RP2040 A microcontroller by Raspberry Pi

Raspberry Pi1 Pico C/C++ SDK
Libraries and tools for

C/C++ development on
RP2040 microcontrollers

Raspberry Pi Trading Ltd

Raspberry Pi Pico C/C++ SDK

Colophon

Copyright © 2020 Raspberry Pi (Trading) Ltd.

The documentation of the RP2040 microcontroller is licensed under a Creative Commons Attribution-NoDerivatives 4.0
International (CC BY-ND).

build-date: 2021-02-23
build-version: 0d509ec-clean

About the SDK

Throughout the text "the SDK" refers to our Raspberry Pi Pico SDK. More details about the SDK can be
found throughout this book.

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY Pl PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME (“"RESOURCES") ARE PROVIDED BY RASPBERRY PI (TRADING) LTD (“RPTL) "AS IS" AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW IN NO EVENT SHALL RPTL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

RPTL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPTL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPTL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use
of the RESOURCES is prohibited. No licence is granted to any other RPTL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPTL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPTL’s Standard Terms. RPTL's provision of the RESOURCES does not
expand or otherwise modify RPTL's Standard Terms including but not limited to the disclaimers and warranties
expressed in them.

Legal Disclaimer Notice 1

https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://github.com/raspberrypi/pico-sdk
https://www.raspberrypi.org/terms-conditions-sale/
https://www.raspberrypi.org/terms-conditions-sale/

Raspberry Pi Pico C/C++ SDK

Table of Contents

Colophon - oo 1
Legal Disclaimer Notice. 1
T.About the SDK. .« ..o 6
T INtroduCtion « .. 6
1.2. Anatomy of a SDK Application 6
2.SDKArChitecture 9
2.1.The Build System. 9
2.2.Every Library is an INTERFACE 10
2.3.SDK Library Structure 11
2.3.1. Higher-level Libraries. 11
2.3.2. Runtime Support (pico_runtime, pico_standard_link) 11
2.3.3. Hardware Support Libraries 12
2.3.4. Hardware Structs Library 13
2.3.5. Hardware Registers Library 14
2.3.6. TiNYUSB POrt. . ..o 15
2.4.Directory StrUCTUre 15
2.4.1. Locations of Files. 16
2.5. Conventions for Library Functions 17
2.5.1. Function Naming Conventions. 17
2.5.2. Return Codes and Error Handling. 18
2.53.Useof Inline FUnNctions 18
2.5.4. Builder Pattern for Hardware Configuration APIs 19
2.6. Customisation and Configuration Using Preprocessor variables 20
2.6.1. Preprocessor Variables via Board Configuration File 20
2.6.2. Preprocessor Variables Per Binary or Library viaCMake 20
2.7.SDK RUNTIME « . i 21
2.7.1. Standard Input/Output (stdio) SUPPOrt 21
2.7.2. Floating-point SUPPOIt. 22
2.7.3.Hardware Divider 25
2.8. MUItI-COre SUPPOIt. - . .. 26
2.9.Using CHt. oo 27
2.0, NeXt StePS . . . i 27
3.Using Programmable I/0 (PIO). 28
3.1. What is Programmable I/0 (P10)?. 28
311 Background. .o 28
3.1.2.1/0 Using dedicated hardware onyour PC 28
3.1.3.1/0 Using dedicated hardware on your Raspberry Pi or microcontroller. 28
3.1.4.1/0 Using software control of GPIOs ("bit-banging”) 29
3.1.5. Programmable I/0 Hardware using FPGAs and CPLDs 30
3.1.6. Programmable I/0 Hardware using PIO 30
3.2. Getting started with P10 31
3.2.1. AFirst PIO Application 31
3.2.2. AReal Example: WS2812 LEDS 35
3.2.3.PI0and DMA (A Logic Analyser) 43
3.2.4. Furtherexamples 47
3.3.Using PIOASM, the PIO Assembler. 48
3.3 T Usage oo 48
3.3.2. DireCtives .ol 49
3.3.3.Values 50
3.3LA EXPreSSIONS . ..o 50
3.3.5. COMMENTSo 50
3.3.6. Labels 50
3.3.7.InStruCtionS. . ..o 51
3.3.8. PseudoinstruCtions 51
3.3.9. OQutput pass through 51

Table of Contents

Raspberry Pi Pico C/C++ SDK
]

3.3.10. Language generators 52
3.4. PIO Instruction Set Reference 57
34T SUMMANY. oo 57
34 2. M 58
B 3 WAL i 59
A A IN i 60
B 5. OUT 61
34,6, PUSH i 62
BT PULL oo 63
348 MOV . 64
340 IRQ . oo 65
B0, SET i 66
4. Library Documentation 68
A0 Hardware APIS. 68
400 hardware_adC. oo 68
4.1.2. hardware_base. 73
4.1.3. hardware_claim 74
4.7.4. hardware_clocks 76
4.1.5. hardware_divider 82
4.7.6.hardware_dma 91
4.1.7.channel_config. i 97
4.1.8. hardware_flash. 101
4.1.9. hardware_gpio 103
4.7.70.hardware_i2C 113
4707 hardware_interp. 120
4172, interp_config . . . 125
4773 hardware_irg - ... 128
4774, hardware_pio 133
A5, sm_coNnfig. . . 147
4.1.06. hardware_pll. 153
A7, hardware_pWmM - ... 154
4118, hardware_resets 162
4179 hardware_rC 164
4.1.20. hardware_spi 167
4.1.27.hardware_SYNC. 172
4.1.22. hardware_timer 177
4.1.23. hardware_uart 180
4.7.24.hardWare_VIeq 187
4.1.25. hardware_watchdog 187
4.1.26. hardware_XOSC. 189
4.2 High Level APIs . . i 190
4.2.7.pico_multicore 190
2 {1 o T 192
4.2.3.pico_stdlib ... 194
A2 4.DICO_SYNC © .o i 196
4.2.5. critical_section. 196
A.2.6. MUEEX - ..o 197
A.2.7.SEM 200
4.2.8. pico_time o 202
4.2.9.0imestamp ... 202
A.2.00. SlEED - . 204
A2 alarm . 206
4.2.12.repeating_timer 212
4213, pico_uniqueid. 215
4204 pico_Util « o 216
42705 . datetime . .. 216
4206, pheap ... 216
A2707.QUEUE .. 217
4.3. Third-party Libraries 221
437 tinyusb_device 221

Table of Contents

Raspberry Pi Pico C/C++ SDK
]

4.3.2.tinyusb_host 221
4.4, Runtime Infrastructure 221
A4.4.7.boot_stage? . . . 222
A.42.pico_base . .. 222
4.4.3. pico_bit_OpS 222
A4.4.4.pico_bootrom 223
4.4.5. PICO_CXX_OPLIONS 224
4.4.6.pico_divider 224
4.47.pico_double . 232
4.4.8.pico_float 232
4.4.9.pICO_INTOA_OPS . - - . .. 233
4.410. pico_malloc 233

A 477, PICOLMEMU_OPS. - - - oo 233
4,412, pico_platform. ... 233
4413, pico_printf. 233
44704, pico_runtimel 233
4405, picostdio. . .. 233
4.4.16. pico_stdio_semihosting 235
4417 pico_stdio_uart 235
4.418. pico_stdio_usb. 237
4.419. pico_standard_link. 237
4.5 External APl Headers 237
4.5.1.boot_picoboot 237
4.5.2.b00t_Uf2 237
Appendix A: App NOTES . . . oo 238
Attachinga 7 segment LED via GPIO. 238
Wiring information 238
Listof Files . . . 238

Bill of Materials. 240
DHT-11, DHT-22, and AM2302 SENSOIS. 241
Wiring information 241
Listof Files 242

Bill of Materials. 244
Attaching a BME280 temperature/humidity/pressure sensorvia SPl. 244
Wiring information 244
Listof Files . . . 245

Bill of Materials. 249
Attaching a MPU9250 accelerometer/gyroscope via SPl. 249
Wiring information 250
Listof Files . . . 250

Bill of Materials. 253
Attaching a MPU6050 accelerometer/gyroscope via I2C. 253
Wiring information 254
Listof Files . .. 254

Bill of Materials. 256
Attachinga 16x2 LCD via 12C 257
Wiring information 257
Listof Files . . . 257

Bill of Materials. 260
Appendix B: SDK Configuration 261
Configuration Parameters. 261
Appendix C: CMake Build Configuration 265
Configuration Parameters. 265
Control of binary type produced (advanced). 266
Appendix D: Board Configuration. 267
Board Configuration. 267
The Configuration files 267
Building applications with a custom board configuration.o 268
Available configuration parameters. 268
Appendix E: Building the SDK APl documentation. 269

]
Table of Contents 4

Raspberry Pi Pico C/C++ SDK
]

Appendix F: Documentation Release History 270

. __|
Table of Contents 5

Raspberry Pi Pico C/C++ SDK

Chapter 1. About the SDK

1.1. Introduction

The SDK (Software Development Kit) provides the headers, libraries and build system necessary to write programs for
RP2040-based devices such as Raspberry Pi Pico in C, C++ or Arm assembly language.

The SDK is designed to provide an APl and programming environment that is familiar both to non-embedded C
developers and embedded C developers alike. A single program runs on the device at a time with a conventional main()
method. Standard C/C++ libraries are supported along with APIs for accessing RP2040’s hardware, including DMA,
IRQs, and the wide variety fixed function peripherals and PIO (Programmable 10).

Additionally the SDK provides higher level libraries for dealing with timers, USB, synchronization and multi-core
programming, along with additional high level functionality built using PIO such as audio. These libraries should be
comprehensive enough that your application code rarely, if at all, needs to access hardware registers directly. However,
if you do need or prefer to access the raw hardware, you will also find complete and fully-commented register definition
headers in the SDK. There’s no need to look up addresses in the datasheet.

The SDK can be used to build anything from simple applications, full fledged runtime environments such as
MicroPython, to low level software such as RP2040’s on-chip bootrom itself.

Looking to get started?

This book documents the SDK APIs, explains the internals and overall design of the SDK, and explores
some deeper topics like using the PIO assembler to build new interfaces to external hardware. For a
quick start with setting up the SDK and writing SDK programs, Getting started with Raspberry Pi Pico is
the best place to start.

1.2. Anatomy of a SDK Application

Before going completely depth-first in our traversal of the SDK, it's worth getting a little breadth by looking at one of the
SDK examples covered in Getting started with Raspberry Pi Pico, in more detail.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c Lines 1- 19

1 /**

2 * Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause
SR/

6

7 #include "pico/stdlib.h"

8

9 int main() {

10 const uint LED_PIN = 25;

11 gpio_init(LED_PIN);

12 gpio_set_dir(LED_PIN, GPIO_OUT);

13 while (true) {

14 gpio_put(LED_PIN, 1);

15 sleep_ms(250);

16 gpio_put(LED_PIN, ©);

17 sleep_ms(250);

18 }

]
1.1. Introduction 6

https://datasheets.raspberrypi.org/pico/getting-started-with-pico.pdf
https://datasheets.raspberrypi.org/pico/getting-started-with-pico.pdf
https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c#L1-L19

Raspberry Pi Pico C/C++ SDK
]

19 }

This program consists only of a single C file, with a single function. As with almost any C programming environment, the
function called main() is special, and is the point where the language runtime first hands over control to your program,
after doing things like initialising static variables with their values. In the SDK the main() function does not take any
arguments. It's quite common for the main() function not to return, as is shown here.

O NoOTE

The return code of main() is ignored by the SDK runtime, and the default behaviour is to hang the processor on exit.

At the top of the C file, we include a header called pico/stdlib.h. This is an umbrella header that pulls in some other
commonly used headers. In particular, the ones needed here are hardware/gpio.h, which is used for accessing the general
purpose 10s on RP2040 (the gpio_xxx functions here), and pico/time.h which contains, among other things, the sleep_ms
function. Broadly speaking, a library whose name starts with pico provides high level APIs and concepts, or aggregates
smaller interfaces; a name beginning with hardware indicates a thinner abstraction between your code and RP2040 on-
chip hardware.

So, using mainly the hardware_gpio and pico_time libraries, this C program will blink an LED connected to GPI025 on and
off, twice per second, forever (or at least until unplugged). In the directory containing the C file (you can click the link
above the source listing to go there), there is one other file which lives alongside it.

Directory listing of pico-examples/blink

blink
—— blink.c

—— CMakelists.txt

0 directories, 2 files

The second file is a CMake file, which tells the SDK how to turn the C file into a binary application for an RP2040-based
microcontroller board. Later sections will detail exactly what CMake is, and why it is used, but we can look at the
contents of this file without getting mired in those details.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/blink/CMakeLists.txt Lines 1- 12

add_executable(blink
blink.c

)

1
2
8
4
5 # Pull in our pico_stdlib which pulls in commonly used features
6 target_link_libraries(blink pico_stdlib)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(blink)

11 # add url via pico_set_program_url
12 example_auto_set_url(blink)

The add_executable function in this file declares that a program called blink should be built from the C file shown earlier.
This is also the target name used to build the program: in the pico-examples repository you can say make blink in your
build directory, and that name comes from this line. You can have multiple executables in a single project, and the pico-
examples repository is one such project.

The target_link_libraries is pulling in the SDK functionality that our program needs. If you don't ask for a library, it
doesn't appear in your program binary. Just like pico/stdlib.h is an umbrella header that includes things like pico/time.h
and hardware/gpio.h, pico_stdlib is an umbrella library that makes libraries like pico_time and hardware_gpio available to

]
1.2. Anatomy of a SDK Application 7

https://github.com/raspberrypi/pico-examples/tree/master/blink/CMakeLists.txt#L1-L12

Raspberry Pi Pico C/C++ SDK

your build, so that those headers can be included in the first place, and the extra C source files are compiled and linked.
If you need less common functionality, like accessing the DMA hardware, you can call those libraries out here (e.g.
listing hardware_dma before or after pico_stdlib).

We could end the CMake file here, and that would be enough to build the blink program. By default, the build will
produce an ELF file (executable linkable format), containing all of your code and the SDK libraries it uses. You can load
an ELF into RP2040's RAM or external flash through the Serial Wire Debug port, with a debugger setup like gdb and
openocd. It's often easier to program your Raspberry Pi Pico or other RP2040 board directly over USB with BOOTSEL
mode, and this requires a different type of file, called UF2, which serves the same purpose here as an ELF file, but is
constructed to survive the rigours of USB mass storage transfer more easily. The pico_add_extra_outputs function
declares that you want a UF2 file to be created, as well as some useful extra build output like disassembly and map
files.

O NoTE

The ELF file is converted to a UF2 with an internal SDK tool called elf2uf2, which is bootstrapped automatically as
part of the build process.

The example_auto_set_url function is to do with how you are able to read this source file in this document you are reading
right now, and click links to take you to the listing on Github. You'll see this on the pico-examples applications, but it's not
necessary on your own programs. You are seeing how the sausage is made.

Finally, a brief note on the pico_stdlib library. Besides common hardware and high-level libraries like hardware_gpio and
pico_time, it also pulls in components like pico_standard_link —which contains linker scripts and crté for SDK —and
pico_runtime, which contains code running between crt@ and main(), getting the system into a state ready to run code by
putting things like clocks and resets in a safe initial state. These are incredibly low-level components that most users
will not need to worry about. The reason they are mentioned is to point out that they are ultimately explicit dependencies
of your program, and you can choose not to use them, whilst still building against the SDK and using things like the
hardware libraries.

1.2. Anatomy of a SDK Application 8

Raspberry Pi Pico C/C++ SDK

Chapter 2. SDK Architecture

RP2040 is a powerful chip, and in particular was designed with a disproportionate amount of system RAM for its point
in the microcontroller design space. However it is an embedded environment, so RAM, CPU cycles and program space
are still at a premium. As a result the tradeoffs between performance and other factors (e.g. edge case error handling,
runtime vs compile time configuration) are necessarily much more visible to the developer than they might be on other,
higher level platforms.

The intention within the SDK has been for features to just work out of the box, with sensible defaults, but also to give the
developer as much control and power as possible (if they want it) to fine tune every aspect of the application they are
building and the libraries used.

The next few sections try to highlight some of the design decisions behind the SDK: the how and the why, as much as
the what.

© NoTE

Some parts of this overview are quite technical or deal with very low-level parts of the SDK and build system. You
might prefer to skim this section at first and then read it thoroughly at a later time, after writing a few SDK
applications.

2.1. The Build System

The SDK uses CMake to manage the build. CMake is widely supported by IDEs (Integrated Development Environments),
which can use a CMakelists.txt file to discover source files and generate code autocomplete suggestions. The same
CMakelists.txt file provides a terse specification of how your application (or your project with many distinct applications)
should be built, which CMake uses to generate a robust build system used by make, ninja or other build tools. The build
system produced is customised for the platform (e.g. Windows, or a Linux distribution) and by any configuration
variables the developer chooses.

Section 2.6 shows how CMake can set configuration defines for a particular program, or based on which RP2040 board
you are building for, to configure things like default pin mappings and features of SDK libraries. These defines are listed
in Appendix B, and Board Configuration files are covered in more detail in Appendix D. Additionally Appendix C
describes CMake variables you can use to control the functionality of the build itself.

Apart from being a widely used build system for C/C++ development, CMake is fundamental to the way the SDK is
structured, and how applications are configured and built.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/blink/CMakeLists.txt Lines 1- 12

add_executable(blink
blink.c

)

1
2
8
4
5 # Pull in our pico_stdlib which pulls in commonly used features
6 target_link_libraries(blink pico_stdlib)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(blink)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(blink)

Looking here at the blink example, we are defining a new executable blink with a single source file blink.c, with a single

]
2.1. The Build System 9

https://cmake.org
https://github.com/raspberrypi/pico-examples/tree/master/blink/CMakeLists.txt#L1-L12

Raspberry Pi Pico C/C++ SDK
]

dependency pico_stdlib. We also are using a SDK provided function pico_add_extra_outputs to ask additional files to be
produced beyond the executable itself (.uf2, .hex, .bin, .map, .dis).

The SDK builds an executable which is bare metal, i.e. it includes the entirety of the code needed to run on the device
(other than floating point and other optimized code contained in the bootrom within RP2040).

pico_stdlib is an INTERFACE library and provides all of the rest of the code and configuration needed to compile and link
the blink application. You will notice if you do a build of blink (https://github.com/raspberrypi/pico-examples/tree/
master/blink/blink.c) that in addition to the single blink.c file, the inclusion of pico_stdlib causes about 40 other source
files to be compiled to flesh out the blink application such that it can be run on RP2040.

2.2. Every Library is an INTERFACE

All libraries within the SDK are INTERFACE libraries. (Note this does not include the C/C++ standard libraries provided by
the compiler). Conceptually, a CMake INTERFACE library is a collection of:

® Source files

® Include paths

® Compiler definitions (visible to code as f#defines)
® Compile and link options

® Dependencies (on other INTERFACE libraries)

The INTERFACE libraries form a tree of dependencies, with each contributing source files, include paths, compiler
definitions and compile/link options to the build. These are collected based on the libraries you have listed in your
CMakelists.txt file, and the libraries depended on by those libraries, and so on recursively. To build the application, each
source file is compiled with the combined include paths, compiler definitions and options and linked into an executable
according to the provided link options.

When building an executable with the SDK, all of the code for one executable, including the SDK libraries, is (re)compiled
for that executable from source. Building in this way allows your build configuration to specify customised settings for
those libraries (e.g. enabling/disabling assertions, setting the sizes of static buffers), on a per-application basis, at
compile time. This allows for faster and smaller binaries, in addition of course to the ability to remove support for
unwanted features from your executable entirely.

In the example CMakeLists.txt we declare a dependency on the (INTERFACE) library pico_stdlib. This INTERFACE library itself
depends on other INTERFACE libraries (pico_runtime, hardware_gpio, hardware_uart and others). pico_stdlib provides all the
basic functionality needed to get a simple application running and toggling GPIOs and printing to a UART, and the linker
will garbage collect any functions you don't call, so this doesn’t bloat your binary. We can take a quick peek into the
directory structure of the hardware_gpio library, which our blink example uses to turn the LED on and off:

hardware_gpio
—— CMakelLists.txt
—— gpio.c
—— include
—— hardware
—— gpio.h

Depending on the hardware_gpio INTERFACE library in your application causes gpio.c to be compiled and linked into your
executable, and adds the include directory shown here to your search path, so that a #include "hardware/gpio.h" will pull
in the correct header in your code.

INTERFACE libraries also make it easy to aggregate functionality into readily consumable chunks (such as pico_stdlib),
which don’t directly contribute any code, but depend on a handful of lower-level libraries that do. Like a metapackage,
this lets you pull in a group of libraries related to a particular goal without listing them all by name.

]
2.2. Every Library is an INTERFACE 10

https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c
https://github.com/raspberrypi/pico-examples/tree/master/blink/blink.c

Raspberry Pi Pico C/C++ SDK

© IMPORTANT

SDK functionality is grouped into separate INTERFACE libraries, and each INTERFACE library contributes the code and
include paths for that library. Therefore you must declare a dependency on the INTERFACE library you need directly (or
indirectly through another INTERFACE library) for the header files to be found during compilation of your source file (or
for code completion in your IDE).

O NoTE

As all libraries within the SDK are INTERFACE libraries, we will simply refer to them as libraries or SDK libraries from
now on.

2.3. SDK Library Structure

The full API listings are given in Chapter 4; this chapter gives an overview of how SDK libraries are organised, and the
relationships between them.

There are a number of layers of libraries within the SDK. This section starts with the highest-level libraries, which can be
used in C or C++ applications, and navigates all the way down to the hardware_regs library, which is a comprehensive set
of hardware definitions suitable for use in Arm assembly as well as C and C++, before concluding with a brief note on
how the TinyUSB stack can be used from within the SDK.

2.3.1. Higher-level Libraries

These libraries (pico_xxx) provide higher-level APIs, concepts and abstractions. The APIs are listed in Section 4.2. These
may be libraries that have cross-cutting concerns between multiple pieces of hardware (for example the sleep_
functions in pico_time need to concern themselves both with RP2040’s timer hardware and with how processors enter
and exit low power states), or they may be pure software infrastructure required for your program to run smoothly. This
includes libraries for things like:

® Alarms, timers and time functions
® Multi-core support and synchronization primitives
e Utility functions and data structures

These libraries are generally built upon one or more underlying hardware_ libraries, and often depend on each other.

© NoTE

More libraries will be forthcoming in the future (e.g. - Audio support (via PIO), DPI/VGA/MIPI Video support (via PIO)
file system support, SDIO support via (PlO)), most of which are available but not yet fully
supported/stable/documented in the pico-extras GitHub repository.

2.3.2. Runtime Support (pico_runtime, pico_standard_link)

These are libraries that bundle functionality which is common to most RP2040-based applications. APIs are listed in
Section 4.4.

pico_runtime aggregates the libraries (listed in pico_runtime) that provide a familiar C environment for executing code,
including:

® Runtime startup and initialization

]
2.3. SDK Library Structure 1

https://github.com/raspberrypi/pico-extras

Raspberry Pi Pico C/C++ SDK
]

® Choice of language level single/double precision floating point support (and access to the fast on-RP2040
implementations)

® Compact printf support, and mapping of stdout
® Language level / and % support for fast division using RP2040's hardware dividers

® The function runtime_init() which performs minimal hardware initialisation (e.g. default PLL and clock
configuration), and calls functions with constructor attributes before entering main()

pico_standard_link encapsulates the standard linker setup needed to configure the type of application binary layout in
memory, and link to any additional C and/or C++ runtime libraries. It also includes the default crt, which provides the
initial entry point from the flash second stage bootloader, contains the initial vector table (later relocated to RAM), and
initialises static data and RAM-resident code if the application is running from flash.

© NoTE

There is more high-level discussion of pico_runtime in Section 2.7

@ TIP

Both pico_runtime and pico_standard_link are included with pico_stdlib

2.3.3. Hardware Support Libraries

These are individual libraries (hardware_xxx) providing actual APIs for interacting with each piece of physical
hardware/peripheral. They are lightweight and provide only thin abstractions. The APlIs are listed in Section 4.1.

These libraries generally provide functions for configuring or interacting with the peripheral at a functional level, rather
than accessing registers directly, e.g.

pio_sm_set_wrap(pio, sm, bottom, top);

rather than:

pio->sm[sm].execctrl =

(pio->sm[sm].execctrl & ~(PIO_SMO_EXECCTRL_WRAP_TOP_BITS |
PIO_SMO_EXECCTRL_WRAP_BOTTOM_BITS)) |

(bottom << PIO_SMO_EXECCTRL_WRAP_BOTTOM_LSB) |

(top << PIO_SMO_EXECCTRL_WRAP_TOP_LSB);

The hardware_ libraries are intended to have a very minimal runtime cost. They generally do not require any or much
RAM, and do not rely on other runtime infrastructure. In general their only dependencies are the hardware_structs and
hardware_regs libraries that contain definitions of memory-mapped register layout on RP2040. As such they can be used
by low-level or other specialized applications that doesn’t want to use the rest of the SDK libraries and runtime.

]
2.3. SDK Library Structure 12

Raspberry Pi Pico C/C++ SDK

© NoTE

void pio_sm_set_wrap(PIO pio, uint sm, uint bottom, uint top) {} is actually implemented as a static inline function
in https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_pio/include/hardware/pio.h
directly as shown above.

Using static inline functions is common in SDK header files because such methods are often called with
parameters that have fixed known values at compile time. In such cases, the compiler is often able to fold the code
down to a single register write (or in this case a read, AND with a constant value, OR with a constant value, and a
write) with no function call overhead. This tends to produce much smaller and faster binaries.

2.3.3.1. Hardware Claiming

The hardware layer does provide one small abstraction which is the notion of claiming a piece of hardware. This
minimal system allows registration of peripherals or parts of peripherals (e.g. DMA channels) that are in use, and the
ability to atomically claim free ones at runtime. The common use of this system - in addition to allowing for safe
runtime allocation of resources - provides a better runtime experience for catching software misconfigurations or
accidental use of the same piece hardware by multiple independent libraries that would otherwise be very painful to
debug.

2.3.4. Hardware Structs Library

The hardware_structs library provides a set of C structures which represent the memory mapped layout of RP2040
registers in the system address space. This allows you to replace something like the following (which you'd write in C
with the defines from the lower-level hardware_regs)

*(volatile uint32_t *)(PIOO_BASE + PIO_SM1_SHIFTCTRL_OFFSET) |=
PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

with something like this (where pio0@ is a pointer to type pio_hw_t at address PIO0_BASE):

pioB->sm[1].shiftctrl |= PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

The structures and associated pointers to memory mapped register blocks hide the complexity and potential error-
prone-ness of dealing with individual memory locations, pointer casts and volatile access. As a bonus, the structs tend
to produce better code with older compilers, as they encourage the reuse of a base pointer with offset load/stores,
instead of producing a 32 bit literal for every register accessed.

The struct headers are named consistently with both the hardware libraries and the hardware_regs register headers. For
example, if you access the hardware_pio library's functionality through hardware/pio.h, the hardware_structs library (a
dependee of hardware_pio) contains a header you can include as hardware/structs/pio.h if you need to access a register
directly, and this itself will pull in hardware/regs/pio.h for register field definitions. The PIO header is a bit lengthy to
include here. hardware/structs/pll.h is a shorter example to give a feel for what these headers actually contain:

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h Lines 14 - 22

14 typedef struct {

15 io_rw_32 cs;

16 io_rw_32 pwr;

17 io_rw_32 fbdiv_int;
18 io_rw_32 prim;

19 } pll_hw_t;

]
2.3. SDK Library Structure 13

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_pio/include/hardware/pio.h
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2040/hardware_structs/include/hardware/structs/pll.h#L14-L22

Raspberry Pi Pico C/C++ SDK
]

20
21 #define pll_sys_hw ((pll_hw_t *const)PLL_SYS_BASE)
22 #define pll_usb_hw ((pll_hw_t *const)PLL_USB_BASE)

The structure contains the layout of the hardware registers in a block, and some defines bind that layout to the base
addresses of the instances of that peripheral in the RP2040 global address map.

Additionally, you can use one of the atomic set, clear, or xor address aliases of a piece of hardware to set, clear or toggle
respectively the specified bits in a hardware register (as opposed to having the CPU perform a read/modify/write); e.g:

hw_set_alias(pio®)->sm[1].shiftctrl = PIO_SM1_SHIFTCTRL_AUTOPULL_BITS;

Or, equivalently

hw_set_bits(&pio®->sm[1].shiftctrl, PIO_SM1_SHIFTCTRL_AUTOPULL_BITS);

O NoTE

The hardware atomic set/clear/XOR 10 aliases are used extensively in the SDK libraries, to avoid certain classes of
data race when two cores, or an IRQ and foreground code, are accessing registers concurrently.

© NOTE

On RP2040 the atomic register aliases are a native part of the peripheral, not a CPU function, so the system DMA can
also perform atomic set/clear/XOR operation on registers.

2.3.5. Hardware Registers Library

The hardware_regs library is a complete set of include files for all RP2040 registers, autogenerated from the hardware
itself. This is all you need if you want to peek or poke a memory mapped register directly, however higher level libraries
provide more user friendly ways of achieving what you want in C/C++.

For example, here is a snippet from hardware/regs/sio.h:

// Description : Single-cycle IO block

// Provides core-local and inter-core hardware for the two

// processors, with single-cycle access.

/) ===== === === ==== ===== ====== ==== =======

#ifndef HARDWARE_REGS_SIO_DEFINED
#define HARDWARE_REGS_SIO_DEFINED

// === === === === === === ======
// Register : SIO_CPUID

// Description : Processor core identifier

// Value is @ when read from processor core 0, and 1 when read

// from processor core 1.

#define SIO_CPUID_OFFSET 0x00000000
#define SIO_CPUID_BITS Oxffffffff
#define SIO_CPUID_RESET "-"
#define SIO_CPUID_MSB 31

#define SIO_CPUID_LSB 0

#define SIO_CPUID_ACCESS "RO"

]
2.3. SDK Library Structure 14

Raspberry Pi Pico C/C++ SDK
]

These header files are fairly heavily commented (the same information as is present in the datasheet register listings, or
the SVD files). They define the offset of every register, and the layout of the fields in those registers, as well as the
access type of the field, e.g. "RO" for read-only.

@ TP

The headers in hardware_regs contain only comments and #define statements. This means they can be included from
assembly files (.S, so the C preprocessor can be used), as well as C and C++ files.

2.3.6. TinyUSB Port

In addition to the core SDK libraries, we provide a RP2040 port of TinyUSB as the standard device and host USB support
library within the SDK, and the SDK contains some build infrastructure for easily pulling this into your application. This is
done by naming either tinyusb_dev or tinyusb_host as a dependency of your application

© IMPORTANT

RP2040 USB hardware supports both Host and Device modes, but the two can not be used concurrently.

The tinyusb_dev or tinyusb_host libraries within the SDK allow you to add TinyUSB device or host support to your
application by simply adding a dependency in your executable in CMakeLists.txt

2.4. Directory Structure

We have discussed libraries such as pico_stdlib and hardware_gpio above. Imagine you wanted to add some code using
RP2040’s DMA controller to the hello_world example in pico-examples. To do this you need to add a dependency on
another library, hardware_dma, which is not included by default by pico_stdlib (unlike, say, hardware_uart).

You would change your CMakeLists.txt to list both pico_stdlib and hardware_dma as dependencies of the hello_world target
(executable). (Note the line breaks are not required)

target_link_libraries(hello_world
pico_stdlib
hardware_dma

And in your source code you would include the DMA hardware library header as such:
#include "hardware/dma.h"

Trying to include this header without listing hardware_dma as a dependency will fail, and this is due to how SDK files are
organised into logical functional units on disk, to make it easier to add functionality in the future.

As an aside, this correspondence of hardware_dma — hardware/dma.h is the convention for all toplevel SDK library headers.
The library is called foo_bar and the associated header is foo/bar.h. Some functions may be provided inline in the
headers, others may be compiled and linked from additional .c files belonging to the library. Both of these require the
relevant hardware_ library to be listed as a dependency, either directly or through some higher-level bundle like
pico_stdlib.

2.4. Directory Structure 15

Raspberry Pi Pico C/C++ SDK

© NoTE

Some libraries have additional headers which are located in foo/bar/other.h

You may want to actually find the files in question (although most IDEs will do this for you). The on disk files are actually
split into multiple top-level directories. This is described in the next section.

2.4.1. Locations of Files
Whilst you may be focused on building a binary to run specifically on Raspberry Pi Pico, which uses a RP2040, the SDK
is structured in a more general way. This is for two reasons:

1. To support other future chips in the RP2 family

2. To support testing of your code off device (this is host mode)

The latter is useful for writing and running unit tests, but also as you develop your software, for example your debugging
code or work in progress software might actually be too big or use too much RAM to fit on the device, and much of the
software complexity may be non-hardware-specific.

The code is thus split into top level directories as follows:

Table 1. Top-level

)) Path Description
directories

src/rp2040/ This contains the hardware_regs and hardware_structs libraries mentioned earlier, which
are specific to RP2040.

src/rp2_common/ This contains the hardware_ library implementations for individual hardware components,
and pico_ libraries or library implementations that are closely tied to RP2040 hardware.
This is separate from /src/rp2040 as there may be future revisions of RP2040, or other
chips in the RP2 family, which can use a common SDK and API whilst potentially having
subtly different register definitions.

src/common/ This is code that is common to all builds. This is generally headers providing hardware
abstractions for functionality which are simulated in host mode, along with a lot of the
pico_ library implementations which, to the extent they use hardware, do so only through
the hardware_ abstractions.

src/host/ This is a basic set of replacement SDK library implementations sufficient to get simple
Raspberry Pi Pico applications running on your computer (Raspberry Pi OS, Linux,
macOS or Windows using Cygwin or Windows Subsystem for Linux). This is not
intended to be a fully functional simulator, however it is possible to inject additional
implementations of libraries to provide more complete functionality.

There is a CMake variable PICO_PLATFORM that controls the environment you are building for:

When doing a regular RP2040 build (PICO_PLATFORM=rp2040, the default), you get code from common, rp2_common and rp2040;
when doing a host build (PIC0_PLATFROM=host), you get code from common and host.

Within each top-level directory, the libraries have the following structure (reading foo_bar as something like hardware_uvart
or pico_time)

top-level_dir/

top-level_dir/foo_bar/include/foo/bar.h # header file
top-level_dir/foo_bar/CMakelLists.txt # build configuration
top-level_dir/foo_bar/bar.c # source file(s)

As a concrete example, we can list the hardware_vart directory under pico-sdk/rp2_common (you may also recall the
hardware_gpio library we looked at earlier):

2.4. Directory Structure 16

Raspberry Pi Pico C/C++ SDK
]

Table 2. SDK Suffixes
for (non-)blocking
functions and
timeouts.

hardware_uart
—— CMakelLists.txt
F—— include

| L— hardware

| L—— uvart.h
L uart.c

vart.h contains function declarations and preprocessor defines for the hardware_uvart library, as well as some inline
functions that are expected to be particularly amenable to constant folding by the compiler. uvart.c contains the
implementations of more complex functions, such as calculating and setting up the divisors for a given UART baud rate.

© NOTE

The directory top-level_dir/foo_bar/include is added as an include directory to the INTERFACE library foo_bar, which is
what allows you to include "foo/bar.h" in your application

2.5. Conventions for Library Functions

This section covers some common patterns you will see throughout the SDK libraries, such as conventions for function
names, how errors are reported, and the approach used to efficiently configure hardware with many register fields
without having unreadable numbers of function arguments.

2.5.1. Function Naming Conventions

SDK functions follow a common naming convention for consistency and to avoid name conflicts. Some names are
quite long, but that is deliberate to be as specific as possible about functionality, and of course because the SDK API is
a C APl and does not support function overloading.

2.5.1.1. Name prefix

Functions are prefixed by the library/functional area they belong to; e.g. public functions in the hardware_dma library are
prefixed with dma_. Sometime the prefix refers to a sub group of library functionality (e.g. channel_config_)

2.5.1.2. Verb

A verb typically follows the prefix specifying that action performed by the function. set_ and get_ (or is_ for booleans)
are probably the most common and should always be present; i.e. a hypothetical method would be
oven_get_temperature() and food_add_salt(), rather than oven_temperature() and food_salt().

2.5.1.3. Suffixes

2.5.1.3.1. Blocking/Non-Blocking Functions and Timeouts
Suffix Param Description
(none) The method is non-blocking, i.e. it does not wait on any external
condition that could potentially take a long time.

2.5. Conventions for Library Functions 17

Raspberry Pi Pico C/C++ SDK
]

_blocking The method is blocking, and may potentially block indefinitely
until some specific condition is met.

_blocking_until absolute_time_t until The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) if the until time is reached.

_timeout_ms uint32_t timeout_ms The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of milliseconds

_timeout_us uint64_t timeout_us The method is blocking until some specific condition is met,
however it will return early with a timeout condition (see Section
2.5.2) after the specified number of microseconds

2.5.2. Return Codes and Error Handling

As mentioned earlier, there is a decision to be made as to whether/which functions return error codes that can be
handled by the caller, and indeed whether the caller is likely to actually do something in response in an embedded
environment. Also note that very often return codes are there to handle parameter checking, e.g. when asked to do
something with the 27th DMA channel (when there are actually only 12).

In many cases checking for obviously invalid (likely program bug) parameters in (often inline) functions is prohibitively
expensive in speed and code size terms, and therefore we need to be able to configure it on/off, which precludes return
codes being returned for these exceptional cases.

The SDK follows two strategies:

1. Methods that can legitimately fail at runtime due to runtime conditions e.g. timeouts, dynamically allocated
resource, can return a status which is either a bool indicating success or not, or an integer return code from the
PICO_ERROR_ family; non error returns are >= 0.

2. Other items like invalid parameters, or failure to allocate resources which are deemed program bugs (e.g. two
libraries trying to use the same statically assigned piece of hardware) do not affect a return code (usually the
functions return void) and must cause some sort of exceptional event.

As of right now the exceptional event is a C assert, so these checks are always disabled in release builds by
default. Additionally most of the calls to assert are disabled by default for code/size performance (even in debug
builds); You can set PARAMS_ASSERTIONS_ENABLE_ALL=1 or PARAMS_ASSERTIONS_DISABLE_ALL=1 in your build to change the
default across the entire SDK, or say PARAM_ASSERTIONS_ENABLED_I2€=0/1 to explicitly specify the behavior for the
hardware_i2c module

In the future we expect to support calling a custom function to throw an exception in C++ or other environments
where stack unwinding is possible.

3. Obviously sometimes the calling code whether it be user code or another higher level function, may not want the
called function to assert on bad input, in which case it is the responsibility of the caller to check the validity (there
are a good number of API functions provided that help with this) of their arguments, and the caller can then choose
to provide a more flexible runtime error experience.

2.5.3. Use of Inline Functions

SDK libraries often contain a mixture of static inline functions in header files, and non-static functions in C source files.
In particular, the hardware_ libraries are likely to contain a higher proportion of inline function definitions in their headers.
This is done for speed and code size.

The code space needed to setup parameters for a regular call to a small function in another compilation unit can be
substantially larger than the function implementation. Compilers have their own metrics to decide when to inline

]
2.5. Conventions for Library Functions 18

Raspberry Pi Pico C/C++ SDK
]

function implementations at their call sites, but the use of static inline definitions gives the compiler more freedom to
do this.

One reason this is particularly effective in the context of hardware register access is that these functions often:
1. Have relatively many parameters, which
2. Are immediately shifted and masked to combine with some register value, and
3. Are often constants known at compile time

So if the implementation of a hardware access function is inlined, the compiler can propagate the constant parameters
through whatever bit manipulation and arithmetic that function may do, collapsing a complex function down to "please
write this constant value to this constant address". Again, we are not forcing the compiler to do this, but the SDK
consistently tries to give it freedom to do so.

The result is that there is generally no overhead using the lower-level hardware_ functions as compared with using
preprocessor macros with the hardware_regs definitions, and they tend to be much less error-prone.

2.5.4. Builder Pattern for Hardware Configuration APls

The SDK uses a builder pattern for the more complex configurations, which provides the following benefits:

1. Readability of code (avoid "death by parameters" where a configuration function takes a dozen integers and
booleans)

2. Tiny runtime code (thanks to the compiler)
3. Less brittle (the addition of another item to a hardware configuration will not break existing code)

Take the following hypothetical code example to (quite extensively) configure a DMA channel:

int dma_channel = 3;

dma_channel_config config = dma_get_default_channel_config(dma_channel);
channel_config_set_read_increment(&config, true);
channel_config_set_write_increment(&config, true);
channel_config_set_dreq(&config, DREQ_SPIB_RX);
channel_config_set_transfer_data_size(&config, DMA_SIZE_8);
dma_set_config(dma_channel, &config, false);

The value of dma_channel is known at compile time, so the compiler can replace dma_channel with 3 when generating code
(constant folding). The dma_ methods are static inline methods (from https://github.com/raspberrypi/pico-sdk/tree/
master/src/rp2_common/hardware_dma/include/hardware/dma.h) meaning the implementations can be folded into
your code by the compiler and, consequently, your constant parameters (like DREQ_SP10_RX) are propagated though this
local copy of the function implementation. The resulting code is usually smaller, and certainly faster, than the register
shuffling caused by setting up a function call.

The net effect is that the compiler actually reduces all of the above to the following code:

Effective code produced by the C compiler for the DMA configuration

*(volatile uint32_t *)(DMA_BASE + DMA_CH3_AL1_CTRL_OFFSET) = 0x00089831;

It may seem counterintuitive that building up the configuration by passing a struct around, and committing the final
result to the IO register, would be so much more compact than a series of direct register modifications using register
field accessors. This is because the compiler is customarily forbidden from eliminating 10 accesses (illustrated here
with a volatile keyword), with good reason. Consequently it's easy to unwittingly generate code that repeatedly puts a
value into a register and pulls it back out again, changing a few bits at a time, when we only care about the final value of
the register. The configuration pattern shown here avoids this common pitfall.

]
2.5. Conventions for Library Functions 19

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_dma/include/hardware/dma.h
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_dma/include/hardware/dma.h

Raspberry Pi Pico C/C++ SDK

© NoTE

The SDK code is designed to make builder patterns efficient in both Release and Debug builds. Additionally, even if
not all values are known constant at compile time, the compiler can still produce the most efficient code possible
based on the values that are known.

2.6. Customisation and Configuration Using Preprocessor
variables

The SDK allows use of compile time definitions to customize the behavior/capabilities of libraries, and to specify
settings (e.g. physical pins) that are unlikely to be changed at runtime This allows for much smaller more efficient code,
and avoids additional runtime overheads and the inclusion of code for configurations you might choose at runtime even
though you actually don’t (e.g. support PWM audio when you are only using 12S)!

Remember that because of the use of INTERFACE libraries, all the libraries your application(s) depend on are built from
source for each application in your build, so you can even build multiple variants of the same application with different
baked in behaviors.

Appendix B has a comprehensive list of the available preprocessor defines, what they do, and what their default values
are.

Preprocessor variables may be specified in a number of ways, described in the following sections.

O NoTE

Whether compile time configuration or runtime configuration or both is supported/required is dependent on the
particular library itself. The general philosophy however, is to allow sensible default behavior without the user
specifying any settings (beyond those provided by the board configuration).

2.6.1. Preprocessor Variables via Board Configuration File

Many of the common configuration settings are actually related to the particular RP2040 board being used, and include
default pin settings for various SDK libraries. The board being used is specified via the P1C0_BOARD CMake variable which
may be specified on the CMake command line or in the environment. The default PIC0_BOARD if not specified is pico.

The board configuration provides a header file which specifies defaults if not otherwise specified; for example
https://github.com/raspberrypi/pico-sdk/tree/master/src/boards/include/boards/pico.h specifies

#ifndef PICO_DEFAULT_LED_PIN
#define PICO_DEFAULT_LED_PIN 25
#endif

The header my_board_name.h is included by all other SDK headers as a result of setting PIC0_BOARD=my_board_name. You may
wish to specify your own board configuration in which case you can set PICO_BOARD_HEADER_DIRS in the environment
or CMake to a semicolon separated list of paths to search for my_board_name.h.

2.6.2. Preprocessor Variables Per Binary or Library via CMake

We could modify the https://github.com/raspberrypi/pico-examples/tree/master/hello_world/CMakeLists.txt with
target_compile_definitions to specify an alternate set of UART pins to use.

2.6. Customisation and Configuration Using Preprocessor variables 20

https://github.com/raspberrypi/pico-sdk/tree/master/src/boards/include/boards/pico.h
https://github.com/raspberrypi/pico-examples/tree/master/hello_world/CMakeLists.txt

Raspberry Pi Pico C/C++ SDK
]

Modified hello_world CMakeLists.txt specifying different UART pins

add_executable(hello_world
hello_world.c

SPECIFY two preprocessor definitions for the target hello_world
target_compile_definitions(hello_world PRIVATE
PICO_DEFAULT_UART_TX_PIN=16
PICO_DEFAULT_UART_RX_PIN=17

Pull in our pico_stdlib which aggregates commonly used features
target_link_libraries(hello_world pico_stdlib)

create map/bin/hex/uf2 file etc.
pico_add_extra_outputs(hello_world)

The target_compile_definitions specifies preprocessor definitions that will be passed to the compiler for every source
file in the target hello_world (which as mentioned before includes all of the sources for all dependent INTERFACE
libraries). PRIVATE is required by CMake to specify the scope for the compile definitions. Note that all preprocessor
definitions used by the SDK have a PI1C0_ prefix.

2.7. SDK Runtime

For those coming from non embedded programming, or from other devices, this section will give you an idea of how
various C/C++ language level concepts are handled within the SDK

2.7.1. Standard Input/Output (stdio) Support

The SDK runtime packages a lightweight printf library by Marco Paland, linked as pico_printf. It also contains
infrastructure for routing stdout and stdin to various hardware interfaces, which is documented under pico_stdio:

* A UART interface specified by a board configuration header. The default for Raspberry Pi Pico is 115200 baud on
GPIOO (TX) and GPIOT (RX)

®* A USB CDC ACM virtual serial port, using TinyUSB's CDC support. The virtual serial device can be accessed
through RP2040’s dedicated USB hardware interface, in Device mode.

® (Experimental) minimal semihosting support to direct stdout to an external debug host connected via the Serial
Wire Debug link on RP2040

These can be accessed using standard calls like printf, puts, getchar, found in the standard <stdio.h> header. By default,
stdout converts bare linefeed characters to carriage return plus linefeed, for better display in a terminal emulator. This
can be disabled at runtime, at build time, or the CR-LF support can be completely removed.

stdout is broadcast to all interfaces that are enabled, and stdin is collected from all interfaces which are enabled and
support input. Since some of the interfaces, particularly USB, have heavy runtime and binary size cost, only the UART
interface is included by default. You can add/remove interfaces for a given program at build time with e.g.

pico_enable_stdio_usb(target_name, 1)

]
2.7. SDK Runtime 21

Raspberry Pi Pico C/C++ SDK
]

Table 3. SDK
implementation vs
GCC 9 implementation
for ARM AEABI
floating point
functions (these
unusually named

2.7.2. Floating-point Support

The SDK provides a highly optimized single and double precision floating point implementation. In addition to being
fast, many of the functions are actually implemented using support provided in the RP2040 bootrom. This means the
interface from your code to the ROM floating point library has very minimal impact on your program size, certainly using
dramatically less flash storage than including the standard floating point routines shipped with your compiler.

The physical ROM storage on RP2040 has single-cycle access (with a dedicated arbiter on the RP2040 busfabric), and
accessing code stored here does not put pressure on the flash cache or take up space in memory, so not only are the
routines fast, the rest of your code will run faster due them being resident in ROM.

This implementation is used by default as it is the best choice in the majority of cases, however it is also possible to
switch to using the regular compiler soft floating point support.

2.7.2.1. Functions

The SDK provides implementations for all the standard functions from math.h. Additional functions can be found in
pico/float.h and pico/double.h.

2.7.2.2. Speed/Tradeoffs

The overall goal for the bootrom floating-point routines is to achieve good performance within a small footprint, the
emphasis being more on improved performance for the basic operations (add, subtract, multiply, divide and square root,
and all conversion functions), and more on reduced footprint for the scientific functions (trigonometric functions,
logarithms and exponentials).

The IEEE single- and double-precision data formats are used throughout, but in the interests of reducing code size, input
denormals are treated as zero and output denormals are flushed to zero, and output NaNs are rendered as infinities.
Only the round-to-nearest, even-on-tie rounding mode is supported. Traps are not supported. Whether input NaNs are
treated as infinities or propagated is configurable.

The five basic operations (add, subtract, multiply, divide, sqrt) return results that are always correctly rounded (round-to-
nearest).

The scientific functions always return results within 1 ULP (unit in last place) of the exact result. In many cases results
are better.

The scientific functions are calculated using internal fixed-point representations so accuracy (as measured in ULP error
rather than in absolute terms) is poorer in situations where converting the result back to floating point entails a large
normalising shift. This occurs, for example, when calculating the sine of a value near a multiple of pi, the cosine of a
value near an odd multiple of pi/2, or the logarithm of a value near 1. Accuracy of the tangent function is also poorer
when the result is very large. Although covering these cases is possible, it would add considerably to the code footprint,
and there are few types of program where accuracy in these situations is essential.

The following table shows the results from a benchmark

© NoTE

Whilst the SDK floating point support makes use of the routines in the RP2040 bootrom, it hides some of the
limitations of the raw ROM functions (e.g. limited sin/cos range), in order to be largely indistinguishable from the
compiler-provided functionality. Certain smaller functions have also been re-implemented for even more speed
outside of the limited bootrom space.

]
2.7. SDK Runtime 22

Raspberry Pi Pico C/C++ SDK
]

functions provide the
support for basic
operations on float .
” __aeabi_fadd 72.4 99.8 138%
and double types)

__aeabi_fsub 86.7 133.6 154%

|
2.7. SDK Runtime 23

Raspberry Pi Pico C/C++ SDK
]

__aeabi_frsub 89.8 140.6 157%
__aeabi_fmul 61.5 145 236%
__aeabi_fdiv 74.7 437.5 586%
__aeabi_fcmplt 39 61.1 157%
__aeabi_fcmple 40.5 61.1 151%
__aeabi_fcmpgt 40.5 61.2 151%
__aeabi_fcmpge 41 61.2 149%
__aeabi_fcmpeq 40 41.5 104%
__aeabi_dadd 99.4 142.5 143%
__aeabi_dsub 114.2 182 159%
__aeabi_drsub 108 181.2 168%
__aeabi_dmul 168.2 338 201%
__aeabi_ddiv 1971 412.2 209%
__aeabi_dcmplt 53 88.3 167%
__aeabi_dcmple 54.6 88.3 162%
__aeabi_dcmpgt 54.4 86.6 159%
__aeabi_dcmpge 55 86.6 157%
__aeabi_dcmpeq 54 64.3 119%
__aeabi_f2iz 17 24.5 144%
__aeabi_f2uiz 42.5 106.5 251%
__aeabi_f2lz 63.1 1240.5 1966%
__aeabi_f2ulz 46.1 1157 2510%
__aeabi_i2f 43.5 63 145%
__aeabi_ui2f 41.5 55.8 134%
__aeabi_l2f 75.2 643.3 855%
__aeabi_ul2f 71.4 531.5 744%
__aeabi_d2iz 30.6 441 144%
__aeabi_d2uiz 75.7 159.1 210%
__aeabi_d2Iz 81.2 1267.8 1561%
__aeabi_d2ulz 65.2 1148.3 1761%
__aeabi_i2d 44.4 61.9 139%
__aeabi_ui2d 43.4 51.3 118%
__aeabi_l2d 104.2 559.3 537%
__aeabi_ul2d 102.2 458.1 448%
__aeabi_f2d 20 31 155%
__aeabi_d2f 36.4 66 181%

1
2.7. SDK Runtime

24

Raspberry Pi Pico C/C++ SDK

2.7.2.3. Configuration and Alternate Implementations

There are three different floating point implementations provided

Name Description

default The default; equivalent to pico

pico Use the fast/compact SDK/bootrom implementations

compiler Use the standard compiler provided soft floating point implementations

none Map all functions to a runtime assertion. You can use this when you know you don’t
want any floating point support to make sure it isn’t accidentally pulled in by some
library.

These settings can be set independently for both "float" and "double":

For "float" you can call pico_set float_implementation(TARGET NAME) in your CMakelists.txt to choose a specific
implementation for a particular target, or set the CMake variable PICO_DEFAULT_FLOAT_IMPL to pico_float_NANME to set the
default.

For "double" you can call pico_set_double_implementation(TARGET NAME) in your CMakelists.txt to choose a specific
implementation for a particular target, or set the CMake variable PIC0_DEFAULT_DOUBLE_IMPL to pico_double_NAME to set the
default.

@ TP

The pico floating point library adds very little to your binary size, however it must include implementations for any
used functions that are not present in V1 of the bootrom, which is present on early Raspberry Pi Pico boards. If you
know that you are only using RP2040s with V2 of the bootrom, then you can specify defines
PICO_FLOAT_SUPPORT_ROM_V1=0 and PICO_DOUBLE_SUPPORT_ROM_V1=0 so the extra code will not be included. Any use of those
functions on a RP2040 with a V1 bootrom will cause a panic at runtime. See the RP2040 Datasheet for more
specific details of the bootrom functions.

2.7.2.3.1. NaN Propagation

The SDK implementation by default treats input NaNs as infinites. If you require propagation of NaN inputs to outputs
and NaN outputs for domain errors, then you can set the compile definitions PICO_FLOAT_PROPAGATE_NANS and
PICO_DOUBLE_PROPAGATE_NANS to 1, at the cost of a small runtime overhead.

2.7.3. Hardware Divider

The SDK includes optimized 32- and 64-bit division functions accelerated by the RP2040 hardware divider, which are
seamlessly integrated with the C / and % operators. The SDK also supplies a high level APl which includes combined
quotient and remainder functions for 32- and 64-bit, also accelerated by the hardware divider.

See Figure 1 and Figure 2 for 32-bit and 64-bit integer divider comparison.

2.7. SDK Runtime 25

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

Figure 1. 32-bit divides
by divider size using
GCC library (blue), or
the SDK library (red)
with the RP2040
hardware divider.

Figure 2. 64-bit divides
by divider size using
GCC library (blue), or
the SDK library (red)
with the RP2040
hardware divider.

1 ——
2 ——— == GCC
3 ———— — Pico
4 | ————
G —
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
0 50 100 150 200 250
T —
2 f—e — GCC
3 — P
H Pico
5
6
7
8
9
10
n
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/a
a2
a3
a4
a5
46
a7
a8
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
I T I I T 1
0 200 400 600 800 1000 1200

2.8. Multi-core support

Multi-core support should be familiar to those used to programming with threads in other environments. The second
core is just treated as a second thread within your application; initially the second core (core1 as it is usually referred to;
the main application thread runs on core@) is halted, however you can start it executing some function in parallel from

your main application thread.

Core 1 (the second core) is started by calling multicore_launch_corel(some_function_pointer); on core 0, which wakes the
core from its low-power sleep state and provides it with its entry point —some function you have provided which
hopefully with a descriptive name like void corel_main() { }. This function, as well as others such as pushing and
popping data through the inter-core mailbox FIFOs, is listed under pico_multicore.

Care should be taken with calling C library functions from both cores simultaneously as they are generally not designed

]
2.8. Multi-core support 26

Raspberry Pi Pico C/C++ SDK

to be thread safe. You can use the mutex. APl provided by the SDK in the pico_sync library (
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_sync/include/pico/mutex.h) from within your
own code.

O NoTE

That the SDK version of printf is always safe to call from both cores. malloc, calloc and free are additionally wrapped
to make it thread safe when you include the pico_multicore as a convenience for C++ programming, where some
object allocations may not be obvious.

2.9. Using C++

The SDK has a C style API, however the SDK headers may be safely included from C++ code, and the functions called
(they are declared with C linkage).

C++ files are integrated into SDK projects in the same way as C files: listing them in your CMakeLists. txt file under either
the add_executable() entry, or a separate target_sources() entry to append them to your target.

To save space, exception handling is disabled by default; this can be overridden with the CMake environment variable
PICO_CXX_ENABLE_EXCEPTIONS=1. There are a handful of other C++ related PIC0_CXX vars listed in Appendix C.

2.10. Next Steps

This has been quite a deep dive. If you've somehow made it through this chapter without building any software, now
would be a perfect time to divert to the Getting started with Raspberry Pi Pico book, which has detailed instructions on
connecting to your RP2040 board and loading an application built with the SDK.

Chapter 3 gives some background on RP2040’s unique Programmable I/0 subsystem, and walks through building some
applications which use PIO to talk to external hardware.

Chapter 4 is a comprehensive listing of the SDK APIs. The APIs are listed according to groups of related functionality
(e.g. low-level hardware access).

2.9. Using C++

27

https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_sync/include/pico/mutex.h
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_sync/include/pico/mutex.h
https://datasheets.raspberrypi.org/pico/getting-started-with-pico.pdf

Raspberry Pi Pico C/C++ SDK

Chapter 3. Using Programmable 1/0
(PIO)

3.1. What is Programmable 1/0 (P10)?

Programmable 1/0 (PIO) is a new piece of hardware developed for RP2040. It allows you to create new types of (or
additional) hardware interfaces on your RP2040-based device. If you've looked at fixed peripherals on a microcontroller,
and thought "l want to add 4 more UARTSs", or "I'd like to output DPI video', or even "l need to communicate with this
cursed serial device | found on AliExpress, but no machine has hardware support’, then you will have fun with this
chapter.

P10 hardware is described extensively in chapter 3 of the RP2040 Datasheet. This is a companion to that text, focussing
on how, when and why to use PIO in your software. To start, we're going to spend a while discussing why 1/0 is hard,
what the current options are, and what PIO does differently, before diving into some software tutorials. We will also try
to illuminate some of the more important parts of the hardware along the way, but will defer to the datasheet for full
explanations.

@ T

You can skip to the first software tutorial if you'd prefer to dive straight in.

3.1.1. Background

Interfacing with other digital hardware components is hard. It often happens at very high frequencies (due to amounts
of data that need to be transferred), and has very exact timing requirements.

3.1.2. 1/0 Using dedicated hardware on your PC

Traditionally, on your desktop or laptop computer, you have one option for hardware interfacing. Your computer has
high speed USB ports, HDMI outputs, PCle slots, SATA drive controllers etc. to take care of the tricky and time sensitive
business of sending and receiving ones and zeros, and responding with minimal latency or interruption to the graphics
card, hard drive etc. on the other end of the hardware interface.

The custom hardware components take care of specific tasks that the more general multi-tasking CPU is not designed
for. The operating system drivers perform higher level management of what the hardware components do, and
coordinate data transfers via DMA to/from memory from the controller and receive IRQs when high level tasks need
attention. These interfaces are purpose-built, and if you have them, you should use them.

3.1.3. 1/0 Using dedicated hardware on your Raspberry Pi or microcontroller

Not so common on PCs: your Raspberry Pi or microcontroller is likely to have dedicated hardware on chip for managing
UART, I2C, SPI, PWM, 12S, CAN bus and more over general purpose I/0 pins (GPIOs). Like USB controllers (also found on
some microcontrollers, including the RP2040 on Raspberry Pi Pico), I12C and SPI are general purpose buses which
connect to a wide variety of external hardware, using the same piece of on-chip hardware. This includes sensors,
external flash, EEPROM and SRAM memories, GPIO expanders, and more, all of them widely and cheaply available. Even
HDMI uses 12C to communicate video timings between Source and Sink, and there is probably a microcontroller
embedded in your TV to handle this.

These protocols are simpler to integrate into very low-cost devices (i.e. not the host), due to their relative simplicity and

]
3.1. What is Programmable 1/0 (PIO)? 28

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

Table 4. Types of
hardware

modest speed. This is important for chips with mostly analogue or high-power circuitry: the silicon fabrication
techniques used for these chips do not lend themselves to high speed or gate count, so if your switchmode power
supply controller has some serial configuration interface, it is likely to be something like I12C. The number of traces
routed on the circuit board, the number of pins required on the device package, and the PCB technology required to
maintain signal integrity are also factors in the choice of these protocols. A microcontroller needs to communicate with
these devices to be part of a larger embedded system.

This is all very well, but the area taken up by these individual serial peripherals, and the associated cost, often leaves
you with a limited menu. You may end up paying for a bunch of stuff you don’t need, and find yourself without enough of
what you really want. Of course you are out of luck if your microcontroller does not have dedicated hardware for the
type of hardware device you want to attach (although in some cases you may be able to bridge over USB, 12C or SPI at
the cost of buying external hardware).

3.1.4.1/0 Using software control of GPIOs ("bit-banging")

The third option on your Raspberry Pi or microcontroller — any system with GPIOs which the processor(s) can access
easily —is to use the CPU to wiggle (and listen to) the GPIOs at dizzyingly high speeds, and hope to do so with
sufficiently correct timing that the external hardware still understands the signals.

As a bit of background it is worth thinking about types of hardware that you might want to interface, and the
approximate signalling speeds involved:

Interface Speed Interface

1-10 Hz Push buttons, indicator LEDs
300 Hz HDMI CEC

10-100 kHz Temperature sensors (DHT11), one-wire serial
<100 kHz 12C Standard mode

22-100+ kHz PCM audio

300+ kHz PWM audio

400-1200 kHz WS2812 LED string

10-3000 kHz UART serial

12 MHz USB Full Speed

1-100 MHz SPI

20-300 MHz DPI/VGA video

480 MHz USB High Speed

10-4000 MHz Ethernet LAN

12-4000 MHz SD card

250-20000 MHz HDMI/DVI video

"Bit-Banging" (i.e. using the processor to hammer out the protocol via the GPIOs) is very hard. The processor isn't really
designed for this. It has other work to do... for slower protocols you might be able to use an IRQ to wake up the
processor from what it was doing fast enough (though latency here is a concern) to send the next bit(s). Indeed back in
the early days of PC sound it was not uncommon to set a hardware timer interrupt at 11kHz and write out one 8-bit PCM
sample every interrupt for some rather primitive sounding audio!

Doing that on a PC nowadays is laughed at, even though they are many order of magnitudes faster than they were back
then. As processors have become faster in terms of overwhelming number-crunching brute force, the layers of software
and hardware between the processor and the outside world have also grown in number and size. In response to the
growing distance between processors and memory, PC-class processors keep many hundreds of instructions in-flight

]
3.1. What is Programmable 1/0 (PIO)? 29

Raspberry Pi Pico C/C++ SDK
]

on a single core at once, which has drawbacks when trying to switch rapidly between hard real time tasks. However,
IRQ-based bitbanging can be an effective strategy on simpler embedded systems.

Above certain speeds — say a factor of 1000 below the processor clock speed — IRQs become impractical, in part due to
the timing uncertainty of actually entering an interrupt handler. The alternative when "bit-banging" is to sit the processor
in a carefully timed loop, often painstakingly written in assembly, trying to make sure the GPIO reading and writing
happens on the exact cycle required. This is really really hard work if indeed possible at all. Many heroic hours and likely
thousands of Github repositories are dedicated to the task of doing such things (a large proportion of them for LED
strings).

Additionally of course, your processor is now busy doing the "bit-banging", and cannot be used for other tasks. If your
processor is interrupted even for a few microseconds to attend to one of the hard peripherals it is also responsible for,
this can be fatal to the timing of any bit-banged protocol. The greater the ratio between protocol speed and processor
speed, the more cycles your processor will spend uselessly idling in between GPIO accesses. Whilst it is eminently
possible to drive a 115200 baud UART output using only software, this has a cost of >10 000 cycles per byte if the
processor is running at 133 MHz, which may be poor investment of those cycles.

Whilst dealing with something like an LED string is possible using "bit-banging", once your hardware protocol gets faster
to the point that it is of similar order of magnitude to your system clock speed, there is really not much you can hope to
do. The main case where software GPIO access is the best choice is LEDs and push buttons.

Therefore you're back to custom hardware for the protocols you know up front you are going to want (or more
accurately, the chip designer thinks you might need).

3.1.5. Programmable I/0 Hardware using FPGAs and CPLDs

A field-programmable gate array (FPGA), or its smaller cousin, the complex programmable logic device (CPLD), is in
many ways the perfect solution for tailor-made 1/0 requirements, whether that entails an unusual type or unusual
mixture of interfaces. FPGAs are chips with a configurable logic fabric — effectively a sea of gates and flipflops, some
other special digital function blocks, and a routing fabric to connect them —which offer the same level of design
flexibility available to chip designers. This brings with it all the advantages of dedicated I/0 hardware:

® Absolute precision of protocol timing (within limitations of your clock source)
® Capable of very high I/0 throughput
* Offload simple, repetitive calculations that are part of the 1/0 standard (checksums)

® Present a simpler interface to host software; abstract away details of the protocol, and handle these details
internally.

The main drawback of FPGAs in embedded systems is their cost. They also present a very unfamiliar programming
model to those well-versed in embedded software: you are not programming at all, but rather designing digital
hardware. One you have your FPGA you will still need some other processing element in your system to run control
software, unless you are using an FPGA expensive enough to either fit a soft CPU core, or contain a hardened CPU core
alongside the FPGA fabric.

eFPGAs (embedded FPGAs) are available in some microcontrollers: a slice of FPGA logic fabric integrated into a more
conventional microcontroller, usually with access to some GPIOs, and accessible over the system bus. These are
attractive from a system integration point of view, but have a significant area overhead compared with the usual serial
peripherals found on a microcontroller, so either increase the cost and power dissipation, or are very limited in size. The
issue of programming complexity still remains in eFPGA-equipped systems.

3.1.6. Programmable 1/0 Hardware using PIO

The PIO subsystem on RP2040 allows you to write small, simple programs for what are called PIO state machines, of
which RP2040 has eight split across two PIO instances. A state machine is responsible for setting and reading one or
more GPIOs, buffering data to or from the processor (or RP2040’s ultra-fast DMA subsystem), and notifying the
processor, via IRQ or polling, when data or attention is needed.

]
3.1. What is Programmable 1/0 (PIO)? 30

Raspberry Pi Pico C/C++ SDK

These programs operate with cycle accuracy at up to system clock speed (or the program clocks can be divided down
to run at slower speeds for less frisky protocols).

PIO state machines are much more compact than the general-purpose Cortex-M0+ processors on RP2040. In fact, they
are similar in size (and therefore cost) to a standard SPI peripheral, such as the PL022 SPI also found on RP2040,
because much of their area is spent on components which are common to all serial peripherals, like FIFOs, shift
registers and clock dividers. The instruction set is small and regular, so not much silicon is spent on decoding the

instructions. There is no need to feel guilty about dedicating a state machine solely to a single I/0 task, since you have 8
of them!

In spite of this, a PIO state machine gets a lot more done in one cycle than a Cortex-M0+ when it comes to 1/0: for
example, sampling a GPIO value, toggling a clock signal and pushing to a FIFO all in one cycle, every cycle. The tradeoff
is that a PIO state machine is not remotely capable of running general purpose software. As we shall see though,

programming a PIO state machine is quite familiar for anyone who has written assembly code before, and the small
instruction set should be fairly quick to pick up for those who haven't.

For simple hardware protocols - such as PWM or duplex SPI - a single PIO state machine can handle the task of

implementing the hardware interface all on its own. For more involved protocols such as SDIO or DPI video you may end
up using two or three.

@ i

If you are ever tempted to "bit-bang” a protocol on RP2040, don't! Use the PIO instead. Frankly this is true for
anything that repeatedly reads or writes from GPIOs, but certainly anything which aims to transfer data.

3.2. Getting started with PIO

It is possible to write PIO programs both within the C++ SDK and directly from MicroPython.

Additionally the future intent is to add APIs to trivially have new UARTs, PWM channels etc created for you, using a
menu of pre-written PIO programs, but for now you'll have to follow along with example code and do that yourself.

3.2.1. AFirst PIO Application

Before getting into all of the fine details of the PIO assembly language, we should take the time to look at a small but
complete application which:

1. Loads a program into a PIO’s instruction memory

2. Sets up a PIO state machine to run the program

3. Interacts with the state machine once it is running.
The main ingredients in this recipe are:

* APIO program

® Some software, written in C, to run the whole show

* A CMake file describing how these two are combined into a program image to load onto a RP2040-based
development board

3.2. Getting started with PIO 31

Raspberry Pi Pico C/C++ SDK

@ T

The code listings in this section are all part of a complete application on Github, which you can build and run. Just
click the link above each listing to go to the source. In this section we are looking at the pio/hello_pio example in

pico-examples. You might choose to build this application and run it, to see what it does, before reading through this
section.

O NoTE

The focus here is on the main moving parts required to use a PIO program, not so much on the PIO program itself.
This is a lot to take in, so we will stay high-level in this example, and dig in deeper on the next one.

3.2.1.1. PIO Program
This is our first PIO program listing. It's written in PIO assembly language.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/hello_pio/hello.pio Lines 7 - 15

7 .program hello

8

9 ; Repeatedly get one word of data from the TX FIFO, stalling when the FIFO is
10 ; empty. Write the least significant bit to the OUT pin group.

11

12 loop:

13 pull

14 out pins, 1
15 jmp loop

The pull instruction takes one data item from the transmit FIFO buffer, and places it in the output shift register (OSR).
Data moves from the FIFO to the OSR one word (32 bits) at a time. The OSR is able to shift this data out, one or more
bits at a time, to further destinations, using an out instruction.

FIFOs?

FIFOs are data queues, implemented in hardware. Each state machine has two FIFOs, between the state
machine and the system bus, for data travelling out of (TX) and into (RX) the chip. Their name (first in,
first out) comes from the fact that data appears at the FIFO’s output in the same order as it was
presented to the FIFO's input.

The out instruction here takes one bit from the data we just pull-ed from the FIFO, and writes that data to some pins. We
will see later how to decide which pins these are.

The jmp instruction jumps back to the 1loop: label, so that the program repeats indefinitely. So, to sum up the function of
this program: repeatedly take one data item from a FIFO, take one bit from this data item, and write it to a pin.

Our .pio file also contains a helper function to set up a PIO state machine for correct execution of this program:

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/hello_pio/hello.pio Lines 18 - 33

18 static inline void hello_program_init(PIO pio, uint sm, uint offset, uint pin) {

19 pio_sm_config ¢ = hello_program_get_default_config(offset);

20

21 // Map the state machine's OUT pin group to one pin, namely the ‘pin°
22 // parameter to this function.

23 sm_config_set_out_pins(&c, pin, 1);

3.2. Getting started with PIO 32

https://github.com/raspberrypi/pico-examples/tree/master/pio/hello_pio/hello.pio#L7-L15
https://github.com/raspberrypi/pico-examples/tree/master/pio/hello_pio/hello.pio#L18-L33

Raspberry Pi Pico C/C++ SDK
]

24
25
26
27
28
29
30
31
32
33 }

// Set this pin's GPIO function (connect PIO to the pad)
pio_gpio_init(pio, pin);

// Set the pin direction to output at the PIO
pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

// Load our configuration, and jump to the start of the program
pio_sm_init(pio, sm, offset, &c);

// Set the state machine running

pio_sm_set_enabled(pio, sm, true);

Here the main thing to set up is the GPIO we intend to output our data to. There are three things to consider here:

1. The state machine needs to be told which GPIO or GPIOs to output to. There are four different pin groups which
are used by different instructions in different situations; here we are using the out pin group, because we are just

using an out instruction.

2. The GPIO also needs to be told that PIO is in control of it (GPIO function select)

3. If we are using the pin for output only, we need to make sure that PIO is driving the output enable line high. PIO can

drive this line up and down programmatically using e.g. an out pindirs instruction, but here we are setting it up
before starting the program.

3.2.1.2. C Program

P10 won't do anything until it's been configured properly, so we need some software to do that. The PIO file we just
looked at — hello.pio —is converted automatically (we will see later how) into a header containing our assembled PIO
program binary, any helper functions we included in the file, and some useful information about the program. We
include this as hello.pio.h.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/hello_pio/hello.c Lines 1 - 38

1 /e
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.

2
3
4

* SPDX-License-Identifier: BSD-3-Clause

5
6
7 #include "pico/stdlib.h”
8

#include "hardware/pio.h"
9 // Our assembled program:
10 #include "hello.pio.h"

11

12 int main() {

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

// Choose which PIO instance to use (there are two instances)
PIO pio = pio®;

// Our assembled program needs to be loaded into this PIO's instruction

// memory. This SDK function will find a location (offset) in the

// instruction memory where there is enough space for our program. We need
// to remember this location!

uint offset = pio_add_program(pio, &hello_program);

// Find a free state machine on our chosen PIO (erroring if there are
// none). Configure it to run our program, and start it, using the

// helper function we included in our .pio file.

uint sm = pio_claim_unused_sm(pio, true);

hello_program_init(pio, sm, offset, PICO_DEFAULT_LED_PIN);

// The state machine is now running. Any value we push to its TX FIFO will
// appear on the LED pin.

]
3.2. Getting started with PIO 33

https://github.com/raspberrypi/pico-examples/tree/master/pio/hello_pio/hello.c#L1-L38

Raspberry Pi Pico C/C++ SDK
]

30 while (true) {

31 // Blink

32 pio_sm_put_blocking(pio, sm, 1);
33 sleep_ms(500) ;

34 // Blonk

85 pio_sm_put_blocking(pio, sm, 0);
36 sleep_ms(500);

37 }

38 }

You might recall that RP2040 has two PIO blocks, each of them with four state machines. Each PIO block has a 32-slot
instruction memory which is visible to the four state machines in the block. We need to load our program into this
instruction memory before any of our state machines can run the program. The function pio_add_program() finds free
space for our program in a given PIO’s instruction memory, and loads it.

32 Instructions?

This may not sound like a lot, but the PIO instruction set can be very dense once you fully explore its
features. A perfectly serviceable UART transmit program can be implemented in four instructions, as
shown in the pio/uart_tx example in pico-examples. There are also a couple of ways for a state machine
to execute instructions from other sources — like directly from the FIFOs — which you can read all about
in the RP2040 Datasheet.

Once the program is loaded, we find a free state machine and tell it to run our program. There is nothing stopping us
from ordering multiple state machines to run the same program. Likewise, we could instruct each state machine to run
a different program, provided they all fit into the instruction memory at once.

We're configuring this state machine to output its data to the LED on your Raspberry Pi Pico board. If you have already
built and run the program, you probably noticed this already!

At this point, the state machine is running autonomously. The state machine will immediately stall, because it is waiting
for data in the TX FIFO, and we haven't provided any. The processor can push data directly into the state machine’s TX
FIFO using the pio_sm_put_blocking() function. (_blocking because this function stalls the processor when the TX FIFO is
full.) Writing a 1 will turn the LED on, and writing a 0 will turn the LED off.

3.2.1.3. CMake File

We have two lovely text files sat on our computer, with names ending with .pio and .c, but they aren’t doing us much
good there. A CMake file describes how these are built into a binary suitable for loading onto your Raspberry Pi Pico or
other RP2040-based board.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/hello_pio/CMakeLists.txt Lines 1- 15

add_executable(hello_pio)

pico_generate_pio_header(hello_pio ${CMAKE_CURRENT_LIST_DIR}/hello.pio)

target_link_libraries(hello_pio PRIVATE

1
2
3
4
5 target_sources(hello_pio PRIVATE hello.c)
6
7
8 pico_stdlib

9 hardware_pio

10)

11

12 pico_add_extra_outputs(hello_pio)
13

14 # add url via pico_set_program_url

]
3.2. Getting started with PIO 34

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples/tree/master/pio/hello_pio/CMakeLists.txt#L1-L15

Raspberry Pi Pico C/C++ SDK
]

Figure 3. WS2812 line
format. Wide positive
pulse for 1, narrow
positive pulse for 0,
very long negative
pulse for latch enable

15 example_auto_set_url(hello_pio)

add_executable(): Declare that we are building a program called hello_pio

® pico_generate_pio_header(): Declare that we have a PIO program, hello.pio, which we want to be built into a C header
for use with our program

target_sources(): List the source code files for our hello_pio program. In this case, just one C file.

target_link_libraries(): Make sure that our program is built with the PIO hardware API, so we can call functions
like pio_add_program() in our C file.

® pico_add_extra_outputs(): By default we just get an .elf file as the build output of our app. Here we declare we also
want extra build formats, like a .uf2 file which can be dragged and dropped directly onto a Raspberry Pi Pico
attached over USB.

Assuming you already have pico-examples and the SDK installed on your machine, you can run

mkdir build

cd build

cmake ..

make hello_pio

To build this program.

3.2.2. A Real Example: WS2812 LEDs

The WS2812 LED (sometimes sold as NeoPixel) is an addressable RGB LED. In other words, it's an LED where the red,
green and blue components of the light can be individually controlled, and it can be connected in such a way that many
WS2812 LEDs can be controlled individually, with only a single control input. Each LED has a pair of power supply
terminals, a serial data input, and a serial data output.

When serial data is presented at the LED’s input, it takes the first three bytes for itself (red, green, blue) and the
remainder is passed along to its serial data output. Often these LEDs are connected in a single long chain, each LED
connected to a common power supply, and each LED’s data output connected through to the next LED's input. A long
burst of serial data to the first in the chain (the one with its data input unconnected) will deposit three bytes of RGB data
in each LED, so their colour and brightness can be individually programmed.

Symbol X 1 X 0 X 0 X 1 X Lach Jf

Output / \ / \ /_ \ /_ _\ //

Unfortunately the LEDs receive and retransmit serial data in quite an unusual format. Each bit is transferred as a
positive pulse, and the width of the pulse determines whether it is a 1 or a 8 bit. There is a family of WS2812-like LEDs
available, which often have slightly different timings, and demand precision. It is possible to bit-bang this protocol, or to
write canned bit patterns into some generic serial peripheral like SPI or 12S to get firmer guarantees on the timing, but
there is still some software complexity and cost associated with generating the bit patterns.

Ideally we would like to have all of our CPU cycles available to generate colour patterns to put on the lights, or to handle
any other responsibilities the processor may have in the embedded system the LEDs are connected to.

]
3.2. Getting started with PIO 35

Raspberry Pi Pico C/C++ SDK
]

@ T

Once more, this section is going to discuss a real, complete program, that you can build and run on your Raspberry
Pi Pico. Follow the links above the program listings if you'd prefer to build the program yourself and run it, before
going through it in detail. This section explores the pio/ws2812 example in pico-examples.

3.2.2.1. PIO Program

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.pio Lines 7 - 26

7 .program ws2812

8 .side_set 1

9

10 .define public T1 2
11 .define public T2 5
12 .define public T3 3

13

14 .lang_opt python sideset_init = pico.PIO0.OUT_HIGH

15 .lang_opt python out_init = pico.PIO.OUT_HIGH

16 .lang_opt python out_shiftdir = 1

17

18 .wrap_target

19 bitloop:

20 out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls
21 jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse
22 do_one:

23 jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

24 do_zero:

25 nop side @ [T2 - 1] ; Or drive low, for a short pulse

26 .wrap

The previous example was a bit of a whistle-stop tour of the anatomy of a PIO-based application. This time we will
dissect the code line-by-line. The first line tells the assembler that we are defining a program named ws2812:

.program ws2812

We can have multiple programs in one .pio file (and you will see this if you click the Github link above the main program
listing), and each of these will have its own .program directive with a different name. The assembler will go through each
program in turn, and all the assembled programs will appear in the output file.

Each PIO instruction is 16 bits in size. Generally, 5 of those bits in each instruction are used for the “delay” which is
usually 0 to 31 cycles (after the instruction completes and before moving to the next instruction). If you have read the
P10 chapter of the RP2040 Datasheet, you may have already know that these 5 bits can be used for a different purpose:

.side_set 1

This directive .side_set 1 says we're stealing one of those delay bits to use for "side set". The state machine will use this
bit to drive the values of some pins, once per instruction, in addition to what the instructions are themselves doing. This
is very useful for high frequency use cases (e.g. pixel clocks for DPI panels), but also for shrinking program size, to fit
into the shared instruction memory.

Note that stealing one bit has left our delay range from 0-15 (4 bits), but that is quite natural because you rarely want to
mix side set with lower frequency stuff. Because we didn't say .side_set 1 opt, which would mean the side set is

]
3.2. Getting started with PIO 36

https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.pio#L7-L26
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK

optional (at the cost of another bit to say whether the instruction does a side set), we have to specify a side set value for
every instruction in the program. This is the side N you will see on each instruction in the listing.

.define public T1 2
.define public T2 5
.define public T3 3

.define lets you declare constants. The public keyword means that the assembler will also write out the value of the
define in the output file for use by other software: in the context of the SDK, this is a #define. We are going to use T1, T2
and T3 in calculating the delay cycles on each instruction.

.lang_opt python

This is used to specify some PIO hardware defaults as used by the MicroPython PIO library. We don't need to worry
about them in the context of SDK applications.

.wrap_target

We'll ignore this for now, and come back to it later, when we meet its friend .wrap.

bitloop:

This is a label. A label tells the assembler that this point in your code is interesting to you, and you want to refer to it
later by name. Labels are mainly used with jmp instructions.

out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls

Finally we reach a line with a PIO instruction. There is a lot to see here.

® This is an out instruction. out takes some bits from the output shift register (OSR), and writes them somewhere
else. In this case, the OSR will contain pixel data destined for our LEDs.

® [T3 - 1]is the number of delay cycles (T3 minus 1). T3 is a constant we defined earlier.

* x (one of two scratch registers; the other imaginatively called y) is the destination of the write data. State machines
use their scratch registers to hold and compare temporary data.

® side 0: Drive low (0) the pin configured for side-set.

® Everything after the ; character is a comment. Comments are ignored by the assembler: they are just notes for
humans to read.

3.2. Getting started with PIO 37

Raspberry Pi Pico C/C++ SDK
]

Output Shift Register

The OSR is a staging area for data entering the state machine through the TX FIFO. Data is pulled from

the TX FIFO into the OSR one 32-bit chunk at a time. When an out instruction is executed, the OSR can

break this data into smaller pieces by shifting to the left or right, and sending the bits that drop off the
end to one of a handful of different destinations, such as the pins.

The amount of data to be shifted is encoded by the out instruction, and the direction of the shift (left or
right) is configured ahead of time. For full details and diagrams, see the RP2040 Datasheet.

So, the state machine will do the following operations when it executes this instruction:
1. Set 0 on the side set pin (this happens even if the instruction stalls because no data is available in the OSR)
2. Shift one bit out of the OSR into the x register. The value of the x register will be either 0 or 1.

3. Wait 13 - 1 cycles after the instruction (l.e. the whole thing takes T3 cycles since the instruction itself took a cycle).
Note that when we say cycle, we mean state machine execution cycles: a state machine can be made to execute at
a slower rate than the system clock, by configuring its clock divider.

Let's look at the next instruction in the program.

jmp !x do_zero side 1 [T1 - 1] ; Branch on the bit we shifted out. Positive pulse

1. side 10on the side set pin (this is the leading edge of our pulse)
2. If x == 0 then go to the instruction labelled do_zero, otherwise continue on sequentially to the next instruction
3. We delay 71 - 1 after the instruction (whether the branch is taken or not)

Let's look at what our output pin has done so far in the program.

Figure 4. The state T < T
machine drives the

line low for time T1 as GPIO
it shifts out one data

bit from the OSR, and

then high for time 72 The pin has been low for time T3, and high for time T1. If the x register is 1 (remember this contains our 1 bit of pixel

whilst branching o0 ata) then we will fall through to the instruction labelled do_one:
the value of the bit.

%

do_one:
jmp bitloop side 1 [T2 - 1] ; Continue driving high, for a long pulse

On this side of the branch we do the following:
1. side 10on the side set pin (continue the pulse)

2. jmp unconditionally back to bitloop (the label we defined earlier, at the top of the program); the state machine is
done with this data bit, and will get another from its OSR

3. Delay for 12 - 1 cycles after the instruction

The waveform at our output pin now looks like this:

]
3.2. Getting started with PIO 38

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK

Figure 5. On a one
data bit, the line is
driven low for time T3,
high for time T1, then
high for an additional
time T2

Figure 6. On a zero
data bit, the line is
driven low for time T3,
high for time T1, then
low again for time T1

€ B — P T ——————— 72—
I

GPIO

This accounts for the case where we shifted a 1 data bit into the x register. For a @ bit, we will have jumped over the last
instruction we looked at, to the instruction labelled do_zero:

do_zero:
nop side @ [T2 - 1] ; Or drive low, for a short pulse

1. side 0 on the side set pin (the trailing edge of our pulse)
2. nop means no operation. We don’t have anything else we particularly want to do, so waste a cycle
3. The instruction takes T2 cycles in total

For the x == 0 case, we get this on our output pin:

E—— B ——————— Tl —————— P —— T2 ——p
1
1

GPIO | O

The final line of our program is this:

.wrap

This matches with the .wrap_target directive at the top of the program. Wrapping is a hardware feature of the state
machine which behaves like a wormhole: you go in through the .wrap statement and appear at the .wrap_target zero
cycles later, unless the .urap is preceded immediately by a jmp whose condition is true. This is important for getting
precise timing with programs that must run quickly, and often also saves you a slot in the instruction memory.

@ TP

Often an explicit .wrap_target/.wrap pair is not necessary, because the default configuration produced by pioasn has
an implicit wrap from the end of the program back to the beginning, if you didn’t specify one.

NOPs

NOP, or no operation, means precisely that: do nothing! You may notice there is no nop instruction
defined in the instruction set reference: nop is really a synonym for mov y, yin PIO assembly.

Why did we insert a nop in this example when we could have jmp-ed? Good question! It's a dramatic
device we contrived so we could discuss nop and .wrap. Writing documentation is hard. In general,
though, nop is useful when you need to perform a side-set and have nothing else to do, or you need a
very slightly longer delay than is available on a single instruction.

It is hopefully becoming clear why our timings T1, T2, T3 are numbered this way, because what the LED string sees
really is one of these two cases:

]
3.2. Getting started with PIO 39

Raspberry Pi Pico C/C++ SDK

Figure 7. The line is
initially low in the idle
(latch) state, and the
LED is waiting for the
first rising edge. It
sees our pulse timings
in the order T1-T2-T3,
until the very last T3,
where it sees a much
longer negative period
once the state
machine runs out of
data.

T ————— P —— T2 —— P —— T3 —»
1

-

Data=0

LV

Data=1

This should look familiar if you refer back to Figure 3.

After thoroughly dissecting our program, and hopefully being satisfied that it will repeatedly send one well-formed data
bit to a string of WS2812 LEDs, we're left with a question: where is the data coming from? This is more thoroughly
explained in the RP2040 Datasheet, but the data that we are shifting out from the OSR came from the state machine’s
TX FIFO. The TX FIFO is a data buffer between the state machine and the rest of RP2040, filled either via direct poking
from the CPU, or by the system DMA, which is much faster.

The out instruction shifts data out from the OSR, and zeroes are shifted in from the other end to fill the vacuum.
Because the OSR is 32 bits wide, you will start getting zeroes once you have shifted out a total of 32 bits. There is a pull
instruction which explicitly takes data from the TX FIFO and put it in the OSR (stalling the state machine if the FIFO is
empty).

However, in the majority of cases it is simpler to configure autopull, a mode where the state machine automatically
refills the OSR from the TX FIFO (an automatic pull) when a configured number of bits have been shifted out. Autopull
happens in the background, in parallel with whatever else the state machine may be up to (in other words it has a cost
of zero cycles). We'll see how this is configured in the next section.

3.2.2.2. State Machine Configuration

When we run pioasm on the .pio file we have been looking at, and ask it to spit out SDK code (which is the default), it will
create some static variables describing the program, and a method ws2812_default_program_config which configures a
PIO state machine based on user parameters, and the directives in the actual PIO program (namely the .side_set and
.wrap in this case).

Of course how you configure the PIO SM when using the program is very much related to the program you have written.
Rather than try to store a data representation off all that information, and parse it at runtime, for the use cases where
you'd like to encapsulate setup or other API functions with your PIO program, you can embed code within the .pio file.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.pio Lines 31 - 47

31 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

32

33 pio_gpio_init(pio, pin);

34 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

85

36 pio_sm_config ¢ = ws2812_program_get_default_config(offset);
37 sm_config_set_sideset_pins(&c, pin);

38 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);

39 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

40

41 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;

42 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
43 sm_config_set_clkdiv(&c, div);

44

45 pio_sm_init(pio, sm, offset, &c);

46 pio_sm_set_enabled(pio, sm, true);

47 }

In this case we are passing through code for the SDK, as requested by this line you will see if you click the link on the
above listing to see the context:

3.2. Getting started with PIO

40

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.pio#L31-L47

Raspberry Pi Pico C/C++ SDK
]

% c-sdk {

We have here a function ws2812_program_init which is provided to help the user to instantiate an instance of the LED
driver program, based on a handful of parameters:

pio

Which of RP2040’s two PIO instances we are dealing with

sm

Which state machine on that PIO we want to configure to run the WS2812 program
offset

Where the PIO program was loaded in PIO’s 5-bit program address space
pin

which GPIO pin our WS2812 LED chain is connected to
freq

The frequency (or rather baud rate) we want to output data at.
rgbw

True if we are using 4-colour LEDs (red, green, blue, white) rather than the usual 3.
Such that:

pio_gpio_init(pio, pin); Configure a GPIO for use by PIO. (Set the GPIO function select.)

pio_set_consecutive_pindirs(pio, sm, pin, 1, true); Sets the PIO pin direction of 1 pin starting at pin number pin to
out

pio_sm_config ¢ = ws2812_program_default_config(offset); Get the default configuration using the generated function
for this program (this includes things like the .wrap and .side_set configurations from the program). We'll modify
this configuration before loading it into the state machine.

sm_config_sideset_pins(&c, pin); Sets the side set to write to pins starting at pin pin (we say starting at because if
you had .side_set 3, then it would be outputting values on numbers pin, pin+1, pin+2)

sm_config_out_shift(&c, false, true, rgbw ? 32 : 24); False for shift_to_right (i.e. we want to shift out MSB first).
True for autopull. 32 or 24 for the number of bits for the autopull threshold, i.e. the point at which the state
machine triggers a refill of the OSR, depending on whether the LEDs are RGB or RGBW.

int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3; This is the total number of execution cycles to output a
single bit. Here we see the benefit of .define public; we can use the T1 - T3 values in our code.

float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit); sm_config_clkdiv(&c, div); Slow the state machine’s
execution down, based on the system clock speed and the number of execution cycles required per WS2812 data
bit, so that we achieve the correct bit rate.

pio_sm_init(pio, sm, offset, &c); Load our configuration into the state machine, and go to the start address (
offset)

pio_sm_enable(pio, sm, true); And make it go now!

At this point the program will be stuck on the first out waiting for data. This is because we have autopull enabled, the
OSR is initially empty, and there is no data to be pulled. The state machine refuses to continue until the first piece of
data arrives in the FIFO.

As an aside, this last point sheds some light on the slightly cryptic comment at the start of the PIO program:

out x, 1 side @ [T3 - 1] ; Side-set still takes place when instruction stalls

]
3.2. Getting started with PIO 41

Raspberry Pi Pico C/C++ SDK
]

This comment is giving us an important piece of context. We stall on this instruction initially, before the first data is
added, and also every time we finish sending the last piece of data at the end of a long serial burst. When a state
machine stalls, it does not continue to the next instruction, rather it will reattempt the current instruction on the next
divided clock cycle. However, side set still takes place. This works in our favour here, because we consequently always
return the line to the idle (low) state when we stall.

3.2.2.3. C Program

The companion to the .pio file we've looked at is a .c file which drives some interesting colour patterns out onto a string
of LEDs. We'll just look at the parts that are directly relevant to PIO.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.c Lines 15- 17

15 static inline void put_pixel(uint32_t pixel_grb) {
16 pio_sm_put_blocking(pio®, @, pixel_grb << 8u);
17 }

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.c Lines 19 - 24

19 static inline uint32_t urgb_u32(uint8_t r, uint8_t g, uint8_t b) {

20 return

21 ((uint32_t) (r) << 8) |
22 ((uint32_t) (g) << 16) |
23 (uint32_t) (b);

24 }

Here we are writing 32-bit values into the FIFO, one at a time, directly from the CPU. pio_sm_put_blocking is a helper
method that waits until there is room in the FIFO before pushing your data.

You'll notice the << 8 in put_pixel(): remember we are shifting out starting with the MSB, so we want the 24-bit colour
values at the top. this works fine for WGBR too, just that the W is always 0.

This program has a handful of colour patterns, which call our put_pixel helper above to output a sequence of pixel
values:

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.c Lines 40 - 45

40 void pattern_random(uint len, uint t) {

41 if (t % 8)

42 return;

43 for (int i1 = 0; i < len; ++i)
44 put_pixel(rand());

45 }

The main function loads the program onto a PIO, configures a state machine for 800 kbaud WS2812 transmission, and
then starts cycling through the colour patterns randomly.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.c Lines 76 - 100

76 int main() {

77 //set_sys_clock_48();

78 stdio_init_all();

79 puts("WS2812 Smoke Test");
80

81 // todo get free sm

82 PIO pio = pio@;

]
3.2. Getting started with PIO 42

https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.c#L15-L17
https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.c#L19-L24
https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.c#L40-L45
https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.c#L76-L100

Raspberry Pi Pico C/C++ SDK
]

83 int sm = 0;

84 uint offset = pio_add_program(pio, &ws2812_program);
85

86 ws2812_program_init(pio, sm, offset, PIN_TX, 8060000, true);
87

88 int t = 6;

89 while (1) {

90 int pat = rand() % count_of(pattern_table);

91 int dir = (rand() >>30) & 1 ? 1 : -1;

92 puts(pattern_table[pat].name);

93 puts(dir == 1 ? "(forward)" : "(backward)");

94 for (int i = @; i < 1000; ++i) {

95 pattern_table[pat].pat(150, t);

96 sleep_ms(10);

97 t += dir;

98 }

99 }

100 }

3.2.3. P10 and DMA (A Logic Analyser)

So far we have looked at writing data to PIO directly from the processor. This often leads to the processor spinning its
wheels waiting for room in a FIFO to make a data transfer, which is not a good investment of its time. It also limits the
total data throughput you can achieve.

RP2040 is equipped with a powerful direct memory access unit (DMA), which can transfer data for you in the
background. Suitably programmed, the DMA can make quite long sequences of transfers without supervision. Up to one
word per system clock can be transferred to or from a PIO state machine, which is, to be quite technically precise, more
bandwidth than you can shake a stick at. The bandwidth is shared across all state machines, but you can use the full
amount on one state machine.

Let's take a look at the logic_analyser example, which uses PIO to sample some of RP2040’s own pins, and capture a
logic trace of what is going on there, at full system speed.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/logic_analyser/logic_analyser.c Lines 29 - 49

29 void logic_analyser_init(PIO pio, uint sm, uint pin_base, uint pin_count, float div) {

30 // Load a program to capture n pins. This is just a single ‘in pins, n’
31 // instruction with a wrap.

32 uint16_t capture_prog_instr = pio_encode_in(pio_pins, pin_count);
88 struct pio_program capture_prog = {

34 .instructions = &capture_prog_instr

35 .length = 1,

36 .origin = -1

37 ¥

38 uint offset = pio_add_program(pio, &capture_prog);

39

40 // Configure state machine to loop over this “in’ instruction forever
41 // with autopush enabled.

42 pio_sm_config ¢ = pio_get_default_sm_config();

43 sm_config_set_in_pins(&c, pin_base);

44 sm_config_set_wrap(&c, offset, offset);

45 sm_config_set_clkdiv(&c, div);

46 sm_config_set_in_shift(&c, true, true, 32);

47 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_RX);

48 pio_sm_init(pio, sm, offset, &c);

49 }

Our program consists only of a single in pins, <pin_count> instruction, with program wrapping and autopull enabled.

]
3.2. Getting started with PIO 43

https://github.com/raspberrypi/pico-examples/tree/master/pio/logic_analyser/logic_analyser.c#L29-L49

Raspberry Pi Pico C/C++ SDK

Because the amount of data to be shifted is only known at runtime, and because the program is so short, we are
generating the program dynamically here (using the pio_encode_ functions) instead of pushing it through pioasm. The
program is wrapped in a data structure stating how big the program is, and where it must be loaded — in this case origin
= 1 meaning "don’t care".

Input Shift Register

The input shift register (ISR) is the mirror image of the OSR. Generally data flows through a state
machine in one of two directions: System — TX FIFO — OSR — Pins, or Pins — ISR — RX FIFO —
System. An in instruction shifts data into the ISR.

If you don’t need the ISR’s shifting ability — for example, if your program is output-only — you can use the
ISR as a third scratch register. It's 32 bits in size, the same as X, Y and the OSR. The full details are in the
RP2040 Datasheet.

We load the program into the chosen PIO, and then configure the input pin mapping on the chosen state machine so
that its in pins instruction will see the pins we care about. For an in instruction we only need to worry about configuring
the base pin, i.e. the pin which is the least significant bit of the in instruction’s sample. The number of pins to be
sampled is determined by the bit count parameter of the in pins instruction — it will sample n pins starting at the base
we specified, and shift them into the ISR.

Pin Groups (Mapping)

We mentioned earlier that there are four pin groups to configure, to connect a state machine’s internal
data buses to the GPIOs it manipulates. A state machine accesses all pins within a group at once, and
pin groups can overlap. So far we have seen the out, side-set and in pin groups. The fourth is set.

The out group is the pins affected by shifting out data from the OSR, using out pins or out pindirs, up to
32 bits at a time. The set group is used with set pins and set pindirs instructions, up to 5 bits at a time,
with data that is encoded directly in the instruction. It's useful for toggling control signals. The side-set
group is similar to the set group, but runs simultaneously with another instruction. Note: mov pin uses
the in or out group, depending on direction.

Configuring the clock divider optionally slows down the state machine’s execution: a clock divisor of n means 1
instruction will be executed per n system clock cycles. The default system clock frequency for SDK is 125 MHz.

sm_config_set_in_shift sets the shift direction to rightward, enables autopush, and sets the autopush threshold to 32.
The state machine keeps an eye on the total amount of data shifted into the ISR, and on the in which reaches or
breaches a total shift count of 32 (or whatever number you have configured), the ISR contents, along with the new data
from the in. goes straight to the RX FIFO. The ISR is cleared to zero in the same operation.

sm_config_set_fifo_join is used to manipulate the FIFOs so that the DMA can get more throughput. If we want to sample
every pin on every clock cycle, that's a lot of bandwidth! We've finished describing how the state machine should be
configured, so we use pio_sm_init to load the configuration into the state machine, and get the state machine into a
clean initial state.

3.2. Getting started with PIO 44

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

FIFO Joining

Each state machine is equipped with a FIFO going in each direction: the TX FIFO buffers data on its way
out of the system, and the RX FIFO does the same for data coming in. Each FIFO has four data slots,
each holding 32 bits of data. Generally you want FIFOs to be as deep as possible, so there is more slack
time between the timing-critical operation of a peripheral, and data transfers from system agents which
may be quite busy or have high access latency. However this comes with significant hardware cost.

If you are only using one of the two FIFOs — TX or RX — a state machine can pool its resources to
provide a single FIFO with double the depth. The RP2040 Datasheet goes into much more detail,
including how this mechanism actually works under the hood.

Our state machine is ready to sample some pins. Let's take a look at how we hook up the DMA to our state machine,

and tell the

state machine to start sampling once it sees some trigger condition.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/logic_analyser/logic_analyser.c Lines 51 - 70

51 void logic_analyser_arm(PIO pio, uint sm, uint dma_chan, uint32_t *capture_buf, size_t

capt
52
53
54
55!
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70 }

ure_size_words,

uint trigger_pin, bool trigger_level) {
pio_sm_set_enabled(pio, sm, false);
pio_sm_clear_fifos(pio, sm);

dma_channel_config ¢ = dma_channel_get_default_config(dma_chan);
channel_config_set_read_increment(&c, false);
channel_config_set_write_increment(&c, true);
channel_config_set_dreq(&c, pio_get_dreq(pio, sm, false));

dma_channel_configure(dma_chan, &c,

capture_buf, // Destinatinon pointer
&pio->rxf[sm], // Source pointer
capture_size_words, // Number of transfers
true // Start immediately

)5

pio_sm_exec(pio, sm, pio_encode_wait_gpio(trigger_level, trigger_pin));
pio_sm_set_enabled(pio, sm, true);

We want the DMA to read from the RX FIFO on our PIO state machine, so every DMA read is from the same address.
The write address, on the other hand, should increment after every DMA transfer so that the DMA gradually fills up our
capture buffer as data comes in. We need to specify a data request signal (DREQ) so that the DMA transfers data at the

proper rate.

Data request signals

The DMA can transfer data incredibly fast, and almost invariably this will be much faster than your PIO

program actually needs. The DMA paces itself based on a data request handshake with the state

machine, so there’s no worry about it overflowing or underflowing a FIFO, as long as you have selected

the correct DREQ signal. The state machine coordinates with the DMA to tell it when it has room
available in its TX FIFO, or data available in its RX FIFO.

We need to provide the DMA channel with an initial read address, an initial write address, and the total number of
reads/writes to be performed (not the total number of bytes). We start the DMA channel immediately — from this point
on, the DMA is poised, waiting for the state machine to produce data. As soon as data appears in the RX FIFO, the DMA

will pounce

and whisk the data away to our capture buffer in system memory.

3.2. Getting started with PI

0

45

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples/tree/master/pio/logic_analyser/logic_analyser.c#L51-L70

Raspberry Pi Pico C/C++ SDK

As things stand right now, the state machine will immediately go into a 1-cycle loop of in instructions once enabled.
Since the system memory available for capture is quite limited, it would be better for the state machine to wait for some
trigger before it starts sampling. Specifically, we are using a wait pin instruction to stall the state machine until a certain
pin goes high or low, and again we are using one of the pio_encode_ functions to encode this instruction on-the-fly.

pio_sm_exec tells the state machine to immediately execute some instruction you give it. This instruction never gets
written to the instruction memory, and if the instruction stalls (as it will in this case — a wait instruction’s job is to stall)
then the state machine will latch the instruction until it completes. With the state machine stalled on the wait instruction,
we can enable it without being immediately flooded by data.

At this point everything is armed and waiting for the trigger signal from the chosen GPIO. This will lead to the following
sequence of events:

1. The wait instruction will clear
2. On the very next cycle, state machine will start to execute in instructions from the program memory
3. As soon as data appears in the RX FIFO, the DMA will start to transfer it.

4. Once the requested amount of data has been transferred by the DMA, it'll automatically stop

State Machine EXEC Functionality

So far our state machines have executed instructions from the instruction memory, but there are other
options. One is the SMx_INSTR register (used by pio_sm_exec()): the state machine will immediately execute
whatever you write here, momentarily interrupting the current program it's running if necessary. This is
useful for poking around inside the state machine from the system side, for initial setup.

The other two options, which use the same underlying hardware, are out exec (shift out an instruction

from the data being streamed through the OSR, and execute it) and mov exec (execute an instruction

stashed in e.g. a scratch register). Besides making people’s eyes bulge, these are really useful if you
want the state machine to perform some data-defined operation at a certain point in an output stream.

The example code provides this cute function for displaying the captured logic trace as ASCII art in a terminal:

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/logic_analyser/logic_analyser.c Lines 72 - 86

72 void print_capture_buf(const uint32_t *buf, uint pin_base, uint pin_count, uint32_t
n_samples) {

73 // Display the capture buffer in text form, like this:

74 J7 CES __me == _e= == == ==

75 g7 @S o =mmme =mes =ees

76 printf("Capture:\n");

77 for (int pin = @; pin < pin_count; ++pin) {

78 printf("%02d: ", pin + pin_base);

79 for (int sample = @; sample < n_samples; ++sample) {
80 uint bit_index = pin + sample * pin_count;

81 bool level = !!(buf[bit_index / 32] & 1u << (bit_index % 32));
82 printf(level ? "-" : "_");

83 }

84 printf("\n");

85 }

86 }

We have everything we need now for RP2040 to capture a logic trace of its own pins, whilst running some other
program. Here we're setting up a PWM slice to output at around 15 MHz on two GPIOs, and attaching our brand
spanking new logic analyser to those same two GPIOs.

3.2. Getting started with PIO 46

https://github.com/raspberrypi/pico-examples/tree/master/pio/logic_analyser/logic_analyser.c#L72-L86

Raspberry Pi Pico C/C++ SDK
]

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/logic_analyser/logic_analyser.c Lines 88 - 125

88 int main() {

89 stdio_init_all();

90 printf("PIO logic analyser example\n");

91

92 uint32_t capture_buf[(CAPTURE_PIN_COUNT * CAPTURE_N_SAMPLES + 31) / 32];
93

94 PIO pio = pio@;

95 uint sm = 0;

96 uint dma_chan = 0;

97

98 logic_analyser_init(pio, sm, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, 1.f);
99

100 printf("Arming trigger\n");

101 logic_analyser_arm(pio, sm, dma_chan, capture_buf, //;

102 (CAPTURE_PIN_COUNT * CAPTURE_N_SAMPLES + 31) / 32,

103 CAPTURE_PIN_BASE, true);

104

105 printf("Starting PWM example\n");

106 // PWM example: —--=--=—-= = o
107 gpio_set_function(CAPTURE_PIN_BASE, GPIO_FUNC_PWM) ;

108 gpio_set_function(CAPTURE_PIN_BASE + 1, GPIO_FUNC_PWM);

109 // Topmost value of 3: count from @ to 3 and then wrap, so period is 4 cycles
110 pwm_hw->slice[@].top = 3;

111 // Divide frequency by two to slow things down a little

112 pwm_hw->slice[@].div = 4 << PWM_CHO_DIV_INT_LSB;

113 // Set channel A to be high for 1 cycle each period (duty cycle 1/4) and
114 // channel B for 3 cycles (duty cycle 3/4)

115 pwm_hw->slice[@].cc =

116 (1 << PWM_CHO_CC_A_LSB) |

117 (3 << PWM_CHB_CC_B_LSB);

118 // Enable this PWM slice

119 pwm_hw->slice[@].csr = PWM_CHO_CSR_EN_BITS;

120 [=emmmmmreess s ser e s s e S S S e e S S S S e e S S D e S S S S e eSS S S e S S S DD e eSS DS
121

122 dma_channel_wait_for_finish_blocking(dma_chan);

123

124 print_capture_buf(capture_buf, CAPTURE_PIN_BASE, CAPTURE_PIN_COUNT, CAPTURE_N_SAMPLES);
125 }

The output of the program looks like this:

Starting PWM example
Capture:

168 === S S S Sl

177 —mmmmmmmmme- e e e s

3.2.4. Further examples

Hopefully what you have seen so far has given some idea of how PIO applications can be built with the SDK. The
RP2040 Datasheet contains many more documented examples, which highlight particular hardware features of PIO, or
show how particular hardware interfaces can be implemented.

You can also browse the pio/ directory in the pico-examples repository.

]
3.2. Getting started with PIO 47

https://github.com/raspberrypi/pico-examples/tree/master/pio/logic_analyser/logic_analyser.c#L88-L125
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf
https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-examples
https://github.com/raspberrypi/pico-examples

Raspberry Pi Pico C/C++ SDK

3.3. Using PIOASM, the PIO Assembler

Up until now, we have glossed over the details of how the assembly program in our .pio file is translated into a binary
program, ready to be loaded into our PIO state machine. Programs that handle this task — translating assembly code
into binary —are generally referred to as assemblers, and PIO is no exception in this regard. The SDK includes an
assembler for PIO, called pioasm. The SDK handles the details of building this tool for you behind the scenes, and then
using it to build your PIO programs, for you to #include from your C or C++ program. pioasm can also be used directly, and
has a few features not used by the C++ SDK, such as generating programs suitable for use with the MicroPython PIO
library.

If you have built the pico-examples repository at any point, you will likely already have a pioasm binary in your build
directory, located under build/tools/pioasn/pioasm, which was bootstrapped for you before building any applications that
depend on it. If we want a standalone copy of pioasm, perhaps just to explore the available commandline options, we can
obtain it as follows (assuming the SDK is extracted at $P1C0_SDK_PATH):

mkdir pioasm_build

cd pioasm_build

cmake SPICO_SDK_PATH/tools/pioasm
make

And then invoke as:

./pioasm

3.3.1. Usage

A description of the command line arguments can be obtained by running:
pioasm -?
giving:

usage: pioasm <options> <input> (<output>)

Assemble file of PIO program(s) for use in applications.
<input> the input filename
<output> the output filename (or filename prefix if the output
format produces multiple outputs).
if not specified, a single output will be written to stdout

options:
-0 <output_format> select output_format (default 'c-sdk'); available options are:
c-sdk
C header suitable for use with the Raspberry Pi Pico SDK
python
Python file suitable for use with MicroPython
hex
Raw hex output (only valid for single program inputs)
-p <output_param> add a parameter to be passed to the outputter
-?, --help print this help and exit

]
3.3. Using PIOASM, the PIO Assembler 48

Raspberry Pi Pico C/C++ SDK

© NoTE

Within the SDK you do not need to invoke pioasm directly, as the CMake function pico_generate_pio_header (TARGET
PIO_FILE) takes care of invoking pioasm and adding the generated header to the include path of the target TARGET
for you.

3.3.2. Directives

The following directives control the assembly of PIO programs:

Table 5. pioasm

directives .define (PUBLIC) <symbol> <value> Define an integer symbol named <symbol> with the value <value> (see Section

3.3.3). If this .define appears before the first program in the input file, then the
define is global to all programs, otherwise it is local to the program in which it
occurs. If PUBLIC is specified the symbol will be emitted into the assembled
output for use by user code. For the SDK this takes the form of:

ftdefine <program_name>_<symbol> value for program symbols or #define <symbol>
value for global symbols

.program <name> Start a new program with the name <name>. Note that that name is used in
code so should be alphanumeric/underscore not starting with a digit. The
program lasts until another .program directive or the end of the source file. PIO
instructions are only allowed within a program

.origin <offset> Optional directive to specify the PIO instruction memory offset at which the
program must load. Most commonly this is used for programs that must load
at offset 0, because they use data based JMPs with the (absolute) jmp target
being stored in only a few bits. This directive is invalid outside of a program

.side_set <count> (opt) (pindirs) If this directive is present, <count> indicates the number of side set bits to be
used. Additionally opt may be specified to indicate that a side <value> is
optional for instructions (not using this requires stealing an extra bit - in
addition to the <count> bits - from those available for the instruction delay).
Finally, pindirs may be specified to indicate that the side set values should be
applied to the PINDIRs and not the PINs. This directive is only valid within a
program before the first instruction

.wrap_target Place prior to an instruction, this directive specifies the instruction where
execution continues due to program wrapping. This directive is invalid outside
of a program, may only be used once within a program, and if not specified
defaults to the start of the program

.wrap Placed after an instruction, this directive specifies the instruction after which,
in normal control flow (i.e. jmp with false condition, or no jmp), the program
wraps (to .wrap_target instruction). This directive is invalid outside of a
program, may only be used once within a program, and if not specified
defaults to after the last program instruction.

.lang_opt <lang> <name> <option> Specifies an option for the program related to a particular language generator.
(See Section 3.3.10). This directive is invalid outside of a program

.word <value> Stores a raw 16-bit value as an instruction in the program. This directive is
invalid outside of a program.

]
3.3. Using PIOASM, the PIO Assembler 49

Raspberry Pi Pico C/C++ SDK

3.3.3. Values
The following types of values can be used to define integer numbers or branch targets
T?ble s V alues n integer An integer value e.g. 3 or -7
pioasm, I.e. <value>
hex A hexadecimal value e.g. 0xf
binary A binary value e.g. 0b1001
symbol A value defined by a .define (see [pioasm_define])
<label> The instruction offset of the label within the program. This makes most sense when used with
a JMP instruction (see Section 3.4.2)
(<expression>) An expression to be evaluated; see expressions. Note that the parentheses are necessary.

3.3.4. Expressions

Expressions may be freely used within pioasm values.

Table 7. Expressions

. . <expression> + <expression> The sum of two expressions
In pioasm I.e.
<expression>
o <expression> - <expression> The difference of two expressions
<expression> * <expression> The multiplication of two expressions
<expression> / <expression> The integer division of two expressions

- <expression>

The negation of another expression

1 <expression>

The bit reverse of another expression

<value>

Any value (see Section 3.3.3)

3.3.5. Comments

Line comments are supported with // or ;

C-style block comments are supported via /* and */

3.3.6. Labels

Labels are of the form:
<symbol>:

or

PUBLIC <symbol>:

at the start of a line.

3.3. Using PIOASM, the PIO Assembler

50

Raspberry Pi Pico C/C++ SDK

@ T

A label is really just an automatic .define with a value set to the current program instruction offset. A PUBLIC label is
exposed to the user code in the same way as a PUBLIC .define.

3.3.7. Instructions

All pioasm instructions follow a common pattern:
<instruction> (side <side_set_value>) ([<delay_value>])

where:

<instruction> Is an assembly instruction detailed in the following sections. (See Section 3.4)

<side_set_value> |s a value (see Section 3.3.3) to apply to the side_set pins at the start of the instruction. Note that
the rules for a side set value via side <side_set_value> are dependent on the .side_set (see
[pioasm_side_set]) directive for the program. If no .side_set is specified then the side
<side_set_value> is invalid, if an optional number of sideset pins is specified then side
<side_set_value> may be present, and if a non-optional number of sideset pins is specified, then
side <side_set_value> is required. The <side_set_value> must fit within the number of side set bits
specified in the .side_set directive.

<delay_value> Specifies the number of cycles to delay after the instruction completes. The delay_value is
specified as a value (see Section 3.3.3), and in general is between 0 and 31 inclusive (a 5-bit
value), however the number of bits is reduced when sideset is enabled via the .side_set (see
[pioasm_side_set]) directive. If the <delay_value> is not present, then the instruction has no delay

© NoTE

pioasm instruction names, keywords and directives are case insensitive; lower case is used in the Assembly Syntax
sections below as this is the style used in the SDK.

O NoTE

Commas appear in some Assembly Syntax sections below, but are entirely optional, e.g. out pins, 3 may be written
out pins 3, and jmp x-- label may be written as jmp x--, label. The Assembly Syntax sections below uses the first
style in each case as this is the style used in the SDK.

3.3.8. Pseudoinstructions

Currently pioasm provides one pseudoinstruction, as a convenience:

nop Assembles to mov y, y. "No operation’, has no particular side effect, but a useful vehicle for a side-set
operation or an extra delay.

3.3.9. Output pass through

Text in the PIO file may be passed, unmodifed, to the output based on the language generator being used.

For example the following (comment and function) would be included in the generated header when the default c-sdk
language generator is used.

3.3. Using PIOASM, the PIO Assembler 51

Raspberry Pi Pico C/C++ SDK
]

% c-sdk {

// an inline function (since this is going in a header file)

static inline int some_c_code() {

}

%)

return 0;

The general format is

% target {
pass through contents

%}

with targets being recognized by a particular language generator (see Section 3.3.10; note that target is usually the
language generator name e.g. c-sdk, but could potentially be some_language.some_group if the language generator supports
different classes of pass through with different output locations.

This facility allows you to encapsulate both the PIO program and the associated setup required in the same source file.
See Section 3.3.10 for a more complete example.

3.3.10. Language generators

The following example shows a multi program source file (with multiple programs) which we will use to highlight c-sdk
and python output features

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.pio Lines 1 - 85

o N o o wWwN =

N NN NDNNMNNDNMNAS Q2 a a aaaaa
O© 0 N o oA WN 2 ® O N ol A WN = ®©® O

BSD-3-Clause

pico.PIO.OUT_HIGH
pico.PIO.OUT_HIGH
1

1] ; Side-set still takes place when instruction stalls
1] ; Branch on the bit we shifted out. Positive pulse

1] ; Continue driving high, for a long pulse

1] ; Or drive low, for a short pulse

; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
; SPDX-License-Identifier:
.program ws2812
.side_set 1
.define public T1 2
.define public T2 5
.define public T3 3
.lang_opt python sideset_init
.lang_opt python out_init
.lang_opt python out_shiftdir
.wrap_target
bitloop:
out x, 1 side @ [T3
jmp !x do_zero side 1 [T1
do_one:
jmp bitloop side 1 [T2
do_zero:
nop side 0 [T2
.wrap
% c-sdk {
#include "hardware/clocks.h"

]
3.3. Using PIOASM, the PIO Assembler

52

https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/ws2812.pio#L1-L85

Raspberry Pi Pico C/C++ SDK
]

30
31 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,
bool rgbw) {

32

33 pio_gpio_init(pio, pin);

34 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);

85

36 pio_sm_config ¢ = ws2812_program_get_default_config(offset);
37 sm_config_set_sideset_pins(&c, pin);

38 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);

39 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

40

41 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;

42 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
43 sm_config_set_clkdiv(&c, div);

44

45 pio_sm_init(pio, sm, offset, &c);

46 pio_sm_set_enabled(pio, sm, true);

47 '}

48 %}

49

50 .program ws2812_parallel

51

52 .define public T1 2
53 .define public T2 5
54 .define public T3 3

55

56 .wrap_target

57 out x, 32

58 mov pins, 'null [T1-1]
59 mov pins, X [T2-1]
60 mov pins, null [T3-2]
61 .wrap

62

63 % c-sdk {

64 #include "hardware/clocks.h"

65

66 static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint
pin_base, uint pin_count, float freq) {

67 for(uint i=pin_base; i<pin_base+pin_count; i++) {

68 pio_gpio_init(pio, 1i);

69 }

70 pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
71

72 pio_sm_config ¢ = ws2812_parallel_program_get_default_config(offset);
73 sm_config_set_out_shift(&c, true, true, 32);

74 sm_config_set_out_pins(&c, pin_base, pin_count);

75 sm_config_set_set_pins(&c, pin_base, pin_count);

76 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

77

78 int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel T2 + ws2812_parallel_T3;
79 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);

80 sm_config_set_clkdiv(&c, div);

81

82 pio_sm_init(pio, sm, offset, &c);

83 pio_sm_set_enabled(pio, sm, true);

84 }

85 %}

]
3.3. Using PIOASM, the PIO Assembler 53

Raspberry Pi Pico C/C++ SDK

3.3.10.1. c-sdk

The c-sdk language generator produces a single header file with all the programs in the PIO source file:

The pass through sections (% c-sdk {) are embedded in the output, and the PUBLIC defines are available via #define

@ TP

the PIO state machine.

pioasm creates a function for each program (e.g. ws2812_program_get_default_config()) returning a pio_sm_config based
on the .side_set, .wrap and .wrap_target settings of the program, which you can then use as a basis for configuration

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/generated/ws2812.pio.h Lines 1 - 112

1 Jf ===—=c=cscoscososcoooscososcomoososoosoooooooEosos //

2 // This file is autogenerated by pioasm; do not edit! //

) S S S e e S e S e e e e I I //

4

5 #if !PICO_NO_HARDWARE

6 #include "hardware/pio.h"

7 #endif

8

Q JY ====== //

10 // ws2812 //

11 /) ====== //

12

13 #define ws2812_wrap_target 0

14 #define ws2812_wrap 3

15

16 #define ws2812_T1 2

17 #define ws2812_T2 5

18 #define ws2812_T3 3

19
20 static const uintl16_t ws2812_program_instructions[] = {
21 // .wrap_target
22 0x6221, // ©: out x, 1 side 0 [2]
23 ox1123, // 1: jmp Ix, 3 side 1 [1]
24 ox14ee, // 2: jmp /] side 1 [4]

25 0xad42, // 3: nop side 0 [4]

26 // .wrap

27 };

28

29 #if !PICO_NO_HARDWARE

30 static const struct pio_program ws2812_program = {

31 .instructions = ws2812_program_instructions,

32 .length = 4,

33 .origin = -1,

34 };

35

36 static inline pio_sm_config ws2812_program_get_default_config(uint offset) {
37 pio_sm_config ¢ = pio_get_default_sm_config();

38 sm_config_set_wrap(&c, offset + ws2812_wrap_target, offset + ws2812_wrap);
39 sm_config_set_sideset(&c, 1, false, false);
40 return c;
41 }
42
43 #include "hardware/clocks.h”
44 static inline void ws2812_program_init(PIO pio, uint sm, uint offset, uint pin, float freq,

bool rgbw) {

45 pio_gpio_init(pio, pin);
46 pio_sm_set_consecutive_pindirs(pio, sm, pin, 1, true);
47 pio_sm_config ¢ = ws2812_program_get_default_config(offset);

3.3. Using PIOASM, the PIO Assembler

54

https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/generated/ws2812.pio.h#L1-L112

Raspberry Pi Pico C/C++ SDK
]

48 sm_config_set_sideset_pins(&c, pin);

49 sm_config_set_out_shift(&c, false, true, rgbw ? 32 : 24);
50 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

51 int cycles_per_bit = ws2812_T1 + ws2812_T2 + ws2812_T3;
52 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);
53 sm_config_set_clkdiv(&c, div);

54 pio_sm_init(pio, sm, offset, &c);

55 pio_sm_set_enabled(pio, sm, true);

56 }

57

58 #endif

59

GE /) ===mmmmmmssmmss //

61 // ws2812_parallel //

@ [======ss=sss=== //

63

64 #define ws2812_parallel_wrap_target 0
65 #define ws2812_parallel_wrap 3

66

67 #define ws2812_parallel_T1 2

68 #define ws2812_parallel T2 5

69 #define ws2812_parallel_T3 3

70

71 static const uint16_t ws2812_parallel_program_instructions[] = {
72 // .wrap_target

73 0x6020, // 0: out X, 32

74 Oxaléb, // 1: mov pins, !null [1]

75 0xa401, // 2: mov pins, x [4]

76 oxale3, // 3: mov pins, null [1]

77 // .wrap

78 };

79

80 #if !PICO_NO_HARDWARE
81 static const struct pio_program ws2812_parallel_program = {

82 .instructions = ws2812_parallel_program_instructions,

83 .length = 4,

84 .origin = -1,

85 };

86

87 static inline pio_sm_config ws2812_parallel_program_get_default_config(uint offset) {

88 pio_sm_config c = pio_get_default_sm_config();

89 sm_config_set_wrap(&c, offset + ws2812_parallel_wrap_target, offset +
ws2812_parallel_wrap);

90 return c;

91 }

92

93 #include "hardware/clocks.h"
94 static inline void ws2812_parallel_program_init(PIO pio, uint sm, uint offset, uint
pin_base, uint pin_count, float freq) {

95 for(uint i=pin_base; i<pin_base+pin_count; i++) {

96 pio_gpio_init(pio, 1i);

97 }

98 pio_sm_set_consecutive_pindirs(pio, sm, pin_base, pin_count, true);
99 pio_sm_config c = ws2812_parallel_program_get_default_config(offset);
100 sm_config_set_out_shift(&c, true, true, 32);

101 sm_config_set_out_pins(&c, pin_base, pin_count);

102 sm_config_set_set_pins(&c, pin_base, pin_count);

1083 sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);

104 int cycles_per_bit = ws2812_parallel_T1 + ws2812_parallel_T2 + ws2812_parallel_T3;
105 float div = clock_get_hz(clk_sys) / (freq * cycles_per_bit);

106 sm_config_set_clkdiv(&c, div);

107 pio_sm_init(pio, sm, offset, &c);

108 pio_sm_set_enabled(pio, sm, true);

]
3.3. Using PIOASM, the PIO Assembler 55

Raspberry Pi Pico C/C++ SDK
]

109 }
110
111 #endif

3.3.10.2. python

The python language generator produces a single python file with all the programs in the PIO source file:

The pass through sections (% python {) would be embedded in the output, and the PUBLIC defines are available as python
variables.

Also note the use of .1ang_opt python to pass initializers for the @pico.asm_pio decorator

@ TIP

The python language output is provided as a utility. MicroPython supports programming with the P10 natively, so you
may only want to use pioasm when sharing PIO code between the SDK and MicroPython. No effort is currently made
to preserve label names, symbols or comments, as it is assumed you are either using the PIO file as a source or
python; not both. The python language output can of course be used to bootstrap your MicroPython PIO
development based on an existing PIO file.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/generated/ws2812.py Lines 1 - 46

1 ====cosssssssssossssorosssoooes s s oo os S S E e eSS Do #
2 # This file is autogenerated by pioasm; do not edit! #
B e #
4

5 import rp2

6 from machine import Pin

7 # ------ #

8 # ws2812 #

9 # ---—--- #

10

11 ws2812_T1 = 2

12 ws2812_T2 = 5

13 ws2812_T3 = 3

14

15 @rp2.asm_pio(sideset_init=pico.PI0.OUT_HIGH, out_init=pico.PI0.OUT_HIGH, out_shiftdir=1)
16 def ws2812():

17 wrap_target()

18 label("0")

19 out(x, 1) .side(@) [2] # @
20 jmp(not_x, "3") .side(1) [1] # 1
21 jmp("@") .side(1) [4] # 2
22 label("3")
23 nop () .side(@) [4] # 3
24 wrap()
25
26
27
Y i memmmmssssmmsss #
29 # ws2812_parallel #
30 # —————--———————- #
&l
32 ws2812_parallel_T1 =

w
w

ws2812_parallel T2 = 5
ws2812_parallel_T3

w W
[S I
[}

w
o

@rp2.asm_pio()

]
3.3. Using PIOASM, the PIO Assembler 56

https://github.com/raspberrypi/pico-examples/tree/master/pio/ws2812/generated/ws2812.py#L1-L46

Raspberry Pi Pico C/C++ SDK
]

37 def ws2812_parallel():

38 wrap_target()
39 out(x, 32) # 0
40 mov(pins, not null) [1] #1
41 mov(pins, x) [4] #2
42 mov(pins, null) [1] #3
43 wrap()

3.3.10.3. hex

The hex generator only supports a single input program, as it just dumps the raw instructions (one per line) as a 4-bit
hexadecimal number.

Given:

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/squarewave/squarewave.pio Lines 1- 13

3

2 ; Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
3

4 ; SPDX-License-Identifier: BSD-3-Clause

5 ;

6

7 .program squarewave

8 set pindirs, 1 ; Set pin to output

9 again:

10 set pins, 1 [1] ; Drive pin high and then delay for one cycle
11 set pins, © ; Drive pin low

12 jmp again ; Set PC to label ‘again’

The hex output produces:

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/pio/squarewave/generated/squarewave.hex Lines 1 - 4

€081
e101
€000
0001

3.4. PIO Instruction Set Reference

© NoTE

This section refers in places to concepts and pieces of hardware discussed in the RP2040 Datasheet. You are
encouraged to read the PIO chapter of the datasheet to get the full context for what these instructions do.

3.4.1. Summary

P10 instructions are 16 bits long, and have the following encoding:

3.4. PIO Instruction Set Reference 57

https://github.com/raspberrypi/pico-examples/tree/master/pio/squarewave/squarewave.pio#L1-L13
https://github.com/raspberrypi/pico-examples/tree/master/pio/squarewave/generated/squarewave.hex#L1-L4
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK

Table 8. PIO Bitt | 15 | 14 | 13 | 12 | 11 | 10 | 9 7 | 6 | s 2 1
instruction encoding
JMp 0 0 0 Delay/side-set Condition Address
WAIT 0 0 1 Delay/side-set Pol Source Index
N 0 1 0 Delay/side-set Source Bit count
ouT 0 1 1 Delay/side-set Destination Bit count
PUSH 1 0 0 Delay/side-set 0 IfF | Blk 0 0
PULL 1 0 0 Delay/side-set 1 IfE | Blk 0 0
Mov 1 0 1 Delay/side-set Destination Op Source
IRQ 1 1 0 Delay/side-set 0 Clr | Wait Index
SET 1 1 1 Delay/side-set Destination Data

All P10 instructions execute in one clock cycle.

The Delay/side-set field is present in all instructions. Its exact use is configured for each state machine by

PINCTRL_SIDESET_COUNT:

* Up to 5 MSBs encode a side-set operation, which optionally asserts a constant value onto some GPIOs,

concurrently with main instruction execution logic

® Remaining LSBs (up to 5) encode the number of idle cycles inserted between this instruction and the next

3.4.2. JMP

3.4.2.1. Encoding

Bit:

15

14

13

12

11 10 9

6

Jnp

Delay/side-set

Condition

Address

3.4.2.2. Operation

Set program counter to Address if Condition is true, otherwise no operation.

Delay cycles on a JMP always take effect, whether Condition is true or false, and they take place after Condition is

evaluated and the program counter is updated.

® Condition:

o 000: (no condition): Always

o

o

001: !X: scratch X zero

010: X--: scratch X non-zero, post-decrement

011: !Y: scratch Y zero

100: Y--: scratch Y non-zero, post-decrement

101: X!=Y: scratch X not equal scratch Y

110: PIN: branch on input pin

111: 10SRE: output shift register not empty

® Address: Instruction address to jump to. In the instruction encoding this is an absolute address within the PIO

]
3.4. PIO Instruction Set Reference

58

Raspberry Pi Pico C/C++ SDK
]

instruction memory.

JMP PIN branches on the GPIO selected by EXECCTRL_IMP_PIN, a configuration field which selects one out of the maximum
of 32 GPIO inputs visible to a state machine, independently of the state machine’s other input mapping. The branch is
taken if the GPIO is high.

10SRE compares the bits shifted out since the last PULL with the shift count threshold configured by SHIFTCTRL_PULL_THRESH.
This is the same threshold used by autopull.

3.4.2.3. Assembler Syntax

jmp (<cond>) <target>

where:
<cond> Is an optional condition listed above (e.g. !x for scratch X zero). If a condition code is not specified,
the branch is always taken
<target> Is a program label or value (see Section 3.3.3) representing instruction offset within the program (the
first instruction being offset 0). Note that because the PIO JMP instruction uses absolute addresses
in the PIO instruction memory, JMPs need to be adjusted based on the program load offset at
runtime. This is handled for you when loading a program with the SDK, but care should be taken when
encoding JMP instructions for use by 0UT EXEC
3.4.3. WAIT

3.4.3.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WAIT 0 0 1 Delay/side-set Pol Source Index
3.4.3.2. Operation

Stall until some condition is met.

Like all stalling instructions, delay cycles begin after the instruction completes. That is, if any delay cycles are present,
they do not begin counting until after the wait condition is met.

® Polarity:
o 1:waitforal.
o 0:wait fora0.
® Source: what to wait on. Values are:

o 00: 6PI0: System GPIO input selected by Index. This is an absolute GPIO index, and is not affected by the state
machine’s input |10 mapping.

o 01: PIN: Input pin selected by Index. This state machine’s input I0 mapping is applied first, and then Index
selects which of the mapped bits to wait on. In other words, the pin is selected by adding Index to the
PINCTRL_IN_BASE configuration, modulo 32.

o 10: IRQ: PIO IRQ flag selected by Index

o 11: Reserved

]
3.4. PIO Instruction Set Reference 59

Raspberry Pi Pico C/C++ SDK
]

® |Index: which pin or bit to check.
WAIT x IRQ behaves slightly differently from other WAIT sources:
® |f Polarity is 1, the selected IRQ flag is cleared by the state machine upon the wait condition being met.

® The flag index is decoded in the same way as the IRQ index field: if the MSB is set, the state machine ID (0..3) is
added to the IRQ index, by way of modulo-4 addition on the two LSBs. For example, state machine 2 with a flag
value of '0x11" will wait on flag 3, and a flag value of '0x13" will wait on flag 1. This allows multiple state machines
running the same program to synchronise with each other.

A cAuTION

WAIT 1 IRQ x should not be used with IRQ flags presented to the interrupt controller, to avoid a race condition with a
system interrupt handler

3.4.3.3. Assembler Syntax
wait <polarity> gpio <gpio_num>
wait <polarity> pin <pin_num>

wait <polarity> irq <irg_num> (rel)

where:
<polarity> Is a value (see Section 3.3.3) specifying the polarity (either 0 or 1)
<pin_num> Is a value (see Section 3.3.3) specifying the input pin number (as mapped by the SM input pin
mapping)
<gpio_num> Is a value (see Section 3.3.3) specifying the actual GPIO pin number

<irg_num> (rel) s avalue (see Section 3.3.3) specifying The irq number to wait on (0-7). If rel is present, then the
actual irg number used is calculating by replacing the low two bits of the irq number (irg_num,)
with the low two bits of the sum (irg_num;, + sm_num,,) where sm_num,, is the state machine
number

3.44.IN

3.4.4.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

N 0 1 0 Delay/side-set Source Bit count

3.4.4.2. Operation

Shift Bit count bits from Source into the Input Shift Register (ISR). Shift direction is configured for each state machine by
SHIFTCTRL_IN_SHIFTDIR. Additionally, increase the input shift count by Bit count, saturating at 32.

® Source:
o 000: PINS

o 001: X (scratch register X)

]
3.4. PIO Instruction Set Reference 60

Raspberry Pi Pico C/C++ SDK
]

o 010:Y (scratch register Y)
o 077:NULL (all zeroes)
o 100: Reserved
o 1017: Reserved
o 110: ISR
o 111:0SR
® Bit count: How many bits to shift into the ISR. 1...32 bits, 32 is encoded as 00000.

If automatic push is enabled, IN will also push the ISR contents to the RX FIFO if the push threshold is reached
(SHIFTCTRL_PUSH_THRESH). IN still executes in one cycle, whether an automatic push takes place or not. The state machine
will stall if the RX FIFO is full when an automatic push occurs. An automatic push clears the ISR contents to all-zeroes,
and clears the input shift count.

IN always uses the least significant Bit count bits of the source data. For example, if PINCTRL_IN_BASE is set to 5, the
instruction IN 3, PINS will take the values of pins 5, 6 and 7, and shift these into the ISR. First the ISR is shifted to the left
or right to make room for the new input data, then the input data is copied into the gap this leaves. The bit order of the
input data is not dependent on the shift direction.

NULL can be used for shifting the ISR’s contents. For example, UARTSs receive the LSB first, so must shift to the right.
After 8 IN PINS, 1instructions, the input serial data will occupy bits 31..24 of the ISR. An IN NULL, 24 instruction will shift
in 24 zero bits, aligning the input data at ISR bits 7..0. Alternatively, the processor or DMA could perform a byte read
from FIFO address + 3, which would take bits 31...24 of the FIFO contents.

3.4.4.3. Assembler Syntax

in <source>, <bit_count>

where:

<source> Is one of the sources specified above.

<bit_count> Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)
3.4.5. OUT

3.4.5.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

ouT 0 1 1 Delay/side-set Destination Bit count

3.4.5.2. Operation

Shift Bit count bits out of the Output Shift Register (OSR), and write those bits to Destination. Additionally, increase the
output shift count by Bit count, saturating at 32.

¢ Destination:
o 000: PINS
o 001: X (scratch register X)

o 010: Y (scratch register Y)

]
3.4. PIO Instruction Set Reference 61

Raspberry Pi Pico C/C++ SDK
]

o 011:NULL (discard data)
o 100: PINDIRS
o 101:PC
o 110: ISR (also sets ISR shift counter to Bit count)
o 111: EXEC (Execute OSR shift data as instruction)
® Bit count: how many bits to shift out of the OSR. 1...32 bits, 32 is encoded as 00000.

A 32-bit value is written to Destination: the lower Bit count bits come from the OSR, and the remainder are zeroes. This
value is the least significant Bit count bits of the OSR if SHIFTCTRL_OUT_SHIFTDIR is to the right, otherwise it is the most
significant bits.

PINS and PINDIRS use the OUT pin mapping.

If automatic pull is enabled, the OSR is automatically refilled from the TX FIFO if the pull threshold, SHIFTCTRL_PULL_THRESH,
is reached. The output shift count is simultaneously cleared to 0. In this case, the 0UT will stall if the TX FIFO is empty,
but otherwise still executes in one cycle.

0UT EXEC allows instructions to be included inline in the FIFO datastream. The 0UT itself executes on one cycle, and the
instruction from the OSR is executed on the next cycle. There are no restrictions on the types of instructions which can
be executed by this mechanism. Delay cycles on the initial 0UT are ignored, but the executee may insert delay cycles as
normal.

0UT PC behaves as an unconditional jump to an address shifted out from the OSR.

3.4.5.3. Assembler Syntax

out <destination>, <bit_count>

where:
<destination> Is one of the destinations specified above.
<bit_count> Is a value (see Section 3.3.3) specifying the number of bits to shift (valid range 1-32)

3.4.6. PUSH

3.4.6.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUSH 1 0 0 Delay/side-set 0 IfF | Blk 0 0 0 0 0

3.4.6.2. Operation

Push the contents of the ISR into the RX FIFO, as a single 32-bit word. Clear ISR to all-zeroes.

® T1fFull: If 1, do nothing unless the total input shift count has reached its threshold, SHIFTCTRL_PUSH_THRESH (the same
as for autopush).

® Block: If 1, stall execution if RX FIFO is full.

PUSH IFFULL helps to make programs more compact, like autopush. It is useful in cases where the IN would stall at an
inappropriate time if autopush were enabled, e.qg. if the state machine is asserting some external control signal at this
point.

]
3.4. PIO Instruction Set Reference 62

Raspberry Pi Pico C/C++ SDK
]

The PIO assembler sets the Block bit by default. If the Block bit is not set, the PUSH does not stall on a full RX FIFO, instead
continuing immediately to the next instruction. The FIFO state and contents are unchanged when this happens. The ISR
is still cleared to all-zeroes, and the FDEBUG_RXSTALL flag is set (the same as a blocking PUSH or autopush to a full RX FIFO)
to indicate data was lost.

3.4.6.3. Assembler Syntax

push (iffull’)
push (iffull’) block

push (iffull) noblock

where:

iffull Is equivalent to IfFull == 1 above. i.e. the default if this is not specified is IfFull ==

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified
noblock Is equivalent to Block == @ above.

3.4.7. PULL

3.4.7.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 S 4 3 2 1 0

PULL 1 0 0 Delay/side-set 1 IfE | Blk 0 0 0 0 0

3.4.7.2. Operation

Load a 32-bit word from the TX FIFO into the OSR.

e IfEmpty: If 1, do nothing unless the total output shift count has reached its threshold, SHIFTCTRL_PULL_THRESH (the
same as for autopull).

® Block: If 1, stall if TX FIFO is empty. If O, pulling from an empty FIFO copies scratch X to OSR.

Some peripherals (UART, SPI...) should halt when no data is available, and pick it up as it comes in; others (12S) should
clock continuously, and it is better to output placeholder or repeated data than to stop clocking. This can be achieved
with the Block parameter.

A nonblocking PULL on an empty FIFO has the same effect as MOV 0SR, X. The program can either preload scratch register
X with a suitable default, or execute a MOV X, 0SR after each PULL NOBLOCK, so that the last valid FIFO word will be recycled
until new data is available.

PULL IFEMPTY is useful if an 0UT with autopull would stall in an inappropriate location when the TX FIFO is empty. For
example, a UART transmitter should not stall immediately after asserting the start bit. IfEmpty permits some of the same
program simplifications as autopull, but the stall occurs at a controlled point in the program.

]
3.4. PIO Instruction Set Reference 63

Raspberry Pi Pico C/C++ SDK

O NoTE

When autopull is enabled, any PULL instruction is a no-op when the OSR is full, so that the PULL instruction behaves as
a barrier. 0UT NULL, 32 can be used to explicitly discard the OSR contents. See the RP2040 Datasheet for more detail
on autopull.

3.4.7.3. Assembler Syntax

pull (ifempty)
pull (ifempty) block

pull (ifempty) noblock

where:

ifempty Is equivalent to IfEmpty == 1 above. i.e. the default if this is not specified is IfEmpty ==

block Is equivalent to Block == 1 above. This is the default if neither block nor noblock are specified
noblock Is equivalent to Block == @ above.
3.4.8. MOV

3.4.8.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MoV 1 0 1 Delay/side-set Destination Op Source

3.4.8.2. Operation

Copy data from Source to Destination.
® Destination:
o 000: PINS (Uses same pin mapping as 0UT)
o 001: X (Scratch register X)
o 010: Y (Scratch register Y)
o 011: Reserved
o 100: EXEC (Execute data as instruction)
o 101:PC
o 110: ISR (Input shift counter is reset to 0 by this operation, i.e. empty)
o 111: 0SR (Output shift counter is reset to 0 by this operation, i.e. full)
® QOperation:
o 00: None
o 01: Invert (bitwise complement)

o 10: Bit-reverse

3.4. PIO Instruction Set Reference 64

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf

Raspberry Pi Pico C/C++ SDK
]

o 11:Reserved
® Source:
o 000: PINS (Uses same pin mapping as IN)
o 001:X
o 010:Y
o 0717:NULL
o 100: Reserved
o 107: STATUS
o 110: ISR
o 111:0SR

MOV PC causes an unconditional jump. MOV EXEC has the same behaviour as 0UT EXEC (Section 3.4.5), and allows register
contents to be executed as an instruction. The MOV itself executes in 1 cycle, and the instruction in Source on the next
cycle. Delay cycles on MOV EXEC are ignored, but the executee may insert delay cycles as normal.

The STATUS source has a value of all-ones or all-zeroes, depending on some state machine status such as FIFO
full/empty, configured by EXECCTRL_STATUS_SEL.

MOV can manipulate the transferred data in limited ways, specified by the Operation argument. Invert sets each bit in
Destination to the logical NOT of the corresponding bit in Source, i.e. 1 bits become 0 bits, and vice versa. Bit reverse sets
each bit n in Destination to bit 31 - n in Source, assuming the bits are numbered 0 to 31.

3.4.8.3. Assembler Syntax

mov <destination>, (op) <source>

where:
<destination> Is one of the destinations specified above.
<op> If present, is:
I or ~ for NOT (Note: this is always a bitwise NOT)
:: for bit reverse
<source> Is one of the sources specified above.
3.4.9.1RQ

3.4.9.1. Encoding

Bit: 15 14 13 12|11|10|9|8 7 6 5 4|3|2|1|0

IRQ 1 1 0 Delay/side-set 0 Clr | Wait Index

3.4.9.2. Operation

Set or clear the IRQ flag selected by Index argument.

e Clear: if 1, clear the flag selected by Index, instead of raising it. If Clear is set, the Wait bit has no effect.

]
3.4. PIO Instruction Set Reference 65

Raspberry Pi Pico C/C++ SDK
]

e Wait: if 1, halt until the raised flag is lowered again, e.g. if a system interrupt handler has acknowledged the flag.
® |ndex:
o The 3 LSBs specify an IRQ index from 0-7. This IRQ flag will be set/cleared depending on the Clear bit.

o If the MSB is set, the state machine ID (0...3) is added to the IRQ index, by way of modulo-4 addition on the
two LSBs. For example, state machine 2 with a flag value of 0x11 will raise flag 3, and a flag value of 0x13 will
raise flag 1.

IRQ flags 4-7 are visible only to the state machines; IRQ flags 0-3 can be routed out to system level interrupts, on either
of the PIO’s two external interrupt request lines, configured by IRQ0_INTE and IRQ1_INTE.

The modulo addition bit allows relative addressing of 'IRQ" and 'WAIT' instructions, for synchronising state machines
which are running the same program. Bit 2 (the third LSB) is unaffected by this addition.

If Wait is set, Delay cycles do not begin until after the wait period elapses.

3.4.9.3. Assembler Syntax

irq <irg_num> (_rel)
irq set <irg_num> (_rel)
irg nowait <irg_num> (_rel)
irqg wait <irg_num> (_rel)
irq clear <irg_num> (_rel)
where:
<irg_num> (rel) s avalue (see Section 3.3.3) specifying The irq number to wait on (0-7). If rel is present, then the

actual irg number used is calculating by replacing the low two bits of the irq number (irg_num,)
with the low two bits of the sum (irg_num;, + sm_num;,;) where sm_num, is the state machine

number
irq Means set the IRQ without waiting
irq set Also means set the IRQ without waiting
irg nowait Again, means set the IRQ without waiting
irq wait Means set the IRQ and wait for it to be cleared before proceeding
irqg clear Means clear the IRQ

3.4.10. SET

3.4.10.1. Encoding

Bit: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SET 1 1 1 Delay/side-set Destination Data
3.4.10.2. Operation

Write immediate value Data to Destination.

® Destination:

]
3.4. PIO Instruction Set Reference 66

Raspberry Pi Pico C/C++ SDK
]

® 000: PINS

® 001: X (scratch register X) 5 LSBs are set to Data, all others cleared to 0.
® 010: Y (scratch register Y) 5 LSBs are set to Data, all others cleared to 0.
® 0711: Reserved

® 100: PINDIRS

® 1017: Reserved

® 110: Reserved

® 111: Reserved

® Data: 5-bit immediate value to drive to pins or register.

This can be used to assert control signals such as a clock or chip select, or to initialise loop counters. As Data is 5 bits in
size, scratch registers can be SET to values from 0-31, which is sufficient for a 32-iteration loop.

The mapping of SET and 0UT onto pins is configured independently. They may be mapped to distinct locations, for
example if one pin is to be used as a clock signal, and another for data. They may also be overlapping ranges of pins: a
UART transmitter might use SET to assert start and stop bits, and 0UT instructions to shift out FIFO data to the same pins.

3.4.10.3. Assembler Syntax

set <destination>, <value>

where:
<destination> Is one of the destinations specified above.
<value> The value (see Section 3.3.3) to set (valid range 0-31)

]
3.4. PIO Instruction Set Reference 67

Raspberry Pi Pico C/C++ SDK

Chapter 4. Library Documentation

4.1. Hardware APIs

This group of libraries provides a thin and efficient C API / abstractions to access the RP2040 hardware without having
to read and write hardware registers directly.

hardware_adc

Analog to Digital Converter (ADC) API.

hardware_base

Low-level types and (atomic) accessors for memory-mapped hardware registers.

hardware_claim

Lightweight hardware resource management.

hardware_clocks

Clock Management API.

hardware_divider

Low-level hardware-divider access.

hardware_dma

DMA Controller API.

channel_config

DMA channel configuration.

hardware_flash

Low level flash programming and erase API.

hardware_gpio

General Purpose Input/Output (GPIO) API.

hardware_i2c

12C Controller API.

hardware_interp

Hardware Interpolator API.

interp_config

Interpolator configuration.

hardware_irq

Hardware interrupt handling.

hardware_pio

Programmable 1/0 (PIO) API.

sm_config

P10 state machine configuration.

hardware_pll

Phase Locked Loop control APIs.

hardware_pwm

Hardware Pulse Width Modulation (PWM) API.

hardware_resets

Hardware Reset API.

hardware_rtc

Hardware Real Time Clock API.

hardware_spi

Hardware SPI API.

hardware_sync

Low level hardware spin-lock, barrier and processor event API.

hardware_timer

Low-level hardware timer API.

hardware_uart

Hardware UART API.

hardware_vreg

Voltage Regulation API.

hardware_watchdog

Hardware Watchdog Timer API.

hardware_xosc

Crystal Oscillator (XOSC) API.

4.1.1. hardware_adc

Analog to Digital Converter (ADC) API.

4.1. Hardware APIs

68

Raspberry Pi Pico C/C++ SDK
]

The RP2040 has an internal analogue-digital converter (ADC) with the following features:
* SARADC
® 500 kS/s (Using an independent 48MHz clock)
* 12 bit (9.5 ENOB)
® 5input mux:
® 4 inputs that are available on package pins shared with GPI0[29:26]
® 1 input is dedicated to the internal temperature sensor
® 4 element receive sample FIFO
® Interrupt generation
* DMA interface

Although there is only one ADC you can specify the input to it using the adc_select_input() function. In round robin mode
(adc_rrobin()) will use that input and move to the next one after a read.

User ADC inputs are on 0-3 (GPIO 26-29), the temperature sensor is on input 4.
Temperature sensor values can be approximated in centigrade as:
T =27-(ADC_Voltage - 0.706)/0.001721

The FIFO, if used, can contain up to 4 entries.

Example

1 #include <stdio.h>

2 #include "pico/stdlib.h"

3 #include "hardware/gpio.h"

4 #include "hardware/adc.h"

5

6 int main() {

7 stdio_init_all();

8 printf("ADC Example, measuring GPI026\n");

9

10 adc_init();

11

12 // Make sure GPIO is high-impedance, no pullups etc

13 adc_gpio_init(26);

14 // Select ADC input @ (GPI026)

15 adc_select_input(0);

16

17 while (1) {

18 // 12-bit conversion, assume max value == ADC_VREF == 3.3 V

19 const float conversion_factor = 3.3f / (1 << 12);

20 uint16_t result = adc_read();

21 printf("Raw value: 0x%03x, voltage: %f V\n", result, result * conversion_factor);

22 sleep_ms(500);

23 }

24 }

4.1.1.1. Function List

® yoid adc_init (void)
® static void adc_gpio_init (uint gpio)
® static void adc_select_input (uint input)

]
4.1. Hardware APIs 69

Raspberry Pi Pico C/C++ SDK
]

® static void adc_set_round_robin (uint input_mask)

® static void adc_set_temp_sensor_enabled (bool enable)
® static uint16_t adc_read (void)

® static void ade_run (bool run)

® static void adc_set_clkdiv (float clkdiv)

® static void adc_fifo_setup (bool en, bool dreq_en, uint16_t dreq_thresh, bool err_in_fifo, bool byte_shift)
® static bool adc_fifo_is_empty (void)

® static uint8_t adc_fifo_get_level (void)

® static uint16_t adc_fifo_get (void)

® static uint16_t adc_fifo_get_blocking (void)

® static void ade_fifo_drain (void)

® static void adc_irq_set_enabled (bool enabled)

4.1.1.2. Function Documentation

4.1.1.2.1. adc_fifo_drain

static void adc_fifo_drain (void)
Drain the ADC FIFO.

Will wait for any conversion to complete then drain the FIFO discarding any results.

4.1.1.2.2. adc_fifo_get

static uint16_t adc_fifo_get (void)
Get ADC result from FIFO.

Pops the latest result from the ADC FIFO.

4.1.1.2.3. adc_fifo_get_blocking

static uint16_t adc_fifo_get_blocking (void)
Wait for the ADC FIFO to have data.

Blocks until data is present in the FIFO

4.1.1.2.4. adc_fifo_get_level

static uint8_t adc_fifo_get_level (void)
Get number of entries in the ADC FIFO.

The ADC FIFO is 4 entries long. This function will return how many samples are currently present.

4.1.1.2.5. adc_fifo_is_empty

static bool adc_fifo_is_empty (void)

Check FIFO empty state.

]
4.1. Hardware APIs 70

Raspberry Pi Pico C/C++ SDK

Returns

® Returns true if the fifo is empty

4.1.1.2.6. adc_fifo_setup

static void adc_fifo_setup (bool en,
bool dreq_en,
uint16_t dreq_thresh,
bool err_in_fifo,
bool byte_shift)

Setup the ADC FIFO.
FIFO is 4 samples long, if a conversion is completed and the FIFO is full the result is dropped.
Parameters

* en Enables write each conversion result to the FIFO

® dreq_en Enable DMA requests when FIFO contains data

® dreq_thresh Threshold for DMA requests/FIFO IRQ if enabled.

® err_in_fifo If enabled, bit 15 of the FIFO contains error flag for each sample

® byte_shift Shift FIFO contents to be one byte in size (for byte DMA) - enables DMA to byte buffers.

4.1.1.2.7. adc_gpio_init

static void adc_gpio_init (uint gpio)

Initialise the gpio for use as an ADC pin.

Prepare a GPIO for use with ADC, by disabling all digital functions.
Parameters

® gpio The GPIO number to use. Allowable GPIO numbers are 26 to 29 inclusive.

4.1.1.2.8. adc_init

void adc_init (void)

Initialise the ADC HW.

4.1.1.2.9. adc_irq_set_enabled

static void adc_irq_set_enabled (bool enabled)
Enable/Disable ADC interrupts.

Parameters

® enabled Set to true to enable the ADC interrupts, false to disable

4.1.1.2.10. adc_read

static uint16_t adc_read (void)

Perform a single conversion.

Performs an ADC conversion, waits for the result, and then returns it.

Returns

4.1. Hardware APIs 71

Raspberry Pi Pico C/C++ SDK
]

® Result of the conversion.

4.1.1.2.11. adc_run

static void adc_run (bool run)

Enable or disable free-running sampling mode.
Parameters

* run false to disable, true to enable free running conversion mode.

4.1.1.2.12. adc_select_input

static void adc_select_input (uint input)

ADC input select.

Select an ADC input. 0...3 are GPIOs 26...29 respectively. Input 4 is the onboard temperature sensor.
Parameters

® input Input to select.

4.1.1.2.13. adc_set_clkdiv
static void adc_set_clkdiv (float clkdiv)
Set the ADC Clock divisor.

Period of samples will be (1 + div) cycles on average. Note it takes 96 cycles to perform a conversion, so any period less
than that will be clamped to 96.

Parameters

® clkdiv If non-zero, conversion will be started at intervals rather than back to back.

4.1.1.2.14. adc_set_round_robin
static void adc_set_round_robin (uint input_mask)
Round Robin sampling selector.

This function sets which inputs are to be run through in round robin mode. Value between 0 and 0x1f (bit 0 to bit 4 for
GPIO 26 to 29 and temperature sensor input respectively)

Parameters

® input_mask A bit pattern indicating which of the 5 inputs are to be sampled. Write a value of 0 to disable round robin
sampling.

4.1.1.2.15. adc_set_temp_sensor_enabled
static void adc_set_temp_sensor_enabled (bool enable)
Enable the onboard temperature sensor.
Parameters

® enable Set true to power on the onboard temperature sensor, false to power off.

]
4.1. Hardware APIs 72

Raspberry Pi Pico C/C++ SDK
]

4.1.2. hardware_base

Low-level types and (atomic) accessors for memory-mapped hardware registers.

hardware_base defines the low level types and access functions for memory mapped hardware registers. It is included
by default by all other hardware libraries.

The following register access typedefs codify the access type (read/write) and the bus size (8/16/32) of the hardware
register. The register type names are formed by concatenating one from each of the 3 parts A, B, C

A B (o] Meaning

io_ A Memory mapped 10
register

ro_ read-only access

rw_ read-write access

wo_ write-only access (can’t
actually be enforced via C
API)

8 8-bit wide access

16 16-bit wide access

32 32-bit wide access

When dealing with these types, you will always use a pointer, i.e. io_rw_32 *some_reg is a pointer to a read/write 32 bit
register that you can write with *some_reg = value, or read with value = *some_reg.

RP2040 hardware is also aliased to provide atomic setting, clear or flipping of a subset of the bits within a hardware
register so that concurrent access by two cores is always consistent with one atomic operation being performed first,
followed by the second.

See hw_set_bits(), hw_clear_bits() and hw_xor_bits() provide for atomic access via a pointer to a 32 bit register

Additionally given a pointer to a structure representing a piece of hardware (e.g. dma_hw_t *dma_hw for the DMA
controller), you can get an alias to the entire structure such that writing any member (register) within the structure is
equivalent to an atomic operation via hw_set_alias(), hw_clear_alias() or hw_xor_alias()...

For example hw_set_alias(dma_hw) —inte1 = 0x80; will set bit 7 of the INTE1 register of the DMA controller, leaving the
other bits unchanged.

4.1.2.1. Function List

® static void hw_set_bits (io_rw_32 *addr, uint32_t mask)
® static void hw_clear_bits (io_rw_32 *addr, uint32_t mask)
® static void hw_xor_bits (io_rw_32 *addr, uint32_t mask)

® static void hw_write_masked (io_rw_32 *addr, uint32_t values, uint32_t write_mask)

4.1.2.2. Function Documentation

4.1.2.2.1. hw_clear_bits

static void hw_clear_bits (io_rw_32 *addr,
uint32_t mask)

Atomically clear the specified bits to 0 in a HW register.

]
4.1. Hardware APIs 73

Raspberry Pi Pico C/C++ SDK
]

Parameters
® addr Address of writable register

® mask Bit-mask specifying bits to clear

4.1.2.2.2. hw_set_bits

static void hw_set_bits (io_rw_32 *addr,
uint32_t mask)

Atomically set the specified bits to 1 in a HW register.
Parameters
® addr Address of writable register

® mask Bit-mask specifying bits to set

4.1.2.2.3. hw_write_masked

static void hw_write_masked (io_rw_32 *addr,
uint32_t values,

uint32_t write_mask)
Set new values for a sub-set of the bits in a HW register.
Sets destination bits to values specified in values, if and only if corresponding bit in write_mask is set

Note: this method allows safe concurrent modification of bits of a register, but multiple concurrent access to the same
bits is still unsafe.

Parameters
® addr Address of writable register
® yvalues Bits values

® write_mask Mask of bits to change

4.1.2.2.4. hw_xor_bits

static void hw_xor_bits (io_rw_32 *addr,
uint32_t mask)

Atomically flip the specified bits in a HW register.
Parameters
® addr Address of writable register

® mask Bit-mask specifying bits to invert

4.1.3. hardware_claim

Lightweight hardware resource management.
hardware_claim provides a simple API for management of hardware resources at runtime.

This API is usually called by other hardware specific claiming APls and provides simple multi-core safe methods to
manipulate compact bit-sets representing hardware resources.

This API allows any other library to cooperatively participate in a scheme by which both compile time and runtime
allocation of resources can co-exist, and conflicts can be avoided or detected (depending on the use case) without the
libraries having any other knowledge of each other.

]
4.1. Hardware APIs 74

Raspberry Pi Pico C/C++ SDK
]

Facilities are providing for:
® Claiming resources (and asserting if they are already claimed)
® Freeing (unclaiming) resources

® Finding unused resources

4.1.3.1. Function List

® void hw_claim_or_assert (uint8_t *bits, uint bit_index, const char *message)

® int hw_claim_unused_from_range (uint8_t *bits, bool required, uint bit_lsb, uint bit_msb, const char *message)
® bhool hw_is_claimed (uint8_t *bits, uint bit_index)

® void hw_claim_clear (uint8_t *bits, uint bit_index)

® yint32_t hw_claim_lock ()

® void hw_claim_unlock (uint32_t token)

4.1.3.2. Function Documentation

4.1.3.2.1. hw_claim_clear

void hw_claim_clear (uint8_t *bits,
vint bit_index)

Atomically unclaim a resource.
The resource ownership is indicated by the bit_index bit in an array of bits.
Parameters

® bits pointer to an array of bits (8 bits per byte)

® bit_index resource to unclaim (bit index into array of bits)

4.1.3.2.2. hw_claim_lock
uint32_t hw_claim_lock ()
Acquire the runtime mutual exclusion lock provided by the hardware_claim library.

This method is called automatically by the other hw_claim_ methods, however it is provided as a convenience to code
that might want to protect other hardware initialization code from concurrent use.

Returns

® atoken to pass to hw_claim_unlock()

4.1.3.2.3. hw_claim_or_assert

void hw_claim_or_assert (uint8_t *bits,
uint bit_index,

const char *message)
Atomically claim a resource, panicking if it is already in use.
The resource ownership is indicated by the bit_index bit in an array of bits.

Parameters

]
4.1. Hardware APIs 75

Raspberry Pi Pico C/C++ SDK
]

® bits pointer to an array of bits (8 bits per byte)
® bit_index resource to claim (bit index into array of bits)

® message string to display if the bit cannot be claimed; note this may have a single printf format "%d" for the bit

4.1.3.2.4. hw_claim_unlock

void hw_claim_unlock (uint32_t token)

Release the runtime mutual exclusion lock provided by the hardware_claim library.
Parameters

® token the token returned by the corresponding call to hw_claim_lock()

4.1.3.2.5. hw_claim_unused_from_range

int hw_claim_unused_from_range (uint8_t *bits,
bool required,
uint bit_1sb,
uint bit_msb,
const char *message)

Atomically claim one resource out of a range of resources, optionally asserting if none are free.
Parameters

® hits pointer to an array of bits (8 bits per byte)

® required true if this method should panic if the resource is not free

® bit_1sb the lower bound (inclusive) of the resource range to claim from

® bit_msb the upper bound (inclusive) of the resource range to claim from

® message string to display if the bit cannot be claimed
Returns

¢ the bit index representing the claimed or -1 if none are available in the range, and required = false

4.1.3.2.6. hw_is_claimed

bool hw_is_claimed (uint8_t *bits,

uint bit_index)
Determine if a resource is claimed at the time of the call.
The resource ownership is indicated by the bit_index bit in an array of bits.
Parameters
® bits pointer to an array of bits (8 bits per byte)
® bit_index resource to unclaim (bit index into array of bits)
Returns

® true if the resource is claimed

4.1.4. hardware_clocks

Clock Management API.

This API provides a high level interface to the clock functions.

]
4.1. Hardware APIs 76

Raspberry Pi Pico C/C++ SDK

The clocks block provides independent clocks to on-chip and external components. It takes inputs from a variety of
clock sources allowing the user to trade off performance against cost, board area and power consumption. From these
sources it uses multiple clock generators to provide the required clocks. This architecture allows the user flexibility to
start and stop clocks independently and to vary some clock frequencies whilst maintaining others at their optimum
frequencies

Please refer to the datasheet for more details on the RP2040 clocks.

The clock source depends on which clock you are attempting to configure. The first table below shows main clock
sources. If you are not setting the Reference clock or the System clock, or you are specifying that one of those two will

be using an auxiliary clock source, then you will need to use one of the entries from the subsequent tables.

Main Clock Sources

Source Reference Clock System Clock

ROSC CLOCKS_CLK_REF_CTRL_SRC_VALUE
_ROSC_CLKSRC_PH

Auxiliary CLOCKS_CLK_REF_CTRL_SRC_VALUE | CLOCKS_CLK_SYS_CTRL_SRC_VALUE
_CLKSRC_CLK_REF_AUX _CLKSRC_CLK_SYS_AUX

X0SC CLOCKS_CLK_REF_CTRL_SRC_VALUE
_XOSC_CLKSRC

Reference CLOCKS_CLK_SYS_CTRL_SRC_VALUE

_CLK_REF

Auxiliary Clock Sources

The auxiliary clock sources available for use in the configure function depend on which clock is being configured. The
following table describes the available values that can be used. Note that for clk_gpout[x], x can be 0-3.

Aux Source

clk_gpout|x]

clk_ref

clk_sys

System PLL

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_PLL_SYS

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_SYS

GPIOin0O

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_GPINO

CLOCKS_CLK_REF_CTRL_A
UXSRC_VALUE_CLKSRC_GP
INO

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_GP
INO

GPIOin 1

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_GPIN1

CLOCKS_CLK_REF_CTRL_A
UXSRC_VALUE_CLKSRC_GP
IN1

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_GP
IN1

USB PLL

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLKSRC
_PLL_USB

CLOCKS_CLK_REF_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_CLKSRC_PL
L_USB

ROSC

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_ROSC_C
LKSRC

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_ROSC_CLKS
RC

X0SC

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_XOSC_C
LKSRC

CLOCKS_CLK_SYS_CTRL_A
UXSRC_VALUE_ROSC_CLKS
RC

System clock

CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_SY
S

4.1. Hardware APIs

7

Raspberry Pi Pico C/C++ SDK

Aux Source clk_gpout|x] clk_ref clk_sys
USB Clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_US
B
ADC clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_AD
C
RTC Clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_RT
C
Ref clock CLOCKS_CLK_GPOUTx_CTR
L_AUXSRC_VALUE_CLK_RE
F
Aux Source clk_peri clk_usb clk_adc
System PLL CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A |CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_PL | UXSRC_VALUE_CLKSRC_PL | UXSRC_VALUE_CLKSRC_PL
L_SYS L_SYS L_SYS
GPIOinO CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A | CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP
INO INO INO
GPIOin1 CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A |CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP | UXSRC_VALUE_CLKSRC_GP
IN1 IN1 IN1
USB PLL CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A | CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_CLKSRC_PL [UXSRC_VALUE_CLKSRC_PL | UXSRC_VALUE_CLKSRC_PL
L_USB L_USB L_USB
ROSC CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A | CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_ROSC_CLKS | UXSRC_VALUE_ROSC_CLKS | UXSRC_VALUE_ROSC_CLKS
RC_PH RC_PH RC_PH
X0SC CLOCKS_CLK_PERI_CTRL_A | CLOCKS_CLK_USB_CTRL_A | CLOCKS_CLK_ADC_CTRL_A
UXSRC_VALUE_XOSC_CLKS [UXSRC_VALUE_XOSC_CLKS | UXSRC_VALUE_XOSC_CLKS
RC RC RC
System clock CLOCKS_CLK_PERI_CTRL_A
UXSRC_VALUE_CLK_SYS
Aux Source clk_rtc
System PLL CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_
SYS
GPIOinO CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN
0
GPIOin 1 CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_GPIN
1
USB PLL CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_CLKSRC_PLL_
USB

4.1. Hardware APIs

78

Raspberry Pi Pico C/C++ SDK
]

Aux Source clk_rtc

ROSC CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_ROSC_CLKSR
C_PH

X0SC CLOCKS_CLK_RTC_CTRL_AUXSRC_VALUE_XOSC_CLKSR
C

Example// hello_48MHz.c

1 #include <stdio.h>

2 #include "pico/stdlib.h”

3 #include "hardware/pll.h"

4 #include "hardware/clocks.h"

5 #include "hardware/structs/pll.h"

6 #include "hardware/structs/clocks.h"

7

8 void measure_fregs(void) {

9 uint f_pll_sys = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_PLL_SYS_CLKSRC_PRIMARY) ;
10 uint f_pll_usb = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_PLL_USB_CLKSRC_PRIMARY);
11 uint f_rosc = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_ROSC_CLKSRC) ;
12 uint f_clk_sys = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_SYS);
13 uint f_clk_peri = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_PERI);
14 uint f_clk_usb = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_USB);
15 uint f_clk_adc = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_ADC) ;
16 uint f_clk_rtc = frequency_count_khz(CLOCKS_FCO_SRC_VALUE_CLK_RTC);
17
18 printf("pll_sys = %dkHz\n", f_pll_sys);

19 printf("pll_usb = %dkHz\n", f_pll_usb);

20 printf("rosc = %dkHz\n", f_rosc);

21 printf("clk_sys = %dkHz\n", f_clk_sys);

22 printf("clk_peri = %dkHz\n", f_clk_peri);

23 printf("clk_usb = %dkHz\n", f_clk_usb);

24 printf("clk_adc = %dkHz\n", f_clk_adc);

25 printf("clk_rtc = %dkHz\n", f_clk_rtc);

26

27 // Can't measure clk_ref / xosc as it is the ref

28 }

29

30 int main() {

31 stdio_init_all();

32

33 printf("Hello, world!\n");

34

35 measure_freqs();

36

37 // Change clk_sys to be 48MHz. The simplest way is to take this from PLL_USB
38 // which has a source frequency of 48MHz

39 clock_configure(clk_sys,

40 CLOCKS_CLK_SYS_CTRL_SRC_VALUE_CLKSRC_CLK_SYS_AUX,
41 CLOCKS_CLK_SYS_CTRL_AUXSRC_VALUE_CLKSRC_PLL_USB,
42 48 * MHZ,

43 48 * MHZ):

44

45 // Turn off PLL sys for good measure

46 pll_deinit(pll_sys);

47

48 // CLK peri is clocked from clk_sys so need to change clk_peri's freq
49 clock_configure(clk_peri,

50 o,

51 CLOCKS_CLK_PERI_CTRL_AUXSRC_VALUE_CLK_SYS,

52 48 * MHZ,

]
4.1. Hardware APIs 79

Raspberry Pi Pico C/C++ SDK
]

53 48 * MHZ);

54

55 // Re init uart now that clk_peri has changed
56 stdio_init_all();

57

58 measure_freqs();

59 printf("Hello, 48MHz");

60

61 return 0;

62 }

4.1.4.1. Enumerations

® enum clock_index { clk_gpout® = @, clk_gpout1, clk_gpout2, clk_gpout3, clk_ref, clk_sys, clk_peri, clk_usb, clk_adc,
clk_rtc, CLK_COUNT }
Enumeration identifying a hardware clock.

4.1.4.2. Typedefs

® typedef void(* resus_callback_t)(void)
Resus callback function type.

4.1.4.3. Function List

® void clocks_init ()

® bool clock_configure (enum clock_index clk_index, uint32_t src, uint32_t auxsrc, uint32_t src_freq, uint32_t freq)
® void clock_stop (enum clock_index clk_index)

® uint32_t clock_get_hz (enum clock_index clk_index)

® uint32_t frequency_count_khz (uint src)

® void clock_set_reported_hz (enum clock_index clk_index, uint hz)

® void clocks_enable_resus (resus_callback_t resus_callback)

® void clock_gpio_init (uint gpio, uint src, uint div)

® bool clock_configure_gpin (enum clock_index clk_index, uint gpio, uint32_t src_freq, uint32_t freq)

4.1.4.4. Function Documentation

4.1.4.4.1. clock_configure

bool clock_configure (enum clock_index clk_index,
uint32_t src,
uint32_t auxsrc,
uint32_t src_freq,
uint32_t freq)

Configure the specified clock.
See the tables in the description for details on the possible values for clock sources.

Parameters

]
4.1. Hardware APIs 80

Raspberry Pi Pico C/C++ SDK
]

® clk_index The clock to configure

® src The main clock source, can be 0.

® auxsrc The auxiliary clock source, which depends on which clock is being set. Can be 0
® src_freq Frequency of the input clock source

® freq Requested frequency

4.1.4.4.2. clock_configure_gpin

bool clock_configure_gpin (enum clock_index clk_index,
uint gpio,
uint32_t src_freq,
uint32_t freq)

Configure a clock to come from a gpio input.

Parameters
® clk_index The clock to configure
® gpio The GPIO pin to run the clock from. Valid GPIOs are: 20 and 22.
® src_freq Frequency of the input clock source

® freq Requested frequency

4.1.4.4.3. clock_get_hz
uint32_t clock_get_hz (enum clock_index clk_index)
Get the current frequency of the specified clock.
Parameters

® clk_index Clock
Returns

® Clock frequency in Hz

4.1.4.4.4. clock_gpio_init

void clock_gpio_init (uint gpio,
vint src,

uint div)
Output an optionally divided clock to the specified gpio pin.
Parameters

® gpio The GPIO pin to output the clock to. Valid GPIOs are: 21, 23, 24, 26. These GPIOs are connected to the
GPOUTO-3 clock generators.

® src The source clock. See the register field CLOCKS_CLK_GPOUTO_CTRL_AUXSRC for a full list. The list is the
same for each GPOUT clock generator.

® div The amount to divide the source clock by. This is useful to not overwhelm the GPIO pin with a fast clock.

4.1.4.4.5. clock_set_reported_hz

void clock_set_reported_hz (enum clock_index clk_index,
uint hz)

]
4.1. Hardware APIs 81

Raspberry Pi Pico C/C++ SDK
]

Set the "current frequency" of the clock as reported by clock_get_hz without actually changing the clock.
See also

® clock_get_hz

4.1.4.4.6. clock_stop

void clock_stop (enum clock_index clk_index)
Stop the specified clock.
Parameters

® clk_index The clock to stop

4.1.4.4.7. clocks_enable_resus

void clocks_enable_resus (resus_callback_t resus_callback)
Enable the resus function. Restarts clk_sys if it is accidentally stopped.

The resuscitate function will restart the system clock if it falls below a certain speed (or stops). This could happen if the
clock source the system clock is running from stops. For example if a PLL is stopped.

Parameters

® resus_callback a function pointer provided by the user to call if a resus event happens.

4.1.4.4.8. clocks_init

void clocks_init ()

Initialise the clock hardware.

Must be called before any other clock function.

4.1.4.4.9. frequency_count_khz

uint32_t frequency_count_khz (uint src)
Measure a clocks frequency using the Frequency counter.

Uses the inbuilt frequency counter to measure the specified clocks frequency. Currently, this function is accurate to +-
1KHz. See the datasheet for more details.

4.1.5. hardware_divider

Low-level hardware-divider access.

The SIO contains an 8-cycle signed/unsigned divide/modulo circuit, per core. Calculation is started by writing a dividend
and divisor to the two argument registers, DIVIDEND and DIVISOR. The divider calculates the quotient / and remainder %
of this division over the next 8 cycles, and on the 9th cycle the results can be read from the two result registers
DIV_QUOTIENT and DIV_REMAINDER. A 'ready' bit in register DIV_CSR can be polled to wait for the calculation to
complete, or software can insert a fixed 8-cycle delay

This header provides low level macros and inline functions for accessing the hardware dividers directly, and perhaps
most usefully performing asynchronous divides. These functions however do not follow the regular SDK conventions for
saving/restoring the divider state, so are not generally safe to call from interrupt handlers

The pico_divider library provides a more user friendly set of APIs over the divider (and support for 64 bit divides), and of
course by default regular C language integer divisions are redirected through that library, meaning you can just use C
level / and % operators and gain the benefits of the fast hardware divider.

]
4.1. Hardware APIs 82

Raspberry Pi Pico C/C++ SDK
]

See also

® pico_divider

Example

1 #include <stdio.h>
2 #include "pico/stdlib.h”
3 #include "hardware/divider.h"

4
5 int main() {
6 stdio_init_all();
7 printf("Hello, divider!\n");
8
9 // This is the basic hardware divider function
10 int32_t dividend = 123456;
11 int32_t divisor = -321;
12 divmod_result_t result = hw_divider_divmod_s32(dividend, divisor);
13
14 printf("%d/%d = %d remainder %d\n", dividend, divisor, to_quotient_s32(result),
to_remainder_s32(result));
15
16 // Is it right?
17
18 printf("Working backwards! Result %d should equal %d!\n\n"
19 to_quotient_s32(result) * divisor + to_remainder_s32(result), dividend);
20
21 // This is the recommended unsigned fast divider for general use.
22 int32_t udividend = 123456;
23 int32_t udivisor = 321;
24 divmod_result_t uresult = hw_divider_divmod_u32(udividend, udivisor);
25
26 printf("%d/%d = %d remainder %d\n", udividend, udivisor, to_quotient_u32(uresult),
to_remainder_u32(uresult));
27
28 // Is it right?
29
30 printf("Working backwards! Result %d should equal %d!\n\n"
31 to_quotient_u32(result) * divisor + to_remainder_u32(result), dividend);
32
33 // You can also do divides asynchronously. Divides will be complete after 8 cyles.
34
35 hw_divider_divmod_s32_start(dividend, divisor);
36
37 // Do something for 8 cycles!
38
39 // In this example, our results function will wait for completion.
40 // Use hw_divider_result_nowait() if you don't want to wait, but are sure you have delayed
at least 8 cycles
41
42 result = hw_divider_result_wait();
43
44 printf("Async result %d/%d = %d remainder %d\n", dividend, divisor, to_quotient_s32
(result),
45 to_remainder_s32(result));
46
47 // For a really fast divide, you can use the inlined versions... the / involves a function
call as / always does
48 // when using the ARM AEABI, so if you really want the best performance use the inlined
versions.
49 // Note that the / operator function DOES use the hardware divider by default, although
you can change
50 // that behavior by calling pico_set_divider_implementation in the cmake build for your

]
4.1. Hardware APIs 83

Raspberry Pi Pico C/C++ SDK
]

target.

51
52
53
54

printf("%d / %d = (by operator %d) (inlined %d)\n", dividend, divisor,
dividend / divisor, hw_divider_s32_quotient_inlined(dividend, divisor));

// Note however you must manually save/restore the divider state if you call the inlined

methods from within an IRQ

55
56
57
58
59
60
61
62
63
64
65
66
67 }

// handler.

hw_divider_state_t state;
hw_divider_divmod_s32_start(dividend, divisor);
hw_divider_save_state(&state);

hw_divider_divmod_s32_start (123, 7);
printf("inner %d / %d = %d\n", 123, 7, hw_divider_s32_quotient_wait());

hw_divider_restore_state(&state);

int32_t tmp = hw_divider_s32_quotient_wait();

printf("outer divide %d / %d = %d\n", dividend, divisor, tmp);
return 0;

4.1.5.1. Function List

® static void hw_divider_divmod_s32_start (int32_t a, int32_t b)

® static void hw_divider_divmod_u32_start (uint32_t a, uint32_t b)

® static void hw_divider_wait_ready ()

® static divmod_result_t hw_divider_result_nowait ()

® static divmod_result_t hw_divider_result_wait ()

® static uint32_t hw_divider_u32_quotient_wait ()

® static int32_t hw_divider_s32_quotient_wait ()

® static uint32_t hw_divider_u32_remainder_wait ()

® static int32_t hw_divider_s32_remainder_wait ()

® divmod_result_t hw_divider_divmod_s32 (int32_t a, int32_t b)

® divmod_result_t hw_divider_divmod_u32 (uint32_t a, uint32_t b)

® static uint32_t to_quotient_u32 (divmod_result_t r)

® static int32_t to_quotient_s32 (divmod_result_t r)

® static uint32_t to_remainder_u32 (divmod_result_t r)

® static int32_t to_remainder_s32 (divmod_result_t r)

® static uint32_t hw_divider_u32_quotient (uint32_t a, uint32_t b)

® static uint32_t hw_divider_u32_remainder (uint32_t a, uint32_t b)

® static int32_t hw_divider_quotient_s32 (int32_t a, int32_t b)

® static int32_t hw_divider_remainder_s32 (int32_t a, int32_t b)

® static void hw_divider_pause ()

® static uint32_t hw_divider_u32_quotient_inlined (uint32_t a, uint32_t b)

® static uint32_t hw_divider_u32_remainder_inlined (uint32_t a, uint32_t b)

® static int32_t hw_divider_s32_quotient_inlined (int32_t a, int32_t b)

4.1. Hardware APIs

84

Raspberry Pi Pico C/C++ SDK
]

® static int32_t hw_divider_s32_remainder_inlined (int32_t a, int32_t b)
® void hw_divider_save_state (hw_divider_state_t *dest)

® void hw_divider_restore_state (hw_divider_state_t *src)

4.1.5.2. Function Documentation

4.1.5.2.1. hw_divider_divmod_s32

divmod_result_t hw_divider_divmod_s32 (int32_t a,
int32_t b)

Do a signed HW divide and wait for result.
Divide a by b, wait for calculation to complete, return result as a fixed point 32p32 value.
Parameters
® 3 The dividend
® b The divisor
Returns

® Results of divide as a 32p32 fixed point value.

4.1.5.2.2. hw_divider_divmod_s32_start

static void hw_divider_divmod_s32_start (int32_t a,
int32_t b)

Start a signed asynchronous divide.

Start a divide of the specified signed parameters. You should wait for 8 cycles (__div_pause()) or wait for the ready bit to
be set (hw_divider_wait_ready()) prior to reading the results.

Parameters
® 3 The dividend

® b The divisor

4.1.5.2.3. hw_divider_divmod_u32

divmod_result_t hw_divider_divmod_u32 (uint32_t a,
uint32_t b)

Do an unsigned HW divide and wait for result.
Divide a by b, wait for calculation to complete, return result as a fixed point 32p32 value.
Parameters
® 3 The dividend
® b The divisor
Returns

® Results of divide as a 32p32 fixed point value.

]
4.1. Hardware APIs 85

Raspberry Pi Pico C/C++ SDK
]

4.1.5.2.4. hw_divider_divmod_u32_start

static void hw_divider_divmod_u32_start (uint32_t a,
uint32_t b)

Start an unsigned asynchronous divide.

Start a divide of the specified unsigned parameters. You should wait for 8 cycles (__div_pause()) or wait for the ready bit
to be set (hw_divider_wait_ready()) prior to reading the results.

Parameters
® 3 The dividend

® b The divisor

4.1.5.2.5. hw_divider_pause

static void hw_divider_pause ()

Pause for exact amount of time needed for a asynchronous divide to complete.

4.1.5.2.6. hw_divider_quotient_s32

static int32_t hw_divider_quotient_s32 (int32_t a,
int32_t b)

Do a signed HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters
® 3 The dividend
® b The divisor
Returns

® Quotient results of the divide

4.1.5.2.7. hw_divider_remainder_s32

static int32_t hw_divider_remainder_s32 (int32_t a,
int32_t b)

Do a signed HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters
® a3 The dividend
® b The divisor
Returns

® Remainder results of the divide

4.1.5.2.8. hw_divider_restore_state
void hw_divider_restore_state (hw_divider_state_t *src)
Load a saved hardware divider state into the current core’s hardware divider.

Copy the passed hardware divider state into the hardware divider.

]
4.1. Hardware APIs 86

Raspberry Pi Pico C/C++ SDK
]

Parameters

® src the location to load the divider state from

4.1.5.2.9. hw_divider_result_nowait

static divmod_result_t hw_divider_result_nowait ()
Return result of HW divide, nowait.

Returns

® Current result. Most significant 32 bits are the remainder, lower 32 bits are the quotient.

4.1.5.2.10. hw_divider_result_wait

static divmod_result_t hw_divider_result_wait ()

Return result of last asynchronous HW divide.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

® Current result. Most significant 32 bits are the remainder, lower 32 bits are the quotient.

4.1.5.2.11. hw_divider_s32_quotient_inlined

static int32_t hw_divider_s32_quotient_inlined (int32_t a,
int32_t b)

Do a hardware signed HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters

® a The dividend

® b The divisor
Returns

® Quotient result of the divide

4.1.5.2.12. hw_divider_s32_quotient_wait

static int32_t hw_divider_s32_quotient_wait ()

Return result of last asynchronous HW divide, signed quotient only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

® Current signed quotient result.

4.1.5.2.13. hw_divider_s32_remainder_inlined

static int32_t hw_divider_s32_remainder_inlined (int32_t a,
int32_t b)

Do a hardware signed HW divide, wait for result, return remainder.

Divide a by b, wait for calculation to complete, return remainder.

]
4.1. Hardware APIs 87

Raspberry Pi Pico C/C++ SDK
]

Parameters
® a The dividend
® b The divisor
Returns

® Remainder result of the divide

4.1.5.2.14. hw_divider_s32_remainder_wait

static int32_t hw_divider_s32_remainder_wait ()

Return result of last asynchronous HW divide, signed remainder only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

® Current remainder results.

4.1.5.2.15. hw_divider_save_state
void hw_divider_save_state (hw_divider_state_t *dest)
Save the calling cores hardware divider state.

Copy the current core’s hardware divider state into the provided structure. This method waits for the divider results to
be stable, then copies them to memory. They can be restored via hu_divider_restore_state()

Parameters

® dest the location to store the divider state

4.1.5.2.16. hw_divider_u32_quotient

static vint32_t hw_divider_u32_quotient (uint32_t a,
uint32_t b)

Do an unsigned HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters

® 3 The dividend

® b The divisor
Returns

® Quotient results of the divide

4.1.5.2.17. hw_divider_u32_quotient_inlined

static vint32_t hw_divider_u32_quotient_inlined (uint32_t a,
uint32_t b)

Do a hardware unsigned HW divide, wait for result, return quotient.
Divide a by b, wait for calculation to complete, return quotient.
Parameters

® 3 The dividend

]
4.1. Hardware APIs 88

Raspberry Pi Pico C/C++ SDK
]

® b The divisor
Returns

® Quotient result of the divide

4.1.5.2.18. hw_divider_u32_quotient_wait

static uint32_t hw_divider_u32_quotient_wait ()

Return result of last asynchronous HW divide, unsigned quotient only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

® Current unsigned quotient result.

4.1.5.2.19. hw_divider_u32_remainder

static uint32_t hw_divider_u32_remainder (uint32_t a,
uint32_t b)

Do an unsigned HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters

® 3 The dividend

® b The divisor
Returns

® Remainder results of the divide

4.1.5.2.20. hw_divider_u32_remainder_inlined

static uint32_t hw_divider_u32_remainder_inlined (uint32_t a,
uint32_t b)

Do a hardware unsigned HW divide, wait for result, return remainder.
Divide a by b, wait for calculation to complete, return remainder.
Parameters

® a The dividend

® b The divisor
Returns

® Remainder result of the divide

4.1.5.2.21. hw_divider_u32_remainder_wait

static uint32_t hw_divider_u32_remainder_wait ()

Return result of last asynchronous HW divide, unsigned remainder only.

This function waits for the result to be ready by calling hw_divider_wait_ready().
Returns

® Current unsigned remainder result.

]
4.1. Hardware APIs 89

Raspberry Pi Pico C/C++ SDK
]

4.1.5.2.22. hw_divider_wait_ready
static void hw_divider_wait_ready ()
Wait for a divide to complete.

Wait for a divide to complete

4.1.5.2.23. to_quotient_s32
static int32_t to_quotient_s32 (divmod_result_t r)
Efficient extraction of signed quotient from 32p32 fixed point.
Parameters
® 32p32 fixed point value.
Returns

® Unsigned quotient

4.1.5.2.24. to_quotient_u32
static uint32_t to_quotient_u32 (divmod_result_t r)
Efficient extraction of unsigned quotient from 32p32 fixed point.
Parameters
® 32p32 fixed point value.
Returns

® Unsigned quotient

4.1.5.2.25. to_remainder_s32
static int32_t to_remainder_s32 (divmod_result_t r)
Efficient extraction of signed remainder from 32p32 fixed point.
Parameters
® 32p32 fixed point value.
Returns

® Signed remainder

4.1.5.2.26. to_remainder_u32

static uint32_t to_remainder_u32 (divmod_result_t r)
Efficient extraction of unsigned remainder from 32p32 fixed point.
Parameters
® 32p32 fixed point value.
Returns

® Unsigned remainder

]
4.1. Hardware APIs 20

Raspberry Pi Pico C/C++ SDK
]

4.1.6. hardware_dma

DMA Controller API.

The RP2040 Direct Memory Access (DMA) master performs bulk data transfers on a processor’s behalf. This leaves
processors free to attend to other tasks, or enter low-power sleep states. The data throughput of the DMA is also
significantly higher than one of RP2040’s processors.

The DMA can perform one read access and one write access, up to 32 bits in size, every clock cycle. There are 12

independent channels, which each supervise a sequence of bus transfers, usually in one of the following scenarios:

* Memory to peripheral

® Peripheral to memory

®* Memory to memory

4.1.6.1. Modules

® channel_config

DMA channel configuration.

4.1.6.2. Enumerations

® enum dma_channel_transfer_size { DMA_SIZE_8 = 0, DMA_SIZE_16 = 1, DMA_SIZE 32 =2 }

Enumeration of available DMA channel transfer sizes.

4.1.6.3. Function List

void dma_channel_claim (uint channel)

void dma_claim_mask (uint32_t channel_mask)

void dma_channel_unclaim (uint channel)

int dma_claim_unused_channel (bool required)

static void dma_channel_set_config (uint channel, const dma_channel_config *config, bool trigger)
static void dma_channel_set_read_addr (uint channel, const volatile void *read_addr, bool trigger)
static void dma_channel_set_write_addr (uint channel, volatile void *write_addr, bool trigger)

static void dma_channel_set_trans_count (uint channel, uint32_t trans_count, bool trigger)

static void dma_channel_configure (uint channel, const dma_channel_config *config, volatile void *write_addr, const

volatile void *read_addr, uint transfer_count, bool trigger)

static void dma_channel_transfer_from_buffer_now (uint channel, void *read_addr, uint32_t transfer_count)

static

static

static

static

static

static

static

static

void dma_channel_transfer_to_buffer_now (uint channel, void *write_addr, uint32_t transfer_count)

void

void

void

void

void

void

void

dma_start_channel_mask (uint32_t chan_mask)

dma_channel_start (uint channel)

dma_channel_abort (uint channel)

dma_channel_set_irq@_enabled (uint channel, bool enabled)
dma_set_irq@_channel_mask_enabled (uint32_t channel_mask, bool enabled)
dma_channel_set_irq1_enabled (uint channel, bool enabled)

dma_set_irq1_channel_mask_enabled (uint32_t channel_mask, bool enabled)

4.1. Hardware APIs

91

Raspberry Pi Pico C/C++ SDK
]

® static bool dma_channel_is_busy (uint channel)

® static void dma_channel_wait_for_finish_blocking (uint channel)

® static void dma_sniffer_enable (uint channel, uint mode, bool force_channel_enable)
® static void dma_sniffer_set_byte_swap_enabled (bool swap)

® static void dma_sniffer_disable ()

4.1.6.4. Function Documentation

4.1.6.4.1. dma_channel_abort

static void dma_channel_abort (uint channel)

Stop a DMA transfer.

Function will only return once the DMA has stopped.
Parameters

® channel DMA channel

4.1.6.4.2. dma_channel_claim
void dma_channel_claim (uint channel)
Mark a dma channel as used.

Method for cooperative claiming of hardware. Will cause a panic if the channel is already claimed. Use of this method
by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

® channel the dma channel

4.1.6.4.3. dma_channel_configure

static void dma_channel_configure (uint channel,
const dma_channel_config *config,
volatile void *write_addr,
const volatile void *read_addr,
uint transfer_count,

bool trigger)

Configure all DMA parameters and optionally start transfer.
Parameters

® channel DMA channel

® config Pointer to DMA config structure

® write_addr Initial write address

® read_addr Initial read address

® transfer_count Number of transfers to perform

® trigger True to start the transfer immediately

]
4.1. Hardware APIs 92

Raspberry Pi Pico C/C++ SDK
]

4.1.6.4.4. dma_channel_is_busy
static bool dma_channel_is_busy (uint channel)
Check if DMA channel is busy.
Parameters
® channel DMA channel
Returns

e true if the channel is currently busy

4.1.6.4.5. dma_channel_set_config

static void dma_channel_set_config (uint channel,
const dma_channel_config *config,
bool trigger)

Set a channel configuration.
Parameters
® channel DMA channel
® config Pointer to a config structure with required configuration

® trigger True to trigger the transfer immediately

4.1.6.4.6. dma_channel_set_irq0_enabled

static void dma_channel_set_irq@_enabled (uint channel,
bool enabled)

Enable single DMA channel interrupt 0.
Parameters
® channel DMA channel

® enabled true to enable interrupt 0 on specified channel, false to disable.

4.1.6.4.7. dma_channel_set_irq1_enabled

static void dma_channel_set_irq1_enabled (uint channel,
bool enabled)

Enable single DMA channel interrupt 1.
Parameters
® channel DMA channel

® cnabled true to enable interrupt 1 on specified channel, false to disable.

4.1.6.4.8. dma_channel_set_read_addr

static void dma_channel_set_read_addr (uint channel,
const volatile void *read_addr,
bool trigger)

Set the DMA initial read address.

Parameters

]
4.1. Hardware APIs 93

Raspberry Pi Pico C/C++ SDK

® channel DMA channel
® read_addr Initial read address of transfer.

® trigger True to start the transfer immediately

4.1.6.4.9. dma_channel_set_trans_count

static void dma_channel_set_trans_count (uint channel,
uint32_t trans_count,
bool trigger)

Set the number of bus transfers the channel will do.
Parameters
® channel DMA channel
® trans_count The number of transfers (not NOT bytes, see channel_config_set_transfer_data_size)

® trigger True to start the transfer immediately

4.1.6.4.10. dma_channel_set_write_addr

static void dma_channel_set_write_addr (uint channel,
volatile void *write_addr,
bool trigger)

Set the DMA initial read address.
Parameters
® channel DMA channel
® write_addr Initial write address of transfer.

® trigger True to start the transfer immediately

4.1.6.4.11. dma_channel_start

static void dma_channel_start (uint channel)
Start a single DMA channel.

Parameters

® channel DMA channel

4.1.6.4.12. dma_channel_transfer_from_buffer_now

static void dma_channel_transfer_from_buffer_now (uint channel,
void *read_addr,
uint32_t transfer_count)

Start a DMA transfer from a buffer immediately.
Parameters

® channel DMA channel

® read_addr Sets the initial read address

® transfer_count Number of transfers to make. Not bytes, but the number of transfers of
channel_config_set_transfer_data_size() to be sent.

4.1. Hardware APIs 94

Raspberry Pi Pico C/C++ SDK
]

4.1.6.4.13. dma_channel_transfer_to_buffer_now

static void dma_channel_transfer_to_buffer_now (uint channel,
void *write_addr,

uint32_t transfer_count)
Start a DMA transfer to a buffer immediately.
Parameters
® channel DMA channel
® write_addr Sets the initial write address

® transfer_count Number of transfers to make. Not bytes, but the number of transfers of
channel_config_set_transfer_data_size() to be sent.

4.1.6.4.14. dma_channel_unclaim

void dma_channel_unclaim (uint channel)

Mark a dma channel as no longer used.
Method for cooperative claiming of hardware.
Parameters

® channel the dma channel to release

4.1.6.4.15. dma_channel_wait_for_finish_blocking
static void dma_channel_wait_for_finish_blocking (uint channel)
Wait for a DMA channel transfer to complete.

Parameters

® channel DMA channel

4.1.6.4.16. dma_claim_mask
void dma_claim_mask (uint32_t channel_mask)
Mark multiple dma channels as used.

Method for cooperative claiming of hardware. Will cause a panic if any of the channels are already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

® channel_mask Bitfield of all required channels to claim (bit 0 == channel 0, bit 1 == channel 1 etc)

4.1.6.4.17. dma_claim_unused_channel
int dma_claim_unused_channel (bool required)
Claim a free dma channel.
Parameters
® required if true the function will panic if none are available
Returns

® the dma channel number or -1 if required was false, and none were free

]
4.1. Hardware APIs 95

Raspberry Pi Pico C/C++ SDK
]

4.1.6.4.18. dma_set_irq0_channel_mask_enabled

static void dma_set_irq@_channel_mask_enabled (uint32_t channel_mask,
bool enabled)

Enable multiple DMA channels interrupt 0.
Parameters
® channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

® cnabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified in the
mask.

4.1.6.4.19. dma_set_irq1_channel_mask_enabled

static void dma_set_irql1_channel_mask_enabled (uint32_t channel_mask,
bool enabled)

Enable multiple DMA channels interrupt 0.
Parameters
® channel_mask Bitmask of all the channels to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

® enabled true to enable all the interrupts specified in the mask, false to disable all the interrupts specified in the
mask.

4.1.6.4.20. dma_sniffer_disable

static void dma_sniffer_disable ()

Disable the DMA sniffer.

4.1.6.4.21. dma_sniffer_enable

static void dma_sniffer_enable (uint channel,
uint mode,

bool force_channel_enable)
Enable the DMA sniffing targeting the specified channel.

The mode can be one of the following:

Mode Function

0x0 Calculate a CRC-32 (IEEE802.3 polynomial)

0x1 Calculate a CRC-32 (IEEE802.3 polynomial) with bit
reversed data

0x2 Calculate a CRC-16-CCITT

0x3 Calculate a CRC-16-CCITT with bit reversed data

Oxe XOR reduction over all data. == 1 if the total 1 population
count is odd.

Oxf Calculate a simple 32-bit checksum (addition with a 32 bit

accumulator)

Parameters

® channel DMA channel

]
4.1. Hardware APIs 96

Raspberry Pi Pico C/C++ SDK
]

® mode See description

® force_channel_enable Set true to also turn on sniffing in the channel configuration (this is usually what you want, but
sometimes you might have a chain DMA with only certain segments of the chain sniffed, in which case you might
pass false).

4.1.6.4.22. dma_sniffer_set_byte_swap_enabled

static void dma_sniffer_set_byte_swap_enabled (bool swap)

Enable the Sniffer byte swap function.

Locally perform a byte reverse on the sniffed data, before feeding into checksum.

Note that the sniff hardware is downstream of the DMA channel byteswap performed in the read master: if
channel_config_set_bswap() and dma_sniffer_set_byte_swap_enabled() are both enabled, their effects cancel from the
sniffer's point of view.

Parameters

® swap Set true to enable byte swapping

4.1.6.4.23. dma_start_channel_mask

static void dma_start_channel_mask (uint32_t chan_mask)
Start one or more channels simultaneously.
Parameters

® chan_mask Bitmask of all the channels requiring starting. Channel 0 = bit 0, channel 1 = bit 1 etc.

4.1.7. channel_config

DMA channel configuration.

A DMA channel needs to be configured, these functions provide handy helpers to set up configuration structures. See
dma_channel_config

4.1.7.1. Function List

® static void channel_config_set_read_increment (dma_channel_config *c, bool incr)

® static void channel_config_set_write_increment (dma_channel_config *c, bool incr)

® static void channel_config_set_dreq (dma_channel_config *c, uint dreq)

® static void channel_config_set_chain_to (dma_channel_config *c, uint chain_to)

® static void channel_config_set_transfer_data_size (dma_channel_config *c, enum dma_channel_transfer_size size)
® static void channel_config_set_ring (dma_channel_config *c, bool write, uint size_bits)
® static void channel_config_set_bswap (dma_channel_config *c, bool bswap)

® static void channel_config_set_irq_quiet (dma_channel_config *c, bool irq_quiet)

® static void channel_config_set_enable (dma_channel_config *c, bool enable)

® static void channel_config_set_sniff_enable (dma_channel_config *c, bool sniff_enable)
® static dma_channel_config dma_channel_get_default_config (uint channel)

® static dma_channel_config dma_get_channel_config (uint channel)

]
4.1. Hardware APIs 97

Raspberry Pi Pico C/C++ SDK
]

® static uint32_t channel_config_get_ctrl_value (const dma_channel_config *config)

4.1.7.2. Function Documentation

4.1.7.2.1. channel_config_get_ctrl_value
static uint32_t channel_config_get_ctrl_value (const dma_channel_config *config)
Get the raw configuration register from a channel configuration.
Parameters
® config Pointer to a config structure.
Returns

® Register content

4.1.7.2.2. channel_config_set_bswap

static void channel_config_set_bswap (dma_channel_config *c,
bool bswap)

Set DMA byte swapping.

No effect for byte data, for halfword data, the two bytes of each halfword are swapped. For word data, the four bytes of
each word are swapped to reverse their order.

Parameters
® ¢ Pointer to channel configuration data

® hswap True to enable byte swapping

4.1.7.2.3. channel_config_set_chain_to

static void channel_config_set_chain_to (dma_channel_config *c,
uint chain_to)

Set DMA channel completion channel.

When this channel completes, it will trigger the channel indicated by chain_to. Disable by setting chain_to to itself (the
same channel)

Parameters
® ¢ Pointer to channel configuration data

® chain_to Channel to trigger when this channel completes.

4.1.7.2.4. channel_config_set_dreq

static void channel_config_set_dreq (dma_channel_config *c,
uint dreq)

Select a transfer request signal.

The channel uses the transfer request signal to pace its data transfer rate. Sources for TREQ signals are internal
(TIMERS) or external (DREQ, a Data Request from the system). 0x0 to 0x3a — select DREQ n as TREQ 0x3b — Select
Timer 0 as TREQ 0x3c — Select Timer 1 as TREQ 0x3d — Select Timer 2 as TREQ (Optional) 0x3e — Select Timer 3 as
TREQ (Optional) 0x3f — Permanent request, for unpaced transfers.

Parameters

]
4.1. Hardware APIs 98

Raspberry Pi Pico C/C++ SDK

® ¢ Pointer to channel configuration data

® dreq Source (see description)

4.1.7.2.5. channel_config_set_enable

static void channel_config_set_enable (dma_channel_config *c,
bool enable)

Enable/Disable the DMA channel.

When false, the channel will ignore triggers, stop issuing transfers, and pause the current transfer sequence (i.e. BUSY
will remain high if already high)

Parameters
® ¢ Pointer to channel configuration data

® enable True to enable the DMA channel. When enabled, the channel will respond to triggering events, and start
transferring data.

4.1.7.2.6. channel_config_set_irq_quiet

static void channel_config_set_irq_quiet (dma_channel_config *c,
bool irg_quiet)

Set IRQ quiet mode.

In QUIET mode, the channel does not generate IRQs at the end of every transfer block. Instead, an IRQ is raised when
NULL is written to a trigger register, indicating the end of a control block chain.

Parameters
® ¢ Pointer to channel configuration data

® irq_quiet True to enable quiet mode, false to disable.

4.1.7.2.7. channel_config_set_read_increment

static void channel_config_set_read_increment (dma_channel_config *c,
bool incr)

Set DMA channel read increment.
Parameters
® ¢ Pointer to channel configuration data

® incr True to enable read address increments, if false, each read will be from the same address Usually disabled for
peripheral to memory transfers

4.1.7.2.8. channel_config_set_ring

static void channel_config_set_ring (dma_channel_config *c,
bool write,
uint size_bits)

Set address wrapping parameters.

Size of address wrap region. If 0, don't wrap. For values n > 0, only the lower n bits of the address will change. This
wraps the address on a (1 << n) byte boundary, facilitating access to naturally-aligned ring buffers. Ring sizes between 2
and 32768 bytes are possible (size_bits from 1 - 15)

0x0 — No wrapping.

4.1. Hardware APIs 99

Raspberry Pi Pico C/C++ SDK
]

Parameters
® ¢ Pointer to channel configuration data
® write True to apply to write addresses, false to apply to read addresses

® size_bits O to disable wrapping. Otherwise the size in bits of the changing part of the address. Effectively wraps
the address on a (1 << size_bits) byte boundary.

4.1.7.2.9. channel_config_set_sniff_enable

static void channel_config_set_sniff_enable (dma_channel_config *c,
bool sniff_enable)

Enable access to channel by sniff hardware.
Sniff HW must be enabled and have this channel selected.
Parameters

® ¢ Pointer to channel configuration data

® spiff_enable True to enable the Sniff HW access to this DMA channel.

4.1.7.2.10. channel_config_set_transfer_data_size

static void channel_config_set_transfer_data_size (dma_channel_config *c,

enum dma_channel_transfer_size size)
Set the size of each DMA bus transfer.

Set the size of each bus transfer (byte/halfword/word). The read and write addresses advance by the specific amount
(1/2/4 bytes) with each transfer.

Parameters
® ¢ Pointer to channel configuration data

® size See enum for possible values.

4.1.7.2.11. channel_config_set_write_increment

static void channel_config_set_write_increment (dma_channel_config *c,

bool incr)

Set DMA channel write increment.
Parameters
® ¢ Pointer to channel configuration data

® incr True to enable write address increments, if false, each write will be to the same address Usually disabled for
memory to peripheral transfers Usually disabled for memory to peripheral transfers

4.1.7.2.12. dma_channel_get_default_config

static dma_channel_config dma_channel_get_default_config (uint channel)

Get the default channel configuration for a given channel.

Setting Default
Read Increment true
Write Increment false

]
4.1. Hardware APIs 100

Raspberry Pi Pico C/C++ SDK
]

Setting Default

DReq DREQ_FORCE

Chain to self

Data size DMA_SIZE_32

Ring write=false, size=0 (i.e. off)
Byte Swap false

Quiet IRQs false

Channel Enable true

Sniff Enable false
Parameters

® channel DMA channel
Returns

® the default configuration which can then be modified.

4.1.7.2.13. dma_get_channel_config
static dma_channel_config dma_get_channel_config (uint channel)
Get the current configuration for the specified channel.
Parameters

® channel DMA channel
Returns

® The current configuration as read from the HW register (not cached)

4.1.8. hardware_flash

Low level flash programming and erase API.

Note these functions are unsafe if you have two cores concurrently executing from flash. In this case you must perform
your own synchronisation to make sure no XIP accesses take place during flash programming.

Likewise they are unsafe if you have interrupt handlers or an interrupt vector table in flash, so you must disable
interrupts before calling in this case.

If PICO_NO_FLASH=1 is not defined (i.e. if the program is built to run from flash) then these functions will make a static
copy of the second stage bootloader in SRAM, and use this to reenter execute-in-place mode after programming or
erasing flash, so that they can safely be called from flash-resident code.

Example

#include <stdio.h>
#include <stdlib.h>

#include "pico/stdlib.h”
#include "hardware/flash.h"

// We're going to erase and reprogram a region 256k from the start of flash.
// Once done, we can access this at XIP_BASE + 256k.
#define FLASH_TARGET_OFFSET (256 * 16024)

O 0 N O g A~ WN =

]
4.1. Hardware APIs 101

Raspberry Pi Pico C/C++ SDK
]

10

11 const uint8_t *flash_target_contents = (const uint8_t *) (XIP_BASE + FLASH_TARGET_OFFSET);
12

13 void print_buf(const uint8_t *buf, size_t len) {

14 for (size_t i = 0; i < len; ++i) {

15 printf("%@2x", buf[i]);

16 if (i % 16 == 15)

17 printf("\n");

18 else

19 printf(" ");

20 }

21 }

22

23 int main() {

24 stdio_init_all();

25 uint8_t random_data[FLASH_PAGE_SIZE];

26 for (int i = @; i < FLASH_PAGE_SIZE; ++i)

27 random_data[i] = rand() >> 16;

28

29 printf("Generated random data:\n");

30 print_buf(random_data, FLASH_PAGE_SIZE);

31

32 // Note that a whole number of sectors must be erased at a time.
33 printf("\nErasing target region...\n");

34 flash_range_erase(FLASH_TARGET_OFFSET, FLASH_SECTOR_SIZE);
35 printf("Done. Read back target region:\n");

36 print_buf(flash_target_contents, FLASH_PAGE_SIZE);
37

38 printf("\nProgramming target region...\n");

39 flash_range_program(FLASH_TARGET_OFFSET, random_data, FLASH_PAGE_SIZE);
40 printf("Done. Read back target region:\n");

41 print_buf(flash_target_contents, FLASH_PAGE_SIZE);
42

43 bool mismatch = false;

44 for (int i = @; i < FLASH_PAGE_SIZE; ++i) {

45 if (random_data[i] != flash_target_contents[i])
46 mismatch = true;

47 }

48 if (mismatch)

49 printf("Programming failed!\n");

50 else

51 printf("Programming successful!\n");

52 }

4.1.8.1. Function List

® void flash_range_erase (uint32_t flash_offs, size_t count)
® void flash_range_program (uint32_t flash_offs, const uint8_t *data, size_t count)

® yoid flash_get_unique_id (uint8_t *id_out)

4.1.8.2. Function Documentation

4.1.8.2.1. flash_get_unique_id
void flash_get_unique_id (uint8_t *id_out)

Get flash unique 64 bit identifier.

]
4.1. Hardware APIs 102

Raspberry Pi Pico C/C++ SDK
]

Table 9. Function
Select Table

Use a standard 4Bh RUID instruction to retrieve the 64 bit unique identifier from a flash device attached to the QSPI
interface. Since there is a 1:1 association between the MCU and this flash, this also serves as a unique identifier for the
board.

Parameters

® id_out Pointer to an 8-byte buffer to which the ID will be written

4.1.8.2.2. flash_range_erase

void flash_range_erase (uint32_t flash_offs,
size_t count)

Erase areas of flash.
Parameters
® flash_offs Offset into flash, in bytes, to start the erase. Must be aligned to a 4096-byte flash sector.

® count Number of bytes to be erased. Must be a multiple of 4096 bytes (one sector).

4.1.8.2.3. flash_range_program

void flash_range_program (uint32_t flash_offs,
const uint8_t *data,

size_t count)

Program flash.

Parameters
® flash_offs Flash address of the first byte to be programmed. Must be aligned to a 256-byte flash page.
® data Pointer to the data to program into flash

® count Number of bytes to program. Must be a multiple of 256 bytes (one page).

4.1.9. hardware_gpio

General Purpose Input/Output (GPIO) API.

RP2040 has 36 multi-functional General Purpose Input / Output (GPIO) pins, divided into two banks. In a typical use
case, the pins in the QSPI bank (QSPI_SS, QSPI_SCLK and QSPI_SDO0 to QSPI_SD3) are used to execute code from an
external flash device, leaving the User bank (GPIO0 to GPI029) for the programmer to use. All GPIOs support digital
input and output, but GP1026 to GPI029 can also be used as inputs to the chip’s Analogue to Digital Converter (ADC).
Each GPIO can be controlled directly by software running on the processors, or by a number of other functional blocks.

The function allocated to each GPIO is selected by calling the gpio_set_function function. Not all functions are available
on all pins.

Each GPIO can have one function selected at a time. Likewise, each peripheral input (e.g. UARTO RX) should only be
selected on one GPIO at a time. If the same peripheral input is connected to multiple GPIOs, the peripheral sees the
logical OR of these GPIO inputs. Please refer to the datasheet for more information on GPIO function select.

GPIO F1 F2 F3 F4 F5 F6 F7 F8 F9

0 SPIORX | UARTO TX |12C0O SDA |PWMOA |SIO P100 PI1O1 USB
OVCUR
DET

1 SPIO CSn | UARTORX |I12CO0SCL |[PWMOB |SIO P100 PI101 USB VBUS
DET

]
4.1. Hardware APIs 103

Raspberry Pi Pico C/C++ SDK
]

GPIO F1 F2 F3 F4 FS F6 F7 F8 F9
2 SPI0O SCK | UARTO I12C1 SDA |PWMTA |SIO PI00 PIO1 USB VBUS
CTS EN
3 SPIOTX | UARTO I2C1SCL [PWM1B |SIO PI00 PIO1 usB
RTS OVCUR
DET
4 SPIORX | UART1 TX |12C0 SDA |PWM2A |SIO P100 PI1O1 USB VBUS
DET
5 SPIO CSn | UART1RX|12C0SCL |[PWM2B |SIO P100 PI1O1 USB VBUS
EN
6 SPI0 SCK | UART1 I12C1 SDA |PWM3 A |SIO P100 PI1O1 USB
CTS OVCUR
DET
7 SPIOTX | UART1 I2C1SCL [PWM3B |SIO PI00 PIO1 USB VBUS
RTS DET
8 SPITRX | UART1 TX |12C0 SDA |PWM4 A |SIO P100 PI101 USB VBUS
EN
9 SPIT CSn | UART1RX|I12C0SCL |[PWM4B |SIO P100 PI1O1 USB
OVCUR
DET
10 SPI1 SCK | UART1 I12C1 SDA |[PWM5A |SIO PI00 PIO1 USB VBUS
CTS DET
11 SPITTX | UART1 I2C1SCL [PWM5B |SIO PI00 PIO1 USB VBUS
RTS EN
12 SPITRX | UARTO TX |12CO SDA |PWM6 A |[SIO PI00 PIO1 usB
OVCUR
DET
13 SPIT CSn | UARTORX|I2CO0SCL |[PWM6B |SIO P100 PI1O1 USB VBUS
DET
14 SPIT1 SCK | UARTO I12C1 SDA |PWM7 A |SIO P100 PI1O1 USB VBUS
CTS EN
15 SPITTX | UARTO 12C1SCL |PWM7B |SIO P100 PI1O1 USB
RTS OVCUR
DET
16 SPIORX | UARTO TX |12CO SDA |PWMOA |[SIO PI00 PIO1 USB VBUS
DET
17 SPIO CSn | UARTORX |12CO0SCL |[PWMOB |SIO P100 PI101 USB VBUS
EN
18 SPI0O SCK | UARTO I12C1 SDA |PWMTA |SIO PIO0 PI1O1 USB
CTS OVCUR
DET
19 SPIOTX | UARTO I2C1SCL [PWM1B |SIO PI00 PIO1 USB VBUS
RTS DET
20 SPIORX | UART1 TX |12CO SDA |PWM2A |[SIO PI00 PIO1 CLOCK USB VBUS
GPINO EN

4.1. Hardware APIs

104

Raspberry Pi Pico C/C++ SDK
]

GPIO F1 F2 F3 F4 FS F6 F7 F8 F9
21 SPI0 CSn | UART1RX |12COSCL |PWM2B |[SIO PI00 PIO1 CLOCK usB
GPOUTO |OVCUR
DET
22 SPI0O SCK | UART1 I12C1 SDA |PWM3 A |SIO PIO0 PI1O1 CLOCK USB VBUS
CTS GPIN1 DET
23 SPIOTX | UART1 I12C1SCL |PWM3B |SIO P100 PI1O1 CLOCK USB VBUS
RTS GPOUT1 |EN
24 SPITRX | UART1 TX |12C0 SDA |PWM4 A |SIO P100 PI1O1 CLOCK USB
GPOUT2 | OVCUR
DET
25 SPI1CSn |UART1RX |12COSCL |PWM4B |[SIO PI00 PIO1 CLOCK USB VBUS
GPOUT3 | DET
26 SPI1 SCK | UART1 I12C1 SDA |[PWMSA |SIO PI00 PIO1 USB VBUS
CTS EN
27 SPITTX | UART1 I12C1SCL |[PWM5B |SIO P100 PI101 USB
RTS OVCUR
DET
28 SPITRX | UARTO TX |12C0 SDA |PWM6 A |SIO P100 PI1O1 USB VBUS
DET
29 SPI1CSn | UARTORX |12COSCL |PWM6B |[SIO PI00 PIO1 USB VBUS
EN

4.1.9.1. Enumerations

enum gpio_function { GPIO_FUNC_XIP = @, GPIO_FUNC_SPI = 1, GPIO_FUNC_UART = 2, GPIO_FUNC_I2C = 3, GPIO_FUNC_PWM = 4,
GPIO_FUNC_SIO = 5, GPIO_FUNC_PIO@ = 6, GPIO_FUNC_PIOT = 7, GPIO_FUNC_GPCK = 8, GPIO_FUNC_USB = 9, GPIO_FUNC_NULL =
oxf }

GPIO function definitions for use with function select.

® enum gpio_irq_level { GPIO_IRQ LEVEL LOW = @x1u, GPIO_IRQ_LEVEL HIGH = ©x2u, GPIO_IRQ_EDGE_FALL = 0xdu,
GPIO_IRQ_EDGE_RISE = @x8u }
GPIO Interrupt level definitions.

4.1.9.2. Function List

® yoid gpio_set_function (uint gpio, enum gpio_function fn)
® void gpio_set_pulls (uint gpio, bool up, bool down)

® static void gpio_pull_up (uint gpio)

static bool gpio_is_pulled_up (uint gpio)

® static void gpio_pull_down (uint gpio)

static bool gpio_is_pulled_down (uint gpio)

static void gpio_disable_pulls (uint gpio)
® void gpio_set_outover (uint gpio, uint value)

® void gpio_set_inover (uint gpio, uint value)

]
4.1. Hardware APIs 105

Raspberry Pi Pico C/C++ SDK
]

® void gpio_set_oeover (uint gpio, uint value)

® void gpio_set_input_enabled (uint gpio, bool enabled)

® void gpio_set_irq_enabled (uint gpio, uint32_t events, bool enabled)
® void gpio_set_irq_enabled_with_callback (uint gpio, uint32_t events, bool enabled, gpio_irq_callback_t callback)
® void gpio_set_dormant_irq_enabled (uint gpio, uint32_t events, bool enabled)
® void gpio_acknowledge_irq (uint gpio, uint32_t events)

® void gpio_init (uint gpio)

® void gpio_init_mask (uint gpio_mask)

® static bool gpio_get (uint gpio)

® static uint32_t gpio_get_all ()

® static void gpio_set_mask (uint32_t mask)

® static void gpio_clr_mask (uint32_t mask)

® static void gpio_xor_mask (uint32_t mask)

® static void gpio_put_masked (uint32_t mask, uint32_t value)

® static void gpio_put_all (uint32_t value)

® static void gpio_put (uint gpio, bool value)

® static void gpio_set_dir_out_masked (uint32_t mask)

® static void gpio_set_dir_in_masked (uint32_t mask)

® static void gpio_set_dir_masked (uint32_t mask, uint32_t value)

® static void gpio_set_dir_all_bits (uint32_t values)

® static void gpio_set_dir (uint gpio, bool out)

® static bool gpio_is_dir_out (uint gpio)

® static uint gpio_get_dir (uint gpio)

4.1.9.3. Function Documentation

4.1.9.3.1. gpio_acknowledge_irq

void gpio_acknowledge_irq (uint gpio,
uint32_t events)

Acknowledge a GPIO interrupt.
Parameters
® gpio GPIO number

® events Bitmask of events to clear. See gpio_set_irg_enabled for details.

4.1.9.3.2. gpio_clr_mask
static void gpio_clr_mask (uint32_t mask)
Drive low every GPIO appearing in mask.

Parameters

]
4.1. Hardware APIs 106

Raspberry Pi Pico C/C++ SDK
]

® mask Bitmask of GPIO values to clear, as bits 0-29

4.1.9.3.3. gpio_disable_pulls

static void gpio_disable_pulls (uint gpio)
Disable pulls on specified GPIO.
Parameters

® gpio GPIO number

4.1.9.3.4. gpio_get
static bool gpio_get (uint gpio)
Get state of a single specified GPIO.
Parameters
® gpio GPIO number
Returns

® Current state of the GPIO. 0 for low, non-zero for high

4.1.9.3.5. gpio_get_all
static uint32_t gpio_get_all ()
Get raw value of all GPIOs.
Returns

® Bitmask of raw GPIO values, as bits 0-29

4.1.9.3.6. gpio_get_dir
static uint gpio_get_dir (uint gpio)
Get a specific GPIO direction.
Parameters

® gpio GPIO number
Returns

e 1 forout, 0 forin

4.1.9.3.7. gpio_init

void gpio_init (uint gpio)

Initialise a GPIO for (enabled 1/0 and set func to GPIO_FUNC_SIO)
Clear the output enable (i.e. set to input) Clear any output value.
Parameters

® gpio GPIO number

]
4.1. Hardware APIs 107

Raspberry Pi Pico C/C++ SDK

4.1.9.3.8. gpio_init_mask

void gpio_init_mask (uint gpio_mask)

Initialise multiple GP10s (enabled 1/0 and set func to GPIO_FUNC_SIO)
Clear the output enable (i.e. set to input) Clear any output value.
Parameters

® gpio_mask Mask with 1 bit per GPIO number to initialize

4.1.9.3.9. gpio_is_dir_out
static bool gpio_is_dir_out (uint gpio)
Check if a specific GPIO direction is OUT.
Parameters

® gpio GPIO number
Returns

e true if the direction for the pin is OUT

4.1.9.3.10. gpio_is_pulled_down
static bool gpio_is_pulled_down (uint gpio)
Determine if the specified GPIO is pulled down.
Parameters

® gpio GPIO number
Returns

* true if the GPIO is pulled down

4.1.9.3.11. gpio_is_pulled_up
static bool gpio_is_pulled_up (uint gpio)
Determine if the specified GPIO is pulled up.
Parameters

® gpio GPIO number
Returns

® true if the GPIO is pulled up

4.1.9.3.12. gpio_pull_down

static void gpio_pull_down (uint gpio)
Set specified GPIO to be pulled down.
Parameters

® gpio GPIO number

4.1. Hardware APIs 108

Raspberry Pi Pico C/C++ SDK
]

4.1.9.3.13. gpio_pull_up

static void gpio_pull_up (uint gpio)
Set specified GPIO to be pulled up.
Parameters

® gpio GPIO number

4.1.9.3.14. gpio_put

static void gpio_put (uint gpio,

bool value)
Drive a single GPIO high/low.
Parameters
® gpio GPIO number

® value If false clear the GPIO, otherwise set it.

4.1.9.3.15. gpio_put_all

static void gpio_put_all (uint32_t value)
Drive all pins simultaneously.
Parameters

* value Bitmask of GPIO values to change, as bits 0-29

4.1.9.3.16. gpio_put_masked

static void gpio_put_masked (uint32_t mask,
uint32_t value)

Drive GPIO high/low depending on parameters.

For each 1 bit in mask, drive that pin to the value given by corresponding bit in value, leaving other pins unchanged. Since
this uses the TOGL alias, it is concurrency-safe with e.g. an IRQ bashing different pins from the same core.

Parameters
* mask Bitmask of GPIO values to change, as bits 0-29

® yalue Value to set

4.1.9.3.17. gpio_set_dir

static void gpio_set_dir (uint gpio,
bool out)

Set a single GPIO direction.
Parameters
® gpio GPIO number

® out true for out, false for in

]
4.1. Hardware APIs 109

Raspberry Pi Pico C/C++ SDK
]

4.1.9.3.18. gpio_set_dir_all_bits

static void gpio_set_dir_all_bits (uint32_t values)
Set direction of all pins simultaneously.
Parameters

® values individual settings for each gpio; for GPIO N, bit N is 1 for out, 0 for in

4.1.9.3.19. gpio_set_dir_in_masked

static void gpio_set_dir_in_masked (uint32_t mask)
Set a number of GPIOs to input.

Parameters

® mask Bitmask of GPIO to set to input, as bits 0-29

4.1.9.3.20. gpio_set_dir_masked

static void gpio_set_dir_masked (uint32_t mask,
uint32_t value)

Set multiple GPIO directions.

For each 1 bit in "mask", switch that pin to the direction given by corresponding bit in "value", leaving other pins
unchanged. E.g. gpio_set_dir_masked(0x3, 0x2); — set pin 0 to input, pin 1 to output, simultaneously.

Parameters
® mask Bitmask of GPIO to set to input, as bits 0-29

® value Values to set

4.1.9.3.21. gpio_set_dir_out_masked

static void gpio_set_dir_out_masked (uint32_t mask)
Set a number of GPIOs to output.

Switch all GPIOs in "mask" to output

Parameters

* mask Bitmask of GPIO to set to output, as bits 0-29

4.1.9.3.22. gpio_set_dormant_irq_enabled

void gpio_set_dormant_irq_enabled (uint gpio,
uint32_t events,
bool enabled)

Enable dormant wake up interrupt for specified GPIO.
This configures IRQs to restart the XOSC or ROSC when they are disabled in dormant mode
Parameters

® gpio GPIO number

® events Which events will cause an interrupt. See gpio_set_irq_enabled for details.

® enabled Enable/disable flag

]
4.1. Hardware APIs 110

Raspberry Pi Pico C/C++ SDK

4.1.9.3.23. gpio_set_function

void gpio_set_function (uint gpio,

enum gpio_function fn)
Select GPIO function.
Parameters
® gpio GPIO number

® fn Which GPIO function select to use from list gpio_function

4.1.9.3.24. gpio_set_inover

void gpio_set_inover (uint gpio,
uint value)

Select GPIO input override.
Parameters
® gpio GPIO number

® value See gpio_override

4.1.9.3.25. gpio_set_input_enabled

void gpio_set_input_enabled (uint gpio,
bool enabled)

Enable GPIO input.
Parameters
® gpio GPIO number

® enabled true to enable input on specified GPIO

4.1.9.3.26. gpio_set_irq_enabled

void gpio_set_irq_enabled (uint gpio,
uint32_t events,
bool enabled)

Enable or disable interrupts for specified GPIO.

Events is a bitmask of the following:

bit interrupt

0 Low level

1 High level

2 Edge low

3 Edge high
Parameters

® gpio GPIO number
® cvents Which events will cause an interrupt

® enabled Enable or disable flag

4.1. Hardware APIs 111

Raspberry Pi Pico C/C++ SDK
]

4.1.9.3.27. gpio_set_irq_enabled_with_callback

void gpio_set_irq_enabled_with_callback (uint gpio,
uint32_t events,
bool enabled,
gpio_irq_callback_t callback)

Enable interrupts for specified GPIO.

Parameters
® gpio GPIO number
® cvents Which events will cause an interrupt See gpio_set_irq_enabled for details.
® enabled Enable or disable flag

® callback user function to call on GPIO irg. Note only one of these can be set per processor.

4.1.9.3.28. gpio_set_mask

static void gpio_set_mask (uint32_t mask)
Drive high every GPIO appearing in mask.
Parameters

® mask Bitmask of GPIO values to set, as bits 0-29

4.1.9.3.29. gpio_set_oeover

void gpio_set_oeover (uint gpio,
uint value)

Select GPIO output enable override.
Parameters
® gpio GPIO number

® value See gpio_override

4.1.9.3.30. gpio_set_outover

void gpio_set_outover (uint gpio,

uint value)
Set GPIO output override.
Parameters
® gpio GPIO number

® value See gpio_override

4.1.9.3.31. gpio_set_pulls

void gpio_set_pulls (uint gpio,
bool up,
bool down)

Select up and down pulls on specific GPIO.
Parameters
® gpio GPIO number

]
4.1. Hardware APIs 112

Raspberry Pi Pico C/C++ SDK
]

® up If true set a pull up on the GPIO

® down If true set a pull down on the GPIO

4.1.9.3.32. gpio_xor_mask

static void gpio_xor_mask (uint32_t mask)
Toggle every GPIO appearing in mask.
Parameters

* mask Bitmask of GPIO values to toggle, as bits 0-29

4.1.10. hardware_i2c

12C Controller API.

The I12C bus is a two-wire serial interface, consisting of a serial data line SDA and a serial clock SCL. These wires carry
information between the devices connected to the bus. Each device is recognized by a unique address and can operate
as either a “transmitter” or “receiver”, depending on the function of the device. Devices can also be considered as
masters or slaves when performing data transfers. A master is a device that initiates a data transfer on the bus and
generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave.

This API allows the controller to be set up as a master or a slave using the i2c_set_slave_mode function.

The external pins of each controller are connected to GPIO pins as defined in the GPIO muxing table in the datasheet.
The muxing options give some |0 flexibility, but each controller external pin should be connected to only one GPIO.

Note that the controller does NOT support High speed mode or Ultra-fast speed mode, the fastest operation being fast
mode plus at up to 1000Kb/s.

See the datasheet for more information on the 12C controller and its usage.

Example
1 // Sweep through all 7-bit I2C addresses, to see if any slaves are present on
2 // the I2C bus. Print out a table that looks like this:
3 //
4 // I2C Bus Scan
5// 6 1 2 3 4 5 6 7 8 9 A B C D E F
6 // 6
77/ 1 @
8 // 2
9// 3 @
10 // 4
11 // 5
12 // 6
13 // 7
14 //
15 // E.g. if slave addresses 0x12 and 6x34 were acknowledged.
16
17 #include <stdio.h>
18 #include "pico/stdlib.h"
19 #include "hardware/i2c.h”
20
21 // I2C reserves some addresses for special purposes. We exclude these from the scan.

N
N

// These are any addresses of the form 600 Oxxx or 111 Txxx

23 bool reserved_addr(uint8_t addr) {

24 return (addr & 0x78) == 0 || (addr & @x78) == Ox78;
25 }

26

27 int main() {

]
4.1. Hardware APIs 113

Raspberry Pi Pico C/C++ SDK
]

28 // Enable UART so we can print status output
29 stdio_init_all();
30
31 // This example will use I2C0 on GPIO4 (SDA) and GPIO5 (SCL)
32 i2c_init(i2c@, 100 * 1000);
33 gpio_set_function(4, GPIO_FUNC_I2C);
34 gpio_set_function(5, GPIO_FUNC_I2C);
35 gpio_pull_up(4);
36 gpio_pull_up(5);
37
38 printf("\nI2C Bus Scan\n");
39 printf(* © 1 2 3 4 5 6 7 8 9 A B C D E F\n");
40
41 for (int addr = @; addr < (1 << 7); ++addr) {
42 if (addr % 16 == 8) {
43 printf("%@2x ", addr);
44)
45
46 // Perform a 1-byte dummy read from the probe address. If a slave
47 // acknowledges this address, the function returns the number of bytes
48 // transferred. If the address byte is ignored, the function returns
49 // -T1.
50
51 // Skip over any reserved addresses.
52 int ret;
53 uint8_t rxdata;
54 if (reserved_addr(addr))
55 ret = PICO_ERROR_GENERIC;
56 else
57 ret = i2c_read_blocking(i2c®, addr, &rxdata, 1, false);
58
59 printf(ret <@ 2 "." : "@");
60 printf(addr % 16 == 15 2 "\n" : " ");
61 }
62 printf("Done.\n");
63 return 0;
64 }
4.1.10.1. Variables

i2c_inst_t i2c@_inst

4.1.10.2. Function List

uint i2c_init (i2c_inst_t *i2c, uint baudrate)

void 12c_deinit (i2c_inst_t *i2c)

uint i2c_set_baudrate (i2c_inst_t *i2c, uint baudrate)

void i2c_set_slave_mode (i2c_inst_t *i2c, bool slave, uint8_t addr)
static uint i2c_hw_index (i2c_inst_t *i2c)

int i2c_write_blocking_until (i2c_inst_t *i2c, wuint8_t addr, const uint8_t *src, size_t len, bool nostop,
absolute_time_t until)

int i2c_read_blocking_until (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, absolute_time_t
until)

static int i2c_write_timeout_us (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop, uint

timeout_us)

4.1. Hardware APIs

114

Raspberry Pi Pico C/C++ SDK

® static int i2c_read_timeout_us (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop, uint

timeout_us)
® int i2c_write_blocking (i2c_inst_t *i2c, uint8_t addr, const uint8_t *src, size_t len, bool nostop)
® int i2c_read_blocking (i2c_inst_t *i2c, uint8_t addr, uint8_t *dst, size_t len, bool nostop)
® static size_t i2c_get_write_available (i2c_inst_t *i2c)
® static size_t i2c_get_read_available (i2c_inst_t *i2c)
® static void i2c_write_raw_blocking (i2c_inst_t *i2c, const uint8_t *src, size_t len)

® static void i2c_read_raw_blocking (i2c_inst_t *i2c, uint8_t *dst, size_t len)

4.1.10.3. Function Documentation

4.1.10.3.1. i2c_deinit

void i2c_deinit (i2c_inst_t *i2c)

Disable the 12C HW block.

Disable the 12C again if it is no longer used. Must be reinitialised before being used again.
Parameters

® i)c Eitheri2cO ori2c1

4.1.10.3.2. i2c_get_read_available
static size_t i2c_get_read_available (i2c_inst_t *i2c)
Determine number of bytes received.
Parameters
® i2c Eitheri2c0 ori2c1
Returns

* 0if no data available, if return is nonzero at least that many bytes can be read without blocking.

4.1.10.3.3. i2c_get_write_available
static size_t i2c_get_write_available (i2c_inst_t *i2c)
Determine non-blocking write space available.
Parameters

® i2c Either i2c0 ori2c1
Returns

® 0 if no space is available in the 12C to write more data. If return is nonzero, at least that many bytes can be written
without blocking.

4.1.10.3.4. i2c_hw_index

static uint i2c_hw_index (i2c_inst_t *i2c)

Convert |12¢c instance to hardware instance number.
Parameters

4.1. Hardware APIs 115

Raspberry Pi Pico C/C++ SDK
]

i2¢ 12C instance

Returns

Number of UART, 0 or 1.

4.1.10.3.5. i2c_init

uint

i2c_init (i2c_inst_t *i2c,

uint baudrate)

Initialise the 12C HW block.

Put the 12C hardware into a known state, and enable it. Must be called before other functions. By default, the 12C is
configured to operate as a master.

The 12C bus frequency is set as close as possible to requested, and the return actual rate set is returned

Parameters

i2c Eitheri2c0 ori2c1

baudrate Baudrate in Hz (e.g. 100kHz is 100000)

Returns

Actual set baudrate

4.1.10.3.6. i2c_read_blocking

int i2c_read_blocking (i2c_inst_t *i2c,

uint8_t addr,
uint8_t *dst,
size_t len,

bool nostop)

Attempt to read specified number of bytes from address, blocking.

Parameters

i2c Either i2c0 or i2c1

addr Address of device to read from
dst Pointer to buffer to receive data
1len Length of data in bytes to receive

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next transfer
will begin with a Restart rather than a Start.

Returns

Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present.

4.1.10.3.7. i2c_read_blocking_until

int i2c_read_blocking_until (i2c_inst_t *i2c,

uint8_t addr,

uint8_t *dst,

size_t len,

bool nostop,
absolute_time_t until)

Attempt to read specified number of bytes from address, blocking until the specified absolute time is reached.

Parameters

4.1. Hardware APIs

116

Raspberry Pi Pico C/C++ SDK
]

i2c Either i2c0 ori2c1

® addr Address of device to read from

dst Pointer to buffer to receive data

1len Length of data in bytes to receive

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next transfer
will begin with a Restart rather than a Start.

® until The absolute time that the block will wait until the entire transaction is complete.
Returns

® Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

4.1.10.3.8. i2c_read_raw_blocking

static void i2c_read_raw_blocking (i2c_inst_t *i2c,
uint8_t *dst,
size_t len)

Write direct to TX FIFO.
Reads directly from the 12C RX FIFO which us mainly useful for slave-mode operation.
Parameters

® i2c Eitheri2c0 ori2c1

® dst Buffer to accept data

* len Number of bytes to send

4.1.10.3.9. i2c_read_timeout_us

static int i2c_read_timeout_us (i2c_inst_t *i2c,
uint8_t addr,
uint8_t *dst,
size_t len,
bool nostop,

uint timeout_us)
Attempt to read specified number of bytes from address, with timeout.
Parameters
® i2c Eitheri2c0 ori2c1

® addr Address of device to read from

dst Pointer to buffer to receive data

1len Length of data in bytes to receive

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next transfer
will begin with a Restart rather than a Start.

timeout_us The time that the function will wait for the entire transaction to complete
Returns

® Number of bytes read, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOUT if a timeout occurred.

]
4.1. Hardware APIs 117

Raspberry Pi Pico C/C++ SDK
]

4.1.10.3.10. i2c_set_baudrate

uint i2c_set_baudrate (i2c_inst_t *ilc,

uint baudrate)
Set 12C baudrate.

Set 12C bus frequency as close as possible to requested, and return actual rate set. Baudrate may not be as exactly
requested due to clocking limitations.

Parameters

® i2c Eitheri2c0 ori2c1

® haudrate Baudrate in Hz (e.g. 100kHz is 100000)
Returns

® Actual set baudrate

4.1.10.3.11. i2c_set_slave_mode

void i2c_set_slave_mode (i2c_inst_t *ilc,
bool slave,
uint8_t addr)

Set 12C port to slave mode.
Parameters
® i2c Eitheri2c0 ori2c1
® slave true to use slave mode, false to use master mode

® addr If slave is true, set the slave address to this value

4.1.10.3.12. i2c_write_blocking

int i2c_write_blocking (i2c_inst_t *i2c,
uint8_t addr,
const uint8_t *src,
size_t len,
bool nostop)

Attempt to write specified number of bytes to address, blocking.
Parameters

® i2c Eitheri2c0 ori2ci

® addr Address of device to write to

® src Pointer to data to send

® len Length of data in bytes to send

® nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next transfer
will begin with a Restart rather than a Start.

Returns

® Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present.

4.1.10.3.13. i2c_write_blocking_until

int i2c_write_blocking_until (i2c_inst_t *i2c,
uint8_t addr,

]
4.1. Hardware APIs 118

Raspberry Pi Pico C/C++ SDK
]

const uint8_t *src,
size_t len,

bool nostop,
absolute_time_t until)

Attempt to write specified number of bytes to address, blocking until the specified absolute time is reached.
Parameters
® i2c Eitheri2c0 ori2c1

® addr Address of device to write to

src Pointer to data to send

1len Length of data in bytes to send

nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next transfer
will begin with a Restart rather than a Start.

until The absolute time that the block will wait until the entire transaction is complete. Note, an individual timeout
of this value divided by the length of data is applied for each byte transfer, so if the first or subsequent bytes fails
to transfer within that sub timeout, the function will return with an error.

Returns

® Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOQUT if a timeout occurred.

4.1.10.3.14. i2c_write_raw_blocking

static void i2c_write_raw_blocking (i2c_inst_t *i2c,
const uint8_t *src,
size_t len)

Write direct to TX FIFO.
Writes directly to the to 12C TX FIFO which us mainly useful for slave-mode operation.
Parameters

® i2c Either i2c0 ori2c1

® src Data to send

® len Number of bytes to send

4.1.10.3.15. i2c_write_timeout_us

static int i2c_write_timeout_us (i2c_inst_t *i2c,
uint8_t addr,
const uint8_t *src,
size_t len,
bool nostop,
uint timeout_us)

Attempt to write specified number of bytes to address, with timeout.
Parameters

® i2c Eitheri2c0 ori2c1

® addr Address of device to write to

® src Pointer to data to send

® len Length of data in bytes to send

]
4.1. Hardware APIs 119

Raspberry Pi Pico C/C++ SDK
]

® nostop If true, master retains control of the bus at the end of the transfer (no Stop is issued), and the next transfer
will begin with a Restart rather than a Start.

® timeout_us The time that the function will wait for the entire transaction to complete. Note, an individual timeout of
this value divided by the length of data is applied for each byte transfer, so if the first or subsequent bytes fails to
transfer within that sub timeout, the function will return with an error.

Returns

® Number of bytes written, or PICO_ERROR_GENERIC if address not acknowledged, no device present, or
PICO_ERROR_TIMEOQUT if a timeout occurred.

4.1.11. hardware_interp

Hardware Interpolator API.

Each core is equipped with two interpolators (INTERPO and INTERP1) which can be used to accelerate tasks by
combining certain pre-configured simple operations into a single processor cycle. Intended for cases where the pre-
configured operation is repeated a large number of times, this results in code which uses both fewer CPU cycles and
fewer CPU registers in the time critical sections of the code.

The interpolators are used heavily to accelerate audio operations within the SDK, but their flexible configuration make it
possible to optimise many other tasks such as quantization and dithering, table lookup address generation, affine
texture mapping, decompression and linear feedback.

Please refer to the RP2040 datasheet for more information on the HW interpolators and how they work.

4.1.11.1. Modules

® interp_config

Interpolator configuration.

4.1.11.2. Function List

® yoid interp_claim_lane (interp_hw_t *interp, uint lane)

® void interp_claim_lane_mask (interp_hw_t *interp, uint lane_mask)

® void interp_unclaim_lane (interp_hw_t *interp, uint lane)

® static void interp_set_force_bits (interp_hw_t *interp, uint lane, uint bits)
® void interp_save (interp_hw_t *interp, interp_hw_save_t *saver)

® yoid interp_restore (interp_hw_t *interp, interp_hw_save_t *saver)

® static void interp_set_base (interp_hw_t *interp, uint lane, uint32_t val)

® static uint32_t interp_get_base (interp_hw_t *interp, uint lane)

® static void interp_set_base_both (interp_hw_t *interp, uint32_t val)

® static void interp_set_accumulator (interp_hw_t *interp, uint lane, uint32_t val)
® static uint32_t interp_get_accumulator (interp_hw_t *interp, uint lane)

® static uint32_t interp_pop_lane_result (interp_hw_t *interp, uint lane)

® static uint32_t interp_peek_lane_result (interp_hw_t *interp, uint lane)

® static uint32_t interp_pop_full_result (interp_hw_t *interp)

® static uint32_t interp_peek_full_result (interp_hw_t *interp)

]
4.1. Hardware APIs 120

Raspberry Pi Pico C/C++ SDK
]

® static void interp_add_accumulater (interp_hw_t *interp, uint lane, uint32_t val)

® static uint32_t interp_get_raw (interp_hw_t *interp, uint lane)

4.1.11.3. Function Documentation

4.1.11.3.1. interp_add_accumulater

static void interp_add_accumulater (interp_hw_t *interp,
uint lane,
uint32_t val)

Add to accumulator.
Atomically add the specified value to the accumulator on the specified lane
Parameters
® interp Interpolator instance, interp0 or interp1.
® lane The lane number, 0 or 1
® val Value to add
Returns

® The content of the FULL register

4.1.11.3.2. interp_claim_lane

void interp_claim_lane (interp_hw_t *interp,
uint lane)

Claim the interpolator lane specified.
Use this function to claim exclusive access to the specified interpolator lane.
This function will panic if the lane is already claimed.
Parameters
® interp Interpolator on which to claim a lane. interp0 or interp1

® Tlane The lane number, 0 or 1.

4.1.11.3.3. interp_claim_lane_mask

void interp_claim_lane_mask (interp_hw_t *interp,
uint lane_mask)

Claim the interpolator lanes specified in the mask.
Parameters
® interp Interpolator on which to claim lanes. interp0 or interp1

® lane_mask Bit pattern of lanes to claim (only bits 0 and 1 are valid)

4.1.11.3.4. interp_get_accumulator

static uint32_t interp_get_accumulator (interp_hw_t *interp,
uint lane)

Gets the content of the interpolator accumulator register by lane.

]
4.1. Hardware APIs 121

Raspberry Pi Pico C/C++ SDK
]

Parameters
® interp Interpolator instance, interp0 or interp1.
® lane The lane number, 0 or 1

Returns

® The current content of the register

4.1.11.3.5. interp_get_base

static uint32_t interp_get_base (interp_hw_t *interp,

uint lane)
Gets the content of interpolator base register by lane.
Parameters
® interp Interpolator instance, interp0 or interp1.
® lane The lane number, 0 or 1 or 2
Returns

® The current content of the lane base register

4.1.11.3.6. interp_get_raw

static uint32_t interp_get_raw (interp_hw_t *interp,

uint lane)

Get raw lane value.
Returns the raw shift and mask value from the specified lane, BASEQ is NOT added
Parameters
® interp Interpolator instance, interp0 or interp1.
® lane The lane number, 0 or 1
Returns

® The raw shift/mask value

4.1.11.3.7. interp_peek_full_result
static uint32_t interp_peek_full_result (interp_hw_t *interp)
Read lane result.
Parameters
® interp Interpolator instance, interp0 or interp1.
Returns

® The content of the FULL register

4.1.11.3.8. interp_peek_lane_result

static uint32_t interp_peek_lane_result (interp_hw_t *interp,
uint lane)

Read lane result.
Parameters

]
4.1. Hardware APIs 122

Raspberry Pi Pico C/C++ SDK
]

® interp Interpolator instance, interp0 or interp1.
® lane The lane number, 0 or 1
Returns

® The content of the lane result register

4.1.11.3.9. interp_pop_full_result
static vint32_t interp_pop_full_result (interp_hw_t *interp)
Read lane result, and write lane results to both accumulators to update the interpolator.
Parameters
® interp Interpolator instance, interp0 or interp1.
Returns

® The content of the FULL register

4.1.11.3.10. interp_pop_lane_result

static uint32_t interp_pop_lane_result (interp_hw_t *interp,
uint lane)

Read lane result, and write lane results to both accumulators to update the interpolator.
Parameters

® interp Interpolator instance, interp0 or interp1.

® lane The lane number, 0 or 1
Returns

® The content of the lane result register

4.1.11.3.11. interp_restore

void interp_restore (interp_hw_t *interp,

interp_hw_save_t *saver)
Restore an interpolator state.
Parameters
® interp Interpolator instance, interp0 or interp1.

® saver Pointer to save structure to reapply to the specified interpolator

4.1.11.3.12. interp_save

void interp_save (interp_hw_t *interp,

interp_hw_save_t *saver)
Save the specified interpolator state.

Can be used to save state if you need an interpolator for another purpose, state can then be recovered afterwards and
continue from that point

Parameters

® interp Interpolator instance, interp0 or interp1.

]
4.1. Hardware APIs 123

Raspberry Pi Pico C/C++ SDK
]

® saver Pointer to the save structure to fill in

4.1.11.3.13. interp_set_accumulator

static void interp_set_accumulator (interp_hw_t *interp,
vint lane,
uint32_t val)

Sets the interpolator accumulator register by lane.
Parameters
® interp Interpolator instance, interp0 or interp1.
® lane The lane number, 0 or 1

® val The value to apply to the register

4.1.11.3.14. interp_set_base

static void interp_set_base (interp_hw_t *interp,
uint lane,
uint32_t val)

Sets the interpolator base register by lane.
Parameters
® interp Interpolator instance, interpO or interp1.
® lane The lane number, 0 or 1 or 2

® val The value to apply to the register

4.1.11.3.15. interp_set_base_both

static void interp_set_base_both (interp_hw_t *interp,
uint32_t val)

Sets the interpolator base registers simultaneously.

The lower 16 bits go to BASEQ, upper bits to BASE1 simultaneously. Each half is sign-extended to 32 bits if that lane’s
SIGNED flag is set.

Parameters
® interp Interpolator instance, interp0 or interp1.

® val The value to apply to the register

4.1.11.3.16. interp_set_force_bits

static void interp_set_force_bits (interp_hw_t *interp,
uint lane,
uint bits)

Directly set the force bits on a specified lane.

These bits are ORed into bits 29:28 of the lane result presented to the processor on the bus. There is no effect on the
internal 32-bit datapath.

Useful for using a lane to generate sequence of pointers into flash or SRAM, saving a subsequent OR or add operation.

Parameters

]
4.1. Hardware APIs 124

Raspberry Pi Pico C/C++ SDK
]

® interp Interpolator instance, interp0 or interp1.
® lane The lane to set

® hits The bits to set (bits 0 and 1, value range 0-3)

4.1.11.3.17. interp_unclaim_lane

void interp_unclaim_lane (interp_hw_t *interp,
uint lane)

Release a previously claimed interpolator lane.
Parameters
® interp Interpolator on which to release a lane. interp0 or interp1

® lane The lane number, 0 or 1

4.1.12. interp_config

Interpolator configuration.

Each interpolator needs to be configured, these functions provide handy helpers to set up configuration structures.

4.1.12.1. Function List

® static void interp_config_set_shift (interp_config *c, uint shift)

® static void interp_config_set_mask (interp_config *c, uint mask_lsb, uint mask_msb)
® static void interp_config_set_cross_input (interp_config *c, bool cross_input)

® static void interp_config_set_cross_result (interp_config *c, bool cross_result)

® static void interp_config_set_signed (interp_config *c, bool _signed)

® static void interp_config_set_add_raw (interp_config *c, bool add_raw)

® static void interp_config_set_blend (interp_config *c, bool blend)

® static void interp_config_set_clamp (interp_config *c, bool clamp)

® static void interp_config_set_force_bits (interp_config *c, uint bits)

® static interp_config interp_default_config ()

® static void interp_set_config (interp_hw_t *interp, uint lane, interp_config *config)

4.1.12.2. Function Documentation

4.1.12.2.1. interp_config_set_add_raw

static void interp_config_set_add_raw (interp_config *c,
bool add_raw)

Set raw add option.
When enabled, mask + shift is bypassed for LANEO result. This does not affect the FULL result.
Parameters

* ¢ Pointer to interpolation config

]
4.1. Hardware APIs 125

Raspberry Pi Pico C/C++ SDK
]

® add_raw If true, enable raw add option.

4.1.12.2.2. interp_config_set_blend

static void interp_config_set_blend (interp_config *c,
bool blend)

Set blend mode.

If enabled, LANE1 result is a linear interpolation between BASEO and BASE1, controlled by the 8 LSBs of lane 1 shift and
mask value (a fractional number between 0 and 255/256ths)

LANEQO result does not have BASEQ added (yields only the 8 LSBs of lane 1 shift+mask value)
FULL result does not have lane 1 shift+mask value added (BASE2 + lane 0 shift+mask)
LANE1 SIGNED flag controls whether the interpolation is signed or unsig
Parameters

* ¢ Pointer to interpolation config

® blend Set true to enable blend mode.

4.1.12.2.3. interp_config_set_clamp

static void interp_config_set_clamp (interp_config *c,
bool clamp)

Set interpolator clamp mode (Interpolator 1 only)
Only present on INTERP1 on each core. If CLAMP mode is enabled:
Parameters

® ¢ Pointer to interpolation config

® clamp Set true to enable clamp mode

4.1.12.2.4. interp_config_set_cross_input

static void interp_config_set_cross_input (interp_config *c,
bool cross_input)

Enable cross input.

Allows feeding of the accumulator content from the other lane back in to this lanes shift+mask hardware. This will take
effect even if the interp_config_set_add_raw option is set as the cross input mux is before the shift+mask bypass

Parameters
® ¢ Pointer to interpolation config

® cross_input If true, enable the cross input.

4.1.12.2.5. interp_config_set_cross_result

static void interp_config_set_cross_result (interp_config *c,
bool cross_result)

Enable cross results.
Allows feeding of the other lane’s result into this lane’s accumulator on a POP operation.

Parameters

]
4.1. Hardware APIs 126

Raspberry Pi Pico C/C++ SDK

® ¢ Pointer to interpolation config

® cross_result If true, enables the cross result

4.1.12.2.6. interp_config_set_force_bits

static void interp_config_set_force_bits (interp_config *c,
uint bits)

Set interpolator Force bits.
ORed into bits 29:28 of the lane result presented to the processor on the bus.
No effect on the internal 32-bit datapath. Handy for using a lane to generate sequence of pointers into flash or SRAM
Parameters
® ¢ Pointer to interpolation config

® hits Sets the force bits to that specified. Range 0-3 (two bits)

4.1.12.2.7. interp_config_set_mask

static void interp_config_set_mask (interp_config *c,
uint mask_1sb,

uint mask_msb)
Set the interpolator mask range.
Sets the range of bits (least to most) that are allowed to pass through the interpolator
Parameters
® ¢ Pointer to interpolation config
® mask_1sb The least significant bit allowed to pass

® mask_msb The most significant bit allowed to pass

4.1.12.2.8. interp_config_set_shift

static void interp_config_set_shift (interp_config *c,
uint shift)

Set the interpolator shift value.
Sets the number of bits the accumulator is shifted before masking, on each iteration.
Parameters

® ¢ Pointer to an interpolator config

® shift Number of bits

4.1.12.2.9. interp_config_set_signed

static void interp_config_set_signed (interp_config *c,
bool _signed)

Set sign extension.

Enables signed mode, where the shifted and masked accumulator value is sign-extended to 32 bits before adding to
BASE1, and LANE1 PEEK/POP results appear extended to 32 bits when read by processor.

Parameters

4.1. Hardware APIs 127

Raspberry Pi Pico C/C++ SDK
]

® ¢ Pointer to interpolation config

® signed If true, enables sign extension

4.1.12.2.10. interp_default_config
static interp_config interp_default_config ()
Get a default configuration.

Returns

* A default interpolation configuration

4.1.12.2.11. interp_set_config

static void interp_set_config (interp_hw_t *interp,
uint lane,

interp_config *config)
Send configuration to a lane.

If an invalid configuration is specified (ie a lane specific item is set on wrong lane), depending on setup this function
can panic.

Parameters
® interp Interpolator instance, interp0 or interp1.
® lane The lane to set

® config Pointer to interpolation config

4.1.13. hardware_irq

Hardware interrupt handling.

The RP2040 uses the standard ARM nested vectored interrupt controller (NVIC).

Interrupts are identified by a number from 0 to 31.

On the RP2040, only the lower 26 IRQ signals are connected on the NVIC; IRQs 26 to 31 are tied to zero (never firing).

There is one NVIC per core, and each core’s NVIC has the same hardware interrupt lines routed to it, with the exception
of the 10 interrupts where there is one |0 interrupt per bank, per core. These are completely independent, so for example,
processor 0 can be interrupted by GPIO 0 in bank 0, and processor 1 by GPIO 1 in the same bank.

That all IRQ APIs affect the executing core only (i.e. the core calling the function).

You should not enable the same (shared) IRQ number on both cores, as this will lead to race conditions or starvation of
one of the cores. Additionally don't forget that disabling interrupts on one core does not disable interrupts on the other
core.

There are three different ways to set handlers for an IRQ:

e Calling irqg_add_shared_handler() at runtime to add a handler for a multiplexed interrupt (e.g. GPIO bank) on the
current core. Each handler, should check and clear the relevant hardware interrupt source

e Calling irq_set_exclusive_handler() at runtime to install a single handler for the interrupt on the current core

* Defining the interrupt handler explicitly in your application (e.g. by defining void isr_dma_0 will make that function
the handler for the DMA_IRQ_0 on core 0, and you will not be able to change it using the above APIs at runtime).
Using this method can cause link conflicts at runtime, and offers no runtime performance benefit (i.e, it should not
generally be used).

If an IRQ is enabled and fires with no handler installed, a breakpoint will be hit and the IRQ number will be in r0.

]
4.1. Hardware APIs 128

Raspberry Pi Pico C/C++ SDK
]

Interrupt Numbersinterrupts are numbered as follows, a set of defines is available (intctrl.h) with these names to avoid
using the numbers directly.

IRQ Interrupt Source
0 TIMER_IRQ_O0

1 TIMER_IRQ_1

2 TIMER_IRQ_2

3 TIMER_IRQ_3

4 PWM_IRQ_WRAP
5 USBCTRL_IRQ

6 XIP_IRQ

7 PIO0_IRQ_0

8 PI00_IRQ_1

9 PIO1_IRQ_0

10 PIO1_IRQ_1

11 DMA_IRQ_0

12 DMA_IRQ_1

13 10_IRQ_BANKO
14 10_IRQ_QSPI

15 SIO_IRQ_PROCO
16 SIO_IRQ_PROC1
17 CLOCKS_IRQ
18 SPIO_IRQ

19 SPIT_IRQ

20 UARTO_IRQ

21 UART1_IRQ

22 ADCO_IRQ_FIFO
23 12C0_IRQ

24 12C1_IRQ

25 RTC_IRQ

4.1.13.1. Typedefs

® typedef void(* irq_handler_t)()
Interrupt handler function type.

4.1.13.2. Function List

® void irq_set_priority (uint num, uint8_t hardware_priority)

® yoid irq_set_enabled (uint num, bool enabled)

|
4.1. Hardware APIs 129

Raspberry Pi Pico C/C++ SDK
]

® bool irq_is_enabled (uint num)

® yoid irq_set_mask_enabled (uint32_t mask, bool enabled)

® yoid irq_set_exclusive_handler (uint num, irq_handler_t handler)

® jrq_handler_t irq_get_exclusive_handler (uint num)

® void irq_add_shared_handler (uint num, irq_handler_t handler, uint8_t order_priority)
® void irq_remove_handler (uint num, irq_handler_t handler)

® jrq_handler_t irq_get_vtable_handler (uint num)

® static void irq_clear (uint int_num)

® void irq_set_pending (uint num)

4.1.13.3. Function Documentation

4.1.13.3.1. irg_add_shared_handler

void irq_add_shared_handler (uint num,
irq_handler_t handler,
uint8_t order_priority)

Add a shared interrupt handler for an interrupt on the executing core.

Use this method to add a handler on an irq number shared between multiple distinct hardware sources (e.g. GPIO, DMA
or PIO IRQs). Handlers added by this method will all be called in sequence from highest order_priority to lowest. The
irq_set_exclusive_handler() method should be used instead if you know there will or should only ever be one handler for
the interrupt.

This method will assert if there is an exclusive interrupt handler set for this irqg number on this core, or if the (total
across all IRQs on both cores) maximum (configurable via PICO_MAX_SHARED_IRQ_HANDLERS) number of shared
handlers would be exceeded.

Parameters
® num Interrupt number
® handler The handler to set. See irq_handler_t

® order_priority The order priority controls the order that handlers for the same IRQ number on the core are called.
The shared irq handlers for an interrupt are all called when an IRQ fires, however the order of the calls is based on
the order_priority (higher priorities are called first, identical priorities are called in undefined order). A good rule of
thumb is to use PICO_SHARED_IRQ_HANDLER_DEFAULT_ORDER_PRIORITY if you don't much care, as it is in the
middle of the priority range by default.

See also

® irq_set_exclusive_handler

4.1.13.3.2. irg_clear

static void irg_clear (uint int_num)

Clear a specific interrupt on the executing core.
Parameters

® int_num Interrupt number Interrupt Numbers

]
4.1. Hardware APIs 130

Raspberry Pi Pico C/C++ SDK
]

4.1.13.3.3. irq_get_exclusive_handler
irq_handler_t irq_get_exclusive_handler (uint num)
Get the exclusive interrupt handler for an interrupt on the executing core.
This method will return an exclusive IRQ handler set on this core by irq_set_exclusive_handler if there is one.
Parameters
® num Interrupt number Interrupt Numbers
Returns

® handler The handler if an exclusive handler is set for the IRQ, NULL if no handler is set or shared/shareable
handlers are installed

See also

® irq_set_exclusive_handler

4.1.13.3.4. irq_get_vtable_handler

irq_handler_t irq_get_vtable_handler (uint num)

Get the current IRQ handler for the specified IRQ from the currently installed hardware vector table (VTOR) of the
execution core.

Parameters
® num Interrupt number Interrupt Numbers
Returns

® the address stored in the VTABLE for the given irqg number

4.1.13.3.5. irq_is_enabled
bool irq_is_enabled (uint num)
Determine if a specific interrupt is enabled on the executing core.
Parameters
® num Interrupt number Interrupt Numbers
Returns

® true if the interrupt is enabled

4.1.13.3.6. irqg_remove_handler

void irq_remove_handler (uint num,
irq_handler_t handler)

Remove a specific interrupt handler for the given irg number on the executing core.

This method may be used to remove an irq set via either irq_set_exclusive_handler() or irq_add_shared_handler(), and will
assert if the handler is not currently installed for the given IRQ number

Parameters
® num Interrupt number Interrupt Numbers
® handler The handler to removed.

See also

]
4.1. Hardware APIs 131

Raspberry Pi Pico C/C++ SDK
]

® irg_set_exclusive_handler

® irq_add_shared_handler

4.1.13.3.7. irq_set_enabled

void irq_set_enabled (uint num,
bool enabled)

Enable or disable a specific interrupt on the executing core.
Parameters
® num Interrupt number Interrupt Numbers

® enabled true to enable the interrupt, false to disable

4.1.13.3.8. irq_set_exclusive_handler

void irq_set_exclusive_handler (uint num,
irq_handler_t handler)

Set an exclusive interrupt handler for an interrupt on the executing core.

Use this method to set a handler for single IRQ source interrupts, or when your code, use case or performance
requirements dictate that there should no other handlers for the interrupt.

This method will assert if there is already any sort of interrupt handler installed for the specified irqg number.
Parameters

® num Interrupt number Interrupt Numbers

® handler The handler to set. See irq_handler_t
See also

® irq_add_shared_handler

4.1.13.3.9. irq_set_mask_enabled

void irq_set_mask_enabled (uint32_t mask,
bool enabled)

Enable/disable multiple interrupts on the executing core.
Parameters
® mask 32-bit mask with one bits set for the interrupts to enable/disable

® enabled true to enable the interrupts, false to disable them.

4.1.13.3.10. irg_set_pending

void irq_set_pending (uint num)

Force an interrupt to pending on the executing core.

This should generally not be used for IRQs connected to hardware.
Parameters

® num Interrupt number Interrupt Numbers

]
4.1. Hardware APIs 132

Raspberry Pi Pico C/C++ SDK

4.1.13.3.11. irq_set_priority

void irq_set_priority (uint num,

uint8_t hardware_priority)
Set specified interrupts priority.
Parameters
® num Interrupt number

® hardware_priority Priority to set. Hardware priorities range from 0 (lowest) to 255 (highest) though only the top 2
bits are significant on ARM Cortex MO+. To make it easier to specify higher or lower priorities than the default, all
IRQ priorities are initialized to PICO_DEFAULT_IRQ_PRIORITY by the SDK runtime at startup.
PICO_DEFAULT_IRQ_PRIORITY defaults to 0x80

4.1.14. hardware_pio

Programmable I/0 (PIO) API.

A programmable input/output block (PIO) is a versatile hardware interface which can support a number of different 10
standards. There are two PIO blocks in the RP2040

Each PIO is programmable in the same sense as a processor: the four state machines independently execute short,
sequential programs, to manipulate GPIOs and transfer data. Unlike a general purpose processor, PIO state machines
are highly specialised for 10, with a focus on determinism, precise timing, and close integration with fixed-function
hardware. Each state machine is equipped with:

* Two 32-bit shift registers — either direction, any shift count

® Two 32-bit scratch registers

® 4x32 bit bus FIFO in each direction (TX/RX), reconfigurable as 8x32 in a single direction
® Fractional clock divider (16 integer, 8 fractional bits)

® Flexible GPIO mapping

* DMA interface, sustained throughput up to 1 word per clock from system DMA

* |RQ flag set/clear/status

Full details of the PIO can be found in the RP2040 datasheet.

4.1.14.1. Modules

® sm_config

P10 state machine configuration.

4.1.14.2. Enumerations

® enum pio_fifo_join { PIO_FIFO_JOIN_NONE = @, PIO_FIFO_JOIN_TX = 1, PIO_FIFO_JOIN_RX = 2 }
FIFO join states.

4.1.14.3. Macros

® f#define pio@ pio@_hw

4.1. Hardware APIs 133

Raspberry Pi Pico C/C++ SDK
]

4.1.14.4. Macros

® fidefine piol piol_hw

4.1.14.5. Function List

® static void pio_sm_set_config (PIO pio, uint sm, const pio_sm_config *config)

® static uint pio_get_index (PIO pio)

® static void pio_gpio_init (PIO pio, uint pin)

® static uint pio_get_dreq (PIO pio, uint sm, bool is_tx)

® bool pio_can_add_program (PIO pio, const pio_program_t *program)

® bool pio_can_add_program_at_offset (PIO pio, const pio_program_t *program, uint offset)
® yint pio_add_program (PIO pio, const pio_program_t *program)

® yoid pio_add_program_at_offset (PIO pio, const pio_program_t *program, uint offset)
® void pio_remove_program (PIO pio, const pio_program_t *program, uint loaded_offset)
® void pio_clear_instruction_memory (PIO pio)

® void pio_sm_init (PIO pio, uint sm, uint initial_pc, const pio_sm_config *config)
® static void pio_sm_set_enabled (PIO pio, uint sm, bool enabled)

® static void pio_set_sm_mask_enabled (PIO pio, uint32_t mask, bool enabled)

® static void pio_sm_restart (PI0 pio, uint sm)

® static void pio_restart_sm_mask (PIO pio, uint32_t mask)

® static void pio_sm_clkdiv_restart (PIO pio, uint sm)

® static void pio_clkdiv_restart_sm_mask (PIO pio, uint32_t mask)

® static void pio_enable_sm_mask_in_sync (PIO pio, uint32_t mask)

® static uint8_t pio_sm_get_pc (PIO pio, uint sm)

® static void pio_sm_exec (PIO pio, uint sm, uint instr)

® static bool pio_sm_is_exec_stalled (PIO pio, uint sm)

® static void pio_sm_exec_wait_blocking (PI0 pio, uint sm, uint instr)

® static void pio_sm_set_wrap (PIO pio, uint sm, uint wrap_target, uint wrap)

® static void pio_sm_put (PIO pio, uint sm, uint32_t data)

® static uint32_t pio_sm_get (PIO pio, uint sm)

® static bool pio_sm_is_rx_fifo_full (PIO pio, uint sm)

® static bool pio_sm_is_rx_fifo_empty (PIO pio, uint sm)

® static uint pio_sm_get_rx_fifo_level (PIO pio, uint sm)

® static bool pio_sm_is_tx_fifo_full (PIO pio, uint sm)

® static bool pio_sm_is_tx_fifo_empty (PIO pio, uint sm)

® static uint pio_sm_get_tx_fifo_level (PIO pio, uint sm)

® static void pio_sm_put_blocking (PIO pio, uint sm, uint32_t data)

® static uint32_t pio_sm_get_blocking (PIO pio, uint sm)

]
4.1. Hardware APIs 134

Raspberry Pi Pico C/C++ SDK
]

® void pio_sm_drain_tx_fifo (PIO pio, uint sm)

® static void pio_sm_set_clkdiv (PIO pio, uint sm, float div)

® static void pio_sm_set_clkdiv_int_frac (PIO pio, uint sm, uint16_t div_int, uint8_t div_frac)
® static void pio_sm_clear_fifos (PI0 pio, uint sm)

® void pio_sm_set_pins (PIO pio, uint sm, uint32_t pin_values)

® void pio_sm_set_pins_with_mask (PIO pio, uint sm, uint32_t pin_values, uint32_t pin_mask)

® void pio_sm_set_pindirs_with_mask (PIO pio, uint sm, uint32_t pin_dirs, uint32_t pin_mask)

® void pio_sm_set_consecutive_pindirs (PIO pio, uint sm, uint pin_base, uint pin_count, bool is_out)
® yoid pio_sm_claim (PIO pio, uint sm)

® yoid pio_claim_sm_mask (PIO pio, uint sm_mask)

® void pio_sm_unclaim (PI0 pio, uint sm)

® int pio_claim_unused_sm (PIO pio, bool required)

4.1.14.6. Function Documentation

4.1.14.6.1. pio_add_program

uint pio_add_program (PIO pio,
const pio_program_t *program)

Attempt to load the program, panicking if not possible.
Parameters

® pio The PIO instance; either pio0 or pioT

® program the program definition
Returns

e the instruction memory offset the program is loaded at
See also

® pico_can_add_program if you need to check whether the program can be loaded

4.1.14.6.2. pio_add_program_at_offset

void pio_add_program_at_offset (PIO pio,
const pio_program_t *program,
uint offset)

Attempt to load the program at the specified instruction memory offset, panicking if not possible.
Parameters

® pio The PIO instance; either pio0 or pio’l

® program the program definition

® offset the instruction memory offset wanted for the start of the program
See also

® pico_can_add_program_at_offset if you need to check whether the program can be loaded

]
4.1. Hardware APIs 135

Raspberry Pi Pico C/C++ SDK
]

4.1.14.6.3. pio_can_add_program

bool pio_can_add_program (PIO pio,

const pio_program_t *program)
Determine whether the given program can (at the time of the call) be loaded onto the PIO instance.
Parameters
® pio The PIO instance; either pio0 or pio’
® program the program definition
Returns

* true if the program can be loaded; false if there is not suitable space in the instruction memory

4.1.14.6.4. pio_can_add_program_at_offset

bool pio_can_add_program_at_offset (PIO pio,
const pio_program_t *program,
uint offset)

Determine whether the given program can (at the time of the call) be loaded onto the PIO instance starting at a
particular location.

Parameters

® pio The PIO instance; either pio0 or pio’l

® program the program definition

® offset the instruction memory offset wanted for the start of the program
Returns

® true if the program can be loaded at that location; false if there is not space in the instruction memory

4.1.14.6.5. pio_claim_sm_mask

void pio_claim_sm_mask (PIO pio,
uint sm_mask)

Mark multiple state machines as used.

Method for cooperative claiming of hardware. Will cause a panic if any of the state machines are already claimed. Use
of this method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters
® pio The PIO instance; either pio0 or pio’l

® sm_mask Mask of state machine indexes

4.1.14.6.6. pio_claim_unused_sm

int pio_claim_unused_sm (PIO pio,

bool required)

Claim a free state machine on a PIO instance.
Parameters
® pio The PIO instance; either pio0 or pioT
® required if true the function will panic if none are available

Returns

]
4.1. Hardware APIs 136

Raspberry Pi Pico C/C++ SDK

* the state machine index or -1 if required was false, and none were free

4.1.14.6.7. pio_clear_instruction_memory
void pio_clear_instruction_memory (PIO pio)
Clears all of a PIO instance’s instruction memory.
Parameters

® pio The PIO instance; either pio0 or pio’

4.1.14.6.8. pio_clkdiv_restart_sm_mask

static void pio_clkdiv_restart_sm_mask (PIO pio,
uint32_t mask)

Restart multiple state machines' clock dividers (resetting the fractional count)
This method can be used to guarantee that multiple state machines with fractional clock dividers are exactly in sync
Parameters

® pio The PIO instance; either pio0 or pio’l

® mask bit mask of state machine indexes to modify the enabled state of

4.1.14.6.9. pio_enable_sm_mask_in_sync

static void pio_enable_sm_mask_in_sync (PIO pio,
uint32_t mask)

Enable multiple PIO state machines synchronizing their clock dividers.
Parameters
® pio The PIO instance; either pio0 or pio’

* mask bit mask of state machine indexes to modify the enabled state of

4.1.14.6.10. pio_get_dreq

static uint pio_get_dreq (PIO pio,
uint sm,
bool 1is_tx)

Return the DREQ to use for pacing transfers to a particular state machine.
Parameters

® pio The PIO instance; either pio0 or pio’l

® sp State machine index (0..3)

® is_tx true for sending data to the state machine, false for received data from the state machine

4.1.14.6.11. pio_get_index
static uint pio_get_index (PIO pio)
Return the instance number of a PIO instance.
Parameters
® pio The PIO instance; either pio0 or pioT

4.1. Hardware APIs 137

Raspberry Pi Pico C/C++ SDK
]

Returns

® the PIO instance number (either 0 or 1)

4.1.14.6.12. pio_gpio_init

static void pio_gpio_init (PIO pio,
uint pin)

Setup the function select for a GPIO to use output from the given PIO instance.
Parameters
® pio The PIO instance; either pio0 or pio’

® pin the GPIO pin whose function select to set

4.1.14.6.13. pio_remove_program

void pio_remove_program (PIO pio,
const pio_program_t *program,
uint loaded_offset)

Remove a program from a PIO instance’s instruction memory.
Parameters

® pio The PIO instance; either pio0 or pioT

® program the program definition

® loaded_offset the loaded offset returned when the program was added

4.1.14.6.14. pio_restart_sm_mask

static void pio_restart_sm_mask (PIO pio,
uint32_t mask)

Restart multiple state machine with a known state.

This method clears the ISR, shift counters, clock divider counter pin write flags, delay counter, latched EXEC instruction,
and IRQ wait condition.

Parameters
® pio The PIO instance; either pio0 or pio’

® mask bit mask of state machine indexes to modify the enabled state of

4.1.14.6.15. pio_set_sm_mask_enabled

static void pio_set_sm_mask_enabled (PIO pio,
uint32_t mask,
bool enabled)

Enable or disable multiple PIO state machines.

Note that this method just sets the enabled state of the state machine; if now enabled they continue exactly from where
they left off.

Parameters
® pio The PIO instance; either pio0 or pio’

* mask bit mask of state machine indexes to modify the enabled state of

]
4.1. Hardware APIs 138

Raspberry Pi Pico C/C++ SDK
]

® ecnabled true to enable the state machines; false to disable
See also

® pio_enable_sm_mask_in_sync if you wish to enable multiple state machines and ensure their clock dividers are in
sync.

4.1.14.6.16. pio_sm_claim

void pio_sm_claim (PIO pio,

uint sm)
Mark a state machine as used.

Method for cooperative claiming of hardware. Will cause a panic if the state machine is already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters
® pio The PIO instance; either pio0 or pio’

® sn State machine index (0..3)

4.1.14.6.17. pio_sm_clear_fifos

static void pio_sm_clear_fifos (PIO pio,
uint sm)

Clear a state machine’s TX and RX FIFOFs.
Parameters
® pio The PIO instance; either pio0 or pio’

® sm State machine index (0..3)

4.1.14.6.18. pio_sm_clkdiv_restart

static void pio_sm_clkdiv_restart (PIO pio,

uint sm)
Restart a state machine'’s clock divider (resetting the fractional count)
Parameters
® pio The PIO instance; either pio0 or pio’l

® sp State machine index (0..3)

4.1.14.6.19. pio_sm_drain_tx_fifo

void pio_sm_drain_tx_fifo (PIO pio,
uint sm)

Empty out a state machine’s TX FIFO.
This method executes pull instructions on the state machine until the TX FIFO is empty
Parameters

® pio The PIO instance; either pio0 or pio’l

® sp State machine index (0..3)

]
4.1. Hardware APIs 139

Raspberry Pi Pico C/C++ SDK
]

4.1.14.6.20. pio_sm_exec

static void pio_sm_exec (PIO pio,
uint sm,

uint instr)
Immediately execute an instruction on a state machine.

This instruction is executed instead of the next instruction in the normal control flow on the state machine. Subsequent
calls to this method replace the previous executed instruction if it is still running.

Parameters
® pio The PIO instance; either pio0 or pioT
® sm State machine index (0..3)
® instr the encoded PIO instruction

See also

® pio_sm_is_exec_stalled to see if an executed instruction is still running (i.e. it is stalled on some condition)

4.1.14.6.21. pio_sm_exec_wait_blocking

static void pio_sm_exec_wait_blocking (PIO pio,
uint sm,

uint instr)
Immediately execute an instruction on a state machine and wait for it to complete.

This instruction is executed instead of the next instruction in the normal control flow on the state machine. Subsequent
calls to this method replace the previous executed instruction if it is still running.

Parameters
® pio The PIO instance; either pio0 or pio’
® sm State machine index (0..3)
® instr the encoded PIO instruction

See also

® pio_sm_is_exec_stalled to see if an executed instruction is still running (i.e. it is stalled on some condition)

4.1.14.6.22. pio_sm_get

static uint32_t pio_sm_get (PIO pio,

uint sm)
Read a word of data from a state machine’s RX FIFO.
If the FIFO is empty, the return value is zero.
Parameters
® pio The PIO instance; either pio0 or pioT

® sn State machine index (0..3)

4.1.14.6.23. pio_sm_get_blocking

static uint32_t pio_sm_get_blocking (PIO pio,
uint sm)

Read a word of data from a state machine’s RX FIFO, blocking if the FIFO is empty.

]
4.1. Hardware APIs 140

Raspberry Pi Pico C/C++ SDK
]

Parameters
® pio The PIO instance; either pio0 or pioT

® sp State machine index (0..3)

4.1.14.6.24. pio_sm_get_pc

static uint8_t pio_sm_get_pc (PIO pio,
uint sm)

Return the current program counter for a state machine.
Parameters

® pio The PIO instance; either pio0 or pioT

® sm State machine index (0..3)
Returns

® the program counter

4.1.14.6.25. pio_sm_get_rx_fifo_level

static uint pio_sm_get_rx_fifo_level (PIO pio,

uint sm)
Return the number of elements currently in a state machine’s RX FIFO.
Parameters
® pio The PIO instance; either pio0 or pio’l
® sp State machine index (0..3)
Returns

® the number of elements in the RX FIFO

4.1.14.6.26. pio_sm_get_tx_fifo_level

static uint pio_sm_get_tx_fifo_level (PIO pio,
uint sm)

Return the number of elements currently in a state machine’s TX FIFO.
Parameters

® pio The PIO instance; either pio0 or pio’

® sp State machine index (0..3)
Returns

® the number of elements in the TX FIFO

4.1.14.6.27. pio_sm_init

void pio_sm_init (PIO pio,
uint sm,
vint initial_pc,
const pio_sm_config *config)

Resets the state machine to a consistent state, and configures it.

This method:

]
4.1. Hardware APIs 141

Raspberry Pi Pico C/C++ SDK

The state machine is disabled on return from this call
Parameters

® pio The PIO instance; either pio0 or pio’l

® sp State machine index (0..3)

® initial_pc the initial program memory offset to run from

® config the configuration to apply (or NULL to apply defaults)

4.1.14.6.28. pio_sm_is_exec_stalled

static bool pio_sm_is_exec_stalled (PIO pio,
uint sm)

Determine if an instruction set by pio_sm_exec() is stalled executing.
Parameters

® pio The PIO instance; either pio0 or pio’l

* sm State machine index (0..3)
Returns

* true if the executed instruction is still running (stalled)

4.1.14.6.29. pio_sm_is_rx_fifo_empty

static bool pio_sm_is_rx_fifo_empty (PIO pio,

uint sm)
Determine if a state machine’s RX FIFO is empty.
Parameters
® pio The PIO instance; either pio0 or pio’l
® sp State machine index (0..3)
Returns

® true if the RX FIFO is empty

4.1.14.6.30. pio_sm_is_rx_fifo_full

static bool pio_sm_is_rx_fifo_full (PIO pio,
uint sm)

Determine if a state machine’s RX FIFO is full.
Parameters
® pio The PIO instance; either pio0 or pio’
® sp State machine index (0..3)
Returns

e true if the RX FIFOQ is full

4.1.14.6.31. pio_sm_is_tx_fifo_empty

static bool pio_sm_is_tx_fifo_empty (PIO pio,
uint sm)

4.1. Hardware APIs 142

Raspberry Pi Pico C/C++ SDK
]

Determine if a state machine’s TX FIFO is empty.
Parameters

® pio The PIO instance; either pio0 or pio’l

® sp State machine index (0..3)
Returns

* true if the TX FIFO is empty

4.1.14.6.32. pio_sm_is_tx_fifo_full

static bool pio_sm_is_tx_fifo_full (PIO pio,
uint sm)

Determine if a state machine’s TX FIFO is full.
Parameters
® pio The PIO instance; either pio0 or pio’
® sn State machine index (0..3)
Returns

® true if the TX FIFO is full

4.1.14.6.33. pio_sm_put

static void pio_sm_put (PIO pio,
uint sm,
uint32_t data)

Write a word of data to a state machine’s TX FIFO.
If the FIFO is full, the most recent value will be overwritten
Parameters

® pio The PIO instance; either pio0 or pio’

® sp State machine index (0..3)

® data the 32 bit data value

4.1.14.6.34. pio_sm_put_blocking

static void pio_sm_put_blocking (PIO pio,
vint sm,
uint32_t data)

Write a word of data to a state machine’s TX FIFO, blocking if the FIFO is full.
Parameters

® pio The PIO instance; either pio0 or pioT

® sn State machine index (0..3)

® data the 32 bit data value

4.1.14.6.35. pio_sm_restart
static void pio_sm_restart (PIO pio,
uint sm)

]
4.1. Hardware APIs 143

Raspberry Pi Pico C/C++ SDK
]

Restart a state machine with a known state.

This method clears the ISR, shift counters, clock divider counter pin write flags, delay counter, latched EXEC instruction,
and IRQ wait condition.

Parameters
® pio The PIO instance; either pio0 or pio’

® sp State machine index (0..3)

4.1.14.6.36. pio_sm_set_clkdiv

static void pio_sm_set_clkdiv (PIO pio,
uint sm,
float div)

set the current clock divider for a state machine
Parameters

® pio The PIO instance; either pio0 or pio’l

® sp State machine index (0..3)

® div the floating point clock divider

4.1.14.6.37. pio_sm_set_clkdiv_int_frac

static void pio_sm_set_clkdiv_int_frac (PIO pio,
uint sm,
uint16_t div_int,
uint8_t div_frac)

set the current clock divider for a state machine using a 16:8 fraction
Parameters

® pio The PIO instance; either pio0 or pio’

® sp State machine index (0..3)

® div_int the integer part of the clock divider

® div_frac the fractional part of the clock divider in 1/256s

4.1.14.6.38. pio_sm_set_config

static void pio_sm_set_config (PIO pio,
uint sm,

const pio_sm_config *config)
Apply a state machine configuration to a state machine.
Parameters
® pio Handle to PIO instance; either pio0 or pio1
® sp State machine index (0..3)

® config the configuration to apply

4.1.14.6.39. pio_sm_set_consecutive_pindirs

void pio_sm_set_consecutive_pindirs (PIO pio,

uint sm,

]
4.1. Hardware APIs 144

Raspberry Pi Pico C/C++ SDK
]

uint pin_base,
uint pin_count,

bool 1is_out)

Use a state machine to set the same pin direction for multiple consecutive pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
the pin direction on consecutive pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin directions, and should not be used against a state machine
that is enabled.

Parameters
® pio The PIO instance; either pio0 or pio’
® sp State machine index (0..3) to use
® pin_base the first pin to set a direction for
® pin_count the count of consecutive pins to set the direction for

® is_out the direction to set; true = out, false = in

4.1.14.6.40. pio_sm_set_enabled

static void pio_sm_set_enabled (PIO pio,
uint sm,
bool enabled)

Enable or disable a PIO state machine.
Parameters
® pio The PIO instance; either pio0 or pio’
® sp State machine index (0..3)

® enabled true to enable the state machine; false to disable

4.1.14.6.41. pio_sm_set_pindirs_with_mask

void pio_sm_set_pindirs_with_mask (PIO pio,
uint sm,
uint32_t pin_dirs,
uint32_t pin_mask)

Use a state machine to set the pin directions for multiple pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
pin directions on up to 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin directions, and should not be used against a state machine
that is enabled.

Parameters
® pio The PIO instance; either pio0 or pioT
® sp State machine index (0..3) to use
® pin_dirs the pin directions to set - 1 = out, 0 = in (if the corresponding bit in pin_mask is set)

® pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied.

]
4.1. Hardware APIs 145

Raspberry Pi Pico C/C++ SDK
]

4.1.14.6.42. pio_sm_set_pins

void pio_sm_set_pins (PIO pio,
uint sm,

uint32_t pin_values)
Use a state machine to set a value on all pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
values on all 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin states, and should not be used against a state machine that
is enabled.

Parameters
® pio The PIO instance; either pio0 or pio’
® sp State machine index (0..3) to use

® pin_values the pin values to set

4.1.14.6.43. pio_sm_set_pins_with_mask

void pio_sm_set_pins_with_mask (PIO pio,
uint sm,
uint32_t pin_values,
uint32_t pin_mask)

Use a state machine to set a value on multiple pins for the PIO instance.

This method repeatedly reconfigures the target state machine’s pin configuration and executes 'set' instructions to set
values on up to 32 pins, before restoring the state machine’s pin configuration to what it was.

This method is provided as a convenience to set initial pin states, and should not be used against a state machine that
is enabled.

Parameters
® pio The PIO instance; either pio0 or pioT
® sp State machine index (0..3) to use
® pin_values the pin values to set (if the corresponding bit in pin_mask is set)

® pin_mask a bit for each pin to indicate whether the corresponding pin_value for that pin should be applied.

4.1.14.6.44. pio_sm_set_wrap

static void pio_sm_set_wrap (PIO pio,
vint sm,
uint wrap_target,

uint wrap)
Set the current wrap configuration for a state machine.
Parameters
® pio The PIO instance; either pio0 or pio’l
® sp State machine index (0..3)
® wrap_target the instruction memory address to wrap to

® wrap the instruction memory address after which to set the program counter to wrap_target if the instruction does
not itself update the program_counter

]
4.1. Hardware APIs 146

Raspberry Pi Pico C/C++ SDK
]

4.1.14.6.45. pio_sm_unclaim

void pio_sm_unclaim (PIO pio,

uint sm)

Mark a state machine as no longer used.

Method for cooperative claiming of hardware.

Parameters

® pio The PIO instance; either pio0 or pio’

® sn State machine index (0..3)

4.1.15. sm_config

P10 state machine configuration.

A PIO block needs to be configured, these functions provide helpers to set up configuration structures. See
pio_sm_set_config

4.1.15.1. Data Structures

® struct pio_sm_config
P10 Configuration structure.

4.1.15.2. Function List

static void

static void

static void

static void

static void

static void

static void

static void

static void

static void

static void

static void

static void

static void

sm_config_set_out_pins (pio_sm_config *c, uint out_base, uint out_count)

sm_config_set_set_pins (pio_sm_config *c, uint set_base, uint set_count)

sm_config_set_in_pins (pio_sm_config *c, uint in_base)

sm_config_set_sideset_pins (pio_sm_config *c, uint sideset_base)

sm_config_set_sideset (pio_sm_config *c, uint bit_count, bool optional, bool pindirs)
sm_config_set_clkdiv (pio_sm_config *c, float div)

sm_config_set_clkdiv_int_frac (pio_sm_config *c, uint16_t div_int, uint8_t div_frac)
sm_config_set_wrap (pio_sm_config *c, uint wrap_target, uint wrap)

sm_config_set_jmp_pin (pio_sm_config *c, uint pin)

sm_config_set_in_shift (pio_sm_config *c, bool shift_right, bool autopush, uint push_threshold)
sm_config_set_out_shift (pio_sm_config *c, bool shift_right, bool autopull, uint pull_threshold)

sm_config_set_fifo_join (pio_sm_config *c, enum pio_fifo_join join)

sm_config_set_out_special (pio_sm_config *c, bool sticky, bool has_enable_pin, int enable_pin_index)

sm_config_set_mov_status (pio_sm_config *c, enum pio_mov_status_type status_sel, uint status_n)

static pio_sm_config pio_get_default_sm_config ()

static void

static void

static void

static void

pio_sm_set_out_pins (PIO pio, uint sm, uint out_base, uint out_count)
pio_sm_set_set_pins (PIO pio, uint sm, uint set_base, uint set_count)
pio_sm_set_in_pins (PIO pio, uint sm, uint in_base)

pio_sm_set_sideset_pins (PIO pio, uint sm, uint sideset_base)

4.1. Hardware APIs

147

Raspberry Pi Pico C/C++ SDK
]

4.1.15.3. Function Documentation

4.1.15.3.1. pio_get_default_sm_config

static pio_sm_config pio_get_default_sm_config ()

Get the default state machine configuration.

Setting Default

Out Pins 32 starting at 0

Set Pins 0 starting at 0

In Pins (base) 0

Side Set Pins (base) 0

Side Set disabled

Wrap wrap=31, wrap_to=0

In Shift shift_direction=right, autopush=false, push_thrshold=32
Out Shift shift_direction=right, autopull=false, pull_thrshold=32
Jmp Pin 0

Out Special sticky=false, has_enable_pin=false, enable_pin_index=0
Mov Status status_sel=STATUS_TX_LESSTHAN, n=0
Returns

® the default state machine configuration which can then be modified.

4.1.15.3.2. pio_sm_set_in_pins

static void pio_sm_set_in_pins (PIO pio,
uint sm,

uint in_base)
Set the current 'in' pins for a state machine.
Can overlap with the 'out, "set' and 'sideset’ pins
Parameters
® pio The PIO instance; either pio0 or pio’

® sp State machine index (0..3)

® in_base 0-31 First pin to set as input

4.1.15.3.3. pio_sm_set_out_pins

static void pio_sm_set_out_pins (PIO pio,
uint sm,
uint out_base,
uint out_count)

Set the current 'out’ pins for a state machine.

Can overlap with the 'in’, 'set’ and 'sideset’ pins

Parameters

]
4.1. Hardware APIs 148

Raspberry Pi Pico C/C++ SDK
]

® pio The PIO instance; either pio0 or pio’
* sm State machine index (0..3)
® out_base 0-31 First pin to set as output

® out_count 0-32 Number of pins to set.

4.1.15.3.4. pio_sm_set_set_pins

static void pio_sm_set_set_pins (PIO pio,
uint sm,
uint set_base,

uint set_count)
Set the current 'set’ pins for a state machine.
Can overlap with the 'in’, 'out’ and 'sideset' pins
Parameters
® pio The PIO instance; either pio0 or pio’l
® sp State machine index (0..3)
® set_base 0-31 First pin to set as

® set_count 0-5 Number of pins to set.

4.1.15.3.5. pio_sm_set_sideset_pins

static void pio_sm_set_sideset_pins (PIO pio,
uint sm,

uint sideset_base)
Set the current 'sideset’ pins for a state machine.
Can overlap with the 'in’, 'out’ and 'set’ pins
Parameters
® pio The PIO instance; either pio0 or pio’
® sp State machine index (0..3)

® sideset_base base pin for 'side set'

4.1.15.3.6. sm_config_set_clkdiv

static void sm_config_set_clkdiv (pio_sm_config *c,
float div)

Set the state machine clock divider (from a floating point value) in a state machine configuration.
The clock divider acts on the system clock to provide a clock for the state machine. See the datasheet for more details.
Parameters

® ¢ Pointer to the configuration structure to modify

® div The fractional divisor to be set. 1 for full speed. An integer clock divisor of n will cause the state machine to run
1 cycle in every n. Note that for small n, the jitter introduced by a fractional divider (e.g. 2.5) may be unacceptable
although it will depend on the use case.

]
4.1. Hardware APIs 149

Raspberry Pi Pico C/C++ SDK
]

4.1.15.3.7. sm_config_set_clkdiv_int_frac

static void sm_config_set_clkdiv_int_frac (pio_sm_config *c,
uint16_t div_int,
uint8_t div_frac)

Set the state machine clock divider (from integer and fractional parts - 16:8) in a state machine configuration.
The clock divider acts on the system clock to provide a clock for the state machine. See the datasheet for more details.
Parameters
® ¢ Pointer to the configuration structure to modify
® div_int Integer part of the divisor
® div_frac Fractional part in 1/256ths
See also

® sm_config_set_clkdiv

4.1.15.3.8. sm_config_set_fifo_join

static void sm_config_set_fifo_join (pio_sm_config *c,
enum pio_fifo_join join)

Setup the FIFO joining in a state machine configuration.
Parameters
® ¢ Pointer to the configuration structure to modify
® join Specifies the join type.
See also

® enum pio_fifo_join

4.1.15.3.9. sm_config_set_in_pins

static void sm_config_set_in_pins (pio_sm_config *c,
uint in_base)

Set the 'in’ pins in a state machine configuration.
Can overlap with the 'out', "set' and 'sideset' pins
Parameters

® ¢ Pointer to the configuration structure to modify

® in_base 0-31 First pin to set as input

4.1.15.3.10. sm_config_set_in_shift

static void sm_config_set_in_shift (pio_sm_config *c,
bool shift_right,
bool autopush,
uint push_threshold)

Setup 'in’ shifting parameters in a state machine configuration.
Parameters

* ¢ Pointer to the configuration structure to modify

]
4.1. Hardware APIs 150

Raspberry Pi Pico C/C++ SDK

® shift_right true to shift ISR to right, false to shift ISR to left
® autopush whether autopush is enabled

® push_threshold threshold in bits to shift in before auto/conditional re-pushing of the ISR

4.1.15.3.11. sm_config_set_jmp_pin

static void sm_config_set_jmp_pin (pio_sm_config *c,
uint pin)

Set the 'jmp' pin in a state machine configuration.
Parameters
® ¢ Pointer to the configuration structure to modify

® pin The raw GPIO pin number to use as the source for a jmp pin instruction

4.1.15.3.12. sm_config_set_mov_status

static void sm_config_set_mov_status (pio_sm_config *c,
enum pio_mov_status_type status_sel,

uint status_n)
Set source for 'mov status' in a state machine configuration.
Parameters
® ¢ Pointer to the configuration structure to modify
® status_sel the status operation selector

® status_n parameter for the mov status operation (currently a bit count)

4.1.15.3.13. sm_config_set_out_pins

static void sm_config_set_out_pins (pio_sm_config *c,
uint out_base,

uint out_count)
Set the 'out’ pins in a state machine configuration.
Can overlap with the 'in’, 'set’ and 'sideset’ pins
Parameters
® ¢ Pointer to the configuration structure to modify
® out_base 0-31 First pin to set as output

® out_count 0-32 Number of pins to set.

4.1.15.3.14. sm_config_set_out_shift

static void sm_config_set_out_shift (pio_sm_config *c,
bool shift_right,
bool autopull,
uint pull_threshold)

Setup 'out’ shifting parameters in a state machine configuration.
Parameters

® ¢ Pointer to the configuration structure to modify

4.1. Hardware APIs 151

Raspberry Pi Pico C/C++ SDK

® shift_right true to shift OSR to right, false to shift OSR to left
® autopull whether autopull is enabled

® pull_threshold threshold in bits to shift out before auto/conditional re-pulling of the OSR

4.1.15.3.15. sm_config_set_out_special

static void sm_config_set_out_special (pio_sm_config *c,
bool sticky,
bool has_enable_pin,
int enable_pin_index)

Set special 'out' operations in a state machine configuration.

Parameters
® ¢ Pointer to the configuration structure to modify
® sticky to enable 'sticky' output (i.e. re-asserting most recent OUT/SET pin values on subsequent cycles)
® has_enable_pin true to enable auxiliary OUT enable pin

® enable_pin_index pin index for auxiliary OUT enable

4.1.15.3.16. sm_config_set_set_pins

static void sm_config_set_set_pins (pio_sm_config *c,
uint set_base,
uint set_count)

Set the 'set' pins in a state machine configuration.
Can overlap with the 'in’, 'out' and 'sideset’ pins
Parameters
® ¢ Pointer to the configuration structure to modify
® set_base 0-31 First pin to set as

® set_count 0-5 Number of pins to set.

4.1.15.3.17. sm_config_set_sideset

static void sm_config_set_sideset (pio_sm_config *c,
uint bit_count,
bool optional,

bool pindirs)
Set the 'sideset’ options in a state machine configuration.
Parameters
® ¢ Pointer to the configuration structure to modify
® bit_count Number of bits to steal from delay field in the instruction for use of side set
® optional True if the topmost side set bit is used as a flag for whether to apply side set on that instruction

® pindirs True if the side set affects pin directions rather than values

4.1.15.3.18. sm_config_set_sideset_pins

static void sm_config_set_sideset_pins (pio_sm_config *c,
uint sideset_base)

4.1. Hardware APIs 152

Raspberry Pi Pico C/C++ SDK
]

Set the 'sideset’ pins in a state machine configuration.
Can overlap with the 'in’, 'out’ and 'set’ pins
Parameters

® ¢ Pointer to the configuration structure to modify

® sideset_base base pin for 'side set'

4.1.15.3.19. sm_config_set_wrap

static void sm_config_set_wrap (pio_sm_config *c,
uint wrap_target,

uint wrap)

Set the wrap addresses in a state machine configuration.
Parameters

® ¢ Pointer to the configuration structure to modify

® wrap_target the instruction memory address to wrap to

* yrap the instruction memory address after which to set the program counter to wrap_target if the instruction does
not itself update the program_counter

4.1.16. hardware_pll

Phase Locked Loop control APIs.

There are two PLLs in RP2040. They are:
® pll_sys - Used to generate up to a 133MHz system clock
® pli_usb - Used to generate a 48MHz USB reference clock

For details on how the PLL'’s are calculated, please refer to the RP2040 datasheet.

4.1.16.1. Function List

® void pll_init (PLL pl1, uint32_t ref_div, uint32_t vco_freq, uint32_t post_div1, uint8_t post_div2)

® yoid pll_deinit (PLL pll)

4.1.16.2. Function Documentation

4.1.16.2.1. pli_deinit
void pll_deinit (PLL pl1)
Release/uninitialise specified PLL.

This will turn off the power to the specified PLL. Note this function does not currently check if the PLL is in use before
powering it off so should be used with care.

Parameters

® pllpll_sys or pll_usb

]
4.1. Hardware APIs 153

Raspberry Pi Pico C/C++ SDK
]

4.1.16.2.2. pll_init

void pll_init (PLL pll,
uint32_t ref_div,
uint32_t vco_freq,
uint32_t post_div1,
uint8_t post_div2)

Initialise specified PLL.
Parameters
® pllpll_sys or pll_usb
® ref_div Input clock divider.
® vco_freq Requested output from the VCO (voltage controlled oscillator)
® post_div1 Post Divider 1 - range 1-7. Must be >= post_div2

® post_div2 Post Divider 2 - range 1-7

4.1.17. hardware_pwm

Hardware Pulse Width Modulation (PWM) API.

The RP2040 PWM block has 8 identical slices. Each slice can drive two PWM output signals, or measure the frequency
or duty cycle of an input signal. This gives a total of up to 16 controllable PWM outputs. All 30 GPIOs can be driven by
the PWM block

The PWM hardware functions by continuously comparing the input value to a free-running counter. This produces a
toggling output where the amount of time spent at the high output level is proportional to the input value. The fraction of
time spent at the high signal level is known as the duty cycle of the signal.

The default behaviour of a PWM slice is to count upward until the wrap value (pwm_config_set_wrap) is reached, and
then immediately wrap to 0. PWM slices also offer a phase-correct mode, where the counter starts to count downward
after reaching TOP, until it reaches 0 again.

Example

1 // Output PWM signals on pins 0 and 1

2

3 #include "pico/stdlib.h”

4 #include "hardware/pwm.h"

5

6 int main() {

7

8 // Tell GPIO @ and 1 they are allocated to the PWM

9 gpio_set_function(®, GPIO_FUNC_PWM);

10 gpio_set_function(1, GPIO_FUNC_PWM);

11

12 // Find out which PWM slice is connected to GPIO 6 (it's slice 0)
13 uint slice_num = pwm_gpio_to_slice_num(@);

14

15 // Set period of 4 cycles (6 to 3 inclusive)

16 pwm_set_wrap(slice_num, 3);

17 // Set channel A output high for one cycle before dropping

18 pwm_set_chan_level(slice_num, PWM_CHAN_A, 1);

19 // Set initial B output high for three cycles before dropping
20 pwm_set_chan_level(slice_num, PWM_CHAN_B, 3);
21 // Set the PWM running
22 pwm_set_enabled(slice_num, true);
23
24 // Note we could also use pwm_set_gpio_level(gpio, x) which looks up the

]
4.1. Hardware APIs 154

Raspberry Pi Pico C/C++ SDK

25 // correct slice and channel for a given GPIO.

26 }

4.1.17.1. Enumerations

® enum pwm_clkdiv_mode { PWM_DIV_FREE_RUNNING, PWM_DIV_B_HIGH, PWM_DIV_B_RISING, PWM_DIV_B_FALLING }
PWM Divider mode settings.

4.1.17.2. Function List

® static uint

® static vint

® static void

® static void

® static void

® static void

® static void

® static void

® static void

pwm_gpio_to_slice_num (uint gpio)

pwm_gpio_to_channel (uint gpio)

pwm_config_set_phase_correct (pwm_config *c, bool phase_correct)
pwm_config_set_clkdiv (pwm_config *c, float div)
pwm_config_set_clkdiv_int (pwm_config *c, uint div)
pwm_config_set_clkdiv_mode (pwm_config *c, enum pwm_clkdiv_mode mode)
pwm_config_set_output_polarity (pwm_config *c, bool a, bool b)
pwm_config_set_wrap (pwm_config *c, uint16_t wrap)

pwm_init (uint slice_num, pwm_config *c, bool start)

® static pwm_config pwm_get_default_config ()

® static void

® static void

® static void

® static void

pwm_set_wrap (uint slice_num, uint16_t wrap)
pwm_set_chan_level (uint slice_num, uint chan, uint16_t level)
pwm_set_both_levels (uint slice_num, uint16_t level_a, uint16_t level_b)

pwm_set_gpio_level (uint gpio, uint16_t level)

® static int16_t pwm_get_counter (uint slice_num)

® static void

® static void

® static void

® static void

® static void

® static void

® static void

® static void

® static void

® static void

® static void

® static void

® static void

pwm_set_counter (uint slice_num, uint16_t c)

pwm_advance_count (uint slice_num)

pwm_retard_count (uint slice_num)

pwm_set_clkdiv_int_frac (uint slice_num, uint8_t integer, uint8_t fract)
pwm_set_clkdiv (uint slice_num, float divider)
pwm_set_output_polarity (uint slice_num, bool a, bool b)
pwm_set_clkdiv_mode (uint slice_num, enum pwm_clkdiv_mode mode)
pwm_set_phase_correct (uint slice_num, bool phase_correct)
pwm_set_enabled (uint slice_num, bool enabled)
pwm_set_mask_enabled (uint32_t mask)

pwm_set_irq_enabled (uint slice_num, bool enabled)
pwm_set_irq_mask_enabled (uint32_t slice_mask, bool enabled)

pwm_clear_irq (uint slice_num)

® static int32_t pwm_get_irq_status_mask ()

4.1. Hardware APIs

155

Raspberry Pi Pico C/C++ SDK
]

® static void pwm_force_irq (uint slice_num)

4.1.17.3. Function Documentation

4.1.17.3.1. pwm_advance_count

static void pwm_advance_count (uint slice_num)

Advance PWM count.

Advance the phase of a running the counter by 1 count.
This function will return once the increment is complete.
Parameters

® slice_num PWM slice number

4.1.17.3.2. pwm_clear_irq

static void pwm_clear_irq (uint slice_num)
Clear single PWM channel interrupt.
Parameters

® slice_num PWM slice number

4.1.17.3.3. pwm_config_set_clkdiv

static void pwm_config_set_clkdiv (pwm_config *c,
float div)

Set clock divider in a PWM configuration.

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of
events seen on the B pin input (level or edge) before passing them on to the PWM counter.

Parameters
® ¢ PWM configuration struct to modify

® div Value to divide counting rate by. Must be greater than or equal to 1.

4.1.17.3.4. pwm_config_set_clkdiv_int

static void pwm_config_set_clkdiv_int (pwm_config *c,
uint div)

Set PWM clock divider in a PWM configuration.

If the divide mode is free-running, the PWM counter runs at clk_sys / div. Otherwise, the divider reduces the rate of
events seen on the B pin input (level or edge) before passing them on to the PWM counter.

Parameters
® ¢ PWM configuration struct to modify

® div integer value to reduce counting rate by. Must be greater than or equal to 1.

]
4.1. Hardware APIs 156

Raspberry Pi Pico C/C++ SDK

4.1.17.3.5. pwm_config_set_clkdiv_mode

static void pwm_config_set_clkdiv_mode (pwm_config *c,

enum pwm_clkdiv_mode mode)
Set PWM counting mode in a PWM configuration.

Configure which event gates the operation of the fractional divider. The default is always-on (free-running PWM). Can
also be configured to count on high level, rising edge or falling edge of the B pin input.

Parameters
® ¢ PWM configuration struct to modify

® mode PWM divide/count mode

4.1.17.3.6. pwm_config_set_output_polarity

static void pwm_config_set_output_polarity (pwm_config *c,
bool a,
bool b)

Set output polarity in a PWM configuration.
Parameters
® ¢ PWM configuration struct to modify
® atrue to invert output A

® btrue to invert output B

4.1.17.3.7. pwm_config_set_phase_correct

static void pwm_config_set_phase_correct (pwm_config *c,

bool phase_correct)
Set phase correction in a PWM configuration.

Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, the PWM
starts counting back down. The output frequency is halved when phase-correct mode is enabled.

Parameters
® ¢ PWM configuration struct to modify

® phase_correct true to set phase correct modulation, false to set trailing edge

4.1.17.3.8. pwm_config_set_wrap

static void pwm_config_set_wrap (pwm_config *c,

uint16_t wrap)
Set PWM counter wrap value in a PWM configuration.
Set the highest value the counter will reach before returning to 0. Also known as TOP.
Parameters
® ¢ PWM configuration struct to modify

® wrap Value to set wrap to

4.1. Hardware APIs 157

Raspberry Pi Pico C/C++ SDK

4.1.17.3.9. pwm_force_irq

static void pwm_force_irq (uint slice_num)
Force PWM interrupt.

Parameters

® slice_num PWM slice number

4.1.17.3.10. pwm_get_counter
static int16_t pwm_get_counter (uint slice_num)
Get PWM counter.
Get current value of PWM counter
Parameters

® slice_num PWM slice number
Returns

® Current value of PWM counter

4.1.17.3.11. pwm_get_default_config
static pwm_config pwm_get_default_config ()
Get a set of default values for PWM configuration.

PWM config is free running at system clock speed, no phase correction, wrapping at 0xffff, with standard polarities for
channels A and B.

Returns

® Set of default values.

4.1.17.3.12. pwm_get_irg_status_mask
static int32_t pwm_get_irq_status_mask ()
Get PWM interrupt status, raw.

Returns

® Bitmask of all PWM interrupts currently set

4.1.17.3.13. pwm_gpio_to_channel

static uint pwm_gpio_to_channel (uint gpio)

Determine the PWM channel that is attached to the specified GPIO.
Each slice 0 to 7 has two channels, A and B.

Returns

® The PWM channel that controls the specified GPIO.

4.1.17.3.14. pwm_gpio_to_slice_num

static uint pwm_gpio_to_slice_num (uint gpio)

Determine the PWM slice that is attached to the specified GPIO.

4.1. Hardware APIs 158

Raspberry Pi Pico C/C++ SDK
]

Returns

® The PWM slice number that controls the specified GPIO.

4.1.17.3.15. pwm_init

static void pwm_init (uint slice_num,
pwm_config *c,
bool start)

Initialise a PWM with settings from a configuration object.

Use the pwm_get_default_config() function to initialise a config structure, make changes as needed using the
pwm_config_* functions, then call this function to set up the PWM.

Parameters
® slice_num PWM slice number
® ¢ The configuration to use

® start If true the PWM will be started running once configured. If false you will need to start manually using
pwm_set_enabled() or pwm_set_mask_enabled()

4.1.17.3.16. pwm_retard_count

static void pwm_retard_count (uint slice_num)

Retard PWM count.

Retard the phase of a running counter by 1 count

This function will return once the retardation is complete.
Parameters

® slice_num PWM slice number

4.1.17.3.17. pwm_set_both_levels

static void pwm_set_both_levels (uint slice_num,
uint16_t level_a,
uint16_t level_b)

Set PWM counter compare values.
Set the value of the PWM counter compare values, A and B
Parameters
® slice_num PWM slice number
® level_a Value to set compare A to. When the counter reaches this value the A output is deasserted

® level_b Value to set compare B to. When the counter reaches this value the B output is deasserted

4.1.17.3.18. pwm_set_chan_level

static void pwm_set_chan_level (uint slice_num,
uint chan,
uint16_t level)

Set the current PWM counter compare value for one channel.

Set the value of the PWM counter compare value, for either channel A or channel B

]
4.1. Hardware APIs 159

Raspberry Pi Pico C/C++ SDK

Parameters
® slice_num PWM slice number
® chan Which channel to update. 0 for A, 1 for B.

® level new level for the selected output

4.1.17.3.19. pwm_set_clkdiv

static void pwm_set_clkdiv (uint slice_num,
float divider)

Set PWM clock divider.
Set the clock divider. Counter increment will be on sysclock divided by this value, taking in to account the gating.
Parameters

® slice_num PWM slice number

® divider Floating point clock divider, 1.f < value < 256.f

4.1.17.3.20. pwm_set_clkdiv_int_frac

static void pwm_set_clkdiv_int_frac (uint slice_num,
uint8_t integer,
uint8_t fract)

Set PWM clock divider using an 8:4 fractional value.
Set the clock divider. Counter increment will be on sysclock divided by this value, taking in to account the gating.
Parameters

® slice_num PWM slice number

® integer 8 bit integer part of the clock divider

® fract 4 bit fractional part of the clock divider

4.1.17.3.21. pwm_set_clkdiv_mode

static void pwm_set_clkdiv_mode (uint slice_num,

enum pwm_clkdiv_mode mode)
Set PWM divider mode.
Parameters
® slice_num PWM slice number

® mode Required divider mode

4.1.17.3.22. pwm_set_counter

static void pwm_set_counter (uint slice_num,
uint16_t c)

Set PWM counter.
Set the value of the PWM counter
Parameters

® slice_num PWM slice number

4.1. Hardware APIs 160

Raspberry Pi Pico C/C++ SDK
]

® ¢ Value to set the PWM counter to

4.1.17.3.23. pwm_set_enabled

static void pwm_set_enabled (uint slice_num,
bool enabled)

Enable/Disable PWM.
Parameters
® slice_num PWM slice number

® enabled true to enable the specified PWM, false to disable

4.1.17.3.24. pwm_set_gpio_level

static void pwm_set_gpio_level (uint gpio,
uint16_t level)

Helper function to set the PWM level for the slice and channel associated with a GPIO.

Look up the correct slice (0 to 7) and channel (A or B) for a given GPIO, and update the corresponding counter-compare
field.

This PWM slice should already have been configured and set running. Also be careful of multiple GPIOs mapping to the
same slice and channel (if GPIOs have a difference of 16).

Parameters
® gpio GPIO to set level of

® level PWM level for this GPIO

4.1.17.3.25. pwm_set_irq_enabled

static void pwm_set_irq_enabled (uint slice_num,
bool enabled)

Enable PWM instance interrupt.
Used to enable a single PWM instance interrupt
Parameters

® slice_nun PWM block to enable/disable

® cnabled true to enable, false to disable

4.1.17.3.26. pwm_set_irq_mask_enabled

static void pwm_set_irq_mask_enabled (uint32_t slice_mask,
bool enabled)

Enable multiple PWM instance interrupts.
Use this to enable multiple PWM interrupts at once.
Parameters
® slice_mask Bitmask of all the blocks to enable/disable. Channel 0 = bit 0, channel 1 = bit 1 etc.

® cnabled true to enable, false to disable

]
4.1. Hardware APIs 161

Raspberry Pi Pico C/C++ SDK

4.1.17.3.27. pwm_set_mask_enabled

static void pwm_set_mask_enabled (uint32_t mask)
Enable/Disable multiple PWM slices simultaneously.
Parameters

® mask Bitmap of PWMs to enable/disable. Bits 0 to 7 enable slices 0-7 respectively

4.1.17.3.28. pwm_set_output_polarity

static void pwm_set_output_polarity (uint slice_num,
bool a,
bool b)

Set PWM output polarity.
Parameters
® slice_num PWM slice number
® atrue to invert output A

® b true to invert output B

4.1.17.3.29. pwm_set_phase_correct

static void pwm_set_phase_correct (uint slice_num,

bool phase_correct)

Set PWM phase correct on/off.

Setting phase control to true means that instead of wrapping back to zero when the wrap point is reached, the PWM
starts counting back down. The output frequency is halved when phase-correct mode is enabled.

Parameters
® slice_num PWM slice number

® phase_correct true to set phase correct modulation, false to set trailing edge

4.1.17.3.30. pwm_set_wrap

static void pwm_set_wrap (uint slice_num,
uint16_t wrap)

Set the current PWM counter wrap value.
Set the highest value the counter will reach before returning to 0. Also known as TOP.
Parameters

® slice_num PWM slice number

® wrap Value to set wrap to

4.1.18. hardware_resets

Hardware Reset API.

The reset controller allows software control of the resets to all of the peripherals that are not critical to boot the
processor in the RP2040.

reset_bitmask

4.1. Hardware APIs 162

Raspberry Pi Pico C/C++ SDK
]

Multiple blocks are referred to using a bitmask as follows:

Block to reset Bit
UsSB 24
UART 1 23
UART 0 22
Timer 21
TB Manager 20
Sysinfo 19
System Config 18
SPI1 17
SPIO 16
RTC 15
PWM 14
PLL USB 13
PLL System 12
PIO 1 11
PIOO 10
Pads - QSPI 9
Pads - bank 0 8
JTAG 7
10 Bank 1 6
10 Bank 0 5
12C 1 4
12C0 3
DMA 2
Bus Control 1
ADC O 0
Example

#include <stdio.h>
#include "pico/stdlib.h"
#include "hardware/resets.h”

1
2

3

4

5 int main() {
6 stdio_init_all();
7

8

printf("Hello, reset!\n");

9

10 // Put the PWM block into reset

11 reset_block (RESETS_RESET_PWM_BITS) ;

12

13 // And bring it out

14 unreset_block_wait(RESETS_RESET_PWM_BITS);

|
4.1. Hardware APIs 163

Raspberry Pi Pico C/C++ SDK

15

16 // Put the PWM and RTC block into reset

17 reset_block (RESETS_RESET_PWM_BITS | RESETS_RESET_RTC_BITS);

18

19 // Wait for both to come out of reset

20 unreset_block_wait(RESETS_RESET_PWM_BITS | RESETS_RESET_RTC_BITS);
21

22 return ©;

23 }

4.1.18.1. Function List

® static void reset_block (uint32_t bits)
® static void unreset_block (uint32_t bits)

® static void unreset_block_wait (uint32_t bits)

4.1.18.2. Function Documentation

4.1.18.2.1. reset_block

static void reset_block (uint32_t bits)
Reset the specified HW blocks.
Parameters

® bits Bit pattern indicating blocks to reset. See reset_bitmask

4.1.18.2.2. unreset_block

static void unreset_block (uint32_t bits)
bring specified HW blocks out of reset
Parameters

® hits Bit pattern indicating blocks to unreset. See reset_bitmask

4.1.18.2.3. unreset_block_wait

static void unreset_block_wait (uint32_t bits)

Bring specified HW blocks out of reset and wait for completion.
Parameters

® bits Bit pattern indicating blocks to unreset. See reset_bitmask

4.1.19. hardware_rtc

Hardware Real Time Clock API.

The RTC keeps track of time in human readable format and generates events when the time is equal to a preset value.
Think of a digital clock, not epoch time used by most computers. There are seven fields, one each for year (12 bit),
month (4 bit), day (5 bit), day of the week (3 bit), hour (5 bit) minute (6 bit) and second (6 bit), storing the data in binary
format.

4.1. Hardware APIs 164

Raspberry Pi Pico C/C++ SDK
]

See also

® datetime_t

Example

1 #include <stdio.h>

2 #include "hardware/rtc.h”

3 #include "pico/stdlib.h"

4 #include "pico/util/datetime.h”

5

6 int main() {

7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 }

stdio_init_all();
printf("Hello RTC!\n");

char datetime_buf[256];
char *datetime_str = &datetime_buf[0];

// Start on Friday 5th of June 20620 15:45:00
datetime_t t = {

.year = 2020,

.month = 06,

.day = 05,

.dotw =5, // @ is Sunday, so 5 is Friday
.hour = 15,

.min = 45,

.sec = 00

b

// Start the RTC
rte_init();
rtc_set_datetime(&t);

// Print the time
while (true) {
rtc_get_datetime(&t);

datetime_to_str(datetime_str, sizeof(datetime_buf), &t);

printf("\r%s
sleep_ms(100);

, datetime_str);

return ©;

4.1.19.1. Function List

® yvoid

® hool

® bool

® bool

® yvoid

® yvoid

rte_init (void)

rtc_set_datetime (datetime_t *t)

rtc_get_datetime (datetime_t *t)

rtc_running (void)

rtc_set_alarm (datetime_t *t, rtc_callback_t user_callback)

rtc_disable_alarm (void)

4.1. Hardware APIs

165

Raspberry Pi Pico C/C++ SDK
]

4.1.19.2. Function Documentation

4.1.19.2.1. rtc_disable_alarm

void rtc_disable_alarm (void)

Disable the RTC alarm (if active)

4.1.19.2.2. rtc_get_datetime
bool rtc_get_datetime (datetime_t *t)
Get the current time from the RTC.
Parameters
® t Pointer to a datetime_t structure to receive the current RTC time
Returns

* true if datetime is valid, false if the RTC is not running.

4.1.19.2.3. rtc_init

void rtc_init (void)

Initialise the RTC system.

4.1.19.2.4. rtc_running

bool rtc_running (void)

Is the RTC running?

4.1.19.2.5. rtc_set_alarm

void rtc_set_alarm (datetime_t *t,
rtc_callback_t user_callback)

Set a time in the future for the RTC to call a user provided callback.
Parameters

® t Pointer to a datetime_t structure containing a time in the future to fire the alarm. Any values set to -1 will not be
matched on.

® yser_callback pointer to a rtc_callback_t to call when the alarm fires

4.1.19.2.6. rtc_set_datetime
bool rtc_set_datetime (datetime_t *t)
Set the RTC to the specified time.
Parameters
® t Pointer to a datetime_t structure contains time to set
Returns

* true if set, false if the passed in datetime was invalid.

]
4.1. Hardware APIs 166

Raspberry Pi Pico C/C++ SDK
]

4.1.20. hardware_spi

Hardware SPI API.
RP2040 has 2 identical instances of the Serial Peripheral Interface (SPI) controller.

The PrimeCell SSP is a master or slave interface for synchronous serial communication with peripheral devices that
have Motorola SPI, National Semiconductor Microwire, or Texas Instruments synchronous serial interfaces.

Controller can be defined as master or slave using the spi_set_slave function.

Each controller can be connected to a number of GPIO pins, see the datasheet GPIO function selection table for more
information.

4.1.20.1. Macros

® f#define spi@ ((spi_inst_t * const)spi@_hw)

® f#define spil ((spi_inst_t * const)spil_hw)

4.1.20.2. Function List

® yoid spi_init (spi_inst_t *spi, uint baudrate)

® void spi_deinit (spi_inst_t *spi)

® yint spi_set_baudrate (spi_inst_t *spi, uint baudrate)

® static uint spi_get_index (spi_inst_t *spi)

® static void spi_set_format (spi_inst_t *spi, uint data_bits, spi_cpol_t cpol, spi_cpha_t cpha, spi_order_t order)
® static void spi_set_slave (spi_inst_t *spi, bool slave)

® static size_t spi_is_writable (spi_inst_t *spi)

® static size_t spi_is_readable (spi_inst_t *spi)

® int spi_write_read_blocking (spi_inst_t *spi, const uint8_t *src, uint8_t *dst, size_t len)

® int spi_write_blocking (spi_inst_t *spi, const uint8_t *src, size_t len)

® int spi_read_blocking (spi_inst_t *spi, uint8_t repeated_tx_data, uint8_t *dst, size_t len)

® int spi_writel6_read16_blocking (spi_inst_t *spi, const uint16_t *src, uint16_t *dst, size_t len)
® int spi_writel6_blocking (spi_inst_t *spi, const uint16_t *src, size_t len)

® int spi_read16_blocking (spi_inst_t *spi, uint16_t repeated_tx_data, uint16_t *dst, size_t len)

4.1.20.3. Function Documentation

4.1.20.3.1. spi_deinit

void spi_deinit (spi_inst_t *spi)

Deinitialise SPI instances.

Puts the SPI into a disabled state. Init will need to be called to reenable the device functions.
Parameters

® spi SPI instance specifier, either spi0 or spi1

]
4.1. Hardware APIs 167

Raspberry Pi Pico C/C++ SDK
]

4.1.20.3.2. spi_get_index
static uint spi_get_index (spi_inst_t *spi)
Convert 12¢c instance to hardware instance number.
Parameters

® spi SPlinstance
Returns

® Number of SPI,0 or 1.

4.1.20.3.3. spi_init

void spi_init (spi_inst_t *spi,
uint baudrate)

Initialise SPI instances.
Puts the SPI into a known state, and enable it. Must be called before other functions.
Parameters

® spi SPlinstance specifier, either spi0 or spi1

® baudrate Baudrate required in Hz

4.1.20.3.4. spi_is_readable
static size_t spi_is_readable (spi_inst_t *spi)
Check whether a read can be done on SPI device.
Parameters

® spi SPI instance specifier, either spi0 or spi1
Returns

* Non-zero if a read is possible i.e. data is present

4.1.20.3.5. spi_is_writable
static size_t spi_is_writable (spi_inst_t *spi)
Check whether a write can be done on SPI device.
Parameters

® spi SPI instance specifier, either spi0 or spi1
Returns

* 0if no space is available to write. Non-zero if a write is possible

4.1.20.3.6. spi_read16_blocking

int spi_read16_blocking (spi_inst_t *spi,
uint16_t repeated_tx_data,
uint16_t *dst,

size_t len)
Read from an SPI device.

Read 1en halfwords from SPI to dst. Blocks until all data is transferred. No timeout, as SPI hardware always transfers at

]
4.1. Hardware APIs 168

Raspberry Pi Pico C/C++ SDK
]

a known data rate. repeated_tx_data is output repeatedly on TX as data is read in from RX. Generally this can be 0, but
some devices require a specific value here, e.g. SD cards expect 0xff

Parameters
® spi SPI instance specifier, either spi0 or spi1
® repeated_tx_data Buffer of data to write
® dst Buffer for read data
® len Length of buffer dst in halfwords
Returns

® Number of bytes written/read

4.1.20.3.7. spi_read_blocking

int spi_read_blocking (spi_inst_t *spi,
uint8_t repeated_tx_data,
uint8_t *dst,
size_t len)

Read from an SPI device.

Read 1en bytes from SPI to dst. Blocks until all data is transferred. No timeout, as SPI hardware always transfers at a
known data rate. repeated_tx_data is output repeatedly on TX as data is read in from RX. Generally this can be 0, but
some devices require a specific value here, e.g. SD cards expect 0xff

Parameters
® spi SPI instance specifier, either spi0 or spi1
® repeated_tx_data Buffer of data to write
® dst Buffer for read data
® len Length of buffer dst
Returns

® Number of bytes written/read

4.1.20.3.8. spi_set_baudrate

uint spi_set_baudrate (spi_inst_t *spi,
uint baudrate)

Set SPI baudrate.
Set SPI frequency as close as possible to baudrate, and return the actual achieved rate.
Parameters

® spi SPI instance specifier, either spi0 or spi1

® haudrate Baudrate required in Hz, should be capable of a bitrate of at least 2Mbps, or higher, depending on system
clock settings.

Returns

® The actual baudrate set

4.1.20.3.9. spi_set_format
static void spi_set_format (spi_inst_t *spi,
uint data_bits,

]
4.1. Hardware APIs 169

Raspberry Pi Pico C/C++ SDK
]

spi_cpol_t cpol,
spi_cpha_t cpha,
spi_order_t order)

Configure SPI.
Configure how the SPI serialises and deserialises data on the wire
Parameters
® spi SPlinstance specifier, either spi0 or spi1
® data_bits Number of data bits per transfer. Valid values 4..16.
® cpol SSPCLKOUT polarity, applicable to Motorola SPI frame format only.
® cpha SSPCLKOUT phase, applicable to Motorola SPI frame format only

® order Must be SPI_MSB_FIRST, no other values supported on the PL022

4.1.20.3.10. spi_set_slave

static void spi_set_slave (spi_inst_t *spi,

bool slave)
Set SPI master/slave.
Configure the SPI for master- or slave-mode operation. By default, spi_init() sets master-mode.
Parameters
® spi SPI instance specifier, either spi0 or spi1

® slave true to set SPI device as a slave device, false for master.

4.1.20.3.11. spi_write16_blocking

int spi_write16_blocking (spi_inst_t *spi,
const uint16_t *src,

size_t len)
Write to an SPI device.

Write 1en halfwords from src to SPI. Discard any data received back. Blocks until all data is transferred. No timeout, as
SPI hardware always transfers at a known data rate.

Parameters
® spi SPlinstance specifier, either spi0 or spi
® src Buffer of data to write
® len Length of buffers

Returns

® Number of bytes written/read

4.1.20.3.12. spi_write16_read16_blocking

int spi_write16_read16_blocking (spi_inst_t *spi,
const uint16_t *src,
uint16_t *dst,
size_t len)

Write/Read half words to/from an SPI device.

Write len halfwords from src to SPI. Simultaneously read len halfwords from SPI to dst. Blocks until all data is

]
4.1. Hardware APIs 170

Raspberry Pi Pico C/C++ SDK
]

transferred. No timeout, as SPI hardware always transfers at a known data rate.
Parameters

® spi SPlinstance specifier, either spi0 or spi1

® src Buffer of data to write

® dst Buffer for read data

® len Length of BOTH buffers in halfwords
Returns

® Number of bytes written/read

4.1.20.3.13. spi_write_blocking

int spi_write_blocking (spi_inst_t *spi,
const uint8_t *src,

size_t len)
Write to an SPI device, blocking.

Write 1len bytes from src to SPI, and discard any data received back Blocks until all data is transferred. No timeout, as
SPI hardware always transfers at a known data rate.

Parameters
® spi SPI instance specifier, either spi0 or spi1
® src Buffer of data to write
® len Length of src

Returns

® Number of bytes written/read

4.1.20.3.14. spi_write_read_blocking

int spi_write_read_blocking (spi_inst_t *spi,
const uint8_t *src,
uint8_t *dst,

size_t len)
Write/Read to/from an SPI device.

Write len bytes from src to SPI. Simultaneously read len bytes from SPI to dst. Blocks until all data is transferred. No
timeout, as SPI hardware always transfers at a known data rate.

Parameters
® spi SPlinstance specifier, either spi0 or spi
® src Buffer of data to write
® dst Buffer for read data
® len Length of BOTH buffers
Returns

® Number of bytes written/read

]
4.1. Hardware APIs 171

Raspberry Pi Pico C/C++ SDK
]

4.1.21. hardware_sync

Low level hardware spin-lock, barrier and processor event API.
Functions for synchronisation between core’s, HW, etc

The RP2040 provides 32 hardware spin locks, which can be used to manage mutually-exclusive access to shared
software resources.

spin locks 0-15 are currently reserved for fixed uses by the SDK - i.e. if you use them other functionality may break or not
function optimally

4.1.21.1. Typedefs

® typedef uint32_t spin_lock_t
A spin lock identifier.

4.1.21.2. Function List

® static void __sev ()

® static void __wfe ()

® static void __wfi ()

® static void __dmb ()

® static void __isb ()

® static void __mem_fence_acquire ()

® static void __mem_fence_release ()

® static uint32_t save_and_disable_interrupts ()

® static void restore_interrupts (uint32_t status)

® static spin_lock_t * spin_lock_instance (uint lock_num)
® static uint spin_lock_get_num (spin_lock_t *lock)

® static void spin_lock_unsafe_blocking (spin_lock_t *lock)
® static void spin_unlock_unsafe (spin_lock_t *lock)

® static uint32_t spin_lock_blocking (spin_lock_t *lock)
® static bool is_spin_locked (const spin_lock_t *1lock)

® static void spin_unlock (spin_lock_t *lock, uint32_t saved_irq)
® static uint get_core_num ()

® spin_lock_t * spin_lock_init (uint lock_num)

® void spin_locks_reset (void)

® void spin_lock_claim (uint lock_num)

® void spin_lock_claim_mask (uint32_t lock_num_mask)

® void spin_lock_unclaim (uint lock_num)

® int spin_lock_claim_unused (bool required)

]
4.1. Hardware APIs 172

Raspberry Pi Pico C/C++ SDK

4.1.21.3. Function Documentation

4.1.21.3.1. _dmb
static void __dmb ()
Insert a DMB instruction in to the code path.

The DMB (data memory barrier) acts as a memory barrier, all memory accesses prior to this instruction will be observed
before any explicit access after the instruction.

4.1.21.3.2. __isb

static void __isb ()
Insert a ISB instruction in to the code path.

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so that all instructions
following the ISB are fetched from cache or memory again, after the ISB instruction has been completed.

4.1.21.3.3. _mem_fence_acquire

static void __mem_fence_acquire ()

Acquire a memory fence.

4.1.21.3.4. _mem_fence_release

static void __mem_fence_release ()

Release a memory fence.

4.1.21.3.5. _sev
static void __sev ()
Insert a SEV instruction in to the code path.

The SEV (send event) instruction sends an event to both cores.

4.1.21.3.6. __wfe
static void __wfe ()
Insert a WFE instruction in to the code path.

The WFE (wait for event) instruction waits until one of a number of events occurs, including events signalled by the SEV
instruction on either core.

4.1.21.3.7. _wfi

static void __wfi ()
Insert a WFI instruction in to the code path.

The WFI (wait for interrupt) instruction waits for a interrupt to wake up the core.

4.1. Hardware APIs 173

Raspberry Pi Pico C/C++ SDK
]

4.1.21.3.8. get_core_num
static uint get_core_num ()
Get the current core number.
Returns

® The core number the call was made from

4.1.21.3.9. is_spin_locked

static bool is_spin_locked (const spin_lock_t *lock)
Check to see if a spinlock is currently acquired elsewhere.
Parameters

® lock Spinlock instance

4.1.21.3.10. restore_interrupts

static void restore_interrupts (uint32_t status)
Restore interrupts to a specified state.
Parameters

® status Previous interrupt status from save_and_disable_interrupts()

4.1.21.3.11. save_and_disable_interrupts
static uint32_t save_and_disable_interrupts ()
Save and disable interrupts.

Returns

® The prior interrupt enable status for restoration later via restore_interrupts()

4.1.21.3.12. spin_lock_blocking
static uint32_t spin_lock_blocking (spin_lock_t *lock)
Acquire a spin lock safely.
This function will disable interrupts prior to acquiring the spinlock
Parameters
® lock Spinlock instance
Returns

® interrupt status to be used when unlocking, to restore to original state

4.1.21.3.13. spin_lock_claim
void spin_lock_claim (uint lock_num)
Mark a spin lock as used.

Method for cooperative claiming of hardware. Will cause a panic if the spin lock is already claimed. Use of this method
by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

]
4.1. Hardware APIs 174

Raspberry Pi Pico C/C++ SDK
]

® Tlock_numthe spin lock number

4.1.21.3.14. spin_lock_claim_mask
void spin_lock_claim_mask (uint32_t lock_num_mask)
Mark multiple spin locks as used.

Method for cooperative claiming of hardware. Will cause a panic if any of the spin locks are already claimed. Use of this
method by libraries detects accidental configurations that would fail in unpredictable ways.

Parameters

® lock_num_mask Bitfield of all required spin locks to claim (bit 0 == spin lock 0, bit 1 == spin lock 1 etc)

4.1.21.3.15. spin_lock_claim_unused
int spin_lock_claim_unused (bool required)
Claim a free spin lock.
Parameters
® required if true the function will panic if none are available
Returns

* the spin lock number or -1 if required was false, and none were free

4.1.21.3.16. spin_lock_get_num
static uint spin_lock_get_num (spin_lock_t *lock)
Get HW Spinlock number from instance.
Parameters

® lock The Spinlock instance
Returns

® The Spinlock ID

4.1.21.3.17. spin_lock_init
spin_lock_t* spin_lock_init (uint lock_num)
Initialise a spin lock.
The spin lock is initially unlocked
Parameters

® lock_num The spin lock number
Returns

® The spin lock instance

4.1.21.3.18. spin_lock_instance
static spin_lock_t* spin_lock_instance (uint lock_num)
Get HW Spinlock instance from number.

Parameters

]
4.1. Hardware APIs 175

Raspberry Pi Pico C/C++ SDK

® Tlock_num Spinlock ID
Returns

® The spinlock instance

4.1.21.3.19. spin_lock_unclaim

void spin_lock_unclaim (uint lock_num)

Mark a spin lock as no longer used.

Method for cooperative claiming of hardware.
Parameters

® Tock_num the spin lock number to release

4.1.21.3.20. spin_lock_unsafe_blocking

static void spin_lock_unsafe_blocking (spin_lock_t *lock)
Acquire a spin lock without disabling interrupts (hence unsafe)
Parameters

® Tlock Spinlock instance

4.1.21.3.21. spin_locks_reset

void spin_locks_reset (void)

Release all spin locks.

4.1.21.3.22. spin_unlock

static void spin_unlock (spin_lock_t *1ock,
uint32_t saved_irq)

Release a spin lock safely.
This function will re-enable interrupts according to the parameters.
Parameters

® Tlock Spinlock instance

® saved_irq Return value from the spin_lock_blocking() function.
Returns

® interrupt status to be used when unlocking, to restore to original state
See also

® spin_lock_blocking()

4.1.21.3.23. spin_unlock_unsafe
static void spin_unlock_unsafe (spin_lock_t *lock)
Release a spin lock without re-enabling interrupts.

Parameters

4.1. Hardware APIs 176

Raspberry Pi Pico C/C++ SDK
]

® Tlock Spinlock instance

4.1.22. hardware_timer

Low-level hardware timer API.

This API provides medium level access to the timer HW. See also pico_time which provides higher levels functionality
using the hardware timer.

The timer peripheral on RP2040 supports the following features:
® single 64-bit counter, incrementing once per microsecond
® | atching two-stage read of counter, for race-free read over 32 bit bus
® Four alarms: match on the lower 32 bits of counter, IRQ on match.

By default the timer uses a one microsecond reference that is generated in the Watchdog (see Section 4.8.2) which is
derived from the clk_ref.

The timer has 4 alarms, and can output a separate interrupt for each alarm. The alarms match on the lower 32 bits of
the 64 bit counter which means they can be fired a maximum of 2*32 microseconds into the future. This is equivalent
to:

® 2A32 +10"6: ~4295 seconds
® 4295+ 60: ~72 minutes

The timer is expected to be used for short sleeps, if you want a longer alarm see the hardware_rtc functions.

Example

1 #include <stdio.h>

2 #include "pico/stdlib.h”

8

4 volatile bool timer_fired = false;

5

6 int64_t alarm_callback(alarm_id_t id, void *user_data) {
7 printf("Timer %d fired!\n", (int) id);

8 timer_fired = true;

9 // Can return a value here in us to fire in the future
10 return 0;

11 }

12

13 bool repeating_timer_callback(struct repeating_timer *t) {
14 printf("Repeat at %11ld\n", time_us_64());

15 return true;

16 }

17

18 int main() {

19 stdio_init_all();

20 printf("Hello Timer!\n");

21

22 // Call alarm_callback in 2 seconds

23 add_alarm_in_ms(2000, alarm_callback, NULL, false);
24

25 // Wait for alarm callback to set timer_fired

26 while (!timer_fired) {

27 tight_loop_contents();

28 }

29

30 // Create a repeating timer that calls repeating_timer_callback.
& // If the delay is > @ then this is the delay between the previous callback ending and the

next starting.

]
4.1. Hardware APIs 177

Raspberry Pi Pico C/C++ SDK
]

32 // If the delay is negative (see below) then the next call to the callback will be exactly
500ms after the
833 // start of the call to the last callback
34 struct repeating_timer timer;
35 add_repeating_timer_ms(500, repeating_timer_callback, NULL, &timer);
36 sleep_ms(3000) ;
37 bool cancelled = cancel_repeating_timer(&timer);
38 printf("cancelled... %d\n", cancelled);
39 sleep_ms(2000) ;
40
41 // Negative delay so means we will call repeating_timer_callback, and call it again
42 // 560ms later regardless of how long the callback took to execute
43 add_repeating_timer_ms(-500, repeating_timer_callback, NULL, &timer);
44 sleep_ms(3000) ;
45 cancelled = cancel_repeating_timer (&timer);
46 printf("cancelled... %d\n", cancelled);
47 sleep_ms(2000) ;
48 printf("Done\n");
49 return 0;
50 }
See also
® pico_time
4.1.22.1. Typedefs

® typedef void(* hardware_alarm_callback_t)(uint alarm_num)

4.1.22.2. Function List

® static uint32_t time_us_32 ()

® yint64_t time_us_64 ()

® void busy_wait_us_32 (uint32_t delay_us)

® void busy_wait_us (uint64_t delay_us)

® void busy_wait_until (absolute_time_t t)

® static bool time_reached (absolute_time_t t)
® void hardware_alarm_claim (uint alarm_num)

® void hardware_alarm_unclaim (uint alarm_num)

® void hardware_alarm_set_callback (uint alarm_num, hardware_alarm_callback_t callback)

4.1.22.3. Function Documentation

4.1.22.3.1. busy_wait_until

void busy_wait_until (absolute_time_t t)

Busy wait wasting cycles until after the specified timestamp.
Parameters

® t Absolute time to wait until

]
4.1. Hardware APIs 178

Raspberry Pi Pico C/C++ SDK
]

4.1.22.3.2. busy_wait_us

void busy_wait_us (uintb4_t delay_us)

Busy wait wasting cycles for the given (64 bit) number of microseconds.
Parameters

® delay_us delay amount

4.1.22.3.3. busy_wait_us_32

void busy_wait_us_32 (uint32_t delay_us)

Busy wait wasting cycles for the given (32 bit) number of microseconds.
Busy wait wasting cycles for the given (32 bit) number of microseconds.
Parameters

® delay_us delay amount

4.1.22.3.4. hardware_alarm_claim
void hardware_alarm_claim (uint alarm_num)
cooperatively claim the use of this hardware alarm_num
This method hard asserts if the hardware alarm is currently claimed.
Parameters
® 3larm_num the hardware alarm to claim
See also

® hardware_claiming

4.1.22.3.5. hardware_alarm_set_callback

void hardware_alarm_set_callback (uint alarm_num,
hardware_alarm_callback_t callback)

Enable/Disable a callback for a hardware timer on this core.

This method enables/disables the alarm IRQ for the specified hardware alarm on the calling core, and set the specified
callback to be associated with that alarm.

This callback will be used for the timeout set via hardware_alarm_set_target
Parameters

® alarm_num the hardware alarm number

® callback the callback to install, or NULL to unset
See also

® hardware_alarm_set_target

4.1.22.3.6. hardware_alarm_unclaim

void hardware_alarm_unclaim (uint alarm_num)
cooperatively release the claim on use of this hardware alarm_num

Parameters

]
4.1. Hardware APIs 179

Raspberry Pi Pico C/C++ SDK

® alarm_num the hardware alarm to unclaim
See also

® hardware_claiming

4.1.22.3.7. time_reached

static bool time_reached (absolute_time_t t)
Check if the specified timestamp has been reached.
Parameters

® t Absolute time to compare against current time
Returns

* true if it is now after the specified timestamp

4.1.22.3.8. time_us_32

static uint32_t time_us_32 ()

Return a 32 bit timestamp value in microseconds.
Returns the low 32 bits of the hardware timer.
Returns

® the 32 bit timestamp

4.1.22.3.9. time_us_64

uint64_t time_us_64 ()
Return the current 64 bit timestamp value in microseconds.

Returns the full 64 bits of the hardware timer. The pico_time and other functions rely on the fact that this value
monotonically increases from power up. As such it is expected that this value counts upwards and never wraps (we
apologize for introducing a potential year 5851444 bug).

Return the current 64 bit timestamp value in microseconds.
Returns

® the 64 bit timestamp

4.1.23. hardware_uart

Hardware UART API.

RP2040 has 2 identical instances of a UART peripheral, based on the ARM PL011. Each UART can be connected to a
number of GPIO pins as defined in the GPIO muxing.

Only the TX, RX, RTS, and CTS signals are connected, meaning that the modem mode and IrDA mode of the PLO11 are
not supported.

Example
1 int main() {
2
8 // Initialise UART @
4 uart_init(uart@, 115200);

4.1. Hardware APIs 180

Raspberry Pi Pico C/C++ SDK
]

1

5

6 // Set the GPIO pin mux to the UART - @ is TX, 1 is RX
7 gpio_set_function(®, GPIO_FUNC_UART);

8 gpio_set_function(1, GPIO_FUNC_UART);

9

0 uart_puts(uart®, "Hello world!");

1}

4.1.23.1. Enumerations

® enum vart_parity_t { UART_PARITY_NONE, UART_PARITY_EVEN, UART_PARITY_ODD }
UART Parity enumeration.

4.1.23.2. Macros

® ftdefine vart® ((uart_inst_t * const)uart@_hw)
Identifier for UART instance 0.

® j#define vartl ((uart_inst_t * const)uart1_hw)

Identifier for UART instance 1.

4.1.23.3. Function List

static vint

vart_get_index (uart_inst_t *uart)

uint vart_init (uart_inst_t *uart, uint baudrate)

void vart_deinit (uart_inst_t *uart)

uint vart_set_baudrate (uart_inst_t *uart, uint baudrate)

static void

static void

static void

static bool

static void

static bool

static void

static bool

static void

static void

static void

static void

static void

static char

static void

vart_set_hw_flow (uart_inst_t *uart, bool cts, bool rts)

vart_set_format (uart_inst_t *uvart, uint data_bits, uint stop_bits, vart_parity_t parity)
vart_set_irq_enables (uart_inst_t *uart, bool rx_has_data, bool tx_needs_data)
vart_is_enabled (uart_inst_t *uart)

vart_set_fifo_enabled (uart_inst_t *uart, bool enabled)

vart_is_writable (uart_inst_t *uart)

vart_tx_wait_blocking (uart_inst_t *uart)

vart_is_readable (uart_inst_t *uart)

vart_write_blocking (uart_inst_t *uart, const uint8_t *src, size_t len)
vart_read_blocking (uart_inst_t *uart, uint8_t *dst, size_t len)

vart_putc_raw (uvart_inst_t *uart, char c)

vart_pute (uvart_inst_t *uart, char c)

vart_puts (uart_inst_t *uart, const char *s)

vart_gete (uvart_inst_t *uvart)

vart_set_break (uart_inst_t *uart, bool en)

void vart_set_translate_cr1f (uart_inst_t *uvart, bool translate)

static void

vart_default_tx_wait_blocking ()

4.1. Hardware APIs

181

Raspberry Pi Pico C/C++ SDK
]

® bool vart_is_readable_within_us (uart_inst_t *uart, uint32_t us)

4.1.23.4. Function Documentation

4.1.23.4.1. uvart_default_tx_wait_blocking

static void vart_default_tx_wait_blocking ()

Wait for the default UART'S TX fifo to be drained.

4.1.23.4.2. uvart_deinit

void vart_deinit (uart_inst_t *uart)

Delnitialise a UART.

Disable the UART if it is no longer used. Must be reinitialised before being used again.
Parameters

® yart UART instance. uartO or uart1

4.1.23.4.3. uart_get_index
static uint vart_get_index (uart_inst_t *uart)
Convert UART instance to hardware instance number.
Parameters

® uvart UART instance
Returns

® Number of UART, 0 or 1.

4.1.23.4.4. uart_getc
static char vart_getc (uart_inst_t *uart)
Read a single character to UART.
This function will block until the character has been read
Parameters
¢ vart UART instance. uart0 or uart’
Returns

® The character read.

4.1.23.4.5. uvart_init

vint vart_init (uart_inst_t *uart,

uint baudrate)
Initialise a UART.
Put the UART into a known state, and enable it. Must be called before other functions.

Parameters

]
4.1. Hardware APIs 182

Raspberry Pi Pico C/C++ SDK

® yart UART instance. uart0 or uart1
® baudrate Baudrate of UART in Hz
Returns

® Actual set baudrate

4.1.23.4.6. uart_is_enabled
static bool uart_is_enabled (uart_inst_t *uart)
Test if specific UART is enabled.
Parameters

® vart UART instance. uart0 or uart1
Returns

® true if the UART is enabled

4.1.23.4.7. uart_is_readable
static bool vart_is_readable (uart_inst_t *uart)
Determine whether data is waiting in the RX FIFO.
Parameters

® vart UART instance. uart0 or uart1
Returns

® 0if no data available, otherwise the number of bytes, at least, that can be read

4.1.23.4.8. uart_is_readable_within_us

bool uart_is_readable_within_us (uart_inst_t *uart,
uint32_t us)

Wait for up to a certain number of microseconds for the RX FIFO to be non empty.
Parameters

® vart UART instance. uart0 or uart1

® s the number of microseconds to wait at most (may be 0 for an instantaneous check)
Returns

* true if the RX FIFO became non empty before the timeout, false otherwise

4.1.23.4.9. uart_is_writable
static bool vart_is_writable (uart_inst_t *uart)
Determine if space is available in the TX FIFO.
Parameters

® vart UART instance. uart0 or uart1
Returns

* false if no space available, true otherwise

4.1. Hardware APIs 183

Raspberry Pi Pico C/C++ SDK
]

4.1.23.4.10. uart_putc

static void vart_pute (uart_inst_t *uart,

char ¢)
Write single character to UART for transmission, with optional CR/LF conversions.
This function will block until the character has been sent
Parameters
® uvart UART instance. uart0 or uart1

® ¢ The character to send

4.1.23.4.11. uart_putc_raw

static void vart_putc_raw (uart_inst_t *uart,
char ¢)

Write single character to UART for transmission.
This function will block until all the character has been sent
Parameters

® uvart UART instance. uart0 or uart1

® ¢ The character to send

4.1.23.4.12. uart_puts

static void vart_puts (uart_inst_t *uart,
const char *s)

Write string to UART for transmission, doing any CR/LF conversions.
This function will block until the entire string has been sent
Parameters

® vart UART instance. uart0 or uart1

® s The null terminated string to send

4.1.23.4.13. uart_read_blocking

static void vart_read_blocking (uart_inst_t *uart,
uint8_t *dst,
size_t len)

Read from the UART.
This function will block until all the data has been received from the UART
Parameters

® vart UART instance. uart0 or uart’

® dst Buffer to accept received bytes

® len The number of bytes to receive.

4.1.23.4.14. uart_set_baudrate
uint vart_set_baudrate (uart_inst_t *uart,
uint baudrate)

]
4.1. Hardware APIs 184

Raspberry Pi Pico C/C++ SDK
]

Set UART baud rate.
Set baud rate as close as possible to requested, and return actual rate selected.
Parameters
® uvart UART instance. uart0 or uart1
® baudrate Baudrate in Hz
Returns

® Actual set baudrate

4.1.23.4.15. uart_set_break

static void uvart_set_break (uart_inst_t *uart,
bool en)

Assert a break condition on the UART transmission.
Parameters
® yart UART instance. uartO or uart1

® en Assert break condition (TX held low) if true. Clear break condition if false.

4.1.23.4.16. uart_set_fifo_enabled

static void uvart_set_fifo_enabled (uart_inst_t *uvart,
bool enabled)

Enable/Disable the FIFOs on specified UART.
Parameters
® yart UART instance. uart0 or uart1

® enabled true to enable FIFO (default), false to disable

4.1.23.4.17. uart_set_format

static void vart_set_format (uart_inst_t *uart,
uint data_bits,
uint stop_bits,
vart_parity_t parity)

Set UART data format.
Configure the data format (bits etc() for the UART
Parameters

® vart UART instance. uart0 or uart1

® data_bits Number of bits of data. 5..8

® stop_bits Number of stop bits 1..2

® parity Parity option.

4.1.23.4.18. uart_set_hw_flow

static void vart_set_hw_flow (uart_inst_t *uart,
bool cts,
bool rts)

]
4.1. Hardware APIs 185

Raspberry Pi Pico C/C++ SDK
]

Set UART flow control CTS/RTS.
Parameters
® vart UART instance. uart0 or uart1
® cts If true enable flow control of TX by clear-to-send input

® rts If true enable assertion of request-to-send output by RX flow control

4.1.23.4.19. uart_set_irq_enables

static void vart_set_irq_enables (uart_inst_t *uart,
bool rx_has_data,
bool tx_needs_data)

Setup UART interrupts.
Enable the UART's interrupt output. An interrupt handler will need to be installed prior to calling this function.
Parameters

® vart UART instance. uart0 or uart1

® rx_has_data If true an interrupt will be fired when the RX FIFO contain data.

® tx_needs_data If true an interrupt will be fired when the TX FIFO needs data.

4.1.23.4.20. uart_set_translate_crlf

void uvart_set_translate_crlf (uart_inst_t *uart,
bool translate)

Set CR/LF conversion on UART.
Parameters
® yart UART instance. uartO or uart1

® translate If true, convert line feeds to carriage return on transmissions

4.1.23.4.21. uart_tx_wait_blocking

static void vart_tx_wait_blocking (uart_inst_t *uart)
Wait for the UART TX fifo to be drained.

Parameters

® yart UART instance. uartO or uart1

4.1.23.4.22. uart_write_blocking

static void vart_write_blocking (uart_inst_t *uvart,
const uint8_t *src,

size_t len)
Write to the UART for transmission.
This function will block until all the data has been sent to the UART
Parameters
® uvart UART instance. uart0 or uart1

® src The bytes to send

]
4.1. Hardware APIs 186

Raspberry Pi Pico C/C++ SDK
]

® len The number of bytes to send

4.1.24. hardware_vreg

Voltage Regulation API.

4.1.24.1. Function List

® void vreg_set_voltage (enum vreg_voltage voltage)

4.1.24.2. Function Documentation

4.1.24.2.1. vreg_set_voltage

void vreg_set_voltage (enum vreg_voltage voltage)
Set voltage.

Parameters

® yoltage The voltage (from enumeration vreg_voltage) to apply to the voltage regulator

4.1.25. hardware_watchdog

Hardware Watchdog Timer API.
Supporting functions for the Pico hardware watchdog timer.

The RP2040 has a built in HW watchdog Timer. This is a countdown timer that can restart parts of the chip if it reaches
zero. For example, this can be used to restart the processor if the software running on it gets stuck in an infinite loop or
similar. The programmer has to periodically write a value to the watchdog to stop it reaching zero.

Example

1 #include <stdio.h>

2 #include "pico/stdlib.h”

3 #include "hardware/watchdog.h"

4

5 int main() {

6 stdio_init_all();

7

8 if (watchdog_caused_reboot()) {

9 printf("Rebooted by Watchdog!\n");

10 return 0;

11 } else {

12 printf("Clean boot\n");

13 }

14

15 // Enable the watchdog, requiring the watchdog to be updated every 100ms or the chip will

reboot
16 // second arg is pause on debug which means the watchdog will pause when stepping through
code

17 watchdog_enable(100, 1);

18

19 for (uint i = @; 1 < 5; i++) {

20 printf("Updating watchdog %d\n", 1i);

21 watchdog_update() ;

22 }

]
4.1. Hardware APIs 187

Raspberry Pi Pico C/C++ SDK
]

23

24 // Wait in an infinite loop and don't update the watchdog so it reboots us
25 printf("Waiting to be rebooted by watchdog\n");

26 while(1);

27 }

4.1.25.1. Function List

® void watchdog_reboot (uint32_t pc, uint32_t sp, uint32_t delay_ms)
® void watchdog_start_tick (uint cycles)

® void watchdog_update (void)

® void watchdog_enable (uint32_t delay_ms, bool pause_on_debug)

® bool watchdog_caused_reboot (void)

® yint32_t watchdog_get_count (void)

4.1.25.2. Function Documentation

4.1.25.2.1. watchdog_caused_reboot
bool watchdog_caused_reboot (void)
Did the watchdog cause the last reboot?
Returns
* true if the watchdog timer or a watchdog force caused the last reboot

*® false there has been no watchdog reboot since run has been

4.1.25.2.2. watchdog_enable

void watchdog_enable (uint32_t delay_ms,

bool pause_on_debug)
Enable the watchdog.
By default the SDK assumes a 12MHz XOSC and sets the watchdog_start_tick appropriately.
Parameters

® delay_ms Number of milliseconds before watchdog will reboot without watchdog_update being called. Maximum of
0x7fffff, which is approximately 8.3 seconds

® pause_on_debug If the watchdog should be paused when the debugger is stepping through code

4.1.25.2.3. watchdog_get_count

uint32_t watchdog_get_count (void)

Returns the number of microseconds before the watchdog will reboot the chip.
Returns

® The number of microseconds before the watchdog will reboot the chip.

]
4.1. Hardware APIs 188

Raspberry Pi Pico C/C++ SDK
]

4.1.25.2.4. watchdog_reboot

void watchdog_reboot (uint32_t pc,
uint32_t sp,
uint32_t delay_ms)

Define actions to perform at watchdog timeout.

By default the SDK assumes a 12MHz XOSC and sets the watchdog_start_tick appropriately.

Parameters
® pnc If Zero, a standard boot will be performed, if non-zero this is the program counter to jump to on reset.
® sp If pcis non-zero, this will be the stack pointer used.

® delay_ms Initial load value. Maximum value 0x7fffff, approximately 8.3s.

4.1.25.2.5. watchdog_start_tick

void watchdog_start_tick (uint cycles)
Start the watchdog tick.
Parameters

® cycles This needs to be a divider that when applied to the XOSC input, produces a TMHz clock. So if the XOSC is
12MHz, this will need to be 12.

4.1.25.2.6. watchdog_update

void watchdog_update (void)

Reload the watchdog counter with the amount of time set in watchdog_enable.

4.1.26. hardware_xosc

Crystal Oscillator (XOSC) API.

4.1.26.1. Function List

® void xosc_init (void)
® void xosc_disable (void)

® void xosc_dormant (void)

4.1.26.2. Function Documentation

4.1.26.2.1. xosc_disable

void xosc_disable (void)
Disable the Crystal oscillator.

Turns off the crystal oscillator source, and waits for it to become unstable

4.1.26.2.2. xosc_dormant

void xosc_dormant (void)

]
4.1. Hardware APIs 189

Raspberry Pi Pico C/C++ SDK

Set the crystal oscillator system to dormant.

Turns off the crystal oscillator until it is woken by an interrupt. This will block and hence the entire system will stop, until
an interrupt wakes it up. This function will continue to block until the oscillator becomes stable after its wakeup.

4.1.26.2.3. xosc_init

void xosc_init (void)
Initialise the crystal oscillator system.

This function will block until the crystal oscillator has stabilised.

4.2. High Level APIs

This group of libraries provide higher level functionality that isn't hardware related or provides a richer set of
functionality above the basic hardware interfaces.

pico_multicore Adds support for running code on the second processor core (core1)
fifo Functions for inter-core FIFO.
pico_stdlib Aggregation of a core subset of Raspberry Pi Pico SDK libraries used by most executables
along with some additional utility methods. Including pico_stdlib gives you everything you
need to get a basic program running which prints to stdout or flashes a LED.
pico_sync Synchronization primitives and mutual exclusion.
critical_section Critical Section API for short-lived mutual exclusion safe for IRQ and multi-core.
mutex Mutex API for non IRQ mutual exclusion between cores.
sem Semaphore API for restricting access to a resource.
pico_time API for accurate timestamps, sleeping, and time based callbacks.
timestamp Timestamp functions relating to points in time (including the current time)
sleep Sleep functions for delaying execution in a lower power state.
alarm Alarm functions for scheduling future execution.
repeating_timer Repeating Timer functions for simple scheduling of repeated execution.
pico_unique_id Unique device ID access API.
pico_util Useful data structures and utility functions.
datetime Date/Time formatting.
pheap Pairing Heap Implementation.
queue Multi-core and IRQ safe queue implementation.

4.2.1. pico_multicore

Adds support for running code on the second processor core (core1)

Example

1 #include <stdio.h>
2 #include "pico/stdlib.h"
3 #include "pico/multicore.h"

4.2. High Level APIs 190

Raspberry Pi Pico C/C++ SDK
]

4
5 #define FLAG_VALUE 123

6

7 void corel_entry() {

8

9 multicore_fifo_push_blocking(FLAG_VALUE) ;

10

11 uint32_t g = multicore_fifo_pop_blocking();
12

13 if (g != FLAG_VALUE)

14 printf("Hmm, that's not right on core 1!\n");
15 else

16 printf("Its all gone well on core 1!");
17

18 while (1)

19 tight_loop_contents();

20 }

21

22 int main() {

23 stdio_init_all();

24 printf("Hello, multicore!\n");

25

26

27 multicore_launch_corel(corel_entry);

28

29 // Wait for it to start up

30

31 uint32_t g = multicore_fifo_pop_blocking();
32

33 if (g !'= FLAG_VALUE)

34 printf("Hmm, that's not right on core 0!\n");
35 else {

36 multicore_fifo_push_blocking(FLAG_VALUE) ;
37 printf("It's all gone well on core 0!");
38 }

39

40 }

4.2.1.1. Modules

® fifo
Functions for inter-core FIFO.

4.2.1.2. Function List

® yoid multicore_reset_corel ()

® void multicore_launch_corel (void(*entry)(void))

® yvoid multicore_launch_corel_with_stack (void(*entry)(void), uint32_t *stack_bottom, size_t stack_size_bytes)
® void multicore_sleep_corel ()

® yoid multicore_launch_corel_raw (void(*entry)(void), uint32_t *sp, uint32_t vector_table)

4.2.1.3. Function Documentation

]
4.2. High Level APIs 191

Raspberry Pi Pico C/C++ SDK
]

4.2.1.3.1. multicore_launch_core1

void multicore_launch_corel (void(*entry)(void))

Run code on core 1.

Reset core1 and enter the given function on core 1 using the default core 1 stack (below core 0 stack)
Parameters

® entry Function entry point, this function should not return.

4.2.1.3.2. multicore_launch_core1_raw

void multicore_launch_corel_raw (void(*entry)(void),
uint32_t *sp,
uint32_t vector_table)

Launch code on core 1 with no stack protection.

Reset core1 and enter the given function using the passed sp as the initial stack pointer. This is a bare bones functions
that does not provide a stack guard even if USE_STACK_GUARDS is defined

4.2.1.3.3. multicore_launch_core1_with_stack

void multicore_launch_corel_with_stack (void(*entry)(void),
uint32_t *stack_bottom,
size_t stack_size_bytes)

Launch code on core 1 with stack.

Reset corel and enter the given function on core 1 using the passed stack for core 1

4.2.1.3.4. multicore_reset_core1

void multicore_reset_corel ()

Reset Core 1.

4.2.1.3.5. multicore_sleep_core1

void multicore_sleep_corel ()

Send core 1 to sleep.

4.2.2. fifo

Functions for inter-core FIFO.

The RP2040 contains two FIFOs for passing data, messages or ordered events between the two cores. Each FIFO is 32
bits wide, and 8 entries deep. One of the FIFOs can only be written by core 0, and read by core 1. The other can only be
written by core 1, and read by core 0.

4.2.2.1. Function List

® static bool multicore_fifo_rvalid ()
® static bool multicore_fifo_wready ()

® void multicore_fifo_push_blocking (uint32_t data)

]
4.2. High Level APIs 192

Raspberry Pi Pico C/C++ SDK
]

® yint32_t multicore_fifo_pop_blocking ()
® static void multicore_fifo_drain ()
® static void multicore_fifo_clear_irq ()

® static int32_t multicore_fifo_get_status ()

4.2.2.2. Function Documentation

4.2.2.2.1. multicore_fifo_clear_irq

static void multicore_fifo_clear_irq ()

Clear FIFO interrupt.

4.2.2.2.2. multicore_fifo_drain

static void multicore_fifo_drain ()

Flush any data in the outgoing FIFO.

4.2.2.2.3. multicore_fifo_get_status

static int32_t multicore_fifo_get_status ()

Get FIFO status.

Bit Description

3 Sticky flag indicating the RX FIFO was read when empty.
This read was ignored by the FIFO.

2 Sticky flag indicating the TX FIFO was written when full.
This write was ignored by the FIFO.

1 Value is 1 if this core’s TX FIFO is not full (i.e. if FIFO_WR
is ready for more data)

0 Value is 1 if this core’s RX FIFO is not empty (i.e. if
FIFO_RD is valid)

Returns

® The status as a bitfield

4.2.2.2.4. multicore_fifo_pop_blocking
uint32_t multicore_fifo_pop_blocking ()
Pop data from the FIFO.

This function will block until there is data ready to be read Use multicore_fifo_rvalid() to check if data is ready to be
read if you don’t want to block.

Returns

® 32 bit unsigned data from the FIFO.

]
4.2. High Level APIs 193

Raspberry Pi Pico C/C++ SDK
]

4.2.2.2.5. multicore_fifo_push_blocking
void multicore_fifo_push_blocking (uint32_t data)
Push data on to the FIFO.

This function will block until there is space for the data to be sent. Use multicore_fifo_wready() to check if it is possible
to write to the FIFO if you don’t want to block.

Parameters

® data A 32 bit value to push on to the FIFO

4.2.2.2.6. multicore_fifo_rvalid

static bool multicore_fifo_rvalid ()

Check the read FIFO to see if there is data waiting.
Returns

e true if the FIFO has data in it, false otherwise

4.2.2.2.7. multicore_fifo_wready

static bool multicore_fifo_wready ()

Check the FIFO to see if the write FIFO is full.
Returns

e true if the FIFO is full, false otherwise

4.2.3. pico_stdlib

Aggregation of a core subset of Raspberry Pi Pico SDK libraries used by most executables along with some additional
utility methods. Including pico_stdlib gives you everything you need to get a basic program running which prints to
stdout or flashes a LED.

This library aggregates:
® hardware_uart
® hardware_gpio
® pico_binary_info
® pico_runtime
® pico_platform
® pico_printf
® pico_stdio
® pico_standard_link
® pico_util

There are some basic default values used by these functions that will default to usable values, however, they can be
customised in a board definition header via config.h or similar

4.2.3.1. Function List
® void setup_default_uart ()

]
4.2. High Level APIs 194

Raspberry Pi Pico C/C++ SDK
]

® void set_sys_clock_48mhz ()
® yoid set_sys_clock_pll (uint32_t vco_freq, uint post_divl, uint post_div2)
® bool check_sys_clock_khz (uint32_t freq_khz, uvint *vco_freq_out, uint *post_div1_out, uint *post_div2_out)

® static bool set_sys_clock_khz (uint32_t freq_khz, bool required)

4.2.3.2. Function Documentation

4.2.3.2.1. check_sys_clock_khz

bool check_sys_clock_khz (uint32_t freq_khz,
uint *vco_freq_out,
uint *post_div1_out,
uint *post_div2_out)

Check if a given system clock frequency is valid/attainable.
Parameters
® freq_khz Requested frequency
® yco_freq_out On success, the voltage controller oscillator frequeucny to be used by the SYS PLL
® post_div1_out On success, The first post divider for the SYS PLL
® post_div2_out On success, The second post divider for the SYS PLL.
Returns

* true if the frequency is possible and the output parameters have been written.

4.2.3.2.2. set_sys_clock_48mhz
void set_sys_clock_48mhz ()
Initialise the system clock to 48MHz.

Set the system clock to 48MHz, and set the peripheral clock to match.

4.2.3.2.3. set_sys_clock_khz

static bool set_sys_clock_khz (uint32_t freq_khz,
bool required)

Attempt to set a system clock frequency in khz.

Note that not all clock frequencies are possible; it is preferred that you use
src/rp2_common/hardware_clocks/scripts/vcocalc.py to calculate the parameters for use with set_sys_clock_pll

Parameters

® freq_khz Requested frequency

® required if true then this function will assert if the frequency is not attainable.
Returns

* true if the clock was configured

4.2.3.2.4. set_sys_clock_pll

void set_sys_clock_pll (uint32_t vco_freg,

]
4.2. High Level APIs 195

Raspberry Pi Pico C/C++ SDK
]

uint post_div1,
uint post_div2)

Initialise the system clock.
See the PLL documentation in the datasheet for details of driving the PLLs.
Parameters
® vco_freq The voltage controller oscillator frequency to be used by the SYS PLL
® post_div1 The first post divider for the SYS PLL

® post_div2 The second post divider for the SYS PLL.

4.2.3.2.5. setup_default_uart

void setup_default_uart ()

Set up the default UART and assign it to the default GPIO’s.

By default this will use UART 0, with TX to pin GPIO 0, RX to pin GPIO 1, and the baudrate to 115200
Calling this method also initializes stdin/stdout over UART if the pico_stdio_uart library is linked.

Defaults can be changed using configuration defines, PICO_DEFAULT_UART_INSTANCE,
PICO_DEFAULT_UART_BAUD_RATE PICO_DEFAULT_UART_TX_PIN PICO_DEFAULT_UART_RX_PIN

4.2.4. pico_sync

Synchronization primitives and mutual exclusion.

4.2.4.1. Modules

® critical_section

Critical Section API for short-lived mutual exclusion safe for IRQ and multi-core.

® mutex

Mutex API for non IRQ mutual exclusion between cores.

® sem

Semaphore API for restricting access to a resource.

4.2.5. critical_section

Critical Section API for short-lived mutual exclusion safe for IRQ and multi-core.

A critical section is non-reentrant, and provides mutual exclusion using a spin-lock to prevent access from the other
core, and from (higher priority) interrupts on the same core. It does the former using a spin lock and the latter by
disabling interrupts on the calling core.

Because interrupts are disabled by this function, uses of the critical_section should be as short as possible.

4.2.5.1. Function List

® void critical_section_init (critical_section_t *critsec)
® void critical_section_init_with_lock_num (critical_section_t *critsec, uint lock_num)

® static void critical_section_enter_blocking (critical_section_t *critsec)

]
4.2. High Level APIs 196

Raspberry Pi Pico C/C++ SDK

® static void critical_section_exit (critical_section_t *critsec)

4.2.5.2. Function Documentation

4.2.5.2.1. critical_section_enter_blocking

static void critical_section_enter_blocking (critical_section_t *critsec)

Enter a critical_section.

If the spin lock associated with this critical section is in use, then this method will block until it is released.
Parameters

® critsec Pointer to critical_section structure

4.2.5.2.2. critical_section_exit

static void critical_section_exit (critical_section_t *critsec)
Release a critical_section.

Parameters

® critsec Pointer to critical_section structure

4.2.5.2.3. critical_section_init
void critical_section_init (critical_section_t *critsec)
Initialise a critical_section structure allowing the system to assign a spin lock number.

The critical section is initialized ready for use, and will use a (possibly shared) spin lock number assigned by the
system. Note that in general it is unlikely that you would be nesting critical sections, however if you do so you use
critical_section_init_with_lock_num to ensure that the spin lock’s used are different.

Parameters

® critsec Pointer to critical_section structure

4.2.5.2.4. critical_section_init_with_lock_num

void critical_section_init_with_lock_num (critical_section_t *critsec,
uint lock_num)

Initialise a critical_section structure assigning a specific spin lock number.
Parameters
® critsec Pointer to critical_section structure

® lock_num the specific spin lock number to use

4.2.6. mutex

Mutex API for non IRQ mutual exclusion between cores.

Mutexes are application level locks usually used protecting data structures that might be used by multiple cores. Unlike
critical sections, the mutex protected code is not necessarily required/expected to complete quickly, as no other
sytemwide locks are held on account of a locked mutex.

Because they are not re-entrant on the same core, blocking on a mutex should never be done in an IRQ handler. It is

4.2. High Level APIs 197

Raspberry Pi Pico C/C++ SDK
]

valid to call mutex_try_enter from within an IRQ handler, if the operation that would be conducted under lock can be
skipped if the mutex is locked (at least by the same core).

See critical_section.h for protecting access between multiple cores AND IRQ handlers

4.2.6.1. Macros

® f#define auto_init_mutex(name) static __attribute__((section(".mutex_array"))) mutex_t name

Helper macro for static definition of mutexes.

4.2.6.2. Function List

® void mutex_init (mutex_t *mtx)

® void mutex_enter_blocking (mutex_t *mtx)

® bool mutex_try_enter (mutex_t *mtx, uint32_t *owner_out)

® bhool mutex_enter_timeout_ms (mutex_t *mtx, uint32_t timeout_ms)

® hool mutex_enter_block_until (mutex_t *mtx, absolute_time_t until)
® void mutex_exit (mutex_t *mtx)

® static bool mutex_is_initialzed (mutex_t *mtx)

4.2.6.3. Function Documentation

4.2.6.3.1. mutex_enter_block_until

bool mutex_enter_block_until (mutex_t *mtx,

absolute_time_t until)
Wait for mutex until a specific time.

Wait until the specific time to take ownership of the mutex. If the calling core can take ownership of the mutex before
the timeout expires, then true will be returned and the calling core will own the mutex, otherwise false will be returned
and the calling core will own the mutex.

Parameters

® mtx Pointer to mutex structure

® until The time after which to return if the core cannot take owner ship of the mutex
Returns

* true if mutex now owned, false if timeout occurred before mutex became available

4.2.6.3.2. mutex_enter_blocking
void mutex_enter_blocking (mutex_t *mtx)
Take ownership of a mutex.

This function will block until the calling core can claim ownership of the mutex. On return the caller core owns the
mutex

Parameters

® mtx Pointer to mutex structure

]
4.2. High Level APIs 198

Raspberry Pi Pico C/C++ SDK
]

4.2.6.3.3. mutex_enter_timeout_ms

bool mutex_enter_timeout_ms (mutex_t *mtx,

uint32_t timeout_ms)
Wait for mutex with timeout.

Wait for up to the specific time to take ownership of the mutex. If the calling core can take ownership of the mutex
before the timeout expires, then true will be returned and the calling core will own the mutex, otherwise false will be
returned and the calling core will own the mutex.

Parameters

® mtx Pointer to mutex structure

® timeout_ms The timeout in milliseconds.
Returns

* true if mutex now owned, false if timeout occurred before mutex became available

4.2.6.3.4. mutex_exit

void mutex_exit (mutex_t *mtx)
Release ownership of a mutex.
Parameters

® mtx Pointer to mutex structure

4.2.6.3.5. mutex_init

void mutex_init (mutex_t *mtx)
Initialise a mutex structure.
Parameters

® mtx Pointer to mutex structure

4.2.6.3.6. mutex_is_initialzed
static bool mutex_is_initialzed (mutex_t *mtx)
Test for mutex initialised state.
Parameters
® mtx Pointer to mutex structure
Returns

® true if the mutex is initialised, false otherwise

4.2.6.3.7. mutex_try_enter

bool mutex_try_enter (mutex_t *mtx,

uint32_t *owner_out)
Check to see if a mutex is available.
Will return true if the mutex is unowned, false otherwise

Parameters

]
4.2. High Level APIs 199

Raspberry Pi Pico C/C++ SDK
]

® mtx Pointer to mutex structure

® owner_out If mutex is owned, and this pointer is non-zero, it will be filled in with the core number of the current
owner of the mutex

4.2.7. sem

Semaphore API for restricting access to a resource.

A semaphore holds a number of available permits. sem_acquire methods will acquire a permit if available (reducing the
available count by 1) or block if the number of available permits is 0. sem_release() increases the number of available
permits by one potentially unblocking a sem_acquire method.

Note that sem_release() may be called an arbitrary number of times, however the number of available permits is capped
to the max_permit value specified during semaphore initialization.

Although these semaphore related functions can be used from IRQ handlers, it is obviously preferable to only release
semaphores from within an IRQ handler (i.e. avoid blocking)

4.2.7.1. Function List

® void sem_init (semaphore_t *sem, int16_t initial_permits, int16_t max_permits)
® int sem_available (semaphore_t *sem)

® bool sem_release (semaphore_t *sem)

® void sem_reset (semaphore_t *sem, int16_t permits)

® void sem_acquire_blocking (semaphore_t *sem)

® bool sem_acquire_timeout_ms (semaphore_t *sem, uint32_t timeout_ms)

4.2.7.2. Function Documentation

4.2.7.2.1. sem_acquire_blocking

void sem_acquire_blocking (semaphore_t *sem)

Acquire a permit from the semaphore.

This function will block and wait if no permits are available.
Parameters

® sem Pointer to semaphore structure

4.2.7.2.2. sem_acquire_timeout_ms

bool sem_acquire_timeout_ms (semaphore_t *sem,
uint32_t timeout_ms)

Acquire a permit from a semaphore, with timeout.

This function will block and wait if no permits are available, until the defined timeout has been reached. If the timeout is
reached the function will return false, otherwise it will return true.

Parameters
® sem Pointer to semaphore structure
® timeout_ms Time to wait to acquire the semaphore, in ms.

]
4.2. High Level APIs 200

Raspberry Pi Pico C/C++ SDK
]

Returns

e false if timeout reached, true if permit was acquired.

4.2.7.2.3. sem_available

int sem_available (semaphore_t *sem)
Return number of available permits on the semaphore.
Parameters
® sem Pointer to semaphore structure
Returns

® The number of permits available on the semaphore.

4.2.7.2.4. sem_init

void sem_init (semaphore_t *sem,
int16_t initial_permits,
int16_t max_permits)

Initialise a semaphore structure.
Parameters
® sem Pointer to semaphore structure
® initial_permits How many permits are initially acquired

® max_permits Total number of permits allowed for this semaphore

4.2.7.2.5. sem_release
bool sem_release (semaphore_t *sem)
Release a permit on a semaphore.

Increases the number of permits by one (unless the number of permits is already at the maximum). A blocked
sem_acquire will be released if the number of permits is increased.

Parameters
® sem Pointer to semaphore structure
Returns

e true if the number of permits available was increased.

4.2.7.2.6. sem_reset

void sem_reset (semaphore_t *sem,
int16_t permits)

Reset semaphore to a specific number of available permits.
Reset value should be from 0 to the max_permits specified in the init function
Parameters

® sem Pointer to semaphore structure

® permits the new number of available permits

]
4.2. High Level APIs 201

Raspberry Pi Pico C/C++ SDK
]

4.2.8. pico_time

API for accurate timestamps, sleeping, and time based callbacks.

The functions defined here provide a much more powerful and user friendly wrapping around the low level hardware
timer functionality. For these functions (and any other SDK functionality e.g. timeouts, that relies on them) to work
correctly, the hardware timer should not be modified. i.e. it is expected to be monotonically increasing once per
microsecond. Fortunately there is no need to modify the hardware timer as any functionality you can think of that isn't
already covered here can easily be modelled by adding or subtracting a constant value from the unmodified hardware
timer.

® hardware_timer

4.2.8.1. Modules

® timestamp
Timestamp functions relating to points in time (including the current time)

® sleep
Sleep functions for delaying execution in a lower power state.

® alarm

Alarm functions for scheduling future execution.

® repeating_timer

Repeating Timer functions for simple scheduling of repeated execution.

4.2.9. timestamp

Timestamp functions relating to points in time (including the current time)

These are functions for dealing with timestamps (i.e. instants in time) represented by the type absolute_time_t. This
opaque type is provided to help prevent accidental mixing of timestamps and relative time values.

4.2.9.1. Function List

® static absolute_time_t get_absolute_time ()

® static uint32_t to_ms_since_boot (absolute_time_t t)

® static absolute_time_t delayed_by_us (const absolute_time_t t, uint64_t us)

® static absolute_time_t delayed_by_ms (const absolute_time_t t, uint32_t ms)

® static absolute_time_t make_timeout_time_us (uint64_t us)

® static absolute_time_t make_timeout_time_ms (uint32_t ms)

® static int64_t absolute_time_diff_us (absolute_time_t from, absolute_time_t to)

® static bool is_nil_time (absolute_time_t t)

4.2.9.2. Function Documentation

4.2.9.2.1. absolute_time_diff_us

static int64_t absolute_time_diff_us (absolute_time_t from,

absolute_time_t to)

Return the difference in microseconds between two timestamps.

]
4.2. High Level APIs 202

Raspberry Pi Pico C/C++ SDK
]

Parameters
® from the first timestamp
® to the second timestamp
Returns

* the number of microseconds between the two timestamps (positive if to is after from except in case of overflow)

4.2.9.2.2. delayed_by_ms

static absolute_time_t delayed_by_ms (const absolute_time_t t,
uint32_t ms)

Return a timestamp value obtained by adding a number of milliseconds to another timestamp.
Parameters

® t the base timestamp

® ms the number of milliseconds to add
Returns

® the timestamp representing the resulting time

4.2.9.2.3. delayed_by_us

static absolute_time_t delayed_by_us (const absolute_time_t t,
uint64_t us)

Return a timestamp value obtained by adding a number of microseconds to another timestamp.
Parameters

® t the base timestamp

® us the number of microseconds to add
Returns

* the timestamp representing the resulting time

4.2.9.2.4. get_absolute_time
static absolute_time_t get_absolute_time ()
Return a representation of the current time.
Returns an opaque high fidelity representation of the current time sampled during the call.
Returns
* the absolute time (now) of the hardware timer
See also
® absolute_time_t
® sleep_until()

® time_us_64()

4.2.9.2.5. is_nil_time

static bool is_nil_time (absolute_time_t t)

]
4.2. High Level APIs 203

Raspberry Pi Pico C/C++ SDK
]

Determine if the given timestamp is nil.
Parameters
® t the timestamp
Returns
® true if the timestamp is nil
See also

* nil_time()

4.2.9.2.6. make_timeout_time_ms
static absolute_time_t make_timeout_time_ms (uint32_t ms)
Convenience method to get the timestamp a number of milliseconds from the current time.
Parameters
* ns the number of milliseconds to add to the current timestamp
Returns

® the future timestamp

4.2.9.2.7. make_timeout_time_us
static absolute_time_t make_timeout_time_us (uint64_t us)
Convenience method to get the timestamp a number of microseconds from the current time.
Parameters
® ys the number of microseconds to add to the current timestamp
Returns

e the future timestamp

4.2.9.2.8. to_ms_since_boot
static uint32_t to_ms_since_boot (absolute_time_t t)
Convert a timestamp into a number of milliseconds since boot.
fn to_ms_since_boot
Parameters
® t an absolute_time_t value to convert
Returns
® the number of microseconds since boot represented by t
See also

® to_us_since_boot

4.2.10. sleep

Sleep functions for delaying execution in a lower power state.
These functions allow the calling core to sleep. This is a lower powered sleep; waking and re-checking time on every
processor event (WFE)

]
4.2. High Level APIs 204

Raspberry Pi Pico C/C++ SDK
]

These functions should not be called from an IRQ handler.

Lower powered sleep requires use of the default alarm pool which may be disabled by the
PICO_TIME_DEFAULT_ALARM_POOL_DISABLED define or currently full in which case these functions become busy
waits instead.

Whilst sleep_ functions are preferable to busy_wait functions from a power perspective, the busy_wait equivalent
function may return slightly sooner after the target is reached.

® busy_wait_until()
® busy_wait_us()

® busy_wait_us_32()

4.2.10.1. Function List

® yvoid sleep_until (absolute_time_t target)
® void sleep_us (uint64_t us)
® void sleep_ms (uint32_t ms)

® bool best_effort_wfe_or_timeout (absolute_time_t timeout_timestamp)

4.2.10.2. Function Documentation

4.2.10.2.1. best_effort_wfe_or_timeout
bool best_effort_wfe_or_timeout (absolute_time_t timeout_timestamp)
Helper method for blocking on a timeout.

This method will return in response to a an event (as per __wfe) or when the target time is reached, or at any point
before.

This method can be used to implement a lower power polling loop waiting on some condition signalled by an event
(__sev()).

This is called because under certain circumstances (notably the default timer pool being disabled or full) the best effort
is simply to return immediately without a __wfe, thus turning the calling code into a busy wait.

Example usage:
Parameters

® timeout_timestamp the timeout time
Returns

* true if the target time is reached, false otherwise

4.2.10.2.2. sleep_ms

void sleep_ms (uint32_t ms)

Wait for the given number of milliseconds before returning.
Parameters

® ns the number of milliseconds to sleep

]
4.2. High Level APIs 205

Raspberry Pi Pico C/C++ SDK
]

4.2.10.2.3. sleep_until
void sleep_until (absolute_time_t target)
Wait until after the given timestamp to return.
Parameters

® target the time after which to return
See also

® sleep_us()

® busy_wait_until()

4.2.10.2.4. sleep_us
void sleep_us (uintb4_t us)
Wait for the given number of microseconds before returning.
Parameters
® ys the number of microseconds to sleep
See also

® busy_wait_us()

4.2.11. alarm

Alarm functions for scheduling future execution.

Alarms are added to alarm pools, which may hold a certain fixed number of active alarms. Each alarm pool utilizes one
of four underlying hardware alarms, thus you may have up to four alarm pools. An alarm pool calls (except when the
callback would happen before or during being set) the callback on the core from which the alarm pool was created.
Callbacks are called from the hardware alarm IRQ handler, so care must be taken in their implementation.

A default pool is created the core specified by PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM on core
0, and may be used by the method variants that take no alarm pool parameter.

See also
e struct alarm_pool

® hardware_timer

4.2.11.1. Macros
® ttdefine PICO_TIME_DEFAULT_ALARM_POOL_DISABLED 0
If 1 then the default alarm pool is disabled (so no hardware alarm is claimed for the pool)

® fidefine PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM 3
Selects which hardware alarm is used for the default alarm pool.

® jdefine PICO_TIME_DEFAULT_ALARM_POOL_MAX_TIMERS 16
Selects the maximum number of concurrent timers in the default alarm pool.

4.2.11.2. Typedefs

® typedef int32_t alarm_id_t
The identifier for an alarm.

]
4.2. High Level APIs 206

Raspberry Pi Pico C/C++ SDK
]

® typedef int64_t(* alarm_callback_t)(alarm_id_t id, void *user_data)
User alarm callback.

4.2.11.3. Function List

® void alarm_pool_init_default ()

® alarm_pool_t * alarm_pool_get_default ()

® 3larm_pool_t * alarm_pool_create (uint hardware_alarm_num, uint max_timers)
® yint alarm_pool_hardware_alarm_num (alarm_pool_t *pool)

® void alarm_pool_destroy (alarm_pool_t *pool)

® 3larm_id_t alarm_pool_add_alarm_at (alarm_pool_t *pool, absolute_time_t time, alarm_callback_t callback, void
*user_data, bool fire_if_past)

® static alarm_id_t alarm_pool_add_alarm_in_us (alarm_pool_t *pool, uint64_t us, alarm_callback_t callback, void
*user_data, bool fire_if_past)

® static alarm_id_t alarm_pool_add_alarm_in_ms (alarm_pool_t *pool, uint32_t ms, alarm_callback_t callback, void
*user_data, bool fire_if_past)

® bool alarm_pool_cancel_alarm (alarm_pool_t *pool, alarm_id_t alarm_id)

® static alarm_id_t add_alarm_at (absolute_time_t time, alarm_callback_t callback, void *user_data, bool fire_if_past)
® static alarm_id_t add_alarm_in_us (uintb64_t us, alarm_callback_t callback, void *user_data, bool fire_if_past)

® static alarm_id_t add_alarm_in_ms (uint32_t ms, alarm_callback_t callback, void *user_data, bool fire_if_past)

® static bool cancel_alarm (alarm_id_t alarm_id)

4.2.11.4. Function Documentation

4.2.11.4.1. add_alarm_at

static alarm_id_t add_alarm_at (absolute_time_t time,
alarm_callback_t callback,
void *user_data,

bool fire_if_past)
Add an alarm callback to be called at a specific time.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the
default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be
completed, then this method will optionally call the callback itself and then return a return code to indicate that the
target time has passed.

Parameters
e time the timestamp when (after which) the callback should fire
® callback the callback function
® yser_data user data to pass to the callback function

® fire_if_past if true, this method will call the callback itself before returning 0 if the timestamp happens before or
during this method call

Returns

® >0 the alarmid

]
4.2. High Level APIs 207

Raspberry Pi Pico C/C++ SDK

® 0 the target timestamp was during or before this method call (whether the callback was called depends on
fire_if_past)

® -1 if there were no alarm slots available

4.2.11.4.2. add_alarm_in_ms

static alarm_id_t add_alarm_in_ms (uint32_t ms,
alarm_callback_t callback,
void *user_data,

bool fire_if_past)
Add an alarm callback to be called after a delay specified in milliseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the
default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be
completed, then this method will optionally call the callback itself and then return a return code to indicate that the
target time has passed.

Parameters
* ns the delay (from now) in milliseconds when (after which) the callback should fire
® callback the callback function
® yser_data user data to pass to the callback function

® fire_if_past if true, this method will call the callback itself before returning 0 if the timestamp happens before or
during this method call

Returns
® >0 the alarmid

® 0 the target timestamp was during or before this method call (whether the callback was called depends on
fire_if_past)

® -1 if there were no alarm slots available

4.2.11.4.3. add_alarm_in_us

static alarm_id_t add_alarm_in_us (uint64_t us,
alarm_callback_t callback,
void *user_data,

bool fire_if_past)
Add an alarm callback to be called after a delay specified in microseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the
default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be
completed, then this method will optionally call the callback itself and then return a return code to indicate that the
target time has passed.

Parameters
® s the delay (from now) in microseconds when (after which) the callback should fire
® callback the callback function
® yser_data user data to pass to the callback function

® fire_if_past if true, this method will call the callback itself before returning 0 if the timestamp happens before or
during this method call

Returns

4.2. High Level APIs 208

Raspberry Pi Pico C/C++ SDK
]

® >0 the alarmid

® 0 the target timestamp was during or before this method call (whether the callback was called depends on
fire_if_past)

® -1 if there were no alarm slots available

4.2.11.4.4. alarm_pool_add_alarm_at

alarm_id_t alarm_pool_add_alarm_at (alarm_pool_t *pool,
absolute_time_t time,
alarm_callback_t callback,
void *user_data,

bool fire_if_past)
Add an alarm callback to be called at a specific time.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm
pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this
method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

Parameters

® pool the alarm pool to use for scheduling the callback (this determines which hardware alarm is used, and which
core calls the callback)

* time the timestamp when (after which) the callback should fire
® callback the callback function
® yser_data user data to pass to the callback function

® fire_if_past if true, this method will call the callback itself before returning 0 if the timestamp happens before or
during this method call

Returns
® >0 the alarmid

® 0 the target timestamp was during or before this method call (whether the callback was called depends on
fire_if_past)

® -1 if there were no alarm slots available

4.2.11.4.5. alarm_pool_add_alarm_in_ms

static alarm_id_t alarm_pool_add_alarm_in_ms (alarm_pool_t *pool,
uint32_t ms,
alarm_callback_t callback,
void *user_data,

bool fire_if_past)
Add an alarm callback to be called after a delay specified in milliseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm
pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this
method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

Parameters

® pool the alarm pool to use for scheduling the callback (this determines which hardware alarm is used, and which
core calls the callback)

® ns the delay (from now) in milliseconds when (after which) the callback should fire
® callback the callback function

]
4.2. High Level APIs 209

Raspberry Pi Pico C/C++ SDK

® yser_data user data to pass to the callback function

® fire_if_past if true, this method will call the callback itself before returning 0 if the timestamp happens before or
during this method call

Returns
® >0 the alarmid

® 0 the target timestamp was during or before this method call (whether the callback was called depends on
fire_if_past)

® -1 if there were no alarm slots available

4.2.11.4.6. alarm_pool_add_alarm_in_us

static alarm_id_t alarm_pool_add_alarm_in_us (alarm_pool_t *pool,
uintb4_t us,
alarm_callback_t callback,
void *user_data,
bool fire_if_past)

Add an alarm callback to be called after a delay specified in microseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm
pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this
method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

Parameters

® pool the alarm pool to use for scheduling the callback (this determines which hardware alarm is used, and which
core calls the callback)

® s the delay (from now) in microseconds when (after which) the callback should fire
® callback the callback function
® yser_data user data to pass to the callback function

® fire_if_past if true, this method will call the callback itself before returning 0 if the timestamp happens before or
during this method call

Returns
® >0 the alarmid

® 0 the target timestamp was during or before this method call (whether the callback was called depends on
fire_if_past)

® -1 if there were no alarm slots available

4.2.11.4.7. alarm_pool_cancel_alarm

bool alarm_pool_cancel_alarm (alarm_pool_t *pool,

alarm_id_t alarm_id)
Cancel an alarm.
Parameters
® pool the alarm_pool containing the alarm
® alarm_id the alarm
Returns

e true if the alarm was cancelled, false if it didn’t exist

4.2. High Level APIs 210

Raspberry Pi Pico C/C++ SDK
]

See also

® alarm_id_t for a note on reuse of IDs

4.2.11.4.8. alarm_pool_create

alarm_pool_t* alarm_pool_create (uint hardware_alarm_num,

uint max_timers)
Create an alarm pool.
The alarm pool will call callbacks from an alarm IRQ Handler on the core of this function is called from.

In many situations there is never any need for anything other than the default alarm pool, however you might want to
create another if you want alarm callbacks on core 1 or require alarm pools of different priority (IRQ priority based
preemption of callbacks)

Parameters
® hardware_alarm_num the hardware alarm to use to back this pool
® max_timers the maximum number of timers

See also
® alarm_pool_get_default()

® hardware_claiming

4.2.11.4.9. alarm_pool_destroy
void alarm_pool_destroy (alarm_pool_t *pool)
Destroy the alarm pool, cancelling all alarms and freeing up the underlying hardware alarm.
Parameters
® pool the pool
Returns

® the hardware alarm used by the pool

4.2.11.4.10. alarm_pool_get_default

alarm_pool_t* alarm_pool_get_default ()

The default alarm pool used when alarms are added without specifying an alarm pool, and also used by the SDK to
support lower power sleeps and timeouts.

See also

® PICO_TIME_DEFAULT_ALARM_POOL_HARDWARE_ALARM_NUM

4.2.11.4.11. alarm_pool_hardware_alarm_num
uint alarm_pool_hardware_alarm_num (alarm_pool_t *pool)
Return the hardware alarm used by an alarm pool.
Parameters

® pool the pool

Returns

]
4.2. High Level APIs 211

Raspberry Pi Pico C/C++ SDK

* the hardware alarm used by the pool

4.2.11.4.12. alarm_pool_init_default

void alarm_pool_init_default ()

Create the default alarm pool (if not already created or disabled)

4.2.11.4.13. cancel_alarm
static bool cancel_alarm (alarm_id_t alarm_id)
Cancel an alarm from the default alarm pool.
Parameters

® 3larm_id the alarm
Returns

e true if the alarm was cancelled, false if it didn't exist
See also

e alarm_id_t for a note on reuse of IDs

4.2.12. repeating_timer

Repeating Timer functions for simple scheduling of repeated execution.

The regular alarm_ functionality can be used to make repeating alarms (by return non zero from the callback), however
these methods abstract that further (at the cost of a user structure to store the repeat delay in (which the alarm

framework does not have space for).

4.2.12.1. Data Structures

® struct repeating_timer
Information about a repeating timer.

4.2.12.2. Typedefs

® typedef bool(* repeating_timer_callback_t)(repeating_timer_t *rt)
Callback for a repeating timer.

4.2.12.3. Function List

® bool alarm_pool_add_repeating_timer_us (alarm_pool_t *pool, int64_t delay_us, repeating_timer_callback_t callback,

void *user_data, repeating_timer_t *out)

® static bool alarm_pool_add_repeating_timer_ms (alarm_pool_t *pool,

callback, void *user_data, repeating_timer_t *out)

® static bool add_repeating_timer_us (int64_t delay_us, repeating_timer_callback_t

repeating_timer_t *out)

® static bool add_repeating_timer_ms (int32_t delay_ms, repeating_timer_callback_t

repeating_timer_t *out)

® bool cancel_repeating_timer (repeating_timer_t *timer)

int32_t delay_ms,

repeating_timer_callback_t

*user_data,

*user_data,

4.2. High Level APIs

212

Raspberry Pi Pico C/C++ SDK

4.2.12.4. Function Documentation

4.2.12.4.1. add_repeating_timer_ms

static bool add_repeating_timer_ms (int32_t delay_ms,
repeating_timer_callback_t callback,
void *user_data,
repeating_timer_t *out)

Add a repeating timer that is called repeatedly at the specified interval in milliseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the
default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be
completed, then this method will optionally call the callback itself and then return a return code to indicate that the
target time has passed.

Parameters

® delay_ms the repeat delay in milliseconds; if >0 then this is the delay between one callback ending and the next
starting; if <0 then this is the negative of the time between the starts of the callbacks. The value of 0 is treated as 1
microsecond

® callback the repeating timer callback function
® yser_data user data to pass to store in the repeating_timer structure for use by the callback.

® out the pointer to the user owned structure to store the repeating timer info in. BEWARE this storage location must
outlive the repeating timer, so be careful of using stack space

Returns

¢ false if there were no alarm slots available to create the timer, true otherwise.

4.2.12.4.2. add_repeating_timer_us

static bool add_repeating_timer_us (int64_t delay_us,
repeating_timer_callback_t callback,
void *user_data,

repeating_timer_t *out)
Add a repeating timer that is called repeatedly at the specified interval in microseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core of the
default alarm pool (generally core 0). If the callback is in the past or happens before the alarm setup could be
completed, then this method will optionally call the callback itself and then return a return code to indicate that the
target time has passed.

Parameters

® delay_us the repeat delay in microseconds; if >0 then this is the delay between one callback ending and the next
starting; if <0 then this is the negative of the time between the starts of the callbacks. The value of 0 is treated as 1

® callback the repeating timer callback function
® yser_data user data to pass to store in the repeating_timer structure for use by the callback.

® out the pointer to the user owned structure to store the repeating timer info in. BEWARE this storage location must
outlive the repeating timer, so be careful of using stack space

Returns

* false if there were no alarm slots available to create the timer, true otherwise.

4.2. High Level APIs 213

Raspberry Pi Pico C/C++ SDK
]

4.2.12.4.3. alarm_pool_add_repeating_timer_ms

static bool alarm_pool_add_repeating_timer_ms (alarm_pool_t *pool,
int32_t delay_ms,
repeating_timer_callback_t callback,
void *user_data,
repeating_timer_t *out)

Add a repeating timer that is called repeatedly at the specified interval in milliseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm
pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this
method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

Parameters

® pool the alarm pool to use for scheduling the repeating timer (this determines which hardware alarm is used, and
which core calls the callback)

® delay_ms the repeat delay in milliseconds; if >0 then this is the delay between one callback ending and the next
starting; if <0 then this is the negative of the time between the starts of the callbacks. The value of 0 is treated as 1
microsecond

® callback the repeating timer callback function
® yser_data user data to pass to store in the repeating_timer structure for use by the callback.

® out the pointer to the user owned structure to store the repeating timer info in. BEWARE this storage location must
outlive the repeating timer, so be careful of using stack space

Returns

¢ false if there were no alarm slots available to create the timer, true otherwise.

4.2.12.4.4. alarm_pool_add_repeating_timer_us

bool alarm_pool_add_repeating_timer_us (alarm_pool_t *pool,
int64_t delay_us,
repeating_timer_callback_t callback,
void *user_data,
repeating_timer_t *out)

Add a repeating timer that is called repeatedly at the specified interval in microseconds.

Generally the callback is called as soon as possible after the time specified from an IRQ handler on the core the alarm
pool was created on. If the callback is in the past or happens before the alarm setup could be completed, then this
method will optionally call the callback itself and then return a return code to indicate that the target time has passed.

Parameters

® pool the alarm pool to use for scheduling the repeating timer (this determines which hardware alarm is used, and
which core calls the callback)

® delay_us the repeat delay in microseconds; if >0 then this is the delay between one callback ending and the next
starting; if <0 then this is the negative of the time between the starts of the callbacks. The value of 0 is treated as 1

® callback the repeating timer callback function
® yser_data user data to pass to store in the repeating_timer structure for use by the callback.

® out the pointer to the user owned structure to store the repeating timer info in. BEWARE this storage location must
outlive the repeating timer, so be careful of using stack space

Returns

* false if there were no alarm slots available to create the timer, true otherwise.

]
4.2. High Level APIs 214

Raspberry Pi Pico C/C++ SDK
]

4.2.12.4.5. cancel_repeating_timer
bool cancel_repeating_timer (repeating_timer_t *timer)
Cancel a repeating timer.
Parameters
® timer the repeating timer to cancel
Returns
* true if the repeating timer was cancelled, false if it didn't exist
See also

® alarm_id_t for a note on reuse of IDs

4.2.13. pico_unique_id

Unique device ID access API.

RP2040 does not have an on-board unique identifier (all instances of RP2040 silicon are identical and have no
persistent state). However, RP2040 boots from serial NOR flash devices which have a 64-bit unique ID as a standard
feature, and there is a 1:1 association between RP2040 and flash, so this is suitable for use as a unique identifier for an
RP2040-based board.

This library injects a call to the flash_get_unique_id function from the hardware_flash library, to run before main, and
stores the result in a static location which can safely be accessed at any time via pico_get_unique_id().

This avoids some pitfalls of the hardware_flash API, which requires any flash-resident interrupt routines to be disabled
when called into.

4.2.13.1. Data Structures

® struct pico_unique_board_id_t
Unique board identifier.

4.2.13.2. Function List

® yoid pico_get_unique_board_id (pico_unique_board_id_t *id_out)

4.2.13.3. Function Documentation

4.2.13.3.1. pico_get_unique_board_id

void pico_get_unique_board_id (pico_unique_board_id_t *id_out)

Get unique ID.

Get the unique 64-bit device identifier which was retrieved from the external NOR flash device at boot.
On PICO_NO_FLASH builds the unique identifier is set to all OXEE.

Parameters

® id_out a pointer to a pico_unique_board_id_t struct, to which the identifier will be written

]
4.2. High Level APIs 215

Raspberry Pi Pico C/C++ SDK

4.2.14. pico_util

Useful data structures and utility functions.

4.2.14.1. Modules

® datetime

Date/Time formatting.

® pheap
Pairing Heap Implementation.

® queue

Multi-core and IRQ safe queue implementation.

4.2.15. datetime

Date/Time formatting.

4.2.15.1. Data Structures

® struct datetime_t

Structure containing date and time information.

4.2.15.2. Function List

® yvoid datetime_to_str (char *buf, uint buf_size, const datetime_t *t)

4.2.15.3. Function Documentation

4.2.15.3.1. datetime_to_str

void datetime_to_str (char *buf,
uint buf_size,
const datetime_t *t)

Convert a datetime_t structure to a string.
Parameters
® huf character buffer to accept generated string
® huf_size The size of the passed in buffer

® t The datetime to be converted.

4.2.16. pheap

Pairing Heap Implementation.

pheap defines a simple pairing heap. the implementation simply tracks array indexes, it is up to the user to provide
storage for heap entries and a comparison function.

4.2. High Level APIs 216

Raspberry Pi Pico C/C++ SDK

O NoTE

this class is not safe for concurrent usage. It should be externally protected. Furthermore if used concurrently, the
caller needs to protect around their use of the returned id. for example, ph_remove_head returns the id of an element
that is no longer in the heap.

The user can still use this to look at the data in their companion array, however obviously further operations on the heap
may cause them to overwrite that data as the id may be reused on subsequent operations

4.2.17. queue

Multi-core and IRQ safe queue implementation.

Note that this queue stores values of a specified size, and pushed values are copied into the queue

4.2.17.1. Function List

® void queuve_init_with_spinlock (queue_t *q, uint element_size, uint element_count, uint spinlock_num)
® static void queue_init (queue_t *q, uint element_size, uint element_count)
® void queue_free (queue_t *q)

® static uint queue_get_level_unsafe (queue_t *q)

® static uint queue_get_level (queue_t *q)

® static bool queue_is_empty (queue_t *q)

® static bool queue_is_full (queue_t *q)

® bool queuve_try_add (queuve_t *q, void *data)

® bool queue_try_remove (queue_t *q, void *data)

® bool queue_try_peek (queuve_t *q, void *data)

® void queuve_add_blocking (queuve_t *q, void *data)

® void queue_remove_blocking (queuve_t *q, void *data)

® void queue_peek_blocking (queue_t *q, void *data)

4.2.17.2. Function Documentation

4.2.17.2.1. queue_add_blocking

void queue_add_blocking (queue_t *qg,
void *data)

Blocking add of value to queue.
If the queue is full this function will block, until a removal happens on the queue
Parameters

® q Pointer to a queue_t structure, used as a handle

® data Pointer to value to be copied into the queue

]
4.2. High Level APIs 217

Raspberry Pi Pico C/C++ SDK
]

4.2.17.2.2. queue_free

void queue_free (queue_t *q)

Destroy the specified queue.

Does not deallocate the queue_t structure itself.
Parameters

® q Pointer to a queue_t structure, used as a handle

4.2.17.2.3. queue_get_level
static uint queue_get_level (queue_t *q)
Check of level of the specified queue.
Parameters
® q Pointer to a queue_t structure, used as a handle
Returns

® Number of entries in the queue

4.2.17.2.4. queue_get_level_unsafe
static uint queue_get_level_unsafe (queue_t *q)
Unsafe check of level of the specified queue.
This does not use the spinlock, so may return incorrect results if the spin lock is not externally locked
Parameters
® q Pointer to a queue_t structure, used as a handle
Returns

® Number of entries in the queue

4.2.17.2.5. queue_init

static void queue_init (queue_t *g,
uint element_size,

uint element_count)
Initialise a queue, allocating a (possibly shared) spinlock.
Parameters
® q Pointer to a queue_t structure, used as a handle
® clement_size Size of each value in the queue

® element_count Maximum number of entries in the queue

4.2.17.2.6. queue_init_with_spinlock

void queue_init_with_spinlock (queue_t *q,
uint element_size,
uint element_count,

uint spinlock_num)

Initialise a queue with a specific spinlock for concurrency protection.

]
4.2. High Level APIs 218

Raspberry Pi Pico C/C++ SDK
]

Parameters
® q Pointer to a queue_t structure, used as a handle
® clement_size Size of each value in the queue
® clement_count Maximum number of entries in the queue

® spinlock_num The spin ID used to protect the queue

4.2.17.2.7. queue_is_empty
static bool queue_is_empty (queue_t *q)
Check if queue is empty.
This function is interrupt and multicore safe.
Parameters

® q Pointer to a queue_t structure, used as a handle
Returns

e true if queue is empty, false otherwise

4.2.17.2.8. queue_is_full
static bool queue_is_full (queue_t *q)
Check if queue is full.
This function is interrupt and multicore safe.
Parameters

® q Pointer to a queue_t structure, used as a handle
Returns

e true if queue is full, false otherwise

4.2.17.2.9. queue_peek_blocking

void queue_peek_blocking (queue_t *q,
void *data)

Blocking peek at next value to be removed from queue.
If the queue is empty function will block until a value is added
Parameters

® g Pointer to a queue_t structure, used as a handle

® data Pointer to the location to receive the peeked value

4.2.17.2.10. queue_remove_blocking

void queue_remove_blocking (queue_t *q,
void *data)

Blocking remove entry from queue.
If the queue is empty this function will block until a value is added.

Parameters

]
4.2. High Level APIs 219

Raspberry Pi Pico C/C++ SDK
]

® q Pointer to a queue_t structure, used as a handle

® data Pointer to the location to receive the removed value

4.2.17.2.11. queue_try_add

bool queue_try_add (queue_t *q,

void *data)
Non-blocking add value queue if not full.

If the queue is full this function will return immediately with false, otherwise the data is copied into a new value added to
the queue, and this function will return true.

Parameters
® q Pointer to a queue_t structure, used as a handle
® data Pointer to value to be copied into the queue
Returns

® true if the value was added

4.2.17.2.12. queue_try_peek

bool queue_try_peek (queue_t *qg,
void *data)

Non-blocking peek at the next item to be removed from the queue.

If the queue is not empty this function will return immediately with true with the peeked entry copied into the location
specified by the data parameter, otherwise the function will return false.

Parameters

® q Pointer to a queue_t structure, used as a handle

® data Pointer to the location to receive the peeked value
Returns

® true if there was a value to peek

4.2.17.2.13. queue_try_remove

bool queue_try_remove (queue_t *q,
void *data)

Non-blocking removal of entry from the queue if non empty.

If the queue is not empty function will copy the removed value into the location provided and return immediately with
true, otherwise the function will return immediately with false.

Parameters

® g Pointer to a queue_t structure, used as a handle

® data Pointer to the location to receive the removed value
Returns

® true if a value was removed

]
4.2. High Level APIs 220

Raspberry Pi Pico C/C++ SDK

4.3. Third-party Libraries

Third party libraries for implementing high level functionality.

tinyusb_device TinyUSB Device-mode support for the RP2040

tinyusb_host TinyUSB Host-mode support for the RP2040

4.3.1. tinyusb_device

TinyUSB Device-mode support for the RP2040

4.3.2. tinyusb_host

TinyUSB Host-mode support for the RP2040

4.4. Runtime Infrastructure

Libraries that are used to provide efficient implementation of certain language level and C library functions, as well as
CMake INTERFACE libraries abstracting the compilation and link steps in the SDK.

boot_stage2 Second stage boot loaders responsible for setting up external flash.

pico_base Core types and macros for the Raspberry Pi Pico SDK. This header is intended to be included
by all source code.

pico_bit_ops Optimized bit manipulation functions. Additionally provides replacement implementations of
the compiler built-ins builtin_popcount, builtin_clz and __bulitin_ctz.

pico_bootrom Access to functions and data in the RP2040 bootrom.
pico_cxx_options non-code library controlling C++ related compile options
pico_divider Optimized 32 and 64 bit division functions accelerated by the RP2040 hardware divider.

Additionally provides integration with the C / and % operators.

pico_double Optimized double-precision floating point functions.

pico_float Optimized single-precision floating point functions.

pico_int64_ops Optimized replacement implementations of the compiler built-in 64 bit multiplication.
pico_malloc Multi-core safety for malloc, calloc and free.

pico_mem_ops Provides optimized replacement implementations of the compiler built-in memcpy, memset

and related functions:

pico_platform Compiler definitions for the selected PICO_PLATFORM.
pico_printf Compact replacement for printf by Marco Paland (info@paland.com)
pico_runtime Aggregate runtime support including pico_bit_ops, pico_divider, pico_double, pico_int64_ops,

pico_float, pico_malloc, pico_mem_ops and pico_standard_link.

pico_stdio Customized stdio support allowing for input and output from UART, USB, semi-hosting etc.

pico_stdio_semihos | Experimental support for stdout using RAM semihosting.
ting

pico_stdio_uart Support for stdin/stdout using UART.

]
4.3. Third-party Libraries 221

mailto:info@paland.com

Raspberry Pi Pico C/C++ SDK
]

pico_stdio_usb Support for stdin/stdout over USB serial (CDC)

pico_standard_link Standard link step providing the basics for creating a runnable binary.

4.4.1. boot_stage2

Second stage boot loaders responsible for setting up external flash.

4.4.2. pico_base

Core types and macros for the Raspberry Pi Pico SDK. This header is intended to be included by all source code.

4.4.3. pico_bit_ops

Optimized bit manipulation functions. Additionally provides replacement implementations of the compiler built-ins
builtin_popcount, builtin_clz and __bulitin_ctz.

4.4.3.1. Function List

® yint32_t __rev (uint32_t bits)

® yint64_t __revll (uintb4_t bits)

4.4.3.2. Function Documentation

4.4.3.2.1. _rev
uint32_t __rev (uint32_t bits)
Reverse the bits in a 32 bit word.
Parameters

® bits 32 bit input
Returns

® the 32 input bits reversed

4.43.2.2. _revll
uint64_t __revll (uint64_t bits)
Reverse the bits in a 64 bit double word.
Parameters

® bits 64 bit input
Returns

® the 64 input bits reversed

4.4. Runtime Infrastructure 222

Raspberry Pi Pico C/C++ SDK

4.4.4. pico_bootrom

Access to functions and data in the RP2040 bootrom.

4.4.4.1. Function List

® static uint32_t rom_table_code (char c¢1, char c2)

® void * rom_func_lookup (uint32_t code)

® void * rom_data_lookup (uint32_t code)

® bool rom_funcs_lookup (uint32_t *table, unsigned int count)

® static void reset_usb_boot (uint32_t usb_activity_gpio_pin_mask, uint32_t disable_interface_mask)

4.4.4.2. Function Documentation

4.4.4.2.1. reset_usb_boot

static void reset_usb_boot (uint32_t usb_activity_gpio_pin_mask,

uint32_t disable_interface_mask)
Reboot the device into BOOTSEL mode.
This function reboots the device into the BOOTSEL mode (‘usb boot").

Facilities are provided to enable an "activity light" via GPIO attached LED for the USB Mass Storage Device, and to limit
the USB interfaces exposed.

Parameters

® usb_activity_gpio_pin_mask O No pins are used as per a cold boot. Otherwise a single bit set indicating which GPIO
pin should be set to output and raised whenever there is mass storage activity from the host.

® disable_interface_mask value to control exposed interfaces
® 0 To enable both interfaces (as per a cold boot)
* 1 To disable the USB Mass Storage Interface

® 2 To disable the USB PICOBOOT Interface

4.4.4.2.2. rom_data_lookup
void* rom_data_lookup (uint32_t code)
Lookup a bootrom address by code.
Parameters

® code the code
Returns

® apointer to the data, or NULL if the code does not match any bootrom function

4.4.4.2.3. rom_func_lookup
void* rom_func_lookup (uint32_t code)
Lookup a bootrom function by code.

Parameters

4.4. Runtime Infrastructure 223

Raspberry Pi Pico C/C++ SDK
]

® code the code
Returns

® a pointer to the function, or NULL if the code does not match any bootrom function

4.4.4.2.4. rom_funcs_lookup

bool rom_funcs_lookup (uint32_t *table,
unsigned int count)

Helper function to lookup the addresses of multiple bootrom functions.

This method looks up the 'codes' in the table, and convert each table entry to the looked up function pointer, if there is a
function for that code in the bootrom.

Parameters
® table an IN/OUT array, elements are codes on input, function pointers on success.
® count the number of elements in the table

Returns

e true if all the codes were found, and converted to function pointers, false otherwise

4.4.4.2.5. rom_table_code

static uint32_t rom_table_code (char c1,
char ¢2)

Return a bootrom lookup code based on two ASCII characters.
These codes are uses to lookup data or function addresses in the bootrom
Parameters
® ¢1the first character
® c2 the second character
Returns

® the 'code’ to use in rom_func_lookup() or rom_data_lookup()

4.4.5. pico_cxx_options

non-code library controlling C++ related compile options

4.4.6. pico_divider

Optimized 32 and 64 bit division functions accelerated by the RP2040 hardware divider. Additionally provides
integration with the C / and % operators.

4.4.6.1. Function List

® int32_t div_s32s32 (int32_t a, int32_t b)

® static int32_t divmod_s32s32_rem (int32_t a, int32_t b, int32_t *rem)
® divmod_result_t divmod_s32s32 (int32_t a, int32_t b)

® yint32_t div_u32u32 (uint32_t a, uint32_t b)

]
4.4. Runtime Infrastructure 224

Raspberry Pi Pico C/C++ SDK
]

® static uint32_t divmod_u32u32_rem (uint32_t a, uint32_t b, uint32_t *rem)
® divmod_result_t divmod_u32u32 (uint32_t a, uint32_t b)

® int64_t div_sb4s64 (int64_t a, intb4_t b)

® int64_t divmod_s64s64_rem (int64_t a, int64_t b, int64_t *rem)

® int64_t divmod_s64s64 (int64_t a, intbd_t b)

® yint64_t div_ubdubd (uintbd_t a, uintbd_t b)

® yint64_t divmod_ub4ub4_rem (uintb4_t a, uintb4_t b, uintb4_t *rem)

® yint64_t divmod_ub4ub4 (uintb4_t a, uintb4_t b)

® int32_t div_s32s32_unsafe (int32_t a, int32_t b)

® int32_t divmod_s32s32_rem_unsafe (int32_t a, int32_t b, int32_t *rem)

® int64_t divmod_s32s32_unsafe (int32_t a, int32_t b)

® yint32_t div_u32u32_unsafe (uint32_t a, uint32_t b)

® yint32_t divmod_u32u32_rem_unsafe (uint32_t a, uint32_t b, uint32_t *rem)
® yint64_t divmod_u32u32_unsafe (uint32_t a, uint32_t b)

® int64_t div_sb4s64_unsafe (intb4_t a, int64_t b)

® int64_t divmod_s64s64_rem_unsafe (int64_t a, int64_t b, intb4_t *rem)

® int64_t divmod_sb64s64_unsafe (intb4_t a, intb4_t b)

® yint64_t div_ub4ub4d_unsafe (uintb4_t a, uintb4d_t b)

® yint64_t divmod_ub4ubd_rem_unsafe (uintb4_t a, uintbd_t b, uintb4_t *rem)

® yint64_t divmod_u64ubd_unsafe (uint64_t a, uint64d_t b)

4.4.6.2. Function Documentation

4.4.6.2.1. div_s32s32

int32_t div_s32s32 (int32_t a,
int32_t b)

Integer divide of two signed 32-bit values.
Parameters

® a Dividend

® b Divisor
Returns

® quotient

4.4.6.2.2. div_s32s32_unsafe

int32_t div_s32s32_unsafe (int32_t a,
int32_t b)

Unsafe integer divide of two signed 32-bit values.
Do not use in interrupts

Parameters

]
4.4. Runtime Infrastructure 225

Raspberry Pi Pico C/C++ SDK
]

® 3 Dividend
® b Divisor
Returns

® quotient

4.4.6.2.3. div_s64s64

intb4_t div_sb4sb4 (intb4_t a,
int64_t b)

Integer divide of two signed 64-bit values.
Parameters

® aDividend

® b Divisor
Returns

® Quotient

4.4.6.2.4. div_s64s64_unsafe

intb4_t div_sb4sb4_unsafe (intb4_t a,
int64_t b)

Unsafe integer divide of two signed 64-bit values.
Do not use in interrupts
Parameters
® a Dividend
® b Divisor
Returns

® Quotient

4.4.6.2.5. div_u32u32

uint32_t div_u32u32 (uint32_t a,
uint32_t b)

Integer divide of two unsigned 32-bit values.
Parameters

® aDividend

® b Divisor
Returns

® Quotient

4.4.6.2.6. div_u32u32_unsafe

uint32_t div_u32u32_unsafe (uint32_t a,
uint32_t b)

Unsafe integer divide of two unsigned 32-bit values.

]
4.4. Runtime Infrastructure 226

Raspberry Pi Pico C/C++ SDK
]

Do not use in interrupts
Parameters

® aDividend

® b Divisor
Returns

® Quotient

4.4.6.2.7. div_u64u64

uint64_t div_ub4ub4 (uintb4_t a,
uint64_t b)

Integer divide of two unsigned 64-bit values.
Parameters

® aDividend

® b Divisor
Returns

® Quotient

4.4.6.2.8. div_u64u64_unsafe

uint64_t div_ub4ub4_unsafe (uintb4d_t a,
uint64_t b)

Unsafe integer divide of two unsigned 64-bit values.
Do not use in interrupts
Parameters
® aDividend
® b Divisor
Returns

® Quotient

4.4.6.2.9. divmod_s32s32

divmod_result_t divmod_s32s32 (int32_t a,
int32_t b)

Integer divide of two signed 32-bit values.
Parameters

® aDividend

® b Divisor
Returns

® quotient in low word/r0, remainder in high word/r1

]
4.4. Runtime Infrastructure 227

Raspberry Pi Pico C/C++ SDK

4.4.6.2.10. divmod_s32s32_rem

static int32_t divmod_s32s32_rem (int32_t a,
int32_t b,
int32_t *rem)

Integer divide of two signed 32-bit values, with remainder.
Parameters

® aDividend

® b Divisor

® rem The remainder of dividend/divisor
Returns

® Quotient result of dividend/divisor

4.4.6.2.11. divmod_s32s32_rem_unsafe

int32_t divmod_s32s32_rem_unsafe (int32_t a,
int32_t b,
int32_t *rem)

Unsafe integer divide of two signed 32-bit values, with remainder.
Do not use in interrupts
Parameters
® aDividend
® b Divisor
® rem The remainder of dividend/divisor
Returns

® Quotient result of dividend/divisor

4.4.6.2.12. divmod_s32s32_unsafe

int64_t divmod_s32s32_unsafe (int32_t a,
int32_t b)

Unsafe integer divide of two unsigned 32-bit values.
Do not use in interrupts
Parameters
® aDividend
® b Divisor
Returns

® quotient in low word/r0, remainder in high word/r1

4.4.6.2.13. divmod_s64s64

int64_t divmod_s64s64 (intb4_t a,
int64_t b)

Integer divide of two signed 64-bit values.

4.4. Runtime Infrastructure 228

Raspberry Pi Pico C/C++ SDK
]

Parameters
® aDividend
® b Divisor
Returns

® quotient in result (r0,r1), remainder in regs (r2, r3)

4.4.6.2.14. divmod_s64s64_rem

int64_t divmod_sb64s64_rem (intb4_t a,
int64_t b,
intb4_t *rem)

Integer divide of two signed 64-bit values, with remainder.
Parameters

® aDividend

® b Divisor

® ren The remainder of dividend/divisor
Returns

® Quotient result of dividend/divisor

4.4.6.2.15. divmod_s64s64_rem_unsafe

int64_t divmod_s64s64_rem_unsafe (intb4_t a,
int64_t b,
int64_t *rem)

Unsafe integer divide of two signed 64-bit values, with remainder.
Do not use in interrupts
Parameters
® aDividend
® b Divisor
® rem The remainder of dividend/divisor
Returns

® Quotient result of dividend/divisor

4.4.6.2.16. divmod_s64s64_unsafe

intb4_t divmod_s64s64_unsafe (int64_t a,
int64_t b)

Unsafe integer divide of two signed 64-bit values.
Do not use in interrupts
Parameters

® aDividend

® b Divisor

Returns

]
4.4. Runtime Infrastructure 229

Raspberry Pi Pico C/C++ SDK

® quotient in result (r0,r1), remainder in regs (r2, r3)

4.4.6.2.17. divmod_u32u32

divmod_result_t divmod_u32u32 (uint32_t a,
uint32_t b)

Integer divide of two unsigned 32-bit values.
Parameters

® a Dividend

® b Divisor
Returns

® quotient in low word/r0, remainder in high word/r1

4.4.6.2.18. divmod_u32u32_rem

static uint32_t divmod_u32u32_rem (uint32_t a,
uint32_t b,
uint32_t *rem)

Integer divide of two unsigned 32-bit values, with remainder.
Parameters

® a Dividend

® b Divisor

® rem The remainder of dividend/divisor
Returns

® Quotient result of dividend/divisor

4.4.6.2.19. divmod_u32u32_rem_unsafe

uint32_t divmod_u32u32_rem_unsafe (uint32_t a,
uint32_t b,

uint32_t *rem)

Unsafe integer divide of two unsigned 32-bit values, with remainder.
Do not use in interrupts
Parameters

® a Dividend

® b Divisor

® ren The remainder of dividend/divisor
Returns

® Quotient result of dividend/divisor

4.4.6.2.20. divmod_u32u32_unsafe

uint64_t divmod_u32u32_unsafe (uint32_t a,
uint32_t b)

Unsafe integer divide of two unsigned 32-bit values.

4.4. Runtime Infrastructure 230

Raspberry Pi Pico C/C++ SDK
]

Do not use in interrupts
Parameters

® aDividend

® b Divisor
Returns

® quotient in low word/r0, remainder in high word/r1

4.4.6.2.21. divmod_u64u64

uint64_t divmod_u64ub4 (uintb4d_t a,
uint64_t b)

Integer divide of two signed 64-bit values.
Parameters

® aDividend

® b Divisor
Returns

® quotient in result (r0,r1), remainder in regs (r2, r3)

4.4.6.2.22. divmod_u64u64_rem

uint64_t divmod_ub64ub4_rem (uintb4d_t a,
uint64_t b,
uint64_t *rem)

Integer divide of two unsigned 64-bit values, with remainder.
Parameters

® aDividend

® b Divisor

® ren The remainder of dividend/divisor
Returns

® Quotient result of dividend/divisor

4.4.6.2.23. divmod_u64u64_rem_unsafe

uint64_t divmod_u64ub4_rem_unsafe (uintb4_t a,
uint64_t b,
uint64_t *rem)

Unsafe integer divide of two unsigned 64-bit values, with remainder.
Do not use in interrupts
Parameters

® aDividend

® b Divisor

* rem The remainder of dividend/divisor

Returns

]
4.4. Runtime Infrastructure 231

Raspberry Pi Pico C/C++ SDK

® Quotient result of dividend/divisor

4.4.6.2.24. divmod_u64u64_unsafe

uint64_t divmod_u64ub4_unsafe (uintb4_t a,
uint64_t b)

Unsafe integer divide of two signed 64-bit values.
Do not use in interrupts
Parameters
® aDividend
® b Divisor
Returns

® quotient in result (r0,r1), remainder in regs (r2, r3)

4.4.7. pico_double

Optimized double-precision floating point functions.
(Replacement) optimized implementations are provided of the following compiler built-ins and math library functions:

® aeabi_dadd, aeabi_ddiv, aeabi_dmul, aeabi_drsub, aeabi_dsub, aeabi_cdcmpeq, aeabi_cdrcmple, aeabi_cdcmple,
aeabi_dcmpeq, aeabi_dcmplt, aeabi_dcmple, aeabi_dcmpge, aeabi_dcmpgt, aeabi_dcmpun, aeabi_i2d, aeabi_l2d,
aeabi_ui2d, aeabi_ul2d, aeabi_d2iz, aeabi_d2lz, aeabi_d2uiz, aeabi_d2ulz, __aeabi_d2f

® sqrt, cos, sin, tan, atan2, exp, log, Idexp, copysign, trunc, floor, ceil, round, asin, acos, atan, sinh, cosh, tanh, asinh,
acosh, atanh, exp2, log2, exp10, log10, pow,, hypot, cbrt, fmod, drem, remainder, remquo, expm1, log1p, fma

® powint, sincos (GNU extensions)
The following additional optimized functions are also provided:

* fix2double, ufix2double, fix642double, ufix642double, double2fix, double2ufix, double2fix64, double2ufix64,
double2int, double2int64, double2int_z, double2int64_z

4.4.8. pico_float

Optimized single-precision floating point functions.
(Replacement) optimized implementations are provided of the following compiler built-ins and math library functions:

® aeabi_fadd, aeabi_fdiv, aeabi_fmul, aeabi_frsub, aeabi_fsub, aeabi_cfcmpeq, aeabi_cfrcmple, aeabi_cfcmple,
aeabi_fcmpeq, aeabi_fcmplt, aeabi_fcmple, aeabi_fcmpge, aeabi_fcmpgt aeabi_fcmpun, aeabi_i2f, aeabi_|2f,
aeabi_ui2f, aeabi_ul2f, aeabi_f2iz, aeabi_f2lz, aeabi_f2uiz, aeabi_f2ulz, __aeabi_f2d, sqrtf, cosf, sinf, tanf, atan2f,
expf, logf

® |dexpf, copysignf, truncf, floorf, ceilf, roundf, asinf, acosf, atanf, sinhf, coshf, tanhf, asinhf, acoshf, atanhf, exp2f,
log2f, exp10f, log10f, powf, hypotf, cbrtf, fmodf, dremf, remainderf, remquof, expm1f, log1pf, fmaf

® powintf, sincosf (GNU extensions)
The following additional optimized functions are also provided:

o fix2float, ufix2float, fix642float, ufix642float, float2fix, float2ufix, float2fix64, float2ufix64, float2int, float2int64,
float2int_z, float2int64_z

4.4. Runtime Infrastructure 232

Raspberry Pi Pico C/C++ SDK
]

4.4.9. pico_int64_ops

Optimized replacement implementations of the compiler built-in 64 bit multiplication.

This library does not provide any additional functions

4.4.10. pico_malloc

Multi-core safety for malloc, calloc and free.

This library does not provide any additional functions

4.4.11. pico_mem_ops

Provides optimized replacement implementations of the compiler built-in memcpy, memset and related functions:
® memset, memcpy
® aeabi_memset, aeabi_memset4, aeabi_memset8, aeabi_memcpy, aeabi_memcpy4, aeabi_memcpy8

This library does not provide any additional functions

4.4.12. pico_platform

Compiler definitions for the selected PICO_PLATFORM.

4.4.13. pico_printf

Compact replacement for printf by Marco Paland (info@paland.com)

4.4.14. pico_runtime

Aggregate runtime support including pico_bit_ops, pico_divider, pico_double, pico_int64_ops, pico_float, pico_malloc,
pico_mem_ops and pico_standard_link.

4.4.15. pico_stdio

Customized stdio support allowing for input and output from UART, USB, semi-hosting etc.

Note the API for adding additional input output devices is not yet considered stable

4.4.15.1. Modules
® pico_stdio_semihosting
Experimental support for stdout using RAM semihosting.

® pico_stdio_uart
Support for stdin/stdout using UART.

® pico_stdio_usb
Support for stdin/stdout over USB serial (CDC)

]
4.4. Runtime Infrastructure 233

mailto:info@paland.com

Raspberry Pi Pico C/C++ SDK
]

4.4.15.2. Function List

® void stdio_init_all ()

® yoid stdio_flush ()

® int getchar_timeout_us (uint32_t timeout_us)

® void stdio_set_driver_enabled (stdio_driver_t *driver, bool enabled)
® void stdio_filter_driver (stdio_driver_t *driver)

® yoid stdio_set_translate_crlf (stdio_driver_t *driver, bool translate)

4.4.15.3. Function Documentation

4.4.15.3.1. getchar_timeout_us
int getchar_timeout_us (uint32_t timeout_us)
Return a character from stdin if there is one available within a timeout.
Parameters
® timeout_us the timeout in microseconds, or 0 to not wait for a character if none available.
Returns

® the character from 0-255 or PICO_ERROR_TIMEOUT if timeout occurs

4.4.15.3.2. stdio_filter_driver

void stdio_filter_driver (stdio_driver_t *driver)
Control limiting of output to a single driver.
Parameters

e driver if non-null then output only that driver will be used for input/output (assuming it is in the list of enabled
drivers). if NULL then all enabled drivers will be used

4.4.15.3.3. stdio_flush
void stdio_flush ()
Initialize all of the present standard stdio types that are linked into the binary.

Call this method once you have set up your clocks to enable the stdio support for UART, USB and semihosting based on
the presence of the respective librariess in the binary.

See also

® stdio_uart, stdio_usb, stdio_semihosting

4.4.15.3.4. stdio_init_all
void stdio_init_all ()
Initialize all of the present standard stdio types that are linked into the binary.

Call this method once you have set up your clocks to enable the stdio support for UART, USB and semihosting based on
the presence of the respective librariess in the binary.

See also

]
4.4. Runtime Infrastructure 234

Raspberry Pi Pico C/C++ SDK

® stdio_uart, stdio_usb, stdio_semihosting

4.4.15.3.5. stdio_set_driver_enabled

void stdio_set_driver_enabled (stdio_driver_t *driver,
bool enabled)

Adds or removes a driver from the list of active drivers used for input/output.
Parameters
® driver the driver

® ecnabled true to add, false to remove

4.4.15.3.6. stdio_set_translate_crlf

void stdio_set_translate_crlf (stdio_driver_t *driver,

bool translate)
control conversion of line feeds to carriage return on transmissions
Parameters
® driver the driver

® translate If true, convert line feeds to carriage return on transmissions

4.4.16. pico_stdio_semihosting

Experimental support for stdout using RAM semihosting.

Linking this library or calling pico_enable_stdio_semihosting(TARGET) in the CMake (which achieves the same thing)
will add semihosting to the drivers used for standard output

4.4.16.1. Function List

® void stdio_semihosting_init ()

4.4.16.2. Function Documentation

4.4.16.2.1. stdio_semihosting_init

void stdio_semihosting_init ()

Explicitly initialize stdout over semihosting and add it to the current set of stdout targets.

4.4.17. pico_stdio_uart

Support for stdin/stdout using UART.

Linking this library or calling pico_enable_stdio_uart(TARGET) in the CMake (which achieves the same thing) will add
UART to the drivers used for standard output

4.4.17.1. Function List
® void stdio_uvart_init ()

4.4. Runtime Infrastructure 235

Raspberry Pi Pico C/C++ SDK

® yoid stdout_uart_init ()
® void stdin_uvart_init ()
® yoid stdio_vart_init_full (vart_inst_t *uart, uint baud_rate, int tx_pin, int rx_pin)

® hool stdio_usb_init ()

4.4.17.2. Function Documentation

4.4.17.2.1. stdin_uart_init
void stdin_uart_init ()
Explicitly initialize stdin only (no stdout) over UART and add it to the current set of stdin drivers.

This method sets up PICO_DEFAULT_UART_RX_PIN for UART input (if defined) , and configures the baud rate as
PICO_DEFAULT_UART_BAUD_RATE

4.4.17.2.2. stdio_uart_init
void stdio_uart_init ()
Explicitly initialize stdin/stdout over UART and add it to the current set of stdin/stdout drivers.

This method sets up PICO_DEFAULT_UART_TX_PIN for UART output (if defined), PICO_DEFAULT_UART_RX_PIN for
input (if defined) and configures the baud rate as PICO_DEFAULT_UART_BAUD_RATE.

4.4.17.2.3. stdio_uart_init_full

void stdio_uvart_init_full (uart_inst_t *uart,
uint baud_rate,
int tx_pin,
int rx_pin)

Perform custom initialization initialize stdin/stdout over UART and add it to the current set of stdin/stdout drivers.
Parameters

® uart the uart instance to use, uart0 or uart1

® baud_rate the baud rate in Hz

® tx_pinthe UART pin to use for stdout (or -1 for no stdout)

® rx_pin the UART pin to use for stdin (or -1 for no stdin)

4.4.17.2.4. stdio_usb_init

bool stdio_usb_init ()

Explicitly initialize USB stdio and add it to the current set of stdin drivers.

4.4.17.2.5. stdout_uart_init

void stdout_uart_init ()
Explicitly initialize stdout only (no stdin) over UART and add it to the current set of stdout drivers.

This method sets up PICO_DEFAULT_UART_TX_PIN for UART output (if defined) , and configures the baud rate as
PICO_DEFAULT_UART_BAUD_RATE

4.4. Runtime Infrastructure 236

Raspberry Pi Pico C/C++ SDK

4.4.18. pico_stdio_usb

Support for stdin/stdout over USB serial (CDC)

Linking this library or calling pico_enable_stdio_usb(TARGET) in the CMake (which achieves the same thing) will add
USB CDC to the drivers used for standard output

Note this library is a developer convenience. It is not applicable in all cases; for one it takes full control of the USB
device precluding your use of the USB in device or host mode. For this reason, this library will automatically disengage if
you try to using it alongside tinyusb_device or tinyusb_host. It also takes control of a lower level IRQ and sets up a

periodic background task.

4.4.19. pico_standard_link

Standard link step providing the basics for creating a runnable binary.

This includes

® C runtime initialization

e Linker scripts for 'default’, 'no_flash', 'blocked_ram' and 'copy_to_ram'’ binaries

® 'Binary Information’' support

® Linker option control

4.5. External APl Headers

Headers for interfaces that are shared with code outside of the SDK.

boot_picoboot

Header file for the PICOBOOT USB interface exposed by an RP2040 in BOOTSEL mode.

boot_uf2

Header file for the UF2 format supported by an RP2040 in BOOTSEL mode.

4.5.1. boot_picoboot

Header file for the PICOBOOT USB interface exposed by an RP2040 in BOOTSEL mode.

4.5.2. boot_uf2

Header file for the UF2 format supported by an RP2040 in BOOTSEL mode.

4.5. External API Headers

237

Raspberry Pi Pico C/C++ SDK

Figure 8. Wiring
Diagram for 7
segment LED.

Appendix A: App Notes

Attaching a 7 segment LED via GPIO

This example code shows how to interface the Raspberry Pi Pico to a generic 7 segment LED device. It uses the LED to
count from 0 to 9 and then repeat. If the button is pressed, then the numbers will count down instead of up.

Wiring information

Our 7 Segment display has pins as follows.

By default we are allocating GPIO 2 to A, 3 to B etc. So, connect GPIO 2 to pin A on the 7 segment LED display and so
on. You will need the appropriate resistors (68 ohm should be fine) for each segment. The LED device used here is
common anode, so the anode pin is connected to the 3.3v supply, and the GPIO’s need to pull low (to ground) to
complete the circuit. The pull direction of the GPIQ’s is specified in the code itself.

Connect the switch to connect on pressing. One side should be connected to ground, the other to GPIO 9.

fritzing

List of Files

CMakelists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/gpio/hello_7segment/CMakeLists.txt Lines 1 - 12

add_executable(hello_7segment
hello_7segment.c

)

1
2
8
4
5 # Pull in our pico_stdlib which pulls in commonly used features
6 target_link_libraries(hello_7segment pico_stdlib)

7

8

create map/bin/hex file etc.

]
Attaching a 7 segment LED via GPIO 238

https://github.com/raspberrypi/pico-examples/tree/master/gpio/hello_7segment/CMakeLists.txt#L1-L12

Raspberry Pi Pico C/C++ SDK
]

9 pico_add_extra_outputs(hello_7segment)
10

11 # add url via pico_set_program_url

12 example_auto_set_url(hello_7segment)

hello_7segment.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/gpio/hello_7segment/hello_7segment.c Lines 1 - 95

1 /**

2 * Copyright (c) 2620 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause

584/

6

7 #include <stdio.h>

8 #include "pico/stdlib.h"

9 #include "hardware/gpio.h"

11 /%
12 Our 7 Segment display has pins as follows:

14 --A--

16 --G--
17 E ¢
18 --D--

20 By default we are allocating GPIO 2 to A, 3 to B etc.
21 So, connect GOIP 2 to pin A on the 7 segment LED display etc. Don't forget
22 the appropriate resistors, best to use one for each segment!

24 Connect button so that pressing the switch connects the GPIO 9 (default) to
25 ground (pull down)
26 */

28 #define FIRST_GPIO 2
29 #define BUTTON_GPIO (FIRST_GPIO+7)

31 // This array converts a number 0-9 to a bit pattern to send to the GPIO's
32 int bits[10] = {

33 ox3f, // 0
34 oxe6, // 1
85 ox5b, // 2
36 oxaf, // 3
37 ox66, // 4
38 ox6d, // 5
39 ox7d, // 6
40 oxe7, // 7
41 ox7f, // 8
42 0x67 // 9
43 };

44

45 /// \tag::hello_gpio[]
46 int main() {

47 stdio_init_all();

48 printf("Hello, 7segment - press button to count down!\n");
49

50 // We could use gpio_set_dir_out_masked() here

51 for (int gpio = FIRST_GPIO; gpio < FIRST_GPIO + 7; gpio++) {

]
Attaching a 7 segment LED via GPIO 239

https://github.com/raspberrypi/pico-examples/tree/master/gpio/hello_7segment/hello_7segment.c#L1-L95

Raspberry Pi Pico C/C++ SDK
]

52 gpio_init(gpio);

53 gpio_set_dir(gpio, GPIO_OUT);

54 // Our bitmap above has a bit set where we need an LED on, BUT, we are pulling low to
light

55! // so invert our output

56 gpio_set_outover(gpio, GPIO_OVERRIDE_INVERT);

57)

58

59 gpio_init(BUTTON_GPIO);

60 gpio_set_dir(BUTTON_GPIO, GPIO_IN);

61 // We are using the button to pull down to @v when pressed, so ensure that when

62 // unpressed, it uses internal pull ups. Otherwise when unpressed, the input will

63 // be floating.

64 gpio_pull_up(BUTTON_GPIO);

65

66 int val = 9;

67 while (true) {

68 // Count upwards or downwards depending on button input

69 // We are pulling down on switch active, so invert the get to make

70 // a press count downwards

71 if (!gpio_get(BUTTON_GPIO)) {

72 if (val == 9) {

73 val = @;

74 } else {

75 val++;

76 }

77 } else if (val == 0) {

78 val = 9;

79 } else {

80 val--;

81 }

82

83 // We are starting with GPIO 2, our bitmap starts at bit @ so shift to start at 2.

84 int32_t mask = bits[val] << FIRST_GPIO;

85

86 // Set all our GPIO's in one go!

87 // If something else is using GPIO, we might want to use gpio_put_masked()

88 gpio_set_mask(mask) ;

89 sleep_ms(250);

90 gpio_clr_mask(mask) ;

91 }

92

93 return 0;

94 }

95 /// \end::hello_gpio[]

Bill of Materials

Table 10. A list of

materials required for Item Quantity Details

the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
7 segment LED module 1 generic part
68 ohm resistor 7 generic part
DIL push to make switch 1 generic switch
M/M Jumper wires 10 generic part

Attaching a 7 segment LED via GPIO

240

http://raspberrypi.org/

Raspberry Pi Pico C/C++ SDK

Figure 9. Wiring the
DHT-22 temperature
sensor to Raspberry Pi
Pico, and connecting
Pico’s UARTO to the
Raspberry Pi 4.

DHT-11, DHT-22, and AM2302 Sensors

The DHT sensors are fairly well known hobbyist sensors for measuring relative humidity and temperature using a
capacitive humidity sensor, and a thermistor. While they are slow, one reading every ~2 seconds, they are reliable and
good for basic data logging. Communication is based on a custom protocol which uses a single wire for data.

O NoTE

The DHT-11 and DHT-22 sensors are the most common. They use the same protocol but have different
characteristics, the DHT-22 has better accuracy, and has a larger sensor range than the DHT-11. The sensor is
available from a number of retailers.

Wiring information

See Figure 9 for wiring instructions.

fri’tz,i’ng:

O NoTE

One of the pins (pin 3) on the DHT sensor will not be connected, it is not used.

You will want to place a 10 kQ resistor between VCC and the data pin, to act as a medium-strength pull up on the data
line.

Connecting UARTO of Pico to Raspberry Pi as in Figure 9 and you should see something similar to Figure 10 in minicom
when connected to /dev/seriald on the Raspberry Pi.

]
DHT-11, DHT-22, and AM2302 Sensors 241

Raspberry Pi Pico C/C++ SDK

Figure 10. Serial

output over Pico’s
UARTO in a terminal [) FT232R USB UART — 80x24 — 115200.8.N.1 a
window. 54.9%, Temperature = 28.5C (83.3F)

4.9%, Temperature 8.5C (83.3F)
55.0%, Temperature = 28.5C (83.3F)

Connect to /dev/serial® by typing,

$ minicom -b 115200 -o -D /dev/serial®@

at the command line.

List of Files

A list of files with descriptions of their function;

CMakelLists.txt

Make file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/gpio/dht_sensor/CMakeLists.txt Lines 1- 11

add_executable(dht
dht.c

)
target_link_libraries(dht pico_stdlib)
pico_add_extra_outputs(dht)
add url via pico_set_program_url

example_auto_set_url(dht)

dht.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/gpio/dht_sensor/dht.c Lines 1 - 83

/A%
2 * Copyright (c) 2626 Raspberry Pi (Trading) Ltd.
3 *

DHT-11, DHT-22, and AM2302 Sensors 242

https://github.com/raspberrypi/pico-examples/tree/master/gpio/dht_sensor/CMakeLists.txt#L1-L11
https://github.com/raspberrypi/pico-examples/tree/master/gpio/dht_sensor/dht.c#L1-L83

Raspberry Pi Pico C/C++ SDK
]

4 * SPDX-License-Identifier: BSD-3-Clause
**/

#include <stdio.h>

0w N o

#include <math.h>

9 #include "pico/stdlib.h”

10 #include "hardware/gpio.h"

11

12 const uint LED_PIN = PICO_DEFAULT_LED_PIN;
13 const uint DHT_PIN 15;

14 const uint MAX_TIMINGS = 85;

15

16 typedef struct {

17 float humidity;

18 float temp_celsius;

19 } dht_reading;

20

21 void read_from_dht(dht_reading *result);

22

23 int main() {

24 stdio_init_all();

25 gpio_init(LED_PIN);

26 gpio_init(DHT_PIN);

27 gpio_set_dir(LED_PIN, GPIO_OUT);

28 while (1) {

29 dht_reading reading;

30 read_from_dht(&reading) ;

31 float fahrenheit = (reading.temp_celsius * 9 / 5) + 32;
32 printf("Humidity = %.1f%%, Temperature = %.1fC (%.1fF)\n",
33 reading.humidity, reading.temp_celsius, fahrenheit);
34

35 sleep_ms(2000) ;

36 }

37 }

38

39 void read_from_dht(dht_reading *result) {
40 int data[5] = {8, @, @, 0, 0};

41 uint last = 1;

42 uint j = 0;

43

44 gpio_set_dir(DHT_PIN, GPIO_OUT);

45 gpio_put(DHT_PIN, 0);

46 sleep_ms(20);

47 gpio_set_dir(DHT_PIN, GPIO_IN);

48

49 gpio_put(LED_PIN, 1);

50 for (uint i = @; i < MAX_TIMINGS; i++) {
51 uint count = 0;

52 while (gpio_get(DHT_PIN) == last) {
53 count++;

54 sleep_us(1);

55 if (count == 255) break;

56 }

57 last = gpio_get(DHT_PIN);

58 if (count == 255) break;

59

60 if ((1 >=4) && (1 % 2 == 0)) {

61 datal[j / 8] <<= 1;

62 if (count > 16) datal[j / 8] |= 1;
63 J++;

64 }

65 }

66 gpio_put(LED_PIN, 0);

]
DHT-11, DHT-22, and AM2302 Sensors 243

Raspberry Pi Pico C/C++ SDK

67

68 if ((j >= 40) && (data[4] == ((data[@] + data[1] + data[2] + data[3]) & BxFF))) {
69 result->humidity = (float) ((data[@] << 8) + data[1]) / 10;

70 if (result->humidity > 100) {

71 result->humidity = data[@];

72 }

73 result->temp_celsius = (float) (((data[2] & Ox7F) << 8) + data[3]) / 10;
74 if (result->temp_celsius > 125) {

75 result->temp_celsius = data[2];

76 }

77 if (data[2] & 0x80) {

78 result->temp_celsius = -result->temp_celsius;

79 }

80 } else {

81 printf("Bad data\n");

82 }

83 }

Bill of Materials

Table 11. A list of

materials required for Item Quantity Details

the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
10 kQ resistor 1 generic part
M/M Jumper wires 4 generic part
DHT-22 sensor 1 generic part

Attaching a BME280 temperature/humidity/pressure
sensor via SPI

This example code shows how to interface the Raspberry Pi Pico to a BME280 temperature/humidity/pressure. The
particular device used can be interfaced via I12C or SPI, we are using SPI, and interfacing at 3.3v.

This examples reads the data from the sensor, and runs it through the appropriate compensation routines (see the chip
datasheet for details https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-
ds002.pdf). At startup the compensation parameters required by the compensation routines are read from the chip.)

Wiring information

Wiring up the device requires 6 jumpers as follows:
® GPIO 16 (pin 21) MISO/spiO_rx— SDO/SDO on bme280 board
® GPIO 17 (pin 22) Chip select — CSB/!CS on bme280 board
® GPIO 18 (pin 24) SCK/spiO_sclk — SCL/SCK on bme280 board
® GPIO 19 (pin 25) MOSI/spi0_tx — SDA/SDI on bme280 board

® 3.3v(pin 3;

6) — VCC on bme280 board

® GND (pin 38) — GND on bme280 board

The example here uses SPI port 0. Power is supplied from the 3.3V pin.

Attaching a BME280 temperature/humidity/pressure sensor via SPI

244

http://raspberrypi.org/
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf

Raspberry Pi Pico C/C++ SDK

Figure 11. Wiring
Diagram for bme280.

© NoTE

There are many different manufacturers who sell boards with the BME280. Whilst they all appear slightly different,
they all have, at least, the same 6 pins required to power and communicate. When wiring up a board that is different
to the one in the diagram, ensure you connect up as described in the previous paragraph.

DI —— "
oo amy
=S
=

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/spi/bme280_spi/CMakeLists.txt Lines 1- 12

add_executable(bme280_spi
bme280_spi.c
)

Pull in our (to be renamed) simple get you started dependencies
target_link_libraries(bme286_spi pico_stdlib hardware_spi)

o N o o wWwN =

create map/bin/hex file etc.
pico_add_extra_outputs(bme286_spi)

\o)

10
11 # add url via pico_set_program_url
12 example_auto_set_url(bme280_spi)

bme280_spi.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/spi/bme280_spi/bme280_spi.c Lines 1 - 233

Vi

* Copyright (c) 20626 Raspberry Pi (Trading) Ltd.
*

* SPDX-License-Identifier: BSD-3-Clause
*/

#include <stdio.h>

o N O o WN 2

#include <string.h>

#include "pico/stdlib.h"

10 #include "hardware/spi.h”

11

12 /* Example code to talk to a bme286 humidity/temperature/pressure sensor.

13

14 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
15 GPIO (and therefor SPI) cannot be used at 5v.

O

]
Attaching a BME280 temperature/humidity/pressure sensor via SPI 245

https://github.com/raspberrypi/pico-examples/tree/master/spi/bme280_spi/CMakeLists.txt#L1-L12
https://github.com/raspberrypi/pico-examples/tree/master/spi/bme280_spi/bme280_spi.c#L1-L233

Raspberry Pi Pico C/C++ SDK
]

16

17 You will need to use a level shifter on the SPI lines if you want to run the
18 board at 5v.

19

20 Connections on Raspberry Pi Pico board and a generic bme286 board, other

21 boards may vary.

22

23 GPIO 16 (pin 21) MISO/spi6_rx-> SDO/SDO on bme286 board
24 GPIO 17 (pin 22) Chip select -> CSB/!CS on bme286 board
25 GPIO 18 (pin 24) SCK/spi6_sclk -> SCL/SCK on bme286 board
26 GPIO 19 (pin 25) MOSI/spi6_tx -> SDA/SDI on bme286 board
27 3.3v (pin 3;6) -> VCC on bme286 board

28 GND (pin 38) -> GND on bme286 board

29

30 Note: SPI devices can have a number of different naming schemes for pins. See

31 the Wikipedia page at https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

32 for variations.

83

34 This code uses a bunch of register definitions, and some compensation code derived

35 from the Bosch datasheet which can be found here.

36 https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme286-
ds002.pdf

37 */

38

39 #define PIN_MISO 16

40 #define PIN_CS 17

41 #define PIN_SCK 18

42 #define PIN_MOSI 19

43

44 #define SPI_PORT spi@

45 #define READ_BIT 0x86

46

47 int32_t t_fine;

48

49 uint16_t dig_T1;

50 int16_t dig_T2, dig_T3;

51 uint16_t dig_P1;

52 int16_t dig_P2, dig_P3, dig_P4, dig_P5, dig_P6, dig_P7, dig_P8, dig_P9;
53 uint8_t dig_H1, dig_H3;

54 int8_t dig_H6;

55 int16_t dig_H2, dig_H4, dig_H5;

56

57 /* The following compensation functions are required to convert from the raw ADC
58 data from the chip to something usable. Each chip has a different set of
59 compensation parameters stored on the chip at point of manufacture, which are
60 read from the chip at startup and used inthese routines.

61 */

62 int32_t compensate_temp(int32_t adc_T) {

63 int32_t varl, var2, T;

64 varl = ((((adc_T >> 3) - ((int32_t) dig_T1 << 1))) * ((int32_t) dig_T2)) >> 11;

65 var2 = (((((adc_T >> 4) - ((int32_t) dig_T1)) * ((adc_T >> 4) - ((int32_t) dig_T1))) >>
12) * ((int32_t) dig_T3))

66 >> 14;

67

68 t_fine = var1 + var2;

69 T = (t_fine * 5 + 128) >> 8;

70 return T;

71 }

72

73 uint32_t compensate_pressure(int32_t adc_P) {

74 int32_t varl, var2;

75 uint32_t p;

76 varl = (((int32_t) t_fine) >> 1) - (int32_t) 64000;

]
Attaching a BME280 temperature/humidity/pressure sensor via SPI 246

Raspberry Pi Pico C/C++ SDK
]

77
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102

103

104
105
106

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

var2 = (((var1 >> 2) * (var1l >> 2)) >> 11) * ((int32_t) dig_P6);
var2 + ((varl * ((int32_t) dig_P5)) << 1);

var2 = (var2 >> 2) + (((int32_t) dig_P4) << 16);

varl = (((dig_P3 * (((var1 >> 2) * (varl >> 2)) >> 13)) >> 3) + ((((int32_t) dig_P2) *
var1l) >> 1)) >> 18;

var1l = ((((32768 + var1)) * ((int32_t) dig_P1)) >> 15);

if (var1l == 0)

return 0;

var2

p = (((uint32_t) (((int32_t) 1048576) - adc_P) - (var2 >> 12))) * 3125;
if (p < ©x80000000)
p=(p<<1)/ ((uint32_t) var1l);
else
p

(p / (uint32_t) varl) * 2;

vari (((int32_t) dig_P9) * ((int32_t) (((p >> 3) * (p >> 3)) >> 13))) >> 12;
var2 = (((int32_t) (p >> 2)) * ((int32_t) dig_P8)) >> 13;
p = (uint32_t) ((int32_t) p + ((varl + var2 + dig_P7) >> 4));

return p;

uint32_t compensate_humidity(int32_t adc_H) {
int32_t v_x1_u32r;
v_x1_u32r = (t_fine - ((int32_t) 76800));
v_x1_u32r = (((((adc_H << 14) - (((int32_t) dig_H4) << 20) - (((int32_t) dig_H5) *
v_x1_u32r)) +
((int32_t) 16384)) >> 15) * (((((((v_x1_ud2r * ((int32_t) dig_H6)) >>
10) * (((v_x1_u32r *

((int32_t) dig_H3))
>> 11) + ((int32_t) 32768))) >> 108) + ((int32_t) 2097152)) *
((int32_t) dig_H2) + 8192) >> 14));
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) * ((int32_t)
dig_H1)) >> 4));
v_x1_u32r = (v_x1_u32r < 0 ? 0 : v_x1_u32r);
v_x1_u32r = (v_x1_u32r > 419430400 ? 419430400 : v_x1_u32r);

return (uint32_t) (v_x1_u32r >> 12);

static inline void cs_select() {
asm volatile("nop \n nop \n nop");
gpio_put(PIN_CS, @); // Active low
asm volatile("nop \n nop \n nop");

static inline void cs_deselect() {
asm volatile("nop \n nop \n nop");
gpio_put(PIN_CS, 1);
asm volatile("nop \n nop \n nop");

static void write_register(uint8_t reg, uint8_t data) {
uint8_t buf[2];
buf[@] = reg & Ox7f; // remove read bit as this is a write
buf[1] = data;
cs_select();
spi_write_blocking(SPI_PORT, buf, 2);
cs_deselect();
sleep_ms(10);

]
Attaching a BME280 temperature/humidity/pressure sensor via SPI

247

Raspberry Pi Pico C/C++ SDK
]

135 static void read_registers(uint8_t reg, uint8_t *buf, uint16_t len) {

136 // For this particular device, we send the device the register we want to read
137 // first, then subsequently read from the device. The register is auto incrementing
138 // so we don't need to keep sending the register we want, just the first.

139 reg |= READ_BIT;

140 cs_select();

141 spi_write_blocking(SPI_PORT, ®, 1);

142 sleep_ms(10);

143 spi_read_blocking(SPI_PORT, @, buf, len);

144 cs_deselect();

145 sleep_ms(10);

146 }

147

148 /* This function reads the manufacturing assigned compensation parameters from the device */
149 void read_compensation_parameters() {

150 uint8_t buffer[26];

151

152 read_registers(0x88, buffer, 24);

153

154 dig_T1 = buffer[@] | (buffer[1] << 8);

155 dig_T2 = buffer[2] | (buffer[3] << 8);

156 dig_T3 = buffer[4] | (buffer[5] << 8);

157

158 dig_P1 = buffer[6] | (buffer[7] << 8);

159 dig_P2 = buffer[8] | (buffer[9] << 8);

160 dig_P3 = buffer[10] | (buffer[11] << 8);

161 dig_P4 = buffer[12] | (buffer[13] << 8);

162 dig_P5 = buffer[14] | (buffer[15] << 8);

163 dig_P6 = buffer[16] | (buffer[17] << 8);

164 dig_P7 = buffer[18] | (buffer[19] << 8);

165 dig_P8 = buffer[208] | (buffer[21] << 8);

166 dig_P9 = buffer[22] | (buffer[23] << 8);

167

168 dig_H1 = buffer[25];

169

170 read_registers(0xE1, buffer, 8);

171

172 dig_H2 = buffer[@] | (buffer[1] << 8);

173 dig_H3 = (int8_t) buffer[2];

174 dig_H4 = buffer[3] << 4 | (buffer[4] & Oxf);

175 dig_H5 = (buffer[5] >> 4) | (buffer[6] << 4);

176 dig_H6 = (int8_t) buffer[7];

177 }

178

179 static void bme280_read_raw(int32_t *humidity, int32_t *pressure, int32_t *temperature) {

180 uint8_t buffer[8];

181

182 read_registers(0xF7, buffer, 8);

183 *pressure = ((uint32_t) buffer[@] << 12) | ((uint32_t) buffer[1] << 4) | (buffer[2] >>
4

184 *temperature = ((uint32_t) buffer[3] << 12) | ((uint32_t) buffer[4] << 4) | (buffer[5]
>> 4);

185 *humidity = (uint32_t) buffer[6] << 8 | buffer[7];

186 }

187

188 int main() {

189 stdio_init_all();

190

191 printf("Hello, bme2808! Reading raw data from registers via SPI...\n");

192

193 // This example will use SPIO at 0.5MHz.

194 spi_init (SPI_PORT, 500 * 1000);

195 gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);

]
Attaching a BME280 temperature/humidity/pressure sensor via SPI 248

Raspberry Pi Pico C/C++ SDK

196 gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);
197 gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);
198
199 // Chip select is active-low, so we'll initialise it to a driven-high state
200 gpio_init(PIN_CS);
201 gpio_set_dir(PIN_CS, GPIO_OUT);
202 gpio_put(PIN_CS, 1);
203
204 // See if SPI is working - interrograte the device for its I2C ID number, should be 6x60
205 uint8_t id;
206 read_registers(0xDo, &id, 1);
207 printf("Chip ID is @x%x\n", id);
208
209 read_compensation_parameters();
210
211 write_register(0xF2, Ox1); // Humidity oversampling register - going for x1
212 write_register(@OxF4, 0x27);// Set rest of oversampling modes and run mode to normal
213
214 int32_t humidity, pressure, temperature;
215
216 while (1) {
217 bme286_read_raw(&humidity, &pressure, &temperature);
218
219 // These are the raw numbers from the chip, so we need to run through the
220 // compensations to get human understandable numbers
221 pressure = compensate_pressure(pressure);
222 temperature = compensate_temp(temperature);
223 humidity = compensate_humidity(humidity);
224
225 printf("Humidity = %.2f%%\n", humidity / 1024.8);
226 printf("Pressure = %dPa\n", pressure);
227 printf("Temp. = %.2fC\n", temperature / 100.0);
228
229 sleep_ms(1000) ;
230 }
231
232 return 0;
233 }
Bill of Materials
;thleii;i fegz:rzg for ltem Quantity Details
the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
BME280 board 1 generic part
M/M Jumper wires 6 generic part

Attaching a MPU9250 accelerometer/gyroscope via SPI

This example code shows how to interface the Raspberry Pi Pico to the MPU9250 accelerometer/gyroscope board. The
particular device used can be interfaced via 12C or SPI, we are using SPI, and interfacing at 3.3v.

Attaching a MPU9250 accelerometer/gyroscope via SPI 249

http://raspberrypi.org/

Raspberry Pi Pico C/C++ SDK

© NoTE

This is a very basic example, and only recovers raw data from the sensor. There are various calibration options
available that should be used to ensure that the final results are accurate. It is also possible to wire up the interrupt
pin to a GPIO and read data only when it is ready, rather than using the polling approach in the example.

Wiring information

Wiring up the device requires 6 jumpers as follows:
® GPIO 4 (pin 6) MISO/spi0_rx— ADO on MPU9250 board
® GPIO 5 (pin 7) Chip select — NCS on MPU9250 board
® GPIO 6 (pin 9) SCK/spi0_sclk — SCL on MPU9250 board
® GPIO 7 (pin 10) MOSI/spi0O_tx — SDA on MPU9250 board
® 3.3v (pin 36) — VCC on MPU9250 board
® GND (pin 38) — GND on MPU9250 board

The example here uses SPI port 0. Power is supplied from the 3.3V pin.

O NoOTE

There are many different manufacturers who sell boards with the MPU9250. Whilst they all appear slightly different,
they all have, at least, the same 6 pins required to power and communicate. When wiring up a board that is different
to the one in the diagram, ensure you connect up as described in the previous paragraph.

Figure 12. Wiring “eeee seeee seses seeece ceeee seeee seeee eseses seeee eeeee
Diagram for MPU9250.

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/spi/mpu9250_spi/CMakeLists.txt Lines 1- 12

add_executable(mpu9250_spi
mpu9250_spi.c
)

Pull in our (to be renamed) simple get you started dependencies
target_link_libraries(mpu9250_spi pico_stdlib hardware_spi)

create map/bin/hex file etc.
pico_add_extra_outputs(mpu9250_spi)

® O 0 N O g B WN =

]
Attaching a MPU9250 accelerometer/gyroscope via SPI 250

https://github.com/raspberrypi/pico-examples/tree/master/spi/mpu9250_spi/CMakeLists.txt#L1-L12

Raspberry Pi Pico C/C++ SDK
]

11 # add url via pico_set_program_url
12 example_auto_set_url(mpu9250_spi)

mpu9250_spi.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/spi/mpu9250_spi/mpu9250_spi.c Lines 1 - 150

U e

2 * Copyright (c) 2620 Raspberry Pi (Trading) Ltd.
3 *

4 * SPDX-License-Identifier: BSD-3-Clause

B

6

7 #include <stdio.h>

8 #include <string.h>

9 #include "pico/stdlib.h"
10 #include "hardware/spi.h"

11

12 /* Example code to talk to a MPU9250 MEMS accelerometer and gyroscope.

13 Ignores the magnetometer, that is left as a exercise for the reader.

14

15 This is taking to simple approach of simply reading registers. It's perfectly
16 possible to link up an interrupt line and set things up to read from the

17 inbuilt FIFO to make it more useful.

18

19 NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
20 GPIO (and therefor SPI) cannot be used at 5v.

21

22 You will need to use a level shifter on the I2C lines if you want to run the
23 board at 5v.

24

25 Connections on Raspberry Pi Pico board and a generic MPU9256 board, other

26 boards may vary.

27

28 GPIO 4 (pin 6) MISO/spi@_rx-> ADO on MPU9256 board

29 GPIO 5 (pin 7) Chip select -> NCS on MPU9256 board

30 GPIO 6 (pin 9) SCK/spi6_sclk -> SCL on MPU9256 board

&1 GPIO 7 (pin 18) MOSI/spif_tx -> SDA on MPU92560 board

32 3.3v (pin 36) -> VCC on MPU9256 board

33 GND (pin 38) -> GND on MPU9256 board

34

35 Note: SPI devices can have a number of different naming schemes for pins. See
36 the Wikipedia page at https://en.wikipedia.org/wiki/Serial_Peripheral_Interface

37 for variations.

38 The particular device used here uses the same pins for I2C and SPI, hence the
39 using of I2C names

40 */

41

42 #define PIN_MISO 4

43 #define PIN_CS 5

44 #define PIN_SCK 6

45 #define PIN_MOSI 7

46

47 #define SPI_PORT spié@
48 #define READ_BIT 0x860

49

50 static inline void cs_select() {

51 asm volatile("nop \n nop \n nop");
52 gpio_put(PIN_CS, 0); // Active low
53 asm volatile("nop \n nop \n nop");

]
Attaching a MPU9250 accelerometer/gyroscope via SPI 251

https://github.com/raspberrypi/pico-examples/tree/master/spi/mpu9250_spi/mpu9250_spi.c#L1-L150

Raspberry Pi Pico C/C++ SDK
]

54
55

}

56 static inline void cs_deselect() {

57
58
59
60
61

}

asm volatile("nop \n nop \n nop");
gpio_put(PIN_CS, 1);
asm volatile("nop \n nop \n nop");

62 static void mpu9250_reset() {

63
64

65
66
67
68
69
70
71

// Two byte reset. First byte register, second byte data

// There are a load more options to set up the device in different ways that could be
added here

uint8_t buf[] = {@x6B, ©x00};

cs_select();

spi_write_blocking(SPI_PORT, buf, 2);

cs_deselect();
}

72 static void read_registers(uint8_t reg, uint8_t *buf, uint16_t len) {

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

// For this particular device, we send the device the register we want to read
// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.

reg |= READ_BIT;

cs_select();

spi_write_blocking(SPI_PORT, ®, 1);
sleep_ms(10);

spi_read_blocking(SPI_PORT, @, buf, len);
cs_deselect();

sleep_ms(10);

static void mpu9256_read_raw(int16_t accel[3], int16_t gyro[3], int16_t *temp) {

int

uint8_t buffer[6];

// Start reading acceleration registers from register 0x3B for 6 bytes
read_registers(0x3B, buffer, 6);

for (int i = @; i < 3; i++) {

accel[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);
// Now gyro data from reg 0x43 for 6 bytes
read_registers(0x43, buffer, 6);
for (int i = @; i < 3; i++) {

gyro[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);;
// Now temperature from reg 6x41 for 2 bytes
read_registers(0x41, buffer, 2);
*temp = buffer[0] << 8 | buffer[1];
main() {
stdio_init_all();

printf("Hello, MPU9250! Reading raw data from registers via SPI...\n");

// This example will use SPIO at 0.5MHz.

]
Attaching a MPU9250 accelerometer/gyroscope via SPI 252

Raspberry Pi Pico C/C++ SDK
]

116 spi_init(SPI_PORT, 560 * 1000);

117 gpio_set_function(PIN_MISO, GPIO_FUNC_SPI);

118 gpio_set_function(PIN_SCK, GPIO_FUNC_SPI);

119 gpio_set_function(PIN_MOSI, GPIO_FUNC_SPI);

120

121 // Chip select is active-Iow, so we'll initialise it to a driven-high state

122 gpio_init(PIN_CS);

123 gpio_set_dir (PIN_CS, GPIO_OUT);

124 gpio_put(PIN_CS, 1);

125

126 mpu9250_reset();

127

128 // See if SPI is working - interrograte the device for its I2C ID number, should be 6x71

129 uint8_t id;

130 read_registers(0x75, &id, 1);

131 printf("I2C address is Ox%x\n", id);

132

133 int16_t acceleration[3], gyro[3], temp;

134

135 while (1) {

136 mpu9250_read_raw(acceleration, gyro, &temp);

137

138 // These are the raw numbers from the chip, so will need tweaking to be really
useful.

139 // See the datasheet for more information

140 printf("Acc. X = %d, Y = %d, Z = %d\n", acceleration[@], acceleration[1],
acceleration[2]);

141 printf("Gyro. X = %d, Y = %d, Z = %d\n", gyro[@], gyro[1], gyro[2]);

142 // Temperature is simple so use the datasheet calculation to get deg C.

143 // Note this is chip temperature.

144 printf("Temp. = %f\n", (temp / 340.8) + 36.53);

145

146 sleep_ms(100);

147 }

148

149 return 9;

150 }

Bill of Materials

:;I;Iifezzrz; for Item Quantity Details

the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
MPU9250 board 1 generic part
M/M Jumper wires 6 generic part

Attaching a MPU6050 accelerometer/gyroscope via 12C

This example code shows how to interface the Raspberry Pi Pico to the MPU6050 accelerometer/gyroscope board. This
device uses 12C for communications, and most MPU6050 parts are happy running at either 3.3 or 5v. The Raspberry Pi
RP2040 GPIO’s work at 3.3v so that is what the example uses.

Attaching a MPU6050 accelerometer/gyroscope via I2C 253

http://raspberrypi.org/

Raspberry Pi Pico C/C++ SDK

© NoTE

This is a very basic example, and only recovers raw data from the sensor. There are various calibration options
available that should be used to ensure that the final results are accurate. It is also possible to wire up the interrupt
pin to a GPIO and read data only when it is ready, rather than using the polling approach in the example.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses 12C port 0,
which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin.

O NoOTE

There are many different manufacturers who sell boards with the MPU6050. Whilst they all appear slightly different,
they all have, at least, the same 4 pins required to power and communicate. When wiring up a board that is different
to the one in the diagram, ensure you connect up as described in the previous paragraph.

Figure 13. Wiring ceses eeese ssees seses eeese seecs Seses esese seecs seces
Diagram for MPU6050.

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/i2c/mpu6050_i2c/CMakelLists.txt Lines 1- 12

add_executable(mpu60650_i2c
mpu6650_i2c.c

)

1
2
8
4
5 # Pull in our (to be renamed) simple get you started dependencies
6 target_link_libraries(mpu6050_i2c pico_stdlib hardware_i2c)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(mpu6650_i2c)
10
11 # add url via pico_set_program_url
12 example_auto_set_url(mpu6650_i2c)

mpu6050_i2c.c

The example code.
Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/i2c/mpu6050_i2c/mpu6050_i2c.c Lines 1- 110

1 /#*

]
Attaching a MPU6050 accelerometer/gyroscope via I2C 254

https://github.com/raspberrypi/pico-examples/tree/master/i2c/mpu6050_i2c/CMakeLists.txt#L1-L12
https://github.com/raspberrypi/pico-examples/tree/master/i2c/mpu6050_i2c/mpu6050_i2c.c#L1-L110

Raspberry Pi Pico C/C++ SDK
]

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

* Copyright (c) 20626 Raspberry Pi (Trading) Ltd.
*

* SPDX-License-Identifier: BSD-3-Clause

&7

#include <stdio.h>
#include <string.h>
#include "pico/stdlib.h"
#include "hardware/i2c.h"

/* Example code to talk to a MPU6050 MEMS accelerometer and gyroscope

This is taking to simple approach of simply reading registers. It's perfectly
possible to link up an interrupt line and set things up to read from the
inbuilt FIFO to make it more useful.

NOTE: Ensure the device is capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefor I2C) cannot be used at 5v.

You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.

Connections on Raspberry Pi Pico board, other boards may vary.

GPIO 4 (pin 6)-> SDA on MPU6056 board

GPIO 5 (pin 7)-> SCL on MPU66560 board

3.3v (pin 36) -> VCC on MPU6656 board

GND (pin 38) -> GND on MPU6656 board
27

// By default these devices are on bus address 0x68
static int addr = @x68;

#define I2C_PORT i2c@

static void mpu6050_reset() {

// Two byte reset. First byte register, second byte data

// There are a load more options to set up the device in different ways that could be
added here

uint8_t buf[] = {@x6B, ©8x00};

i2c_write_blocking(I2C_PORT, addr, buf, 2, false);

static void mpu6050_read_raw(int16_t accel[3], int16_t gyro[3], int16_t *temp) {
// For this particular device, we send the device the register we want to read
// first, then subsequently read from the device. The register is auto incrementing
// so we don't need to keep sending the register we want, just the first.

uint8_t buffer[6];

// Start reading acceleration registers from register 0x3B for 6 bytes

uint8_t val = Bx3B;

i2c_write_blocking(I2C_PORT, addr, &val, 1, true); // true to keep master control of bus
i2c_read_blocking(I2C_PORT, addr, buffer, 6, false);

for (int i = 0; i < 3; i++) {
accel[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);

// Now gyro data from reg 0x43 for 6 bytes

// The register is auto incrementing on each read
val = 0x43;

i2c_write_blocking(I2C_PORT, addr, &val, 1, true);

]
Attaching a MPU6050 accelerometer/gyroscope via I2C 255

Raspberry Pi Pico C/C++ SDK
]

64 i2c_read_blocking(I2C_PORT, addr, buffer, 6, false); // False - finished with bus

65

66 for (int i = @; i < 3; i++) {

67 gyro[i] = (buffer[i * 2] << 8 | buffer[(i * 2) + 1]);;

68 }

69

70 // Now temperature from reg 6x41 for 2 bytes

71 // The register is auto incrementing on each read

72 val = 0x41;

73 i2c_write_blocking(I2C_PORT, addr, &val, 1, true);

74 i2c_read_blocking(I2C_PORT, addr, buffer, 2, false); // False - finished with bus

75

76 *temp = buffer[0] << 8 | buffer[1];

77 }

78

79 int main() {

80 stdio_init_all();

81

82 printf("Hello, MPU6050! Reading raw data from registers...\n");

83

84 // This example will use I2C6 on GPI04 (SDA) and GPIO5 (SCL) running at 400kHz.

85 i2c_init (I2C_PORT, 400 * 1000);

86 gpio_set_function(4, GPIO_FUNC_I2C);

87 gpio_set_function(5, GPIO_FUNC_I2C);

88 gpio_pull_up(4);

89 gpio_pull_up(5);

90

91 mpu60850_reset();

92

93 int16_t acceleration[3], gyro[3], temp;

94

95 while (1) {

96 mpu6050_read_raw(acceleration, gyro, &temp);

97

98 // These are the raw numbers from the chip, so will need tweaking to be really
useful.

99 // See the datasheet for more information

100 printf("Acc. X = %d, Y = %d, Z = %d\n", acceleration[@], acceleration[1],
acceleration[2]);

101 printf("Gyro. X = %d, Y = %d, Z = %d\n", gyro[@], gyro[1], gyro[2]);

102 // Temperature is simple so use the datasheet calculation to get deg C.

103 // Note this is chip temperature.

104 printf("Temp. = %f\n", (temp / 3408.8) + 36.53);

105

106 sleep_ms(100);

107 }

108

109 return 0;

110 }

Bill of Materials

Table 14. A list of

materials required for Item Quantity Details

the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
MPU6050 board 1 generic part
M/M Jumper wires 4 generic part

]
Attaching a MPU6050 accelerometer/gyroscope via I2C 256

http://raspberrypi.org/

Raspberry Pi Pico C/C++ SDK

Figure 14. Wiring
Diagram for
LCD1602A LCD with
12C bridge.

Attaching a 16x2 LCD via I12C

This example code shows how to interface the Raspberry Pi Pico to one of the very common 16x2 LCD character
displays. The display will need a 3.3V 12C adapter board as this example uses I2C for communications.

© NoTE

These LCD displays can also be driven directly using GPIO without the use of an adapter board. That is beyond the
scope of this example.

Wiring information

Wiring up the device requires 4 jumpers, to connect VCC (3.3v), GND, SDA and SCL. The example here uses 12C port 0,
which is assigned to GPIO 4 (SDA) and 5 (SCL) in software. Power is supplied from the 3.3V pin.

@ WARNING

Many displays of this type are 5v. If you wish to use a 5v display you will need to use level shifters on the SDA and
SCL lines to convert from the 3.3V used by the RP2040. Whilst a 5v display will just about work at 3.3v, the display
will be dim.

fritzing

List of Files

CMakelLists.txt

CMake file to incorporate the example in to the examples build tree.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/i2c/lcd_1602_i2c/CMakeLists.txt Lines 1- 12

add_executable(lcd_1602_i2c
lcd_1602_i2c.c

)

1
2
3
4
5 # Pull in our (to be renamed) simple get you started dependencies
6 target_link_libraries(lcd_1602_i2c pico_stdlib hardware_i2c)

7

8

create map/bin/hex file etc.
9 pico_add_extra_outputs(lcd_1602_1i2c)

11 # add url via pico_set_program_url

Attaching a 16x2 LCD via I2C 257

https://github.com/raspberrypi/pico-examples/tree/master/i2c/lcd_1602_i2c/CMakeLists.txt#L1-L12

Raspberry Pi Pico C/C++ SDK
]

12 example_auto_set_url(lcd_1602_1i2c)

led_1602_i2c.c

The example code.

Pico Examples: https://github.com/raspberrypi/pico-examples/tree/master/i2c/lcd_1602_i2c/lcd_1602_i2c.c Lines 1 - 164

J**

* Copyright (c) 20626 Raspberry Pi (Trading) Ltd.
*

* SPDX-License-Identifier: BSD-3-Clause
*/

#include <stdio.h>

o N O o WN =

#include <string.h>

#include "pico/stdlib.h"
#include "hardware/i2c.h"
#include "pico/binary_info.h"

a4 A
W N =2 ® v

/* Example code to drive a 16x2 LCD panel via a I2C bridge chip (e.g. PCF8574)

-
[S

NOTE: The panel must be capable of being driven at 3.3v NOT 5v. The Pico
GPIO (and therefor I2C) cannot be used at 5v.

- A A
o N o

You will need to use a level shifter on the I2C lines if you want to run the
board at 5v.

NN =
- ® ©

Connections on Raspberry Pi Pico board, other boards may vary.

NN
w N

GPIO 4 (pin 6)-> SDA on LCD bridge board
GPIO 5 (pin 7)-> SCL on LCD bridge board
3.3v (pin 36) -> VCC on LCD bridge board
GND (pin 38) -> GND on LCD bridge board

27

// commands

const int LCD_CLEARDISPLAY = 0x01;

const int LCD_RETURNHOME = 0x02;

const int LCD_ENTRYMODESET = 0x04;

const int LCD_DISPLAYCONTROL = ©x08;

const int LCD_CURSORSHIFT = 0x10;

const int LCD_FUNCTIONSET = ©x20;

const int LCD_SETCGRAMADDR = 0x40;

const int LCD_SETDDRAMADDR = 0x80;

W W W W W WwWwWwwwNNDNDNDNDNDDN
0 N O ok WN =2 ®©® W 0N O g b

// flags for display entry mode
const int LCD_ENTRYSHIFTINCREMENT = 0x01;
const int LCD_ENTRYLEFT = 0x02;

A B bW
N =2 ©®© O

// flags for display and cursor control
const int LCD_BLINKON = ©x01;

const int LCD_CURSORON = ©0x02;

const int LCD_DISPLAYON = 0x04;

el
N o o bW

// flags for display and cursor shift
const int LCD_MOVERIGHT = 0x04;
const int LCD_DISPLAYMOVE = 0x08;

o g b~ A
- ® © ®

// flags for function set
const int LCD_5x16DOTS = 0x04;
const int LCD_2LINE = ©x08;
const int LCD_8BITMODE = 0x10;

(24 N, |
A W N

]
Attaching a 16x2 LCD via I2C 258

https://github.com/raspberrypi/pico-examples/tree/master/i2c/lcd_1602_i2c/lcd_1602_i2c.c#L1-L164

Raspberry Pi Pico C/C++ SDK
]

55

56 // flag for backlight control

57 const int LCD_BACKLIGHT = 0x08;
58

59 const int LCD_ENABLE_BIT = 0x04;
60

61 #define I2C_PORT i2c@

62 // By default these LCD display drivers are on bus address 0x27
63 static int addr = 0x27;

64

65 // Modes for lcd_send_byte

66 #define LCD_CHARACTER 1

67 #define LCD_COMMAND 0

68
69 #define MAX_LINES 2
70 #define MAX_CHARS 16
71

72 /* Quick helper function for single byte transfers */
73 void i2c_write_byte(uint8_t val) {

74 i2c_write_blocking(I2C_PORT, addr, &val, 1, false);
75 }

76

77 void lcd_toggle_enable(uint8_t val) {

78 // Toggle enable pin on LCD display

79 // We cannot do this too quickly or things don't work
80 #define DELAY_US 6600

81 sleep_us(DELAY_US);

82 i2c_write_byte(val | LCD_ENABLE_BIT);

83 sleep_us(DELAY_US) ;

84 i2c_write_byte(val & ~LCD_ENABLE_BIT);

85 sleep_us(DELAY_US) ;

86 }

87

88 // The display is sent a byte as two separate nibble transfers
89 void lcd_send_byte(uint8_t val, int mode) {

90 uint8_t high = mode | (val & OxF@) | LCD_BACKLIGHT;
91 uint8_t low = mode | ((val << 4) & OxFO) | LCD_BACKLIGHT;
92

93 i2c_write_byte(high);

94 lcd_toggle_enable(high);

95 i2c_write_byte(low);

96 lcd_toggle_enable(low);

97 }

98

99 void lcd_clear(void) {

100 lcd_send_byte(LCD_CLEARDISPLAY, LCD_COMMAND) ;

101 }

102

183 // go to location on LCD
104 void lcd_set_cursor(int line, int position) {

105 int val = (line == @) ? 0x80 + position : BxCO@ + position;
106 lcd_send_byte(val, LCD_COMMAND);
107 }

108

109 static void inline lcd_char(char val) {
110 lcd_send_byte(val, LCD_CHARACTER);
111 }

112

113 void lcd_string(const char *s) {

114 while (*s) {

115 lcd_char(*s++);

116 }

117 }

]
Attaching a 16x2 LCD via I2C 259

Raspberry Pi Pico C/C++ SDK
]

118

119 void lecd_init() {

120 lcd_send_byte(0x03, LCD_COMMAND) ;

121 lcd_send_byte(0x03, LCD_COMMAND) ;

122 lcd_send_byte(0x083, LCD_COMMAND) ;

123 lcd_send_byte(0x02, LCD_COMMAND) ;

124

125 lcd_send_byte(LCD_ENTRYMODESET | LCD_ENTRYLEFT, LCD_COMMAND) ;
126 lcd_send_byte(LCD_FUNCTIONSET | LCD_2LINE, LCD_COMMAND) ;
127 lcd_send_byte(LCD_DISPLAYCONTROL | LCD_DISPLAYON, LCD_COMMAND) ;
128 led_clear();

129 }

130

131 int main() {

132 // This example will use I2CO on GPIO4 (SDA) and GPIO5 (SCL)
133 i2c_init(I2C_PORT, 108 * 1000);

134 gpio_set_function(4, GPIO_FUNC_I2C);

135 gpio_set_function(5, GPIO_FUNC_I2C);

136 gpio_pull_up(4);

137 gpio_pull_up(5);

138 // Make the I2C pins available to picotool

139 bi_decl(bi_2pins_with_func(4, 5, GPIO_FUNC_I2C));

140

141 led_init();

142

143 static uint8_t *message[] =

144 {

145 "RP2040 by", "Raspberry Pi",

146 "A brand new", "microcontroller"

147 "Twin core M@", "Full C SDK",

148 "More power in", "your product",

149 "More beans", "than Heinz!"

150 I

151

152 while (1) {

153 for (int m = @; m < sizeof(message) / sizeof(message[@]); m += MAX_LINES) {
154 for (int line = @; line < MAX_LINES; line++) {

155 lcd_set_cursor(line, (MAX_CHARS / 2) - strlen(message[m + line]) / 2);
156 lcd_string(message[m + line]);

157 }

158 sleep_ms(2000) ;

159 led_clear();

160 }

161 }

162

163 return @;

164 }

Bill of Materials

;Zil;jsfezljrzg o | ltem Quantity Details

the example Breadboard 1 generic part
Raspberry Pi Pico 1 http://raspberrypi.org/
1602A based LCD panel 3.3v 1 generic part
1602A to 12C bridge device 3.3v 1 generic part
M/M Jumper wires 4 generic part

]
Attaching a 16x2 LCD via I2C 260

http://raspberrypi.org/

Raspberry Pi Pico C/C++ SDK

Table 16. SDK and
Board Configuration
Parameters

Appendix B: SDK Configuration

SDK configuration is the process of customising the SDK differently to the defaults. In cases where you do need to
make changes for specific circumstances, this chapter will show how that can be done, and what parameters can be

changed.

Configuration is done by setting various predefined values in header files in your code. These will override the default

values from the SDK itself.

So for example, if you wanted to change the default pins used by the UART, you would add the following to your project

header files, before any SDK includes.

#define PICO_DEFAULT_UART_TX_PIN 16
#define PICO_DEFAULT_UART_RX_PIN 17

Configuration Parameters

Parameter name Defined in Default Description
PARAM_ASSERTIONS_DISABLE_ALL |assert.h 0 Global assert disable
PARAM_ASSERTIONS_ENABLED_ADC | adc.h 0 Enable/disable assertions in the ADC
module
PARAM_ASSERTIONS_ENABLED_CLO | clocks.h 0 Enable/disable assertions in the
CKS clocks module
PARAM_ASSERTIONS_ENABLED_DM | dma.h 0 Enable/disable DMA assertions
A
PARAM_ASSERTIONS_ENABLED_FLA | flash.h 0 Enable/disable assertions in the flash
SH module
PARAM_ASSERTIONS_ENABLED_GPI | gpio.h 0 Enable/disable assertions in the GPIO
o] module
PARAM_ASSERTIONS_ENABLED_I2C |i2c.h 0 Enable/disable assertions in the I12C
module
PARAM_ASSERTIONS_ENABLED_INT | interp.h 0 Enable/disable assertions in the
ERP interpolation module
PARAM_ASSERTIONS_ENABLED_IRQ |irg.h 0 Enable/disable assertions in the IRQ
module
PARAM_ASSERTIONS_ENABLED_PHE | pheap.h 0 Enable/disable assertions in the
AP pheap module
PARAM_ASSERTIONS_ENABLED_PIO | pio.h 0 Enable/disable assertions in the PIO
module
PARAM_ASSERTIONS_ENABLED_PIO_ | pio_instructions.h |0 Enable/disable assertions in the PIO
INSTRUCTIONS instructions
PARAM_ASSERTIONS_ENABLED_PW | pwm.h 0 Enable/disable assertions in the PWM

M

module

]
Configuration Parameters

261

https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_base/include/pico/assert.h#L22
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_adc/include/hardware/adc.h#L47
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_clocks/include/hardware/clocks.h#L92
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_dma/include/hardware/dma.h#L40
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_flash/include/hardware/flash.h#L12
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L18
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_i2c/include/hardware/i2c.h#L14
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_interp/include/hardware/interp.h#L14
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L105
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_util/include/pico/util/pheap.h#L16
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_pio/include/hardware/pio.h#L17
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_pio/include/hardware/pio_instructions.h#L12
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_pwm/include/hardware/pwm.h#L17

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PARAM_ASSERTIONS_ENABLED_SPI | spi.h 0 Enable/disable assertions in the SPI
module
PARAM_ASSERTIONS_ENABLED_SYN | sync.h 0 Enable/disable assertions in the HW
C sync module
PARAM_ASSERTIONS_ENABLED_TIM | time.h 0 Enable/disable assertions in the time
E module
PARAM_ASSERTIONS_ENABLED_TIM | timer.h 0 Enable/disable assertions in the timer
ER module
PARAM_ASSERTIONS_ENABLED_UAR | uart.h 0 Enable/disable assertions in the UART
T module
PARAM_ASSERTIONS_ENABLE_ALL | assert.h 0 Global assert enable
PICO_CORE1_STACK_SIZE multicore.h PICO_STACK_SIZ | Stack size for core 1
E/0x800
PICO_DEBUG_MALLOC malloc.h 0 Enable/disable debug printf from
malloc
PICO_DEBUG_MALLOC_LOW_WATER | malloc.h 0 Define the lower bound for allocation
addresses to be printed by
PICO_DEBUG_MALLOC
PICO_DEBUG_PIN_BASE gpio.h 19 First pin to use for debug output (if
enabled)
PICO_DEBUG_PIN_COUNT gpio.h 3 Number of pins to use for debug
output (if enabled)
PICO_DEFAULT_IRQ_PRIORITY irg.h 0x80 Define the default IRQ priority
PICO_DEFAULT_UART uart.h 0 Define the default UART used for
printf etc
PICO_DEFAULT_UART_BAUD_RATE uart.h 115200 Define the default UART baudrate
PICO_DEFAULT_UART_RX_PIN uart.h 1 Define the default UART RX pin
PICO_DEFAULT_UART_TX_PIN uart.h 0 Define the default UART TX pin
PICO_DISABLE_SHARED_IRQ_HANDL |irg.h 0 Disable shared IRQ handers
ERS
PICO_HEAP_SIZE platform_defs.h | 0x800 Heap size to reserve
PICO_MALLOC_PANIC malloc.h 1 Enable/disable panic when an
allocation failure occurs
PICO_MAX_SHARED_IRQ_HANDLERS |irg.h 4 Maximum Number of shared IRQ
handers
PICO_NO_RAM_VECTOR_TABLE platform_defs.h |0 Enable/disable the RAM vector table
PICO_PHEAP_MAX_ENTRIES pheap.h 255 Maximum number of entries in the
pheap
PICO_PRINTF_ALWAYS_INCLUDED printf.h 1in debug build 0 | Whether to always include printf code
otherwise even if only called weakly (by panic)
PICO_PRINTF_DEFAULT_FLOAT_PRE | printf.c 6 Define default floating point precision

CISION

]
Configuration Parameters

262

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_spi/include/hardware/spi.h#L14
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L73
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_time/include/pico/time.h#L32
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_timer/include/hardware/timer.h#L48
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L13
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_base/include/pico/assert.h#L21
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_multicore/include/pico/multicore.h#L26
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_malloc/include/pico/malloc.h#L28
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_malloc/include/pico/malloc.h#L33
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L500
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_gpio/include/hardware/gpio.h#L505
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L92
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L32
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L37
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L47
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L42
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L16
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2040/hardware_regs/include/hardware/platform_defs.h#L33
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_malloc/include/pico/malloc.h#L23
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L11
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2040/hardware_regs/include/hardware/platform_defs.h#L38
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_util/include/pico/util/pheap.h#L38
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/include/pico/printf.h#L49
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/printf.c#L66

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description
PICO_PRINTF_FTOA_BUFFER_SIZE printf.c 32 Define printf ftoa buffer size
PICO_PRINTF_MAX_FLOAT printf.c 1e9 Define the largest float suitable to

print with %f

PICO_PRINTF_NTOA_BUFFER_SIZE printf.c 32 Define printf ntoa buffer size
PICO_PRINTF_SUPPORT_EXPONENTI | printf.c 1 Enable exponential floating point
AL printing
PICO_PRINTF_SUPPORT_FLOAT printf.c 1 Enable floating point printing
PICO_PRINTF_SUPPORT_LONG_LONG | printf.c 1 Enable support for long long types
(%llu or %p)
PICO_PRINTF_SUPPORT_PTRDIFF_T | printf.c 1 Enable support for the ptrdiff_t type
(%t)
PICO_SHARED_IRQ_HANDLER_DEFAU | irq.h 0x80 Set default shared IRQ order priority

LT_ORDER_PRIORITY

PICO_SPINLOCK_ID_CLAIM_FREE_EN | sync.h 31 Spinlock ID for claim free end

D

PICO_SPINLOCK_ID_CLAIM_FREE_FIR | sync.h 24 Spinlock ID for claim free first
ST

PICO_SPINLOCK_ID_HARDWARE_CLA | sync.h 11 Spinlock ID for Hardware claim
IM protection
PICO_SPINLOCK_ID_IRQ sync.h 9 Spinlock ID for IRQ protection
PICO_SPINLOCK_ID_STRIPED_FIRST |sync.h 16 Spinlock ID for striped first
PICO_SPINLOCK_ID_STRIPED_LAST |sync.h 23 Spinlock ID for striped last
PICO_SPINLOCK_ID_TIMER sync.h 10 Spinlock ID for Timer protection
PICO_STACK_SIZE platform_defs.h | 0x800 Stack Size
PICO_STDIO_DEFAULT_CRLF stdio.h 1 Default for CR/LF conversion enabled

on all stdio outputs

PICO_STDIO_ENABLE_CRLF_SUPPOR | stdio.h 1 Enable/disable CR/LF output
T conversion support

PICO_STDIO_SEMIHOSTING_DEFAUL | stdio_semihosting | PICO_STDIO_DEF | Default state of CR/LF translation for

T_CRLF .h AULT_CRLF semihosting output
PICO_STDIO_STACK_BUFFER_SIZE stdio.h 128 Define printf buffer size (on stack)...
this is just a working buffer not a max
output size
PICO_STDIO_UART_DEFAULT_CRLF | stdio_uart.h PICO_STDIO_DEF | Default state of CR/LF translation for
AULT_CRLF UART output
PICO_STDIO_USB_DEFAULT_CRLF stdio_usb.h PICO_STDIO_DEF | Default state of CR/LF translation for
AULT_CRLF USB output
PICO_STDIO_USB_LOW_PRIORITY_IR | stdio_usb.h 31 low priority (non hardware) IRQ
Q number to claim for tud_task()

background execution

]
Configuration Parameters 263

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/printf.c#L47
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/printf.c#L71
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/printf.c#L40
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/printf.c#L60
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/printf.c#L54
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/printf.c#L76
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_printf/printf.c#L81
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_irq/include/hardware/irq.h#L100
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L68
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L63
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L48
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L38
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L53
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L58
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_sync/include/hardware/sync.h#L43
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2040/hardware_regs/include/hardware/platform_defs.h#L28
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L29
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L24
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio_semihosting/include/pico/stdio_semihosting.h#L20
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio_semihosting/include/pico/stdio_semihosting.h#L20
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L34
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio_uart/include/pico/stdio_uart.h#L21
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L24
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L40

Raspberry Pi Pico C/C++ SDK
]

Parameter name Defined in Default Description

PICO_STDIO_USB_STDOUT_TIMEOUT | stdio_usb.h 500000 Number of microseconds to be

_Us blocked trying to write USB output
before assuming the host has
disappeared and discarding data

PICO_STDIO_USB_TASK_INTERVAL_U | stdio_usb.h 1000 Period of microseconds between

S calling tud_task in the background

PICO_STDOUT_MUTEX stdio.h 1 Enable/disable mutex around stdout

PICO_TIME_DEFAULT_ALARM_POOL_ | time.h 0 Disable the default alarm pool

DISABLED

PICO_TIME_DEFAULT_ALARM_POOL_ | time.h 3 Select which HW alarm is used for the

HARDWARE_ALARM_NUM default alarm pool

PICO_TIME_DEFAULT_ALARM_POOL_ | time.h 16 Selects the maximum number of

MAX_TIMERS concurrent timers in the default alarm
pool

PICO_TIME_SLEEP_OVERHEAD_ADJU | time.h 6 How many microseconds to wake up

ST_US early (and then busy_wait) to account
for timer overhead when sleeping in
low power mode

PICO_UART_DEFAULT_CRLF uart.h 0 Enable/disable CR/LF translation on
UART

PICO_UART_ENABLE_CRLF_SUPPORT | uart.h 1 Enable/disable CR/LF translation
support

PICO_USE_MALLOC_MUTEX malloc.h 1 with Whether to protect malloc etc with a

pico_multicore, 0 | mutex
otherwise
USB_DPRAM_MAX usb.h 4096 Set amount of USB RAM used by USB

system

]
Configuration Parameters

264

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L29
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio_usb/include/pico/stdio_usb.h#L35
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdio/include/pico/stdio.h#L19
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_time/include/pico/time.h#L281
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_time/include/pico/time.h#L298
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_time/include/pico/time.h#L308
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_time/include/pico/time.h#L37
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L27
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/hardware_uart/include/hardware/uart.h#L22
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_malloc/include/pico/malloc.h#L18
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2040/hardware_structs/include/hardware/structs/usb.h#L47

Raspberry Pi Pico C/C++ SDK

Table 17. CMake
Configuration
Variables

Appendix C: CMake Build
Configuration

CMake configuration variables can be used to customize the way the SDK performs builds

Configuration Parameters

Parameter name Defined in Default Description
PICO_BARE_METAL CMakelists.txt 0 Flag to exclude anything except base
headers from the build
PICO_BOARD board_setup.cma |rp2040 The board name being built for. This is
ke overridable from the user environment
PICO_BOARD_CMAKE_DIRS board_setup.cma |" Directories to look for
ke <PICO_BOARD>.cmake in. This is
overridable from the user environment
PICO_BOARD_HEADER_DIRS generic_board.cm " Directories to look for
ake <PICO_BOARD>.h in. This is
overridable from the user environment
PICO_CMAKE_RELOAD_PLATFORM_F | pico_pre_load_pla | none custom CMake file to use to set up
ILE tform.cmake the platform environment
PICO_COMPILER pico_pre_load_too | none Optionally specifies a different
Ichain.cmake compiler (other than
pico_arm_gcc.cmake) - this is not yet
fully supported
PICO_CONFIG_HEADER_FILES CMakelLists.txt List of extra header files to include
from pico/config.h for all platforms
PICO_CONFIG_HOST_HEADER_FILES | CMakelLists.txt List of extra header files to include
from pico/config.h for host platform
PICO_CONFIG_RP2040_HEADER_FILE | CMakeLists.txt List of extra header files to include
S from pico/config.h for rp2040
platform
PICO_CXX_ENABLE_CXA_ATEXIT CMakeLists.txt 0 Enabled cxa-atexit
PICO_CXX_ENABLE_EXCEPTIONS CMakelLists.txt 0 Enabled CXX exception handling
PICO_CXX_ENABLE_RTTI CMakelLists.txt 0 Enabled CXX rtti
PICO_DEFAULT_BOOT_STAGE2_FILE |CMakelists.txt Default stage? file to use unless
/boot2_w25q080. | overridden by pico_set_boot_stage2
S on the TARGET
PICO_NO_GC_SECTIONS CMakeLists.txt 0 Disable -ffunction-sections -fdata
-sections and --gc-sections
PICO_NO_HARDWARE rp2_common.cma | 1 for OPTION: Whether the build is not

ke

PICO_PLATFORM
host 0 otherwise

targeting an RP2040 device

]
Configuration Parameters

265

https://github.com/raspberrypi/pico-sdk/tree/master/src/common/CMakeLists.txt#L5
https://github.com/raspberrypi/pico-sdk/tree/master/src/board_setup.cmake#L1
https://github.com/raspberrypi/pico-sdk/tree/master/src/board_setup.cmake#L1
https://github.com/raspberrypi/pico-sdk/tree/master/src/board_setup.cmake#L15
https://github.com/raspberrypi/pico-sdk/tree/master/src/board_setup.cmake#L15
https://github.com/raspberrypi/pico-sdk/tree/master/src/boards/generic_board.cmake#L3
https://github.com/raspberrypi/pico-sdk/tree/master/src/boards/generic_board.cmake#L3
https://github.com/raspberrypi/pico-sdk/tree/master/cmake/pico_pre_load_platform.cmake#L16
https://github.com/raspberrypi/pico-sdk/tree/master/cmake/pico_pre_load_platform.cmake#L16
https://github.com/raspberrypi/pico-sdk/tree/master/cmake/pico_pre_load_toolchain.cmake#L20
https://github.com/raspberrypi/pico-sdk/tree/master/cmake/pico_pre_load_toolchain.cmake#L20
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_base/CMakeLists.txt#L14
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_base/CMakeLists.txt#L18
https://github.com/raspberrypi/pico-sdk/tree/master/src/common/pico_base/CMakeLists.txt#L17
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_cxx_options/CMakeLists.txt#L19
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_cxx_options/CMakeLists.txt#L4
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_cxx_options/CMakeLists.txt#L14
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/boot_stage2/CMakeLists.txt#L1
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_standard_link/CMakeLists.txt#L88
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common.cmake#L52
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common.cmake#L52

Raspberry Pi Pico C/C++ SDK

Parameter name Defined in Default Description
PICO_NO_TARGET_NAME rp2_common.cma | 0 Don't defined PICO_TARGET_NAME
ke
PICO_NO_UF2 rp2_common.cma | 0 Disable UF2 output
ke
PICO_ON_DEVICE rp2_common.cma | 0 for OPTION: Whether the build is
ke PICO_PLATFORM | targeting an RP2040 device
host 1 otherwise
PICO_PLATFORM pico_pre_load_pla |rp2040 or platform to build for e.g. rp2040/host
tform.cmake environment value
PICO_STDIO_SEMIHOSTING CMakelLists.txt 0 OPTION: Globally enable stdio
semihosting
PICO_STDIO_UART CMakelLists.txt 1 OPTION: Globally enable stdio UART
PICO_STDIO_USB CMakelists.txt 0 OPTION: Globally enable stdio USB
PICO_TOOLCHAIN_PATH pico_pre_load_too | none (i.e. search | Path to search for compiler
Ichain.cmake system paths)

Control of binary type produced (advanced)

These variables control how executables for RP2040 are laid out in memory. The default is for the code and data to be
entirely stored in flash with writable data (and some specifically marked) methods to copied into RAM at startup.

PICO_DEFAULT_BINARY_TYPE | default The default is flash binaries which are stored in and run from flash.

no_flash This option selects a RAM only binaries, that does not require any
flash. Note: this type of binary must be loaded on each device
reboot via a UF2 file or from the debugger.

copy_to_ram This option selects binaries which are stored in flash, but copy
themselves to RAM before executing.

blocked_ram
PICO_NO_FLASH* 0/1 Equivalent to PICO_DEFAULT_BINARY_TYPE=no_flash if 1
PICO_COPY_TO_RAM* 0/1 Equivalent to PICO_DEFAULT_BINARY_TYPE=copy_to_ram if 1
PICO_USE_BLOCKED_RAM* 0/1 Equivalent to PICO_DEFAULT_BINARY_TYPE=blocked_ram if 1

@ TP

The binary type can be set on a per executable target (as created by add_executable) basis by calling
pico_set_binary_type(target type) where type is the same as for PICO_DEFAULT_BINARY_TYPE

Configuration Parameters 266

https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common.cmake#L25
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common.cmake#L25
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common.cmake#L43
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common.cmake#L43
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common.cmake#L55
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common.cmake#L55
https://github.com/raspberrypi/pico-sdk/tree/master/cmake/pico_pre_load_platform.cmake#L1
https://github.com/raspberrypi/pico-sdk/tree/master/cmake/pico_pre_load_platform.cmake#L1
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdlib/CMakeLists.txt#L5
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdlib/CMakeLists.txt#L1
https://github.com/raspberrypi/pico-sdk/tree/master/src/rp2_common/pico_stdlib/CMakeLists.txt#L3
https://github.com/raspberrypi/pico-sdk/tree/master/cmake/pico_pre_load_toolchain.cmake#L1
https://github.com/raspberrypi/pico-sdk/tree/master/cmake/pico_pre_load_toolchain.cmake#L1

Raspberry Pi Pico C/C++ SDK

Appendix D: Board Configuration

Board Configuration

Board configuration is the process of customising the SDK to run on a specific board design. The SDK comes some
predefined configurations for boards produced by Raspberry Pi, the main (and default) example being the Raspberry Pi
Pico.

Configurations specify a number of parameters that could vary between hardware designs. For example, default UART
ports, on-board LED locations and flash capacities etc.

This chapter will go through where these configurations files are, how to make changes and set parameters, and how to
build your SDK using CMake with your customisations.

The Configuration files

Board specific configuration files are stored in the SDK source tree, at -:-/src/boards/include/boards/<boardname>.h. The
default configuration file is that for the Raspberry Pi Pico, and at the time of writing is:

<sdk_path>/src/boards/include/boards/pico.h

This relatively short file contains overrides from default of a small number of parameters used by the SDK when building
code.

SDK: https://github.com/raspberrypi/pico-sdk/tree/master/src/boards/include/boards/pico.h Lines 1 - 52

/*
* Copyright (c) 2620 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
=/

0w N O O WN =

// NOTE: THIS HEADER IS ALSO INCLUDED BY ASSEMBLER SO
SHOULD ONLY CONSIST OF PREPROCESSOR DIRECTIVES

R
N = ® ©
~ N
NS

// This header may be included by other board headers as "boards/pico.h"

a A
B~ W

#ifndef _BOARDS_PICO_H
#define _BOARDS_PICO_H

R)
N o o

#ifndef PICO_DEFAULT_UART
#define PICO_DEFAULT_UART @
#endif

N N 2 o
- ® © ©

#ifndef PICO_DEFAULT_UART_TX_PIN
#define PICO_DEFAULT_UART_TX_PIN 6
#endif

N N NN
o b~ W N

#ifndef PICO_DEFAULT_UART_RX_PIN
#define PICO_DEFAULT_UART_RX_PIN 1
#endif

N N NN
O © N o

#ifndef PICO_DEFAULT_LED_PIN
#define PICO_DEFAULT_LED_PIN 25
#endif

w w
- ®

]
Board Configuration 267

https://github.com/raspberrypi/pico-sdk/tree/master/src/boards/include/boards/pico.h#L1-L52

Raspberry Pi Pico C/C++ SDK
]

32

33 #ifndef PICO_FLASH_SPI_CLKDIV

34 #define PICO_FLASH_SPI_CLKDIV 2

35 #endif

36

37 #ifndef PICO_FLASH_SIZE_BYTES

38 #define PICO_FLASH_SIZE_BYTES (2 * 1024 * 1024)
39 #endif

40

41 // Drive high to force power supply into PWM mode (lower ripple on 3V3 at light loads)
42 #define PICO_SMPS_MODE_PIN 23

43

44 #ifndef PICO_FLOAT_SUPPORT_ROM_V1

45 #define PICO_FLOAT_SUPPORT_ROM_V1 1
46 #endif

47

48 #ifndef PICO_DOUBLE_SUPPORT_ROM_V1
49 #define PICO_DOUBLE_SUPPORT_ROM_V1 1
50 #endif

51

52 #endif

As can be seen, it sets up the default UART to uvart@, the GPIO pins to be used for that UART, the GPIO pin used for the
on-board LED, and the flash size.

To create your own configuration file, create a file in the board ../source/folder with the name of your board, for
example, myboard.h. Enter your board specific parameters in this file.

Building applications with a custom board configuration

The CMake system is what specifies which board configuration is going to be used.

To create a new build based on a new board configuration (we will use the myboard example from the previous section)
first create a new build folder under your project folder. For our example we will use the pico-examples folder.

$ cd pico-examples
S mkdir myboard_build
$ cd myboard_build

then run cmake as follows:
cmake -D"PICO_BOARD=myboard" ..

This will set up the system ready to build so you can simply type make in the myboard_build folder and the examples will be
built for your new board configuration.

Available configuration parameters

Table 16 lists all the available configuration parameters available within the SDK. You can set any configuration variable
in a board configuration header file, however the convention is to limit that to configuration items directly affected by
the board design (e.g. pins, clock frequencies etc.). Other configuration items should generally be overridden in the
CMake configuration (or another configuration header) for the application being built.

Board Configuration 268

Raspberry Pi Pico C/C++ SDK

Appendix E: Building the SDK API

documentation

The SDK documentation can be viewed online, but is also part of the SDK itself and can be built directly from the

command line. If you haven't already checked out the SDK repository you should do so,

cd ~/
mkdir pico
cd pico

cd pico-sdk

cd

R7 SR 72 75 S V- SV R 70 S Vo B Vo

git clone -b master https://github.com/raspberrypi/pico-sdk.git
git submodule update --init

git clone -b master https://github.com/raspberrypi/pico-examples.git

Install doxygen if you don't already have it,

$ sudo apt install doxygen

Then afterwards you can go ahead and build the documentation,

cd pico-sdk
mkdir build
cd build

oW v v v v

make docs

The API documentation will be built and can be found in the pico-sdk/build/docs/doxygen/html directory, see Figure 15.

API documentation € > C Y O File| /home/jamesh/projects/gitiab/pico_sdk/build/docs/doxygen/htmlfindexhtml v O W "on ° B
i Apps K Bookmarks G & 9 W M inbox @ § @ Docs Bm News Bm RFi B Shopping » | B Other bookmarks
Raspberry Pi Raspberry Pi Pico SDK
SDK Documentation The Raspberry Pi Pico SDK (Software D Kit), henceforth SDK, provides the headers, libraries and

Q search

Introduction

API Documentation
Examples

Additional Documentation +

Web +

‘ By Raspberry Pi (Trading) Ltd

cmake -DPICO_EXAMPLES_PATH=../../pico-examples

build system necessary to write programs for the RP2040 based devices such as the Raspberry Pi Pico in C,

C++ or assembly language. The SDK is designed to provide an API and programming environment that is
familiar both to nol o} pers and C pers alike.

A single program runs on the device at a time with a conventional main() method. Standard C/C++ libraries
are supported along with APIs for accessing the RP2040's hardware, including DMA, IRQs, and the wide
variety fixed function peripherals and PIO (Programmable 10)

Additionally the SDK provides higher level libraries for dealing with timers, USB, synchronization and multi-
core ing, along with iti high level ity built using P10 such as audio. The SDK can

be used to build anything from simple applications, full fledged runtime environments such as MicroPython,

to low level software such as the RP2040's on chip bootrom itself.

This documentation is generated from the SDK source tree using Doxygen. It provides basic information on
the APIs used for each library, but does not provide usage information. Please refer to the Databooks for
usage and more technical information.

SDK Design

The RP2040 is a powerful chip, however it is an embedded environment, so both RAM, and program space
are at premium. Additionally the trade offs between performance and other factors (e.g. edge case error
handling, runtime vs compile time configuration) are necessarily much more visible to the developer than
they might be on other higher level platforms.

Appendix E: Building the SDK API documentation

269

https://raspberrypi.github.io/pico-sdk-doxygen/

Raspberry Pi Pico C/C++ SDK

Appendix F: Documentation Release
History

Table 18.

) Release Date Description
Documentation
Release History 1.0 21/Jan/2021 * Initial release
1.1 26/Jan/2021 ® Minor corrections

Extra information about using DMA with ADC

Clarified M0+ and SIO CPUID registers

* Added more discussion of Timers

Update Windows and macOS build instructions

Renamed books and optimised size of output PDFs

1.2 01/Feb/2021 ® Minor corrections

Small improvements to PIO documentation

* Added missing TIMER2 and TIMERS3 registers to DMA

Explained how to get MicroPython REPL on UART

To accompany the V1.0.1 release of the C SDK

1.3 23/Feb/2021 ® Minor corrections

Changed font

Additional documentation on sink/source limits for RP2040

Major improvements to SWD documentation

Updated MicroPython build instructions

MicroPython UART example code

Updated Thonny instructions

Updated Project Generator instructions

Added a FAQ document

® Added errata E7, E8 and E9

The latest release can be found at https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf.

]
Appendix F: Documentation Release History 270

https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#errata-e7
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#errata-e8
https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf#errata-e9
https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf

@ Raspberry Pi

Raspberry Piis a trademark of the Raspberry Pi Foundation

Raspbenry Pi Trading Ltd

	Raspberry Pi Pico C/C++ SDK
	Colophon
	Legal Disclaimer Notice
	Table of Contents

	Chapter 1. About the SDK
	1.1. Introduction
	1.2. Anatomy of a SDK Application

	Chapter 2. SDK Architecture
	2.1. The Build System
	2.2. Every Library is an INTERFACE
	2.3. SDK Library Structure
	2.3.1. Higher-level Libraries
	2.3.2. Runtime Support (pico_runtime, pico_standard_link)
	2.3.3. Hardware Support Libraries
	2.3.4. Hardware Structs Library
	2.3.5. Hardware Registers Library
	2.3.6. TinyUSB Port

	2.4. Directory Structure
	2.4.1. Locations of Files

	2.5. Conventions for Library Functions
	2.5.1. Function Naming Conventions
	2.5.2. Return Codes and Error Handling
	2.5.3. Use of Inline Functions
	2.5.4. Builder Pattern for Hardware Configuration APIs

	2.6. Customisation and Configuration Using Preprocessor variables
	2.6.1. Preprocessor Variables via Board Configuration File
	2.6.2. Preprocessor Variables Per Binary or Library via CMake

	2.7. SDK Runtime
	2.7.1. Standard Input/Output (stdio) Support
	2.7.2. Floating-point Support
	2.7.3. Hardware Divider

	2.8. Multi-core support
	2.9. Using C++
	2.10. Next Steps

	Chapter 3. Using Programmable I/O (PIO)
	3.1. What is Programmable I/O (PIO)?
	3.1.1. Background
	3.1.2. I/O Using dedicated hardware on your PC
	3.1.3. I/O Using dedicated hardware on your Raspberry Pi or microcontroller
	3.1.4. I/O Using software control of GPIOs ("bit-banging")
	3.1.5. Programmable I/O Hardware using FPGAs and CPLDs
	3.1.6. Programmable I/O Hardware using PIO

	3.2. Getting started with PIO
	3.2.1. A First PIO Application
	3.2.2. A Real Example: WS2812 LEDs
	3.2.3. PIO and DMA (A Logic Analyser)
	3.2.4. Further examples

	3.3. Using PIOASM, the PIO Assembler
	3.3.1. Usage
	3.3.2. Directives
	3.3.3. Values
	3.3.4. Expressions
	3.3.5. Comments
	3.3.6. Labels
	3.3.7. Instructions
	3.3.8. Pseudoinstructions
	3.3.9. Output pass through
	3.3.10. Language generators

	3.4. PIO Instruction Set Reference
	3.4.1. Summary
	3.4.2. JMP
	3.4.3. WAIT
	3.4.4. IN
	3.4.5. OUT
	3.4.6. PUSH
	3.4.7. PULL
	3.4.8. MOV
	3.4.9. IRQ
	3.4.10. SET

	Chapter 4. Library Documentation
	4.1. Hardware APIs
	4.1.1. hardware_adc
	4.1.2. hardware_base
	4.1.3. hardware_claim
	4.1.4. hardware_clocks
	4.1.5. hardware_divider
	4.1.6. hardware_dma
	4.1.7. channel_config
	4.1.8. hardware_flash
	4.1.9. hardware_gpio
	4.1.10. hardware_i2c
	4.1.11. hardware_interp
	4.1.12. interp_config
	4.1.13. hardware_irq
	4.1.14. hardware_pio
	4.1.15. sm_config
	4.1.16. hardware_pll
	4.1.17. hardware_pwm
	4.1.18. hardware_resets
	4.1.19. hardware_rtc
	4.1.20. hardware_spi
	4.1.21. hardware_sync
	4.1.22. hardware_timer
	4.1.23. hardware_uart
	4.1.24. hardware_vreg
	4.1.25. hardware_watchdog
	4.1.26. hardware_xosc

	4.2. High Level APIs
	4.2.1. pico_multicore
	4.2.2. fifo
	4.2.3. pico_stdlib
	4.2.4. pico_sync
	4.2.5. critical_section
	4.2.6. mutex
	4.2.7. sem
	4.2.8. pico_time
	4.2.9. timestamp
	4.2.10. sleep
	4.2.11. alarm
	4.2.12. repeating_timer
	4.2.13. pico_unique_id
	4.2.14. pico_util
	4.2.15. datetime
	4.2.16. pheap
	4.2.17. queue

	4.3. Third-party Libraries
	4.3.1. tinyusb_device
	4.3.2. tinyusb_host

	4.4. Runtime Infrastructure
	4.4.1. boot_stage2
	4.4.2. pico_base
	4.4.3. pico_bit_ops
	4.4.4. pico_bootrom
	4.4.5. pico_cxx_options
	4.4.6. pico_divider
	4.4.7. pico_double
	4.4.8. pico_float
	4.4.9. pico_int64_ops
	4.4.10. pico_malloc
	4.4.11. pico_mem_ops
	4.4.12. pico_platform
	4.4.13. pico_printf
	4.4.14. pico_runtime
	4.4.15. pico_stdio
	4.4.16. pico_stdio_semihosting
	4.4.17. pico_stdio_uart
	4.4.18. pico_stdio_usb
	4.4.19. pico_standard_link

	4.5. External API Headers
	4.5.1. boot_picoboot
	4.5.2. boot_uf2

	Appendix A: App Notes
	Attaching a 7 segment LED via GPIO
	Wiring information
	List of Files
	Bill of Materials

	DHT-11, DHT-22, and AM2302 Sensors
	Wiring information
	List of Files
	Bill of Materials

	Attaching a BME280 temperature/humidity/pressure sensor via SPI
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MPU9250 accelerometer/gyroscope via SPI
	Wiring information
	List of Files
	Bill of Materials

	Attaching a MPU6050 accelerometer/gyroscope via I2C
	Wiring information
	List of Files
	Bill of Materials

	Attaching a 16x2 LCD via I2C
	Wiring information
	List of Files
	Bill of Materials

	Appendix B: SDK Configuration
	Configuration Parameters

	Appendix C: CMake Build Configuration
	Configuration Parameters
	Control of binary type produced (advanced)

	Appendix D: Board Configuration
	Board Configuration
	The Configuration files
	Building applications with a custom board configuration
	Available configuration parameters

	Appendix E: Building the SDK API documentation
	Appendix F: Documentation Release History

