NPN Silicon RF Transistor*

- For low current applications
- Smallest Package $1.4 \times 0.8 \times 0.59 \mathrm{~mm}$
- Noise figure $F=1.25 \mathrm{~dB}$ at 1.8 GHz
outstanding $G_{\mathrm{ms}}=23 \mathrm{~dB}$ at 1.8 GHz
- Transition frequency $f_{\mathrm{T}}=25 \mathrm{GHz}$
- Gold metallization for high reliability
- SIEGET ® 25 GHz fT - Line
- Pb-free (RoHS compliant) package ${ }^{1)}$
- Qualified according AEC Q101
* Short term description

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFP405F	ALs	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	TSFP-4

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$		V
$T_{\text {A }}>0^{\circ} \mathrm{C}$		4.5	
$T_{\mathrm{A}} \leq 0^{\circ} \mathrm{C}$		4.1	
Collector-emitter voltage	$V_{\text {CES }}$	15	
Collector-base voltage	$V_{\text {CBO }}$	15	
Emitter-base voltage	$V_{\text {EBO }}$	1.5	
Collector current	I_{C}	12	mA
Base current	I_{B}	1	
Total power dissipation ${ }^{2}$) $T_{S} \leq 122^{\circ} \mathrm{C}$	$P_{\text {tot }}$	55	mW
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	$T_{\text {A }}$	-65 ... 150	
Storage temperature	$T_{\text {stg }}$	-65 ... 150	

[^0]
Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1}$)	$R_{\text {thJS }}$	≤ 500	K/W

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(B R) C E O}$ | 4 | 5 | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 10 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=15 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 1 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 60 | 95 | 130 | - |
| DC current gain
 $I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=4 \mathrm{~V}$, pulse measured | | | | | |

[^1]BFP405F

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

Transition frequency $I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=3 \mathrm{~V}, f=2 \mathrm{GHz}$	$f_{\text {T }}$	18	25	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{\text {cb }}$	-	0.05	0.1	pF
Collector emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0$ base grounded	$C_{\text {ce }}$	-	0.2	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0 \text {, }$ collector grounded	$C_{\text {eb }}$	-	0.25	-	
Noise figure $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}$	F	-	1.25	-	dB
Power gain, maximum stable ${ }^{1 \text { 1) }}$ $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }}, \\ & Z_{\mathrm{L}}=Z_{\text {Lopt }}, f=1.8 \mathrm{GHz} \end{aligned}$	G_{ms}	-	22.5	-	dB
Insertion power gain $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	$\left\|S_{21}\right\|^{2}$	-	18	-	
Third order intercept point at output²) $\begin{aligned} & V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=5 \mathrm{~mA}, f=1.8 \mathrm{GHz}, \\ & Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega \end{aligned}$	$I P_{3}$	-	14	-	dBm
1 dB Compression point at output $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \end{aligned}$	$P_{-1 \mathrm{~dB}}$	-	0	-	

${ }^{1} G_{\mathrm{ms}}=\left|S_{21} / S_{12}\right|$
${ }^{2}$ IP3 value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

BFP405F

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G. 6 Syntax):

Transistor Chip Data:

$\mathrm{IS}=$	0.21024	fA	$\mathrm{BF}=$	83.23	-	$\mathrm{NF}=$	1.0405	-
$\mathrm{VAF}=$	39.251	V	$\mathrm{IKF}=$	0.16493	A	$\mathrm{ISE}=$	15.761	fA
$\mathrm{NE}=$	1.7763	-	$\mathrm{BR}=$	10.526	-	$\mathrm{NR}=$	0.96647	-
$\mathrm{VAR}=$	34.368	V	$\mathrm{IKR}=$	0.25052	mA	$\mathrm{ISC}=$	0.037223	fA
$\mathrm{NC}=$	1.3152	-	$\mathrm{RB}=$	15	Ω	$\mathrm{IRB}=$	0.21215	mA
$\mathrm{RBM}=$	1.3491	Ω	$\mathrm{RE}=$	1.9289	-	$\mathrm{RC}=$	0.12691	Ω
$\mathrm{CJE}=$	3.7265	fF	$\mathrm{VJE}=$	0.70367	V	$\mathrm{MJE}=$	0.37747	-
$\mathrm{TF}=$	4.5899	ps	$\mathrm{XTF}=$	0.3641	-	$\mathrm{VTF}=$	0.19762	V
$\mathrm{ITF}=$	1.3364	A	$\mathrm{PTF}=$	0	deg	$\mathrm{CJC}=$	96.941	fF
$\mathrm{VJC}=$	0.99532	V	$\mathrm{MJC}=$	0.48652	-	$\mathrm{XCJC}=$	0.08161	-
$\mathrm{TR}=$	1.4935	ns	$\mathrm{CJS}=$	0	fF	$\mathrm{VJS}=$	0.75	V
$\mathrm{MJS}=$	0	-	$\mathrm{XTB}=$	0	-	$\mathrm{EG}=$	1.11	eV
$\mathrm{XTI}=$	3	-	$\mathrm{FC}=$	0.99469		TNOM	300	K

C'-E`-dioden Data (Berkley-Spice 1G. 6 Syntax): IS = $2 \mathrm{fA} ; \mathrm{N}=1.02$-, RS = 20Ω
All parameters are ready to use, no scalling is necessary.
Package Equivalent Circuit:

The TSFP-4 package has two emitter leads. To avoid high complexity fo the package equivalent circuit, both leads are combined in one electrical connection.
RLXI are series resistors for the inductances LXI and $K_{\text {xa-by }}$ are the coupling coefficients between the inductances $L_{a x}$ and $L_{y b}$. The referencepin for the couple ports are $B, E, C, B^{\prime}, E^{`}, C$ For examples and ready to use parameters please contact your local Infineon Technologies distributor or sales office to obtain a InfineonTechnologies CD-ROM or see Internet: http//www.infineon.com/silicondiscretes

$L_{\mathrm{BO}}=$	0.22	nH
$L_{\mathrm{EO}}=$	0.28	nH
$L_{\mathrm{CO}}=$	0.22	nH
$L_{\mathrm{BI}}=$	0.42	nH
$L_{\mathrm{EI}}=$	0.26	nH
$L_{\mathrm{CI}}=$	0.35	nH
$C_{\mathrm{BE}}=$	34	fF
$C_{\mathrm{BC}}=$	2	fF
$C_{\mathrm{CE}}=$	33	fF
$K_{\mathrm{BO}-\mathrm{EO}}=$	0.1	-
$K_{\mathrm{BO}-\mathrm{CO}}=$	0.01	-
$K_{\mathrm{EO}-\mathrm{CO}}=$	0.11	-
$K_{\mathrm{CI}-\mathrm{EI}}=$	-0.05	-
$K_{\mathrm{BI}-\mathrm{Cl}}=$	-0.08	-
$K_{\mathrm{BI}-\mathrm{EI}}=$	0.2	-
$R_{\mathrm{LBI}}=$	0.15	Ω
$R_{\mathrm{LEI}}=$	0.11	Ω
$R_{\mathrm{LCI}}=$	0.13	Ω

Valid up to 6 GHz

For non-linear simulation:

- Use transistor chip parameters in Berkeley SPICE 2G. 6 syntax for all simulators.
- If you need simulation of the reverse characteristics, add the diode with the C'-E'- diode data between collector and emitter.
- Simulation of package is not necessary for frequencies $<100 \mathrm{MHz}$.

For higher frequencies add the wiring of package equivalent circuit around the non-linear transistor and diode model.

Note:

- This transistor is constructed in a common emitter configuration. This feature causes an additional reverse biased diode between emitter and collector, which does not effect normal operation.

Transistor Schematic Diagram

The common emitter configuration shows the following advantages:

- Higher gain because of lower emitter inductance.
- Power is dissipated via the grounded emitter leads, because the chip is mounted on copper emitter leadframe.

Please note, that the broadest lead is the emitter lead.

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Infineon:

```
BFP405FH6327XTSA1
```


[^0]: ${ }^{1} \mathrm{~Pb}$-containing package may be available upon special request
 ${ }^{2} T_{S}$ is measured on the collector lead at the soldering point to the pcb

[^1]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

