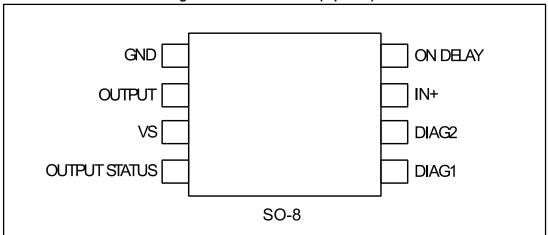


Table 2: Pin description

Pin	Pin name	Function			
1	GND	Ground			
2	OUTPUT	High-side output with built-in current limitation			
3	VS	Supply voltage range with undervoltage monitoring			
4	Output status	This current source output can drive a LED to signal the status of the output pin. The pin is active (source current) when the output pin is high			
5	DIAG1	Diagnostic1 output. This open drain reports the IC working conditions			
6	DIAG2	Diagnostic2 output. This open drain reports the IC working conditions			
7	IN+	Comparator inverting input			
8	ON DELAY	Programmable ON time interval duration during short-circuit operation			

Maximum ratings L6375S

2 Maximum ratings

Table 3: Absolute maximum ratings

Symbol	Parameter	Value	Unit
	Supply voltage (tw ≤ 10 ms)	50	V
Vs	Supply voltage (DC)	40	V
Vs- Vout	Supply to output differential voltage	Internally limited	V
V _{od}	ON DELAY pin voltage	-0.3 to 7	V
l _{od}	ON DELAY pin current	± 1	mA
lout	Output current	Internally limited	А
Vout	Output voltage	Internally limited	V
Eı	Energy inductive load: T _J = 85 °C	200	mJ
P _{tot}	Power dissipation	Internally limited	W
V _{diag}	DIAGx pin voltage	-0.3 to 40	V
I _{diag}	DIAGx pin current	-10 to 10	mA
li	IN+ pin current	20	mA
Vi	IN+ pin voltage	-10 to V _s +0.3	V
Top	Ambient temperature, operating range	-25 to 85	°C
TJ	Junction tmperature, operating range	-25 to 125	°C
T _{stg}	Storage temperature	-55 to 150	°C

Table 4: Thermal data

Symbol	Parameter	Value	Unit
R _{th(JA)}	Thermal resistance junction-ambient	100 max. ⁽¹⁾	٥٥٨٨١
R _{th(JP)}	Thermal resistance junction-pins	15 max.	°C/W

Notes:

 $^{(1)}$ When mounted on a standard single-sided FR-4 board with 0.5 cm² of Cu (at least 35 μ m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow.

577

L6375S Electrical characteristics

3 Electrical characteristics

 $V_S = 24 \text{ V}$; $T_J = -25 \text{ to } 125 \,^{\circ}\text{C}$, unless otherwise specified.

Table 5: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{smin}	Supply voltage for valid diagnostic	I _{diag} ≥ 0.5 mA; V _{diag} = 1.5 V	4		35	V
Vs	Operative supply voltage		8	24	35	V
V _{sth1}	Undervoltage threshold 1		7	7.5	8	٧
V _{sth2}	Undervoltage threshold 2		6.5	7	7.5	>
V_{shys}	Undervoltage hysteresis		300	500	700	mV
Iq	Quicecent current	Output open		800		μΑ
I _{qo}	Quiescent current	Output on		1.6		mA
V _{ith}	IN+ pin threshold voltage		0.8	1.3	2	V
Viths	IN+ pin threshold hysteresis		50		400	mV
V _{il}	IN+ pin low level voltage		-7		0.8	V
M	IN+ pin high level	V _S < 18 V	2		V _S -3	V
V_{ih}	voltage	Vs >18 V	2		15	V
l _{ib}	IN+ pin bias current	V _i = -7 to 15 V	-250		250	μΑ
I _{dch}	Delay capacitor charging current	ON DELAY pin shorted-to-ground		2.5		μΑ
		I _{out} = 500 mA; T _J = 25 °C		200	280	
V	Output voltage drap	T _J = 125 °C		320	440	\/
V_{don}	Output voltage drop	I _{out} = 625 mA; T _J = 25 °C		250	350	mV
		T _J = 125 °C		400	550	
I_{olk}	Output leakage current	$V_i = Iow; V_{out} = 0$			100	μΑ
Vol	Output low-state voltage	V _i = high; pin floating		0.8	1.5	V
V_{cl}	Internal voltage clamp (V _s - V _{out})	I _o = 200 mA single Pulsed = 300 ms	48	53	58	V
I _{SC}	Short-circuit output current	$V_S = 8 \text{ to } 35 \text{ V}; R_I = 2 \Omega$	0.75	1.1	1.5	Α
l _{old}	Open load detection current	$V_i = V_{ih}$; $T_A = 0$ to +85 °C	1	3	6	mA
V _{oth1}	Output status threshold 1 voltage		4.5	5	5.5	V

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{oth2}	Output status threshold 2 voltage		4	4.5	5	V
V _{ohys}	Output status threshold hysteresis		300	500	700	mV
I _{osd}	Output status source current	V _{out} > V _{oth1} ; V _{OS} = 2.5 V	2		4	mA
V _{osd}	Active output status driver drop voltage	$V_S - V_{OS}$; $I_{OS} = 2$ mA; $T_A = 0$ to +85 °C		1.5	3	V
l _{oslk}	Output status driver leakage current	V _{out} < V _{oth2} ; V _{OS} = 0 V; V _S = 18 to 35 V			25	μΑ
	Diagnostic drop	D1 / D2 = L; I _{diag} = 0.5 mA		40		\/
V_{dgl}	voltage	D1 / D2 = L; I _{diag} = 3 mA		250		mV
l _{dglk}	Diagnostic leakage current	D1 / D2 = H; 0 < V _{dg} < V _S V _S = 15.6 to 35 V			5	μΑ
T _{max} .	Overtemperature upper threshold			150		°C
T _{hys}	Overtemperature hysteresis			20		°C
AC opera	ation			•		
t _r - t _f	Rise or fall time	V _s = 24 V; R _I = 70 Ω; R _I		20		
t _d	Delay time	to ground		5		μs
dV/dt	Slew rate (rising and falling edge)		0.7	1	1.5	V/µs
ton	On-time during short- circuit condition	50 pF < C _{DON} < 2 nF		1.28		μs/pF
toff	Off-time during short- circuit condition			64		ton
f _{max.}	Maximum operating frequency			25		kHz
Source of	Source drain NDMOS diode					
V_{fsd}	Forward on voltage	I _{fsd} = 625 mA		1	1.5	V
I _{fp}	Forward peak current	t _p = 10 ms; duty cycle = 20%			2	Α
t _{rr}	Reverse recovery time	$I_{fsd} = 625 \text{ mA}; dI_{fsd}/dt = 25 \text{ A/}\mu\text{s}$		200		ns
t _{fr}	Forward recovery time			50		ns

L6375S Electrical characteristics

3.1 Schematic diagram

Figure 2: Block diagram

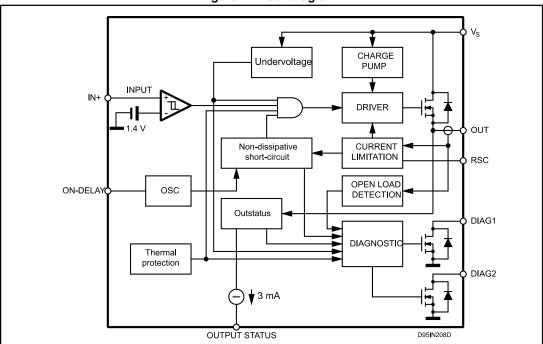
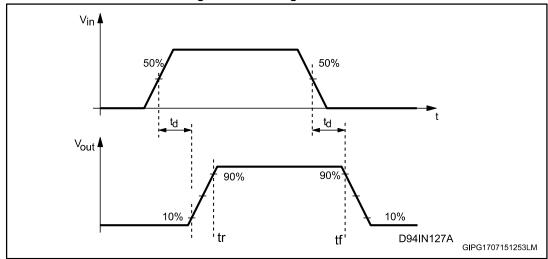



Figure 3: Switching waveforms

3.2 Input section

A single ended input TTL/CMOS compatible with a wide voltage range and high noise immunity (thanks to a built-in hysteresis) is available.

3.3 Overtemperature protection

On-chip overtemperature protection provides an excellent protection of the device in extreme conditions. Whenever the temperature, measured on a central portion of the chip, exceeds $T_{max.} = 150~^{\circ}\text{C}$ (typical value) the device shuts down, and the DIAG2 output goes low. Normal operation is resumed as the chip temperature (normally after few seconds) falls below $T_{max.}$ - $T_{hys} = 130~^{\circ}\text{C}$ (typical value). The hysteresis avoids that an intermittent behavior occurs.

3.4 Undervoltage protection

The supply voltage operates correctly in a range from 8 to 35 V. Below 8 V the overall system has to be considered not reliable. To avoid any malfunctioning, the supply voltage is continuously monitored to provide an undervoltage protection. As V_s falls below V_{sth} - V_{shys} (typically 7.5 V) the output power MOSFET switches off and DIAG1 and DIAG2 output go low. Normal operation is resumed as soon as V_s exceeds V_{sth} . The hysteretic behavior prevents intermittent operation at low supply voltage.

3.5 Overcurrent operation

In order to implement a short-circuit protection, the output power MOSFET is driven to linear mode to limit the output current to the I_{SC} value (1.1 A typical value).

This condition (current limited to the I_{SC} value) lasts for a T_{ON} time interval that can be set by a capacitor (C_{DON}) connected to the ON DELAY pin according to the following formula:

Equation 1:

 t_{ON} = 1.28 µs/pF for 50 pF < C_{DON} < 2 nF

After the t_{ON} interval has expired the output power MOSFET switches off for the t_{OFF} time interval:

Equation 2:

toff = 64. ton

L6375S Electrical characteristics

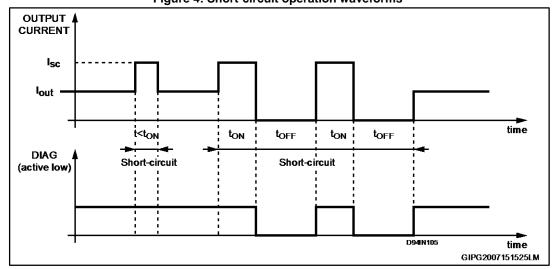


Figure 4: Short-circuit operation waveforms

When the toff interval has expired, the output power MOSFET switches on. In this manner two conditions may occur:

- the overload is still present. In this case, the output power MOSFET is again driven to linear mode (limiting the output current to Isc) for another ton, starting a new cycle
- the overload condition is removed, and the output power MOSFET is no longer driven to linear mode

Please, see the DIAG pin (see *Figure 4: "Short-circuit operation waveforms"*). This unique feature is called no-dissipative short-circuit protection and it ensures a very safe operation even in permanent overload conditions. The choice of the most appropriate value for the t_{ON} interval (the value of the C_{DON} capacitor) is very important, a delay (the t_{ON} itself) prevents the misleading short-circuit information is presented on the DIAG output, when capacitive loads are driven or incandescent lamp, a cold filament, has a very low resistive value. The non-dissipative short-circuit protection can be disabled (keeping $t_{ON} = 0$ but with the output current still limited to t_{SC} , and diagnostic disabled) by shorting to ground the ON DELAY pin.

3.6 Diagnostic logic

The operating conditions of the device are permanently monitored and the following occurrences are indicated by DIAG1/DIAG2 open drain output pins.

- Short-circuit vs. ground
- Short-circuit vs. VS
- Undervoltage (UV)
- Overtemperature (OVT)
- Open load, if the output current is less than 3 mA (typical value)

3.7 Demagnetization of inductive loads

An internal Zener diode, limiting the voltage across the power MOSFET between 50 and 60 V (V_{cl}), provides safe and fast demagnetization of inductive loads without the external clamping devices. The maximum energy absorbed by an inductive load is specified as 200 mJ (at $T_J = 85$ °C).

DocID12603 Rev 9

11/20

3.8 Diagnostic truth table

Table 6: Diagnostic truth table

Diagnostic conditions	Input	Output	DIAG1	DIAG2
Normal aparation		L	Н	Н
Normal operation	Н	Н	Н	Н
Open load condition (I _o < I _{old})	L	L	Н	Н
Open load condition (10< 10ld)	Н	Н	L	Н
Short to V _S		Н	L	Н
		Н	L	Н
Short circuit to ground (I. – I.)8 (ON DELAY pin grounded)	Н	Х	Н	Н
Short-circuit to ground $(I_O = I_{sc})^a$ (ON DELAY pin grounded)	L	L	Н	Н
Output DMOS anan	L	L	Н	Н
Output DMOS open	Н	L	L	Н
Overtemperature	L	L	Н	L
Overtemperature		L	Н	L
		L	L	L
Supply undervoltage (V _S < V _{sth2})	Н	L	L	L

\7/

12/20

^a A cold lamp filament or a capacitive load activates the current limiting circuit of the IPS, when the IPS is initially turned on.

L6375S Application circuits

4 Application circuits

Figure 5: Input comparator hysteresis

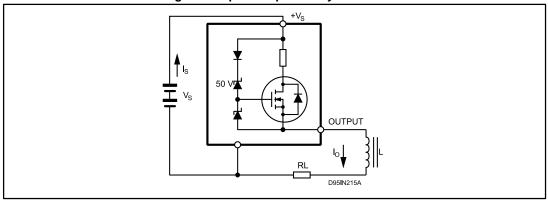


Figure 6: External demagnetization circuit (versus ground)

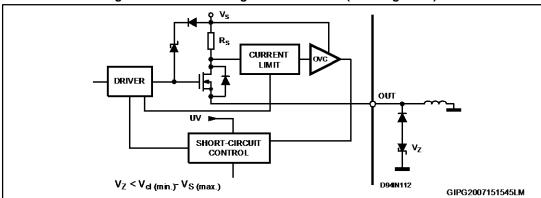
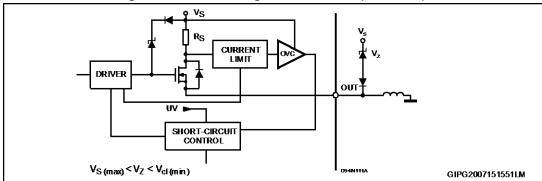



Figure 7: External demagnetization circuit (versus VS)

Application circuits L6375S

Transil, ST1,5KExx (IEC 61000-4-5) UNDER VOLTAGE CHARGE PUMP INPUT IN+ DRIVER OUT NON DISSIPATIVE SHORT CIRCUIT CURRENT LIMITATION 10nF, ceramic (IEC 61000-4-6) OPEN LOAD DETECTION osc ON-DELAY OUTSTATUS DIAG1 DIAGNOSTIC THERMAL PROTECTION DIAG2 **√** 3mA OUTPUT STATUS

Figure 8: Application schematic

577

Downloaded from Arrow.com.

L6375S Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

5.1 SO-8 package information

SECTION B-B

SECTION B-B

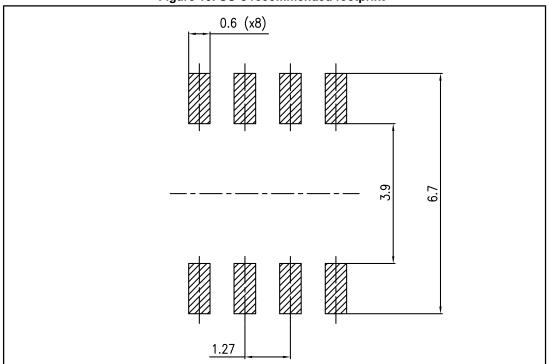

BASE METAL

Figure 9: SO-8 package outline

Table 7: SO-8 package mechanical data

Dim.	mm					
Diiii.	Min.	Тур.	Max.			
A			1.75			
A1	0.10		0.25			
A2	1.25					
b	0.28		0.48			
С	0.17		0.23			
D	4.80	4.90	5.00			
E	5.80	6.00	6.20			
E1	3.80	3.90	4.00			
е		1.27				
h	0.25		0.50			
L	0.40		1.27			
L1		1.04				
k	0°		8°			
ccc			0.10			

Figure 10: SO-8 recommended footprint

L6375S Package information

5.2 SO-8 packing information

Figure 11: SO-8 tape and reel outline

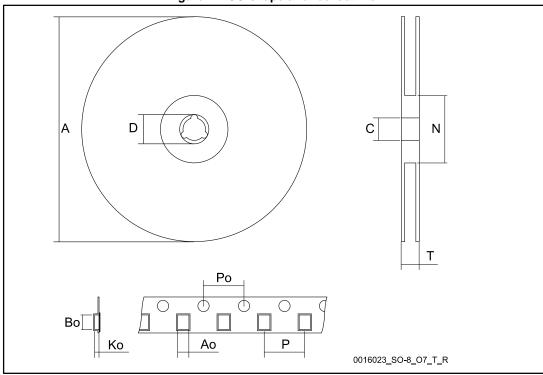


Table 8: SO-8 tape and reel mechanical data

Dim.	mm			
	Min.	Тур.	Max.	
А			330	
С	12.8		13.2	
D	20.2			
N	60			
Т			22.4	
Ao	8.1		8.5	
Во	5.5		5.9	
Ko	2.1		2.3	
Po	3.9		4.1	
Р	7.9		8.1	

Figure 12: SO-8 tube outline

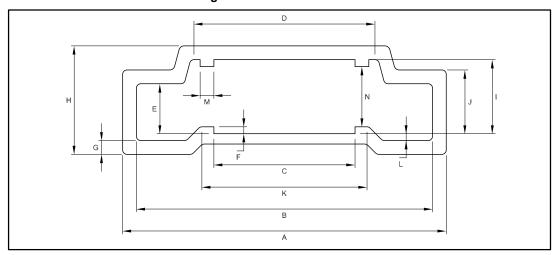


Table 9: SO-8 tube mechanical data

Dim.	mm
А	18.80
В	17.2 ± 0.2
С	8.20 ± 0.2
D	10.90 ± 0.2
E	2.90 ± 0.2
F	0.40
G	0.80
Н	6.30
I	4.30 ± 0.2
J	3.7 ± 0.2
К	9.4
L	0.40
M	0.80
N	3.50 ± 0.2

L6375S Revision history

6 Revision history

Table 10: Document revision history

Date	Revision	Changes
18-Sep-2006	1	Initial release.
19-Jun-2007	2	Truth table updated
05-Jul-2007	3	Typo in Table 5
16-Jul-2007	4	Updated pinout
15-Oct-2007	5	Updated table 4
29-Jun-2009	6	Updated table 5
12-Mar-2010	7	Updated table 5
20-Dec-2011	8	Updated table 5
23-Feb-2016	9	Changed Figure 1: "Pin connections (top view)". Updated Table 3: "Absolute maximum ratings" and Table 5: "Electrical characteristics".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

