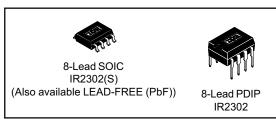


HALF-BRIDGE DRIVER

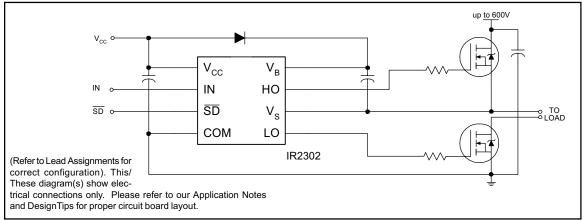

Features

- Floating channel designed for bootstrap operation Fully operational to +600V Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 5 to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- High side output in phase with IN input
- Logic and power ground +/- 5V offset.
- Internal 540ns dead-time
- Lower di/dt gate driver for better noise immunity
- Shut down input turns off both channels
- 8-Lead SOIC also available LEAD-FREE (PbF).

Description

The IR2302(S) are high voltage, high speed power MOSFET and IGBT drivers with dependent high and low side referenced output

Packages



2106/2301//2108//2109/2302/2304 Feature Comparison

Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	
2106/2301	HIN/LIN	no none		СОМ	
21064	HIIN/LIIN	110	none	VSS/COM	
2108	HIN/LIN	1/00	Internal 540ns	COM	
21084	TIIIN/LIIN	yes	Programmable 0.54~5 μs	VSS/COM	
2109/2302	IN/SD	Vec	Internal 540ns	COM	
21094	IIV/SD	yes	Programmable 0.54~5 μs	VSS/COM	
2304	HIN/LIN	yes	Internal 100ns	СОМ	

channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating absolute voltage		-0.3	625	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	V
Vcc	Low side and logic fixed supply voltage	-0.3	25		
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	
VIN	Logic input voltage (IN & SD)		COM - 0.3	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8 Lead PDIP)	_	1.0	W
		(8 Lead SOIC)	_	0.625	VV
RthJA	Thermal resistance, junction to ambient	(8 Lead PDIP)	_	125	°C/W
		(8 Lead SOIC)	_	200	*C/VV
TJ	Junction temperature		_	150	
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

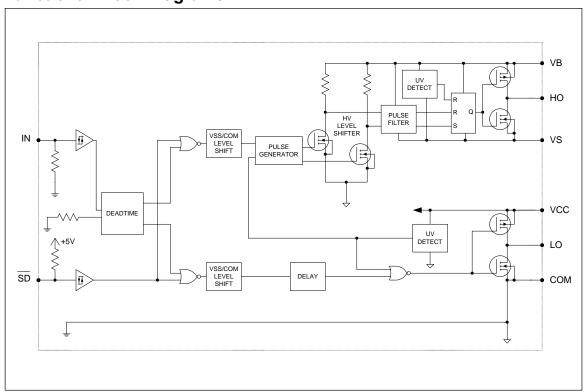
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 5	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	
Vcc	Low side and logic fixed supply voltage	5	20	V
V_{LO}	Low side output voltage	0	Vcc	
V _{IN}	Logic input voltage (IN & SD)	СОМ	Vcc	
T _A	Ambient temperature	-40	150	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

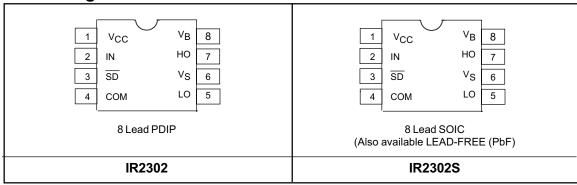
V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF, and T_A = 25°C unless otherwise specified.

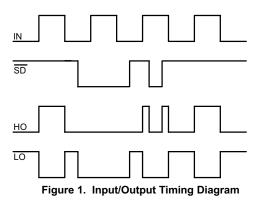

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	550	750	950		V _S = 0V
toff	Turn-off propagation delay	_	200	280		V _S = 0V or 600V
t _{sd}	Shut-down propagation delay	_	200	280		
MT	Delay matching, HS & LS turn-on/off	_	0	50		
t _r	Turn-on rise time	_	130	220	nsec	V _S = 0V
tf	Turn-off fall time	_	50	80		V _S = 0V
DT	Deadtime: LO turn-off to HO turn-on(DTLO-HO) &	400	540	680		
	HO turn-off to LO turn-on (DTHO-LO)					
MDT	Deadtime matching = DTLO - HO - DTHO-LO		0	60		

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to COM and are applicable to the respective input leads: IN and \overline{SD} . The V_O , I_O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage for HO & logic "0" for LO	2.9	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" input voltage for HO & logic "1" for LO	_	_	0.8		V _{CC} = 10V to 20V
V _{SD,TH+}	SD input positive going threshold	2.9	_	_	V	V _{CC} = 10V to 20V
V _{SD,TH} -	SD input negative going threshold	_	_	0.8	_ v	V _{CC} = 10V to 20V
V _{OH}	High level output voltage, V _{BIAS} - V _O	_	0.8	1.4		I _O = 20 mA
V _{OL}	Low level output voltage, VO	_	0.3	0.6		I _O = 20 mA
I _{LK}	Offset supply leakage current	-	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply current	20	60	100	μA	V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	0.4	1.0	1.6	mA	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" input bias current	_	5	20		IN = 5V, SD = 0V
I _{IN-}	Logic "0" input bias current	_	_	2	μA	IN = 0V, SD = 5V
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage	3.3	4.1	5		
V _{BSUV+}	positive going threshold]	
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage	3	3.8	4.7	V	
V _{BSUV} -	negative going threshold]	
Vccuvh	Hysteresis	0.1	0.3	_		
V _{BSUVH}						
I _{O+}	Output high short circuit pulsed vurrent	120	200	_	mA	$V_O = 0V$, $PW \le 10 \mu s$
I _{O-}	Output low short circuit pulsed current	250	350	_	11174	V _O = 15V,PW ≤ 10 μs


Functional Block Diagrams



Lead Definitions

Symbol	Description
IN	Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
SD	Logic input for shutdown
V _B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
V _{CC}	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

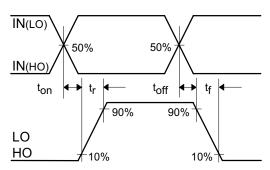
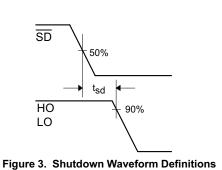



Figure 2. Switching Time Waveform Definitions

HO DT_{LO-HO} 10% DT_{HO-LO}

MDT= DT_{LO-HO} - DT_{HO-LO}

Figure 4. Deadtime Waveform Definitions

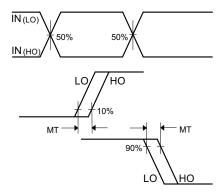


Figure 5. Delay Matching Waveform Definitions

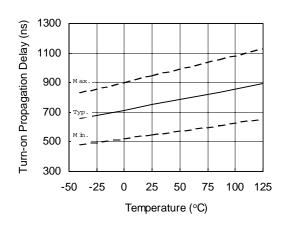


Figure 6A. Turn-on Propagation Delay vs. Temperature

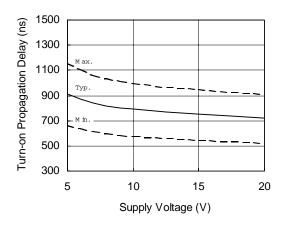


Figure 6B. Turn-on Propagation Delay vs. Supply Voltage

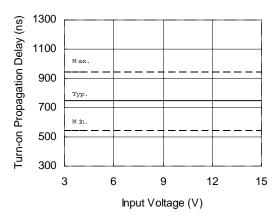


Figure 6C. Turn-on Propagation Delay vs. Input Voltage

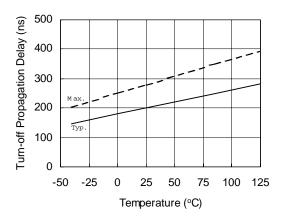


Figure 7A. Turn-off Propagation Delay vs. Temperature

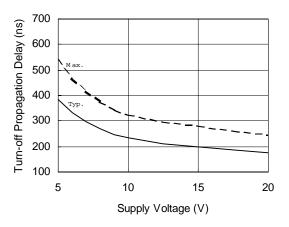


Figure 7B. Turn-off Propagation Delay vs. Supply Voltage

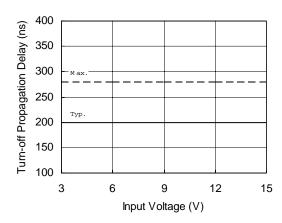


Figure 7C. Turn-off Propagation Delay vs. Input Voltage

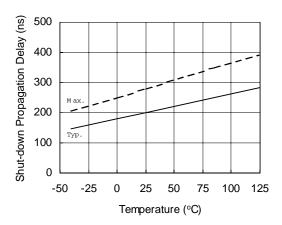


Figure 8A. Shut-down Propagation Delay vs. Temperature

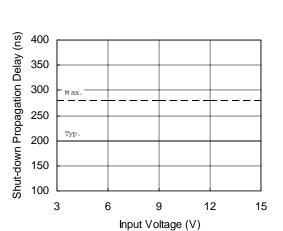


Figure 8C. Shut-down Propagation Delay vs. Input Voltage

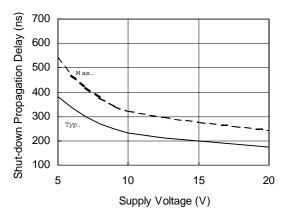


Figure 8B. Shut-down Propagation Delay vs. Supply Voltage

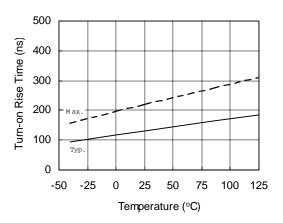


Figure 9A. Turn-on Rise Time vs. Temperature

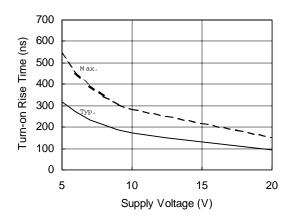


Figure 9B. Turn-on Rise Time vs. Supply Voltage

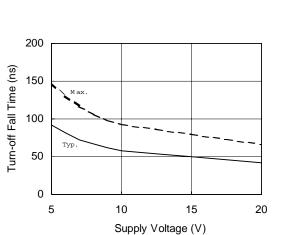


Figure 10B. Turn-off Fall Time vs. Supply Voltage

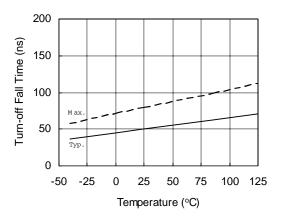


Figure 10A. Turn-off Fall Time vs. Temperature

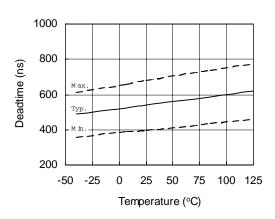


Figure 11A. Deadtime vs. Temperature

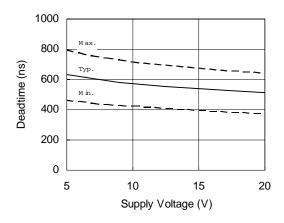


Figure 11B. Deadtime vs. Supply Voltage

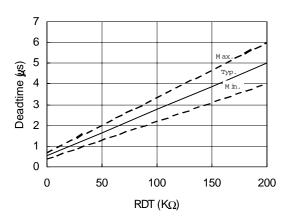


Figure 11C. Deadtime vs. RDT

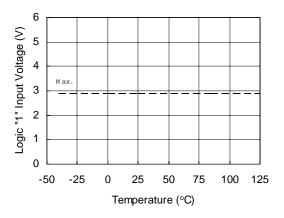


Figure 12A. Logic "1" Input Voltage vs. Temperature

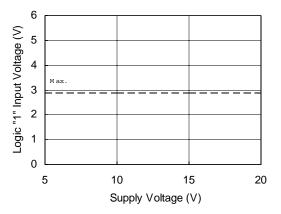


Figure 12B. Logic "1" Input Voltage vs. Supply Voltage

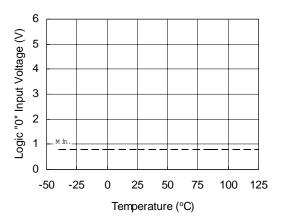


Figure 13A. Logic "0" Input Voltage vs. Temperature

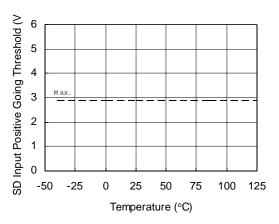


Figure 14A. SD Input Positive Going Threshold vs. Temperature

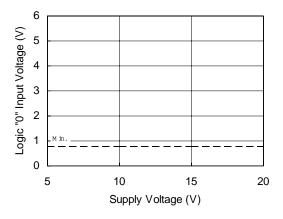


Figure 13B. Logic "0" Input Voltage vs. Supply Voltage

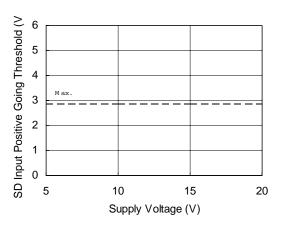


Figure 14B. SD Input Positive Going Threshold vs. Supply Voltage

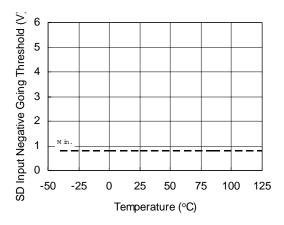


Figure 15A. SD Input Negative Going Threshold vs. Temperature

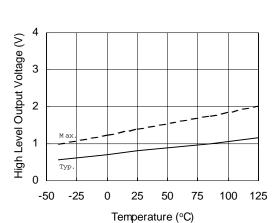


Figure 16A. High Level Output Voltage vs. Temperature

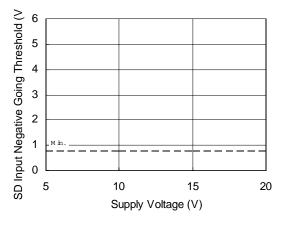


Figure 15B. SD Input Negative Going Threshold vs. Supply Voltage

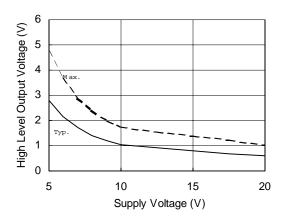


Figure 16B. High Level Output Voltage vs. Supply Voltage

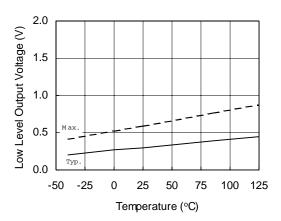


Figure 17A. Low Level Output Voltage vs. Temperature

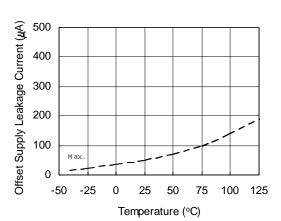


Figure 18A. Offset Supply Leakage Current vs. Temperature

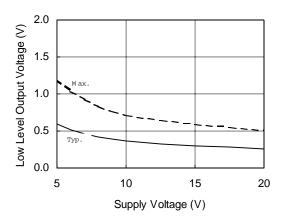


Figure 17B. Low Level Output Voltage vs. Supply Voltage

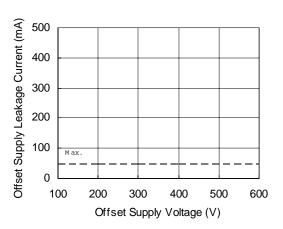


Figure 18B. Offset Supply Leakage Current vs. Offset Supply Voltage

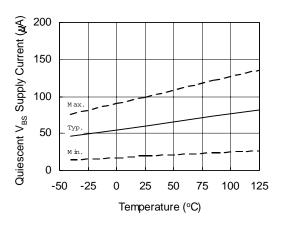


Figure 19A. Quiescent V_{BS} Supply Current vs. Temperature

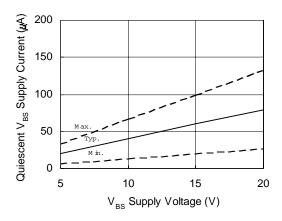


Figure 19B. Quiescent $V_{\rm BS}$ Supply Current vs. $V_{\rm BS}$ Supply Voltage

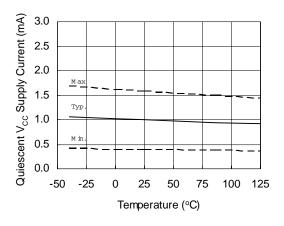


Figure 20A. Quiescent V_{CC} Supply Current vs. Temperature

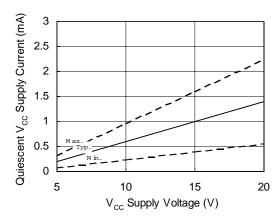


Figure 20B. Quiescent $\rm V_{CC}$ Supply Current vs. $\rm V_{CC}$ Supply Voltage

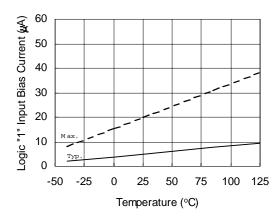
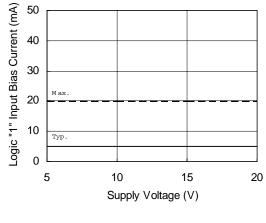



Figure 21A. Logic "1" Input Bias Current vs. Temperature

50

Figure 21B. Logic "1" Input Bias Current vs. Supply Voltage

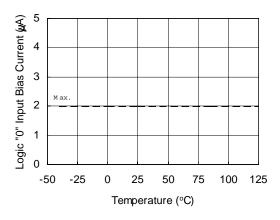


Figure 22A. Logic "0" Input Bias Current vs. Temperature

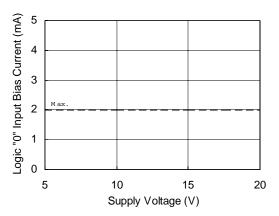


Figure 22B. Logic "0" Input Bias Current vs. Supply Voltage

Figure 23. $V_{\rm CC}$ and $V_{\rm BS}$ Undervoltage Threshold (+) vs. Temperature

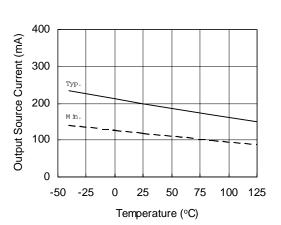


Figure 25A. Output Source Current vs. Temperature

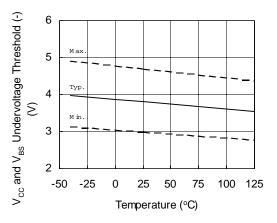


Figure 24. V_{CC} and V_{BS} Undervoltage Threshold (-) vs. Temperature

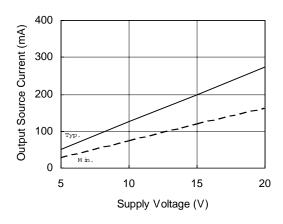


Figure 25B. Output Source Current vs. Supply Voltage

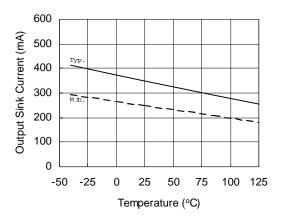


Figure 26A. Output Sink Current vs. Temperature

0

-2

-4 -6 -8

-12

5

Тур.

Maximum V_s Negative Offset (V)

20

Figure 27. Maximum V_s Negative Offset vs. $V_{\rm BS}$ Floating Supply Voltage

 V_{BS} Floating Supply Voltage (V)

15

10

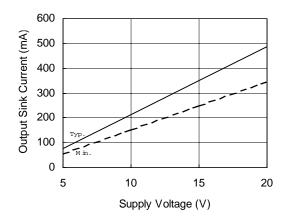
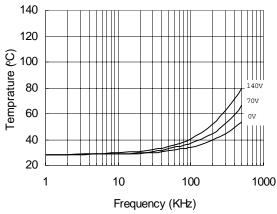



Figure 26B. Output Sink Current vs. Supply Voltage

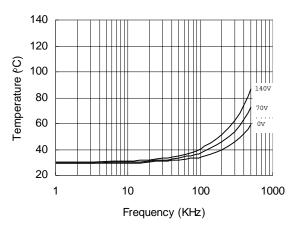


Figure 29. IR2302 vs. Frequency (IRFBC30), $R_{\text{gate}} \text{=} 22\Omega, \, \text{V}_{\text{CC}} \text{=} 15\text{V}$

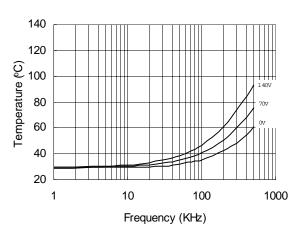


Figure 30. IR2302 vs. Frequency (IRFBC40), $R_{\text{cate}} \! = \! \! 15 \Omega, \, V_{\text{CC}} \! = \! \! 15 V$

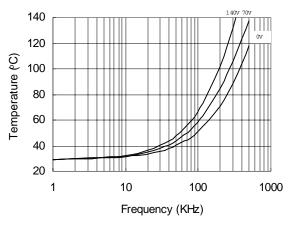


Figure 31. IR2302 vs. Frequency (IRFPE50), $R_{\text{qate}}\text{=}10\Omega,\,\text{V}_{\text{CC}}\text{=}15\text{V}$

Figure 32. IR2302S vs. Frequency (IRFBC20), ${\rm R_{gate}}{=}33\Omega,\,{\rm V_{CC}}{=}15{\rm V}$

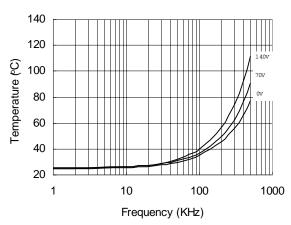


Figure 33. IR2302S vs. Frequency (IRFBC30), ${\rm R_{\rm nate}}{=}22\Omega,\,{\rm V_{\rm CC}}{=}15{\rm V}$

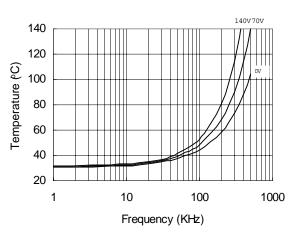
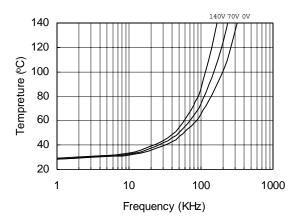
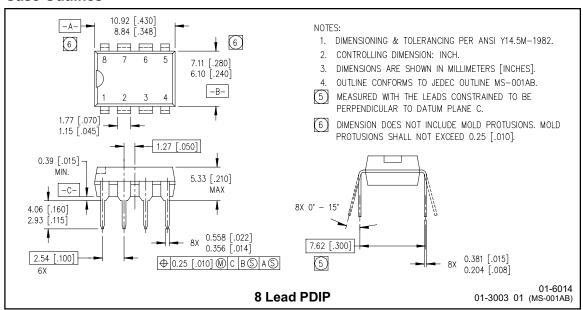
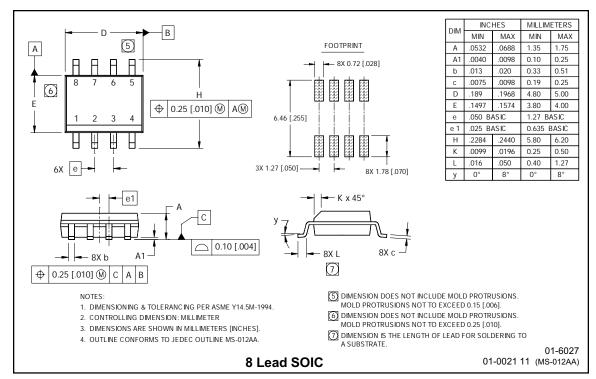


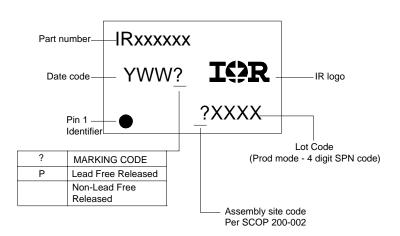
Figure 34. IR2302S vs. Frequency (IRFBC40), $R_{\text{cate}} \! = \! 15 \Omega, \, V_{\text{CC}} \! = \! 15 V$




Figure 35. IR2302S vs. Frequency (IRFPE50), $\rm R_{gate} = 10\Omega, \, \rm V_{CC} = 15V$


International

TOR Rectifier


IR2302(s) & (PbF)

Case Outlines

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2302 order IR2302 8-Lead SOIC IR2302S order IR2302S

Leadfree Part

8-Lead PDIP R2302 not available 8-Lead SOIC IR2302S order IR2302SPbF

International TOR Rectifier

Thisproduct has been designed and qualified for the Industrial market.

Qualification Standards can be found on IR's Web Site http://www.irf.com

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

8/16/2004