CT Series

DIN W48×H48mm, W72×H36mm, W72×H72mm Counter/Timer

- Features

- Communication function supported (communication model): RS485 (Modbus RTU)
- One-shot output time setting range -0.01 sec to 99.99 sec by setting per 10 ms
-[Counter]
Prescale value setting range - 6-digit model: 0.00001 to 99999.9 /
4-digit model: 0.001 to 999.9
9 input modes/11 output modes
BATCH counter,
Count Start Point (counting initial value) setting function
- [Timer]

13 output modes
Various time setting range-6-digit model: 0.001 sec to 99999.9 hour / 4-digit model: 0.001 sec to 9999 hour ' 0 ' time setting function
Selectable timer memory retention function for indicator model.

\square DAQMaster (Comprehensive Device Management Program)

- DAQMaster is comprehensive device management program for convenient management of parameters and multiple device data monitoring.
- Visit our website (www.autonics.com) to download user manual and comprehensive device management program.

Item	Minimum requirements
System	IBM PC compatible computer with Intel Pentium III or above
Operations	Microsoft Windows 98/NT/XP/Vista/7/8/10
Memory	$256 \mathrm{MB}+$
Hard disk	1GB+ of available hard disk space
VGA	Resolution: 1024×768 or higher
Others	RS-232 serial port (9-pin), USB port

< DAQMaster screen >

Ordering Information

※1: CT4S model does not support indicatior type.

- Communication Specification

Comm. protocol	Modbus RTU with 16-bit CRC
Connection type	RS485
Application standard	Compliance with EIA RS485
Max. connection	31 units (address: 1 to 127)
Synchronous method	Asynchronous
Comm. type	Two-wire half duplex
Comm. distance	Max. 800 m
Comm. speed	$2400,4800,9600$ (factory default), 19200, 38400bps
Comm. response time	5 to 99ms (factory default: 20ms)
Start bit	1-bit (fixed)
Data bit	8-bit (fixed)
Parity bit	None (factory default), Even, Odd
Stop bit	1, 2-bit (factory default: 2-bit)

[^0] separately), SCM-US48I (USB to RS485 converter, sold separately), SCM-38I (RS232C to RS485 converter, sold separately), SCM-US (USB to Serial converter, sold separately). Please use twisted pair wire for RS485 communication.

Programmable Counter/Timer

\square Specifications

Series				CTS		CTY		CTM		Photoelectric Sensors
Mode	1-stage preset			CT4S-1P $\square \square$	CT6S-1P $\square \square$	CT6Y-1P $\square \square$		CT6M-1P $\square \square$		(B) Fiber Optic Sensors
	2-stage preset			CT4S-2P $\square \square$	CT6S-2P $\square \square$	CT6Y-2P $\square \square$		CT6M-2P $\square \square$		
	Indicator			-	CT6S-1 $\square \square$	CT6Y-I \square		CT6M-I \square		
Display digits				4-digit	6-digit	6-digit		6-digit		(C) Door/Area Sensors
Display method				7 segment (counting value: red, setting value: yellow-green) LED method						
Character size $(W \times H)$		Counting value		$6.5 \times 10 \mathrm{~mm}$	$4.5 \times 10 \mathrm{~mm}$	$4.2 \times 9.5 \mathrm{~mm}$		$6.6 \times 13 \mathrm{~mm}$		
		Setting value		$4.5 \times 8 \mathrm{~mm}$	$3.5 \times 7 \mathrm{~mm}$	$3.5 \times 7 \mathrm{~mm}$		$5 \times 9 \mathrm{~mm}$		$\begin{aligned} & \text { (D) } \\ & \text { Proximity } \\ & \text { Sensors } \end{aligned}$
Power supply		AC voltage		100-240VAC $\sim 50 / 60 \mathrm{~Hz}$						
		AC/DC voltage		$24 \mathrm{VAC} \sim 50 / 60 \mathrm{~Hz}, 24-48 \mathrm{VDC}=-$						(E) Pressure Sensors
Permissible voltage range				90 to 110\% of rated voltage						
Power consumption		AC voltage		Max. 12VA						
		AC/DC voltage		AC: Max. 10VA, DC: Max. 8W						(F) Rotary
Coun	INA/INB Max. counting speed			Selectable 1cps/30cps/1kcps/5kcps/10kcps						Encoders (G)
	Counting range			-999 to 9999	-99999 to 999999					Connectors/ Connector Cables/
	Scale			Decimal point up to third digit	Decimal point up to fifth digit					Sensor Distribution Boxes/Sockets (H)
	Min. input signal width			RESET: Selectable $1 \mathrm{~ms} / 20 \mathrm{~ms}$						(H) Temperature Controllers
Time	Time range		4-digit	9.999s, 99.99s, 999.9s, 9999s, 99m59s, 999.9m, 9999m, 99h59m, 9999h						
			6-digit	99h59m59s, 9999h59m, 99999.9h						(I) SSRs / Power Controllers
	Operation method			Count up, Count down, Count Up/Down						
	Min. input signal width			INA, INH, RESET: Selectable 1ms/20ms				INA, RESET, INHIBIT, BATCH RESET: Selectable $1 \mathrm{~ms} / 20 \mathrm{~ms}$		(J) Counters
	Repeat error			In case of power ON start: Max. $\pm 0.01 \% \pm 0.05$ s In case of signal start: Max. $\pm 0.01 \% \pm 0.03 \mathrm{~s}$						$\begin{aligned} & \text { (K) } \\ & \text { Timers } \end{aligned}$
	Set error									
	Voltage error									
	Temp. error									
Input method				Selectable voltage input or no-voltage input [Voltage input]-input impedance: $5.4 \mathrm{k} \Omega,[\mathrm{H}]: 5-30 \mathrm{VDC}=-\mathrm{e}$, [L]: 0-2VDC [No-voltage input]-short-circuit impedance: Max. $1 \mathrm{k} \Omega$, short-circuit residual voltage: Max. 2VDC=--						Panel Meters (M)
One-shot output time				0.01s to 99.99s setting						(M) Tacho / Speed / Pulse Meters
				Standard	Comm.	Standard	Comm.	Standard	Comm.	
	Contact output	Type	1-stage	SPDT(1c): 1		SPDT(1c): 1		SPDT(1c): 1		(N) Display Units
			2-stage	SPST(1a): 2		$\begin{aligned} & \text { SPST(1a): 1, } \\ & \text { SPDT(1c): } \end{aligned}$	SPST(1a): 2	SPST(1a): 1, SPDT(1c): 1		
		Capacity		$\begin{aligned} & \text { 250VAC~5A, 30VDC=-=5A } \\ & \text { resistive load } \end{aligned}$		$250 \mathrm{VAC} \sim 3 \mathrm{~A}, 30 \mathrm{VDC}=-=3 \mathrm{~A}$ resistive load		$\begin{aligned} & \text { 250VAC~5A, 30VDC=-=5A } \\ & \text { resistive load } \end{aligned}$		(O) Sensor Controllers
	Solid state output (NPN open collector)		1-stage	1		1	1	2	2	(P) Switching Mode Power Supplies
			2-stage					3		
		Capacity		Max. 30VDC $=-=, 100 \mathrm{~mA}$						
External power supply				Max. 12VDC=- $\pm 10 \%$, 100mA						(Q) Stepper Motors \& Drivers \& Controllers
Memory retention				Approx. 10 years (non-volatile memory)						
Insulation resistance				Over 100M ${ }^{\text {at }}$ (a00VDC megger)						(R) Logic Panels
Dielectric strength				$2,000 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ for 1 min						
Noise immunity				Square-wave noise by noise simulator (pulse width $1 \mu \mathrm{~s}$) $\pm 2 \mathrm{kV}$						
Vibration		Mechanical		0.75 mm amplitude at frequency 10 to 55 Hz (for 1 min) in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction for 1 hour						(S) Field Network Devices
		Malfunction		0.5 mm amplitude at frequency 10 to 55 Hz (for 1 min) in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction for 10 minutes						
Shock		Mechanical		$300 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 30G) in each X, Y, Z direction for 3 times						
		Malfunction		$100 \mathrm{~m} / \mathrm{s}^{2}$ (approx. 10G) in each $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ direction for 3 times						(T) Software
Relay life cycle		Mechanical		Min. 10,000,000 operations						
		Malfunction		Min. 100,000 operations						
Protection structure				IP65 (front part, IEC standard)						
Environmental		Ambient temp.		-10 to $55^{\circ} \mathrm{C}$, storage: -25 to $65^{\circ} \mathrm{C}$						
		Ambient humi.		35 to 85% RH, storage: 35 to 85% RH						
Approval				C ${ }_{\text {c }} \mathrm{MN}_{\text {us }}$						
Weight ${ }^{* 1}$				Approx. 212g (approx. 159g)		Approx. 228g (approx. 140g)		Approx. 322g (approx. 252g)		

※1: The weight includes packaging. The weight in parenthesis is for unit only.
※Environment resistance is rated at no freezing or condensation.

Programmable Counter/Timer

- CT6Y-I

© CTM Series

- CT6M-1P \square

- CT6M-2P \square

- Ст6M- \square

※1: AC Voltage: 100-240VAC $50 / 60 \mathrm{~Hz}$
AC/DC Voltage: 24 VAC $50 / 60 \mathrm{~Hz}, 24-48 V D C$
※2: Counter operation: If INHIBIT signal is applied, count input will be prohibited.
Timer operation: If INHIBIT signal is applied, time progressing will stop. (HOLD)

CT Series

\square Dimensions
© CTS Series

© CTY Series

© CTM Series

© Bracket

- CTS Series

- CTY Series

- CTM Series

© Panel cut-out - CTS Series

- CTM Series

Programmable Counter／Timer

Sold Separately

© Communication converter
－SCM－WF48
（Wi－Fi to RS485－USB wireless communication converter） （ \in 通
－SCM－US48I
（USB to RS485 converter）
C \in 通

O Display Units（DS／DA－T Series）
－DS／DA－T Series
（RS485 communication input type display unit）$C \epsilon$

DS16－\quad T

DS22／DA22－TT

DS40／DA40－TT
－SCM－38I
（RS232C to RS485 converter）
C \in 淙

DS60／DA60－TT
※Connect RS485 communication input type display unit（DS／DA－T Series）and RS485 communication output model of CT Series， the display unit displays present value of the device without PC／PLC．
\square Unit Description
© CTS Series

© CTY Series

© CTM Series

1．Counting value display component（red）
RUN mode：Displays counting value for counter operation or time progress value for timer operation．
Function setting mode：Displays setting item．
2．Setting value display component（yellow－green）
RUN mode：Displays setting value．
Function setting mode：Displays setting content．
3．Key lock indicator（LOCK）：Turns ON for key lock setting．
4．Counter indicator（CNT）：Turns ON for counter operation．
5．Timer indicator（TMR）：Flashes（progressing time）or Turns ON（stoping time）for timer operation．
6．Preset value checking and changing indicator（PS1，PS2）
：Turns ON when checking and changing preset value．
7．Output indicator（OUT1，OUT2）：Turns ON for the dedicated control output ON．
8．RST key
RUN mode：Press the RST key to reset the counting value．
BATCH counter mode：Press the RST key to reset the batch counting value．
9．MD key
RUN mode：Hold the MD key over 3 sec to enter function setting mode（parameter setting）． Hold the MD key over 5 sec to enter function setting mode（communication setting）．
Function setting mode：Press the MD key to select function setting mode parameter． Hold the MD key over 3 sec to return RUN mode．
10．《，娄，园 key
1）《 key
RUN mode：Press the 《 key to enter preset mode．
Preset mode：Press the $<$ key to move preset digits．
2）包，图 key
RUN mode：Hold the 图 key over 1 sec to enter Function setting check mode．
Preset mode：Used for increasing or decreasing preset value．
Function setting mode：Changes the settings．
Function setting check mode：Press the 圈key to move the previous parameter．
Press the 因 key to the next parameter．
11．BA key
RUN mode：Press the RST key to enter BATCH counter indication mode．
12．BATCH output indicator（BA．O）（red）
13．BATCH preset value checking and changing indicator（BA．S）（yellow－green）
：Turns ON when checking and changing BATCH preset value．
※The indicator type does not exist in CT4S model．

CT Series

\square Input Connections

© No-voltage input (NPN)

- Solid-state input (standard sensor: NPN output type sensor)

- Contact input

※1: INA, INB/INH, RESET, INHIBIT, BATCH RESET input part
※2: Counting speed: 1 or 30 cps setting (counter)
© Voltage input (PNP)
- Solid-state input (standard sensor: PNP output type sensor)
- Contact input

※1: INA, INB/INH, RESET, INHIBIT, BATCH RESET input part
※2: Counting speed: 1 or 30 cps setting (counter)

Input Logic Selection [No-Voltage Input (NPN)/Voltage Input (PNP)]

※How to change settings

Power OFF \rightarrow change settings \rightarrow power ON \rightarrow press RST key or input signal (min. 20ms)
Error Display and Output Operation

Error Display	Error description	Troubleshooting
$\varepsilon_{r r 0}$	Setting value is 0.	Change the setting value anything but 0.

[^1]
Programmable Counter／Timer

Output Connections

© Contact output

※Use proper load not to exceed the capacity．

※Use proper load and power for load not to excess ON／OFF capacity（Max．30VDC， 100 mA ）of solid state output． ※Be sure not to apply reverse polarity of power．
※1：When using inductive load（relay etc．），surge absorber
（diode，varistor etc．）must be connected between both sides of the load．

Operations and Functions

© Change of preset（counter／timer）

－Even if changing the preset value，input operation and output control will continue．In addition，the preset value could be set to 0 and the output of 0 preset value turns ON．According to output mode，preset value could not be set to 0 ． （When setting to 0 ，preset value＂ 0 ＂will flash 3 times．）

In RUN mode，press the $\mathbb{<}$ key to enter preset mode．
＇PS1＇indicator turns ON and first digit of preset value flashes．

Press the $\mathbb{《}$ ，园 and \boxtimes keys to set the desired value（example， 180）．Press the MD key to enter the PS2 setting mode．

Press the $\mathbb{《}$ ，图 and keys to set the desired value（example， 200）．Press the MD key to return RUN mode．

© Function setting check mode

© Switching display function in preset indicator

Setting value1（PS1）and setting value2（PS2）are displayed each time pressing MD key in PRESET2 model． （in timer，it is available for and，and．I or and．e output mode．）

© Reset

In RUN mode or function setting mode，if pressing RST key or applying the signal to the RESET terminal on the back side，present value will be reset and output will maintain off status．When selecting voltage input（PNP），short no． 10 and no． 12 terminals，or when selecting no－voltage input（NPN），short no． 11 and no． 12 terminals to reset．

BATCH Counter (for CT6M-1P $\square \square / C T 6 M-2 P \square \square$ Model Only)

In BATCH counter indication mode, 'BATCH counter value' is displayed in count indicator and 'BATCH counter setting value' is displayed in preset indicator.

© Change of BATCH setting value

If pressing BA key in Run mode, it will enter into BATCH counter indication mode.
1.

2.

BATCH value is set to ' 200 ' using $\mathbb{<}$, , and keys, then press MD key to complete BATCH setting value and move to BATCH counter indication mode.
© BATCH counter operation

() BATCH counting operation

- BATCH counting value is increasing until BATCH reset signal applied. BATCH counting value will be circulated when it is over 999999.

1) BATCH counting operation in Counter: Counts the number of reaching setting value of CT6M-1P or reaching dual setting value of CT6M-2P $\square \square$
2) BATCH counting operation in Timer: Counts the number of reaching setting time. (In case of "FL μ " output mode, count the number of reaching T.off setting time and T.on setting time.)

© BATCH output

- If input signal is applied while changing BATCH setting value, counting operation and output control will be performed.
- If BATCH count value equals to BATCH setting value, BATCH output will be ON and maintain ON status until BATCH reset signal is applied.
- When the power is cut off then resupplied in status of BATCH output is ON, BATCH output maintains ON status until BATCH reset signal is applied.

© BATCH reset input

- If pressing RST key or applying the signal to BATCH reset terminal on the back side panel, BATCH counting value will be reset. When selecting voltage input (PNP), short terminals 10 and 14, or when selecting no-voltage input (NPN), short terminals 11 and 14 to reset.
- When BATCH reset is applied, BATCH counting value maintains at 0 and BATCH output maintains in the OFF status.

© Application of BATCH counter function
 - Counter

In case, put 5 products in a box then pack the boxes when they reaches to 200.

- Counter preset setting value="5", BATCH setting value="200"
- When the count value of counter reaches to the preset value " 5 ", the control output (OUT) will be on, and at this time the count value of the BATCH counter will be increased by "1". The control box which is received the control output (OUT) repeatedly controls conveyor to move the full box and to place the next empty box for standby. When the BATCH count value reaches to " 200 ", BATCH output will be ON. Then the control box stops conveyor and provides a control signal for packing.

- Timer

Fills milk into the bottle for 3 sec (setting time) When 500 bottles are filled, BATCH counting finish lamp is turned on. (Setting time: 3 sec, BATCH setting value: 500)

Programmable Counter/Timer

Flow Chart for Function Setting Mode

Parameter Setting（Counter）
（ND key：Moves the settings，包，图 key：Changes the settings）

Parameter	Setting
Counter／ Timer $[[-t]$	
Input mode $\left[\begin{array}{ll}{\left[\begin{array}{ll}1\end{array}\right]}\end{array}\right.$	Ud－$\leftrightarrows \leftrightarrow U P \leftrightarrow U P-1 \leftrightarrow U P-2 \leftrightarrow d n \leftrightarrow d n-1 \leftrightarrow d n-2 \leftrightarrow U d-$ 月 $\leftrightarrow U d-b$
Output mode ［out．in］	－Input mode is $U P, U P-1, U P-2$ or $d n, d n-1, d n-2$ ， －Input mode is $U d-A, U d-b, U d-[$ ， ※If max．counting speed is 5 kcps or 10 kcps ，and output mode is d ，max．counting speed is automatically changed as 30 cps ，factory default．
Indication mode ［d5P．in］	－In case of the indicator type $※$ In case of the indicator type，indicate mode selection［ $d 5 P . \bar{n}$ ］is displayed． HoLd \longleftrightarrow Lothi $\quad ※$ It is the added function to set the preset value when selecting HoLd．
Max．counting speed ［［P5］	
OUT2 output time ${ }^{* 1}$ ［out2］	※Set one－shot output time of OUT2． ※Setting range： 00.01 to 99.99 sec ※When input mode is $F, n, 5, t, d, \circ \cup t 2$ does not appear．（fixed as HOLD）
OUT1 output time ${ }^{* 1}$ ［out 1］	※Set one－shot output time of OUT1． ※Setting range： 00.01 to 99.99 sec ，Hold． ※When 1st digit is flashing，press the 《 key once and HoLd appears． ※When input mode is $5, t, d, \circ \Delta t$｜does not appear．（fixed as HOLD）
OUT output time＊＊ ［out．t］	※Setting range： 00.01 to 99.99 sec ※When input mode is $F, n, 5, t, d, \square \cup t . t$ does not appear．（fixed as HOLD）
Decimal point ${ }^{* 2}$ ［dP］	－6－digit type －4－digit type 4 ※Decimal point is applied to counting value and setting value．
Min．reset time［－5t］	
Input logic ［5：©］	$\cap P_{\cap}:$ No－voltage input，$P_{\cap} P$ ：Voltage input ※Check input logic value（PNP，NPN）．
Prescale decimal point ${ }^{* 2}$ ［5．$\left[. \mathrm{dP}^{\text {P }}\right.$ ］	
Prescale value［5［L］	※Setting range of prescale value 6－digit type： 0.00001 to 99999.9 ，4－digit type： 0.001 to 999.9
Start point value ［5trt］	※Setting range（linked with decimal point［dP］）： 6－digit type： 0.00001 to 999999,4 －digit type： 0.001 to 9999 ※When input mode is $d n, d n-1, d n-2$ ，start point value does not appear．
Memory protection ［d月LA］	$\operatorname{LLr} \longleftrightarrow r E\left[\begin{array}{l}\text { KLLr：Resets the counting value when power OFF．} \\ r E[: \text { Maintains the counting value when power OFF．} \\ \text {（memory protection）}\end{array}\right.$
Key lock ［ LoLf ］	

※1：For PRESET1 model，oUt I does not appear．The output time of out 2 is displayed as out．t．
※2：Decimal point and prescale decimal point
Decimal point：Set the decimal point for display value regardless of prescale value．
Prescale decimal point：Set the decimal point for prescale value of counting value regardless of decimal point of display value．

Programmable Counter/Timer

\square Input Operation Mode (Counter)

Input mode	Counting chart	Operation
UP [UP]		※When INA is counting input, INB is no counting input. When INB is counting input, INA is no counting input.
$\left[\begin{array}{l} U P-1 \\ {[U P-1]} \end{array}\right.$		※When INA input signal is rising ($\sqrt{-}$), it counts. ※INA: Counting input ※INB: No counting input
$\left[\begin{array}{l} \text { UP-2 } \\ {[U P-2]} \end{array}\right.$		※When INA input signal is falling (\quad L), it counts. ※INA: Counting input ※INB: No counting input
$\begin{aligned} & \text { Down } \\ & {\left[\begin{array}{l} d n] \end{array}\right]} \end{aligned}$		※When INA is counting input, INB is no counting input. When INB is counting input, INA is no counting input.
$\left[\begin{array}{l} \text { Down-1 } \\ {[d n-1]} \end{array}\right.$		※When INA input signal is rising ($\mathbb{\sim}$), it counts. ※INA: Counting input ※INB: No counting input
Down-2 $[d n-2]$		※When INA input signal is falling (Z), it counts. ※INA: Counting input ※INB: No counting input
Up/ Down-A [$\because d-$ - $]$		※INA: Counting input INB: Counting command input ※When INB is "L", counting command is up. When INB is "H", it is counting command is down.

Input Operation Mode (Counter)

Input mode	Counting chart	Operation
Up/ Down-B [Ud-b]		※INA: Up counting input INB: Down counting input ※When INA and INB input signals are rising (F) at the same time, it maintains previous counting value.
Up/ Down-C [Ud-c]		※When connecting encoder output A, B phase with counter input, INA, INB, set input mode [i $\cap . \overline{\mathrm{n}}$] as phase different input [$\lrcorner d-\lceil$] for counter operation.

※1: For selectable no-voltage input (PNP), voltage input (NPN) model.
※A: over min. signal width, B: over than $1 / 2$ of min. signal width. If the signal is smaller than these width, it may cause counting error (± 1).
※The meaning of "H", "L"

$\left.$| Character | | Input metholtage input
 (PNP) |
| :--- | :--- | :--- | | No-voltage input |
| :--- |
| (NPN) | \right\rvert\, | Short | |
| :--- | :--- |
| H | 5-30VDC |
| S | O-2VDC |

※Min. signal width by counting speed

Counting speed	Min. signal width
1 cps	500 ms
30 cps	16.7 ms
1 kcps	0.5 ms
5 kcps	0.1 ms
10 kcps	0.05 ms

$1 \mathrm{cps}=1 \mathrm{~Hz}$

Prescale Function (Counter)

This function is to set and display calculated unit for actual length, liquid, position, etc. It is called "prescale value" for measured length, liquid, or position, etc per 1 pulse. For example, when moving L, the desired length to be measured, and P, the number of pulses per 1 revolution of a rotary encoder, occurs, prescale value is L/P.
E.g.) Positioning control by counter and encoder

Set decimal point[d_{P}] as [----.-], prescale decimal point [5[.dP] as [---.--], prescale value [5[L] as [D.069] at function setting mode. It is available to control conveyer position by 0.1 mm unit.

Start Point Function (Counter)

This function is that start at initial value set at Start Point [$5 t r t$] when on counting mode.

- In case of $d n, d n-1$ or $d n-\sum$ in timer input mode, it is not available.
- When reset is applied, the present value is initialized to start point.
- In case of $[, r, P, q$ output operation mode, the present value starts at START POINT value after counting up.

Programmable Counter/Timer

\square Output Operation Mode (Counter)

(A)

Photoelectric
Sensors Sensors
※After count-up, counting display value and OUT1 retained output are maintained until RESET input is applied.
※OUT1 one-shot output time is operated regardless of OUT2 output.

Output Operation Mode (Counter)
Retained output Coincidence output

Output mode	Up/Down - A, B, C	Operation
$\begin{aligned} & \mathrm{S} \\ & {[5]} \end{aligned}$		※OUT1 and OUT2 keep ON status in following condition: Counting display value \geqq PRESET1 Counting display value \geqq PRESET2
$\left[\begin{array}{l} \mathrm{T} \\ {[L]} \end{array}\right.$		※OUT1 output is off: Counting display value \geqq PRESET1 ※OUT2 keeps ON status in following condition: Counting display value \geqq PRESET2
$\left[\begin{array}{l} D \\ {[d]} \end{array}\right.$		※When counting display value is equal to setting value [PRESET1, PRESET2) only, OUT1 or OUT2 output keeps ON status. ※When setting 1 kcps for counting speed, solid state contact output should be used.

※The PRESET1 type output (OUT) is operated as OUT2 of PRESET2 type.
※The PRESET2 model OUT1 output is operated as one-shot or retained output. (except $5, t, d$ mode)
※OUT1 output could be set to 0 in all modes and 0 value output turns ON.
※OUT2 output could not set to 0 in $\mathrm{C}[\mathrm{L}], \mathrm{R}[r], \mathrm{P}[\mathrm{P}]$ or $\mathrm{Q}[9]$ output mode.
Counter Operation of the Indicator (CT6S-I, CT6Y-I, CT6M-I)
※Only displays on indicator models

Indicate mode [dSP.̄̄]	Count chart		Operation
	In case of input mode is Up (Up, Up-1, Up-2)	In case of input mode is Down (Down, Down-1, Down-2)	
TOTAL [tothi]	$\begin{array}{lll:l} \hline \text { RESET } & & & \\ 999999 & & & \\ 0 & & & \end{array}$		Count value increases or decreases until RESET input is applied. When input is over max./min. counting value, it displays 0 . When Reset input is applied, it displays 0(Up)/999999(Down).
$\left[\begin{array}{l} \mathrm{HOLD} \\ {[\mathrm{HoL} \mathrm{~d}]} \end{array}\right.$			Count value increases or decreases until RESET input is applied. When input is reaching preset value(Up)/0(Down), the display value is hold. When Reset input is applied, it displays $0(\mathrm{Up}) /$ preset value(Down).

- In case of the Command input [ωd - 7], Individual input [ud-b], Phase difference input [$u d-[$] mode.

※In case of UP/DOWN [Ud-A, $U d-b, U d-[]$ input mode, indication mode [$\alpha 5 P \cdot \bar{n}$] of the configuration is not displayed.

Programmable Counter／Timer

Parameter Setting（Timer）
（MD key：Moves the settings，圈，图 key：Changes the settings）

Parameter	Setting
Counter／Timer $\left[\begin{array}{ll}{[-t]}\end{array}\right.$	CoUn \longrightarrow tiñ \quad※「aUn：Counter LinE：Timer
Time range ［Hourlni n／5E［］	
Up／Down mode［ $\mathrm{U}-\mathrm{d}$ ］	$U P \longleftrightarrow d n \quad \begin{array}{r}\text { ※uP：Time progresses from＇} 0 \text {＇to the setting time，} \\ d n: \text { Time progresses from the setting time to＇} 0 \text {＇．}\end{array}$
Indication mode ［d5P．ㄷ．］	※Used for the indicator type only． ※It is added that the feature which set the setting time when selecting HoLd or ant．d
Memory protection ［ dRLR ］	$\left[\mathrm{Lr} \longleftrightarrow r E\left[\begin{array}{l}\text { KUsed for the indicator type only．} \\ \text { ※［Lr：Reset time value when power is off．} \\ \text { reL：Memorizes time value at the moment of power off．}\end{array}\right.\right.$
Output mode ［out．in］	
OUT2 output time ［oUt $\mathrm{U}^{*}{ }^{* 1}$	※Set one－shot output time of OUT2． ※Setting range： 00.01 to 99.99 sec ，Hold． ※When 1st digit is flashing，press the $\mathbb{}$ key once and HoL d appears．
OUT1 output time ［out $]^{* 1}$	※Set one－shot output time of OUT1． ※Setting range： 00.01 to 99.99 sec ，Hold． ※When 1st digit is flashing，press the $\mathbb{}$ key once and HoL d appears．
OUT output time ［out．t ］${ }^{* 1}$	※Setting range： 00.01 to 99.99 sec，Hold． ※When 1st digit is flashing，press the $\mathbb{}$ key once and HoLd appears．
Input logic $\left[\begin{array}{lll} 51 & 6 \end{array}\right.$	$\cap P_{n}$ ：No－voltage input，$P_{\cap} P$ ：Voltage input ※Check input logic value（PNP，NPN）．
Input signal time［1 n．t ］	※CTS／CTY：Set min．width of INA，INH，RESET signal． ※CTM：Set min．width of INA，RESET，INHIBIT，BATCH RESET signal．
Key lock ［ L ［LU］	

（A）
Photoelectric
Photoele
Sensors
（B）
Fiber
Fiber
Optic
Optic
Sensors
（C）
Door／Area
Sensors
（D）
Proximity
Sensors
（E）
Pressure
Sensors
（F）
Rotar
Encoders
（G）
Connectors／
Connector Cables／
Sensor Distribution
Boxes／Sockets
（H）
Temperature
Controllers
（I）
Controllers
（J）
Counters
（K）
Timers
（L）
Panel
Meters
（M）
Tacho
Tacho／
Speed／Pulse ${ }_{\text {Meters }}^{\text {Speed } / \mathrm{Pu}}$
（N）

Display
Units

（0）
Sensor
Controllers
（P）
Switch
（P）
Switching
Mode Power
Mode Pow
（Q）
（Q）
Stepper Motors
Stepper Mo
\＆Controllers
（R）
Graphic
Logic
Panels
（S）
Field
Field
Network
Devices
（T）
Software
Software

appear．The output time of out 己 is displayed as aUt．t．When output mode is and，and I，and．己，int．己，aUt 1 appears．
※2：int．2 mode is available only for PRESET2 model．

[^2]
Programmable Counter/Timer

[^3]
※Power Reset: There is no memory protection. (Initializes the display value when power is off)
Power Hold: There is memory protection. (Memorizes the display value at the moment of power off, indicates the memorized display value when power is resupplied.)

Programmable Counter/Timer

※Power Reset: There is no memory protection. (Initializes the display value and the output status when re-supplying the power.)
Power Hold: There is memory protection. (It memorizes the status of power off. When re-supplying the power, it returns the memorized display value and the output status.)

Timer Operation of the Indicator (CT6S-I, CT6Y-I, CT6M-I)

Programmable Counter/Timer

\square Timer '0' Time Setting

© Available output operation mode to set ' 0 ' time setting
 and, and. 1 , and.l, nFd, nFd. 1
© Operation according to output mode (at 0 time setting)

1) OND (Signal ON Delay) mode [ond]

- Setting time 1 is set to 0

2) OND. 1 (Signal ON Delay 1) mode [ond. i]

- Setting time1 is set to 0

3) OND. 2 (Power ON Delay2) mode [ond.2]

- Setting time 1 is set to 0

4) NFD (ON-OFF Delay) mode [n F ${ }^{6}$]

- OFF_Delay setting time is set to 0

5) NFD. 1 (ON-OFF Delay1) mode [n Fd.i]

- OFF_Delay setting time is set to 0

© Setting value1 (PS1) is higher than Setting value2 (PS2)

OND[and], OND. 1 [ond. 1] or OND. 2 [ond.2] output mode

- UP mode: When the timer setting value1 is greater than the setting value 2, OUT1 output does not turn ON.
- DOWN mode: When the timer setting value1 is greater than the setting value 2, OUT1 output does not turn ON. If the setting value 1 is same as the setting value 2 and START signal is applied, OUT1 output turns ON immediately.

Communication Mode
© Parameter setting
（MD key：To select setting mode，团 or key：To change setting value）

Setting mode	How to set		
Comm．address ［Addr］	To shift flashing digits of Comm．address人：To change the flashing digits．	※Settin ※If the it will	nge of Comm e address is work correct
Comm．speed ［bP5］			
Comm．parity [Prty]	※nonE：None EuEn：Even number odd：Odd number		
Comm．stop bit ［5LP］	$1 \longleftrightarrow 2$		
esponse waiting time ［－5 L！ L ］			
Comm．write ［［ ロп… $]$	$\text { EnR } \longleftrightarrow d i 5 \text { A }$ ※EnA：Permits Comm．write（Enable） di 5月：Prohibits Comm．write（Disable）		

© Application of system organization
※Only for RS485 communication output model．

※It is recommended to use Autonics communication converter；SCM－WF48（Wi－Fi to RS485•USB wireless communication converter，sold separately），SCM－US48I（USB to RS485 converter，sold separately），SCM－38I（RS232C to RS485 converter，sold separately），SCM－US（USB to Serial converter，sold separately）．
Please use twisted pair wire，which is suitable for RS485 communication，for SCM－WF48，SCM－US48I and SCM－38I．

© Communication control ordering

1．The communication method is Modbus RTU（PI－MBUS－300－REV．J）．
2．After 1 sec of power supply into the high order system，it starts to communicate．
3．Initial communication will be started by the high order system．When a command comes out from the high order system，
CT Series will respond．

Programmable Counter/Timer

© Communication command and block

The format of query and response

1) Read coil status (func. 01 H),

Read input status (func. 02 H)

- Query (master)

Slave Address	Function	Starting Address		No. of Points		Error Check (CRC 16)	
		High	Low	High	Low	Low	High
1Byte							

CRC 16

- Response (slave)

Slave Address	Function	Byte Count	Data	Data	Data	Error Check (CRC 16)	
		Low	High				
1Byte							

CRC 16
2) Read holding registers (func. 03 H),

Read input registers (func. 04 H)

- Query (master)

Slave Address	Function	Starting Address		No. of Points		Error Check (CRC 16)	
		High	Low	High	Low	Low	High
1Byte							

$$
\leftarrow
$$

CRC 16

- Response (slave)

Slave Address	Function	Byte Count	Data		Data		Data		Error Check (CRC 16)	
			High	Low	High	Low	High	Low	Low	High
1Byte	1Byte	1Byte	1 Byte	1Byte	1Byte	1Byte	1 Byte	1Byte	1Byte	1Byte

CRC 16
3) Force single coil. (func. 05 H)

- Query (master)

Slave Address	Function	Coil Address Force Data Error Check (CRC 16)					
		High	Low	High	Low	Low	High
1Byte							

- Response (slave)

Slave Address	Function	Coil Address		Force Data		Error Check (CRC 16)	
		High	Low	High	Low	Low	High
1Byte							

CRC 16
4) Preset single register (func. 06 H)

- Query (master)

Slave Address	Function	Register Address		Preset Data		Error Check (CRC 16)	
		High	Low	High	Low	Low	High
1Byte							

CRC 16

- Response (slave)

Slave Address	Function	Register Address		Preset Data		Error Check (CRC 16)	
		High	Low	High	Low	Low	High
1Byte							
\longleftrightarrow CRC 16							

CRC 16
5) Preset multiple registers (func. 10 H)

- Query (master)

- Response (slave)

CRC 16

6) Application

Read Coil Status (func. 01 H)
Master reads OUT2 $000002(0001 \mathrm{H})$ to $000003(0002 \mathrm{H})$,
OUT1 output status (ON: 1, OFF: 0) from the Slave (Address 01).

- Query (master)

Slave Address	Function	Starting Address		No. of Points		Error Check (CRC 16)	
		High	Low	High	Low	Low	High
01 H	01 H	00 H	01 H	00 H	02 H	EC H	0B H

On slave side OUT2 000003 (0002H): OFF,
OUT1 000002 (0001H): ON

- Response (slave)

Slave Address	Function	Byte Count	Data $(00003$ to $00001)$	Error Check (CRC 16)	
			Low	High	
01 H	01 H	01 H	02 H	D0 H	49 H

Read Input Register (Func. 04 H)Master reads preset value 301004 (03EBH) to 301005 (03 ECH) of counter/ timer, Slave (Address 15).

- Query (master)

Slave Address	Function	Starting Address		No. of Points		Error Check (CRC 16)	
		High	Low	High	Low	Low	High
OF H	04 H	03 H	EB H	00 H	02 H	00 H	95 H

In case that the present value is $123456(0001 \mathrm{E} 240 \mathrm{H})$ in slave side, 301004 (03EBH): E240 H, 301005 (03ECH): 0001H

- Response (slave)

| Slave
 Address | Function | Byte
 Count | | Data | | Error Check | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | |

CT Series

© Modbus mapping table

1) Reset/Output

No. (Address)	Func.	Explanation	Setting range	Notice
$000001(0000)$	$01 / 05$	Reset	$0:$ OFF 1:ON	-
$000002(0001)$	01	OUT2 output	$0:$ OFF 1:ON	-
$000003(0002)$	01	OUT1 output	$0:$ OFF 1:ON	-
$000004(0003)$	01	BATCH output	$0:$ OFF 1:ON	For BATCH output model
$000005(0004)$	$01 / 05$	BATCH resets	$0:$ OFF 1:ON	For BATCH output model

2) Terminal input status

No. (Address)	Func.	Explanation	Setting range	Notice
$100001(0000)$	02	INA input status	$0:$ OFF $1:$ ON	Terminal input status
$100002(0001)$	02	INB input status	$0:$ OFF $1:$ ON	Terminal input status
$100003(0002)$	02	INHIBIT input status	$0:$ OFF $1:$ ON	Terminal input status
$100004(0003)$	02	RESET input status	$0:$ OFF $1:$ ON	Terminal input status
$100005(0004)$	02	BATCH RESET input status	$0:$ OFF $1:$ ON	Terminal input status

3) Product information

No. (Address)	Func.	Explanation	Notice
300001 to 300100	04	Reserved	-
300101 (0064)	04	Product number H	Model ID
300102 (0065)	04	Product number L	Model ID
300103 (0066)	04	Hardware version	-
300104 (0067)	04	Software version	-
300105 (0068)	04	Model no. 1	"CT"
300106 (0069)	04	Model no. 2	"6M"
300107 (006A)	04	Model no. 3	"-2"
300108 (006B)	04	Model no. 4	"PT"
300109 (006C)	04	Reserved	-
300110 (006D)	04	Reserved	-
300111 (006E)	04	Reserved	-
300112 (006F)	04	Reserved	-
300113 (0070)	04	Reserved	-
300114 (0071)	04	Reserved	-
300115 (0072)	04	Reserved	-
300116 (0073)	04	Reserved	-
300117 (0074)	04	Reserved	-
300118 (0075)	04	Coil Status Start Address	0000
300119 (0076)	04	Coil Status Quantity	-
300120 (0077)	04	Input Status Start Address	0000
300121 (0078)	04	Input Status Quantity	-
300122 (0079)	04	Holding Register Start Address	0000
300123 (007A)	04	Holding Register Quantity	-
300124 (007B)	04	Input Register Start Address	0064
300125 (007C)	04	Input Register Quantity	-

4) Monitoring data

No. (Address)	Func.	Explanation	Setting range	Notice
301001 (03E8)	04	$\begin{aligned} & \text { BA.O LED } \\ & \text { display status } \end{aligned}$	0:OFF 1:ON	Bit 5
		OUT2 LED display status	0:OFF 1:ON	Bit 6
		OUT1 LED display status	0:OFF 1:ON	Bit 7
		BA.S LED display status	0:OFF 1:ON	Bit 10
		$\begin{aligned} & \text { LOCK LED } \\ & \text { display status } \end{aligned}$	0:OFF 1:ON	Bit 11
		$\begin{aligned} & \text { PS2 LED } \\ & \text { display status } \\ & \hline \end{aligned}$	0:OFF 1:ON	Bit 12
		PS1 LED display status	0:OFF 1:ON	Bit 13
		TMR LED display status	0:OFF 1:ON	Bit 14
		CNT LED display status	0:OFF 1:ON	Bit 15
301002 (03E9)	04	Present value of BATCH counter	0 to 999999	For BATCH output model
301003 (03EA)				
301004 (03EB)	04	Present value of counter/timer	[Counter] 6digit type - -99999 to 999999 4digit type	Use counter and timer in common
301005 (03EC)			: -999 to 9999 [Timer]: Within time setting range	
301006 (03ED)	04	Display unit	[Counter] : decimal point of display value [Timer] : Time range	Counter: 40058 Data Timer: 40102 Data
301007 (03EE)	04	PS (2) setting value	[Counter] 6digit type : -99999 to 999999 4digit type : -999 to 9999 [Timer]: Within time setting range	Use counter and timer in common
301008 (03EF)				
301009 (03F0)	04	PS1 setting value		
301010 (03F1)				
301011 (03F2)			0 to 999999	Use counter
301012 (03F3)	04	counter	O to 999999	common
301013 (03F4)	04	Checking the input logic	0: NPN, 1: PNP	

- Date format of 301001 (03E8) address bit

Bit	Explanation	Data	Bit	Explanation	Data
Bit0	-	0	Bit8	-	0
Bit1	-	0	Bit9	-	0
Bit2	-	0	Bit10	BA.S	0 or 1
Bit3	-	0	Bit11	Lock	0 or 1
Bit4	-	0	Bit12	PRESET2	0 or 1
Bit5	BA.O	0 or 1	Bit13	PRESET1	0 or 1
Bit6	OUT2	0 or 1	Bit14	TMR	0 or 1
Bit7	OUT1	0 or 1	Bit15	CNT	0 or 1

※2 Words data format: Upper data has high number address.
E.g.)301004: Present Value (Low Word), 301005: Present Value (High Word)

5) Preset value setting group

No. (Address)	Func.	Explanation	Setting range	Notice
400001 (0000)	$\begin{aligned} & 03 / \\ & 06 / \\ & 16 \end{aligned}$	PS2 setting value PS setting value	[Counter] 6digit type : 0 to 999999 4digit type: 0 to 9999 [Timer]: Within time setting range	Use counter and timer in common
400002 (0001)				
400003 (0002)				
400004 (0003)		PS1 setting value		
400005 (0004)				
400006 (0005)		setting value		

Programmable Counter／Timer

6）Function setting mode（counter group）

No．（Address）	Func．	Explanation	Setting range	Notice
400051 （0032）	03／06／16	Counter／Timer［［－t ］	1：Loun 1：tiñ	Use counter and timer in common
400052 （0033）	03／06／16	Input mode［1 n ］		－
400053 （0034）	03／06／16	Indication mode［di 5 ̄］	0：tothl 1：HoLd	For the indicator
400054 （0035）	03／06／16	Output mode［out．in］		－
400055 （0036）	03／06／16	Maximum counting speed ［LPS］	$0: 1$ $2: 14$ $4: 10 ム$ $1: 30$ $3: 5 ム$	－
400056 （0037）	03／06／16	OUT2（OUT）output time ［out 2（out．t）］	0001 to 9999	unit：$\times 10 \mathrm{~ms}$
400057 （0038）	03／06／16	OUT1 Output time ［oUt 1］	0001 to 9999	unit：$\times 10 \mathrm{~ms}$
400058 （0039）	03／06／16	Decimal point［dP］		$\begin{aligned} & \text { 4digit type 0:---- } \\ & \text { 1:---. 2: }--.--3:-.-- \end{aligned}$
400059 （003A）	03／06／16	Min．reset time［ r 5 t ］	0：1 1：20	unit：ms
400060 （003B）	03／06／16	Prescale decimal point position［5［L．d］	0：－－－－－－ 3：－－－．－－ 2：$----------------~$ 4：－－－－－	4digit type 1:---- 2: --.-- 3:-.---
$\begin{array}{\|l\|} \hline 400061 \text { (003C) } \\ \hline 400062 \text { (003D) } \\ \hline \end{array}$	03／06／16	Prescale value［5［L］	6digit type： 0.00001 to 999999 4digit type： 0.001 to 9999	Connected with prescale decimal point position
400063 （003E）	03／06／16	Start value［5trt］	6digit type： 000000 to 999999 4digit type： 0000 to 9999	Connected with decimal point position of display value
400065 （0040）	03／06／16	Memory protection［ d AL A ］	0：Llr 1：rec	Use counter and timer in common
400066 （0041）	03／06／16		0：L．off 1：LoC． 1 2：LoL．2 3：LoL．3	

（A）
$\stackrel{\text { Photoelectric }}{ }$
Sensors
（B）
Fiber
Optic
Sensors
（C）
Door／
Door／Area
Sensors
（D）
Proximity
Sensors
（E）
Pressure
Pressure
Sensors
（F）
Rotary
Encoders

Connectors／
Connector Cables／
Sensor Distribution
Boxes／Sockets

（H）	
Te	
C	
S	

Temperature
Controllers
（I）
SSRs／Power
SSRs／Power
Controllers
（J）
Count
Counters
7）Function setting mode（timer group）

No．（Address）	Func．	Explanation	Setting range				Notice
400101 （0064）	03／06／16	Counter／Timer［ $[-t$ ］	0：Coun 1：tine				Use counter and timer in common
400102 （0065）	03／06／16	Time range ［Habr／nín／5E［］	4digit type				－
			0： 0.001 s to 9.999 s 5： 0.1 m to 999.9 m $1: 0.01 \mathrm{~s}$ to 99.99 s 6： 1 m to 9999 m 2： 0.1 s to 999.9 s 7： 1 m to 99 h 59 m $3: 1 \mathrm{~s}$ to 9999 s 8： 1 h to 9999 h $4: 1 \mathrm{~s}$ to 99 m 59 s				
			6digit type				
			$0: 0.001 \mathrm{~s}$ to 999.999 s 6： 1 s to 9999 m 59 s $1: 0.01 \mathrm{~s}$ to 9999.99 s $7: 1 \mathrm{~m}$ to 99999.9 m 2： 0.1 s to 99999.9 s 8： 1 m to 999999 m 3： 1 s to 999999 s 9： 1 s to 99 h 59 m 59 s $4: 0.01 \mathrm{~s}$ to 99 m 59.99 s $10: 1 \mathrm{~m}$ to 9999959 m 5： 0.1 s to 999 m 59.9 s 11： 0.1 h to 99999.9 h				
400103 （0066）	03／06／16	UP／Down mode［ $u-d$ ］	0：UP 1：dn				－
400104 （0067）	03／06／16	Output mode［oUt．in］	$\begin{aligned} & \text { 0: and } \\ & \text { 1: and. } \\ & 2: \text { and. } \end{aligned}$	$\begin{aligned} & \text { 3: FLU } \\ & \text { 4: FLU. } \\ & \text { 5: FLU.Z } \end{aligned}$	$\begin{aligned} & \text { 7: i nt. } 1 \\ & \text { 8: i nt.己 } \\ & \text { 9: ofd } \end{aligned}$	$\begin{aligned} & \text { 10: } n F d \\ & \text { 11: } n F d .1 \\ & \text { 12: i nt. } \end{aligned}$	－
400105 （0068）	03／06／16	OUT2（OUT）Output time ［out ᄅ］	0000 to 9999 （0：Hold）				unit：$\times 10 \mathrm{~ms}$
400106 （0069）	03／06／16	OUT1 Output time ［oUt 1］	0000 to 9999 （0：Hold）				unit：$\times 10 \mathrm{~ms}$
400107 （006A）	03／06／16	Input signal time［ i пt］	0：1 1：20				unit：ms
400108 （006B）	03／06／16	Memory protection ［dALR］	0：Llr 1：rec				Use counter and timer in common
400109 （006C）	03／06／16	Lock key［Lo［ L ］	0：L．off 1：LaL． 1 2：LaL．2 3：LaL．ق				Use counter and timer in common
400110 （006D）	03／06／16	ndication mode［d5P．̄］	0：tathl 1：HaLd 2：ant．d				For the indicator

8）Function setting mode（communication group）

No．（Address）	Func．	Explanation	Setting range	Notice
400151 （0096）	03／06／16	Comm．address［ Addr ］	1 to 127	－
400152 （0097）	03／06／16	Comm．speed［6－5］	0： 24 1：48 2：96 3：192 4：384	unit：$\times 100 \mathrm{bps}$
400153 （0098）	03／06／16	Comm．parity［Prレy］	0：nonE 1：EuEn 2：odd	－
400154 （0099）	03／06／16	Stop bit［5ヒP］	0：1 1： 2	－
400155 （009A）	03／06／16		05 to 99	unit：ms
400156 （009B）	03／06／16	Comm．writing［［ם ¢－	0：EnA 1：di 5A	－

© Exception processing

When communication error occurs，the highest bit of received function is set
to 1 ，then sends response command and transmits exception code．

Slave Address	Exception Code	Error Check（CRC16）		
			Low	High
1Byte	1Byte	1Byte	1Byte	1Byte

－Illeegal Function（Exception Code：01H）：Not supporting command
－Illegal Data Address（Exception Code：02H）
：Mismatch between the number of asked data and the number of ansmittable data．
－Illegal Data Value（Exception Code： 03
：Mismatch between asked the number of data and transmittable the number of data in device
－Slave Device Failure（Exception Code：04H）：Command is processed incorrectly．

Example）

Master reads output status（ON：1，OFF：0）of non existing coil 01001 （03E8 H）from Slave（Address17）．

－Query（master）

Slave Address	Function	Starting Address			No．of Points	Error Check（CRC16）	
		High	Low	High	Low	Low	High
11 H	01 H	03 H	E8H	00 H	01 H	\＃\＃H	

－Response（slave）

Slave Address	Function +80 H	Exception Code	Error Check（CRC16）	
			High	
	81 H	02 H	\＃\＃H	\＃\＃H

Read and Write of Parameter Value Using Communication

© Read of the parameter area

000002 （OUT2）， 000003 （OUT1）， 000004 （BA，0）， 100001 to 100005 （terminal input），
300101 to 300125 （product information）， 301001 to 301013 （Monitoring data）

© Read and write of the parameter area

000001 （reset starts）， 000005 （BATCH reset starts）， 400001 to 400006 （setting value saving group），
400051 to 400066 （counter setting group）， 400101 to 400110 （timer setting group），
400151 to 400156 （communication setting group）

（O）Read of communication

Read parameter value using communication．（function：01H，02H，03H，04H）
It is able to read communication regardless of permitting／prohibiting communication writing．

© Communication write

Change parameter value using communication．（function： $05 \mathrm{H}, 06 \mathrm{H}, 10 \mathrm{H}$ ）
－When changing the parameter setting value of＇回 Function setting mode Counter group＇or＇■ Function setting mode Timer group＇using communication，reset indication will flash in 3 sec and display value will be reset．（counting display value and progress time before changing parameter setting value are not saved．）
－When changing the parameter setting value of＇■ Preset value setting group＇or＇■ Function setting mode Communication group＇using communication，counting display value or progress time will not be reset．
－In prohibit writing communication setting（ $[\square \bar{n}, \underline{u}=1: d i 5 R$ ），a write command does not process．
－If setting value beyond the setting range，this setting value is substituted for the value within the setting range and then memorized．

Programmable Counter／Timer

Factory Default

－	Parameter	Factory default
Counter	in	Ud－［
	－ᄂUt．ก̄	F
	dSP．${ }^{\text {® }}$	tothi
	［P5	30
	－Uヒ2（ロUt．t）	Hold（fixed）
	㖋 1	00.10
	d^{\prime}	－－－－－－
	r5t	20
	51.	$n \mathrm{Pn}$
	5 L．dP	6－digit type：－．－－－－－
	5［L	6－digit type： 1.00000 4－digit type： 1.000
	5trt	000000
	dAtA	［Lr
Timer	Hourlni n／5E［	6－digit type： $0.00 \mathrm{Is}-999.999 \mathrm{~s}$ 4－digit type： 0.00 is－9．999s
	U－d	UP
	d5P．п	tothi
	d月ta	［Lr
	－Uと．п̄	and
	－UL2（oUt．t）	Hold
	㖋 1	00.10
	51.	$n \mathrm{P}$
	1 n．t	20
General	LoLt	L．oFF
	PS1	1000
	PS2	5000
Comm．	Addr	001
	bP5	96
	Prty	nonE
	5tP	2
	－5枵	20
	［0ํ．．	EnA

\square Cautions during Use

1．Follow instructions in＇Cautions during Use＇． Otherwise，it may cause unexpected accidents．
2．24－48VDC，24VAC power supply should be insulated and limited voltage／current or Class 2，SELV power supply device．
3．Use the product， 0.1 sec after supplying power．
4．When supplying or turning off the power，use a switch or etc．to avoid chattering．
5．Install a power switch or circuit breaker in the easily accessible place for supplying or disconnecting the power．
6．In case of contact input，set count speed to low speed mode（1cps or 30cps）to operate．
If set to high speed mode（ $1 \mathrm{k}, 5 \mathrm{k}, 10 \mathrm{kcps}$ ），counting error occurs due to chattering．
7．Keep away from high voltage lines or power lines to prevent inductive noise．
In case installing power line and input signal line closely， use line filter or varistor at power line and shielded wire at input signal line．
Do not use near the equipment which generates strong magnetic force or high frequency noise．
8．This product may be used in the following environments． （1）Indoors（in the environment condition rated in
＇Specifications＇）
（2）Altitude max． $2,000 \mathrm{~m}$
（3）Pollution degree 2
（4）Installation category II

[^0]: ※It is recommended to use Autonics communication converter; SCM-WF48 (Wi-Fi to RS485-USB wireless communication converter, sold

[^1]: ※When error occurs, the output turns OFF.
 ※When 1st setting value is set as 0 (zero), OUT1 maintains OFF
 When 2nd setting value is smaller than 1st setting value, 1st setting value is ignored and only OUT2 output operates. ※Indicator model does not have error display function.

[^2]: ※Power Reset: There is no memory protection. (Initializes the display value when power is off)
 Power Hold: There is memory protection. (Memorizes the display value at the moment of power off, indicates the memorized display value when power is resupplied.)

[^3]: ※Power Reset: There is no memory protection. (Initializes the display value when power is off)
 Power Hold: There is memory protection. (Memorizes the display value at the moment of power off, indicates the memorized display value when power is resupplied.)

