iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

Datasheet - production data

LGA-14L $(2.5 \times 3 \times 0.83 \mathrm{~mm})$ typ.

Features

- "Always-on" experience with low power consumption for both accelerometer and gyroscope
- Power consumption: 0.4 mA in combo normal mode and 0.65 mA in combo high-performance mode
- Smart FIFO up to 4 kbyte based on features set
- Android M compliant
- Auxiliary SPI for OIS data output for gyroscope and accelerometer
- Hard, soft ironing for external magnetic sensor corrections
- $\pm 2 / \pm 4 / \pm 8 / \pm 16 \mathrm{~g}$ full scale
- $\pm 125 / \pm 250 / \pm 500 / \pm 1000 / \pm 2000$ dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- \quad SPI \& $I^{2} C$ serial interface with main processor data synchronization
- Dedicated gyroscope low-pass filters for UI and OIS applications
- Smart embedded functions: pedometer, step detector and step counter, significant motion and tilt
- Standard interrupts: free-fall, wakeup, 6D/4D orientation, click and double-click
- Embedded temperature sensor
- ECOPACK ${ }^{\circledR}$, RoHS and "Green" compliant

Applications

- Motion tracking and gesture detection
- Sensor hub
- Indoor navigation
- IoT and connected devices
- Smart power saving for handheld devices
- EIS and OIS for camera applications
- Vibration monitoring and compensation

Description

The LSM6DSM is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope performing at 0.65 mA in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer.
The LSM6DSM supports main OS requirements, offering real, virtual and batch sensors with 4 kbyte for dynamic data batching.
ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes.

The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.
The LSM6DSM has a full-scale acceleration range of $\pm 2 / \pm 4 / \pm 8 / \pm 16 \mathrm{~g}$ and an angular rate range of $\pm 125 / \pm 250 / \pm 500 / \pm 1000 / \pm 2000 \mathrm{dps}$.
The LSM6DSM fully supports EIS and OIS applications as the module includes a dedicated configurable signal processing path for OIS and auxiliary SPI configurable for both the gyroscope and accelerometer.

High robustness to mechanical shock makes the LSM6DSM the preferred choice of system designers for the creation and manufacturing of reliable products.
The LSM6DSM is available in a plastic land grid array (LGA) package.

Table 1. Device summary

Part number	Temp. range $\left[{ }^{\circ} \mathbf{C}\right]$	Package	Packing
LSM6DSM	-40 to +85	LGA-14L	Tray
$\left(\begin{array}{c}\text { LGA }\end{array}\right.$			
LSM6DSMTR	-40 to +85	$(2.5 \times 3 \times 0.83 \mathrm{~mm})$	Tape $\&$ Reel

Contents

1 Overview 17
2 Embedded low-power features 18
2.1 Tilt detection 18
2.2 Absolute wrist tilt 19
3 Pin description 20
3.1 Pin connections 21
4 Module specifications 23
4.1 Mechanical characteristics 23
4.2 Electrical characteristics 26
4.3 Temperature sensor characteristics 27
4.4 Communication interface characteristics 28
4.4.1 SPI - serial peripheral interface 28
4.4.2 $\quad I^{2} C$ - inter-IC control interface 29
4.5 Absolute maximum ratings 31
4.6 Terminology 32
4.6.1 Sensitivity 32
4.6.2 Zero-g and zero-rate level 32
$5 \quad$ Functionality 33
5.1 Operating modes 33
5.2 Gyroscope power modes 33
5.3 Accelerometer power modes 33
5.4 Block diagram of filters 34
5.4.1 Block diagrams of the gyroscope filters 34
5.4.2 Block diagrams of the accelerometer filters 36
5.5 FIFO 38
5.5.1 Bypass mode 38
5.5.2 FIFO mode 39
5.5.3 Continuous mode 39
5.5.4 Continuous-to-FIFO mode 39
5.5.5 Bypass-to-Continuous mode 39
5.5.6 FIFO reading procedure 40
6 Digital interfaces 41
6.1 $\mathrm{I}^{2} \mathrm{C} /$ SPI interface 41
6.2 Master $\mathrm{I}^{2} \mathrm{C}$ 41
6.3 Auxiliary SPI 42
$6.4 \quad I^{2} \mathrm{C}$ serial interface 42
6.4.1 $\quad I^{2} \mathrm{C}$ operation 42
6.5 SPI bus interface 45
6.5.1 SPI read 46
6.5.2 SPI write 47
6.5.3 SPI read in 3-wire mode 48
7 Application hints 49
7.1 LSM6DSM electrical connections in Mode 1 49
7.2 LSM6DSM electrical connections in Mode 2 50
7.3 LSM6DSM electrical connections in Mode 3 and Mode 4 51
8 Auxiliary SPI configurations 55
8.1 Gyroscope filtering 55
8.2 Accelerometer filtering 56
8.2.1 Accelerometer full scale set from primary interface 56
8.2.2 Accelerometer full scale set from auxiliary SPI 56
$9 \quad$ Register mapping 57
10 Register description 61
10.1 FUNC_CFG_ACCESS (01h) 61
10.2 SENSOR_SYNC_TIME_FRAME (04h) 61
10.3 SENSOR_SYNC_RES_RATIO (05h) 62
10.4 FIFO_CTRL1 (06h) 62
10.5 FIFO_CTRL2 (07h) 63
10.6 FIFO_CTRL3 (08h) 64
10.7 FIFO_CTRL4 (09h) 65
10.8 FIFO_CTRL5 (0Ah) 66
10.9 DRDY_PULSE_CFG (OBh) 67
10.10 INT1_CTRL (ODh) 67
10.11 INT2_CTRL (0Eh) 68
10.12 WHO_AM_I (OFh) 68
10.13 CTRL1_XL (10h) 69
10.14 CTRL2_G (11h) 70
10.15 CTRL3_C (12h) 71
10.16 CTRL4_C (13h) 72
10.17 CTRL5_C (14h) 72
10.18 CTRL6_C (15h) 74
10.19 CTRL7_G (16h) 75
10.20 CTRL8_XL (17h) 75
10.21 CTRL9_XL (18h) 76
10.22 CTRL10_C (19h) 77
10.23 MASTER_CONFIG (1Ah) 77
10.24 WAKE_UP_SRC (1Bh) 78
10.25 TAP_SRC (1Ch) 79
10.26 D6D_SRC (1Dh) 79
10.27 STATUS_REG/STATUS_SPIAux (1Eh) 80
10.28 OUT_TEMP_L (20h), OUT_TEMP_H (21h) 80
10.29 OUTX_L_G (22h) 81
10.30 OUTX_H_G (23h) 81
10.31 OUTY_L_G (24h) 82
10.32 OUTY_H_G (25h) 82
10.33 OUTZ_L_G (26h) 83
10.34 OUTZ_H_G (27h) 83
10.35 OUTX_L_XL (28h) 84
10.36 OUTX_H_XL (29h) 84
10.37 OUTY_L_XL (2Ah) 84
10.38 OUTY_H_XL (2Bh) 85
10.39 OUTZ_L_XL (2Ch) 85
10.40 OUTZ_H_XL (2Dh) 85
10.41 SENSORHUB1_REG (2Eh) 85
10.42 SENSORHUB2_REG (2Fh) 86
10.43 SENSORHUB3_REG (30h) 86
10.44 SENSORHUB4_REG (31h) 86
10.45 SENSORHUB5_REG (32h) 86
10.46 SENSORHUB6_REG (33h) 87
10.47 SENSORHUB7_REG (34h) 87
10.48 SENSORHUB8_REG (35h) 87
10.49 SENSORHUB9_REG (36h) 87
10.50 SENSORHUB10_REG (37h) 88
10.51 SENSORHUB11_REG (38h) 88
10.52 SENSORHUB12_REG (39h) 88
10.53 FIFO_STATUS1 (3Ah) 88
10.54 FIFO_STATUS2 (3Bh) 89
10.55 FIFO_STATUS3 (3Ch) 89
10.56 FIFO_STATUS4 (3Dh) 90
10.57 FIFO_DATA_OUT_L (3Eh) 90
10.58 FIFO_DATA_OUT_H (3Fh) 90
10.59 TIMESTAMPO_REG (40h) 91
10.60 TIMESTAMP1_REG (41h) 91
10.61 TIMESTAMP2_REG (42h) 91
10.62 STEP_TIMESTAMP_L (49h) 91
10.63 STEP_TIMESTAMP_H (4Ah) 92
10.64 STEP_COUNTER_L (4Bh) 92
10.65 STEP_COUNTER_H (4Ch) 92
10.66 SENSORHUB13_REG (4Dh) 92
10.67 SENSORHUB14_REG (4Eh) 93
10.68 SENSORHUB15_REG (4Fh) 93
10.69 SENSORHUB16_REG (50h) 93
10.70 SENSORHUB17_REG (51h) 93
10.71 SENSORHUB18_REG (52h) 94
10.72 FUNC_SRC1 (53h) 94
10.73 FUNC_SRC2 (54h) 95
10.74 WRIST_TILT_IA (55h) 95
10.75 TAP_CFG (58h) 96
10.76 TAP_THS_6D (59h) 97
10.77 INT_DUR2 (5Ah) 97
10.78 WAKE_UP_THS (5Bh) 98
10.79 WAKE_UP_DUR (5Ch) 98
10.80 FREE_FALL (5Dh) 99
10.81 MD1_CFG (5Eh) 100
10.82 MD2_CFG (5Fh) 101
10.83 MASTER_CMD_CODE (60h) 102
10.84 SENS_SYNC_SPI_ERROR_CODE (61h) 102
10.85 OUT_MAG_RAW_X_L (66h) 102
10.86 OUT_MAG_RAW_X_H (67h) 102
10.87 OUT_MAG_RAW_Y_L (68h) 103
10.88 OUT_MAG_RAW_Y_H (69h) 103
10.89 OUT_MAG_RAW_Z_L (6Ah) 103
10.90 OUT_MAG_RAW_Z_H (6Bh) 103
10.91 INT_OIS (6Fh) 104
10.92 CTRL1_OIS (70h) 104
10.93 CTRL2_OIS (71h) 105
10.94 CTRL3_OIS (72h) 106
10.95 X_OFS_USR (73h) 107
10.96 Y_OFS_USR (74h) 107
10.97 Z_OFS_USR (75h) 107
11 Embedded functions register mapping 108
12 Embedded functions registers description - Bank A 110
12.1 SLVO_ADD (02h) 110
12.2 SLVO_SUBADD (03h) 110
12.3 SLAVEO_CONFIG (04h) 110
12.4 SLV1_ADD (05h) 111
12.5 SLV1_SUBADD (06h) 111
12.6 SLAVE1_CONFIG (07h) 112
12.7 SLV2_ADD (08h) 112
12.8 SLV2_SUBADD (09h) 112
12.9 SLAVE2_CONFIG (OAh) 113
12.10 SLV3_ADD (OBh) 113
12.11 SLV3_SUBADD (0Ch) 113
12.12 SLAVE3_CONFIG (ODh) 114
12.13 DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh) 114
12.14 CONFIG_PEDO_THS_MIN (OFh) 114
12.15 SM_THS (13h) 115
12.16 PEDO_DEB_REG (14h) 115
12.17 STEP_COUNT_DELTA (15h) 115
12.18 MAG_SI_XX (24h) 116
12.19 MAG_SI_XY (25h) 116
12.20 MAG_SI_XZ (26h) 116
12.21 MAG_SI_YX (27h) 116
12.22 MAG_SI_YY (28h) 117
12.23 MAG_SI_YZ (29h) 117
12.24 MAG_SI_ZX (2Ah) 117
12.25 MAG_SI_ZY (2Bh) 117
12.26 MAG_SI_ZZ (2Ch) 118
12.27 MAG_OFFX_L (2Dh) 118
12.28 MAG_OFFX_H (2Eh) 118
12.29 MAG_OFFY_L (2Fh) 118
12.30 MAG_OFFY_H (30h) 119
12.31 MAG_OFFZ_L (31h) 119
12.32 MAG_OFFZ_H (32h) 119
13 Embedded functions registers description - Bank B 120
13.1 A_WRIST_TILT_LAT (50h) 120
13.2 A_WRIST_TILT_THS (54h) 120
13.3 A_WRIST_TILT_Mask (59h) 120
14 Soldering information 121
15 Package information 122
15.1 LGA-14L package information 122
15.2 LGA-14 packing information 123
16 Revision history 125

List of tables

Table 1. Device summary 1
Table 2. Pin description 22
Table 3. Mechanical characteristics 23
Table 4. Electrical characteristics 26
Table 5. Temperature sensor characteristics 27
Table 6. SPI slave timing values (in mode 3) 28
Table 7. $\quad \mathrm{I}^{2} \mathrm{C}$ slave timing values 29
Table 8. $\quad \mathrm{I}^{2} \mathrm{C}$ master timing values. 30
Table 9. Absolute maximum ratings 31
Table 10. Serial interface pin description 41
Table 11. Master $\mathrm{I}^{2} \mathrm{C}$ pin details 41
Table 12. Auxiliary SPI pin details 42
Table 13. $I^{2} \mathrm{C}$ terminology 42
Table 14. SAD+Read/Write patterns 43
Table 15. Transfer when master is writing one byte to slave 43
Table 16. Transfer when master is writing multiple bytes to slave 43
Table 17. Transfer when master is receiving (reading) one byte of data from slave 43
Table 18. Transfer when master is receiving (reading) multiple bytes of data from slave 43
Table 19. Internal pin status 53
Table 20. Registers address map 57
Table 21. FUNC_CFG_ACCESS register. 61
Table 22. FUNC_CFG_ACCESS register description 61
Table 23. Configuration of embedded functions register banks 61
Table 24. SENSOR_SYNC_TIME_FRAME register. 61
Table 25. SENSOR_SYNC_TIME_FRAME register description 61
Table 26. SENSOR_SYNC_RES_RATIO register 62
Table 27. SENSOR_SYNC_RES_RATIO register description 62
Table 28. FIFO_CTRL1 register 62
Table 29. FIFO_CTRL1 register description 62
Table 30. FIFO_CTRL2 register 63
Table 31. FIFO_CTRL2 register description. 63
Table 32. FIFO_CTRL3 register 64
Table 33. FIFO_CTRL3 register description 64
Table 34. Gyro FIFO decimation setting 64
Table 35. Accelerometer FIFO decimation setting 64
Table 36. FIFO_CTRL4 register 65
Table 37. FIFO_CTRL4 register description. 65
Table 38. Fourth FIFO data set decimation setting. 65
Table 39. Third FIFO data set decimation setting 65
Table 40. FIFO_CTRL5 register 66
Table 41. FIFO_CTRL5 register description 66
Table 42. FIFO ODR selection 66
Table 43. FIFO mode selection. 66
Table 44. DRDY_PULSE_CFG register 67
Table 45. DRDY_PULSE_CFG register description 67
Table 46. INT1_CTRL register 67
Table 47. INT1_CTRL register description 67
Table 48. INT2_CTRL register 68
Table 49. INT2_CTRL register description 68
Table 50. WHO_AM_I register 68
Table 51. CTRL1_XL register 69
Table 52. CTRL1_XL register description. 69
Table 53. Accelerometer ODR register setting 69
Table 54. CTRL2_G register 70
Table 55. CTRL2_G register description 70
Table 56. Gyroscope ODR configuration setting 70
Table 57. CTRL3_C register 71
Table 58. CTRL3_C register description. 71
Table 59. CTRL4_C register 72
Table 60. CTRL4_C register description 72
Table 61. CTRL5_C register 72
Table 62. CTRL5_C register description 72
Table 63. Output registers rounding pattern 73
Table 64. Angular rate sensor self-test mode selection 73
Table 65. Linear acceleration sensor self-test mode selection 73
Table 66. CTRL6_C register 74
Table 67. CTRL6_C register description 74
Table 68. Trigger mode selection 74
Table 69. Gyroscope LPF1 bandwidth selection 74
Table 70. CTRL7_G register. 75
Table 71. CTRL7_G register description 75
Table 72. CTRL8_XL register 75
Table 73. CTRL8_XL register description 75
Table 74. Accelerometer bandwidth selection 76
Table 75. CTRL9_XL register 76
Table 76. CTRL9_XL register description 76
Table 77. CTRL10_C register. 77
Table 78. CTRL10_C register description 77
Table 79. MASTER_CONFIG register 77
Table 80. MASTER_CONFIG register description 78
Table 81. WAKE_UP_SRC register 78
Table 82. WAKE_UP_SRC register description 78
Table 83. TAP_SRC register 79
Table 84. TAP_SRC register description 79
Table 85. D6D_SRC register 79
Table 86. D6D_SRC register description 79
Table 87. STATUS_REG register. 80
Table 88. STATUS_REG register description. 80
Table 89. STATUS_SPIAux register. 80
Table 90. STATUS_SPIAux description 80
Table 91. OUT_TEMP_L register 80
Table 92. OUT_TEMP H register. 80
Table 93. OUT_TEMP register description. 80
Table 94. OUTX_L_G register 81
Table 95. OUTX_L_G register description 81
Table 96. OUTX_H_G register 81
Table 97. OUTX_H_G register description 81
Table 98. OUTY_L_G register 82
Table 99. OUTY_L_G register description 82
Table 100. OUTY_H_G register 82
Table 101. OUTY_H_G register description 82
Table 102. OUTZ_L_G register 83
Table 103. OUTZ_L_G register description 83
Table 104. OUTZ_H_G register 83
Table 105. OUTZ_H_G register description 83
Table 106. OUTX_L_XL register. 84
Table 107. OUTX_L_XL register description 84
Table 108. OUTX_H_XL register 84
Table 109. OUTX_H_XL register description 84
Table 110. OUTY_L_XL register. 84
Table 111. OUTY_L_XL register description 84
Table 112. OUTY_H_XL register 85
Table 113. OUTY_H_XL register description 85
Table 114. OUTZ_L_XL register 85
Table 115. OUTZ_L_XL register description 85
Table 116. OUTZ_H_XL register 85
Table 117. OUTZ_H_XL register description 85
Table 118. SENSORHUB1_REG register 85
Table 119. SENSORHUB1_REG register description 85
Table 120. SENSORHUB2_REG register 86
Table 121. SENSORHUB2_REG register description 86
Table 122. SENSORHUB3_REG register 86
Table 123. SENSORHUB3_REG register description 86
Table 124. SENSORHUB4_REG register 86
Table 125. SENSORHUB4_REG register description 86
Table 126. SENSORHUB5_REG register 86
Table 127. SENSORHUB5_REG register description 86
Table 128. SENSORHUB6_REG register 87
Table 129. SENSORHUB6_REG register description 87
Table 130. SENSORHUB7_REG register 87
Table 131. SENSORHUB7_REG register description 87
Table 132. SENSORHUB8_REG register 87
Table 133. SENSORHUB8_REG register description 87
Table 134. SENSORHUB9_REG register 87
Table 135. SENSORHUB9_REG register description 87
Table 136. SENSORHUB10_REG register 88
Table 137. SENSORHUB10_REG register description 88
Table 138. SENSORHUB11_REG register 88
Table 139. SENSORHUB11_REG register description 88
Table 140. SENSORHUB12_REG register 88
Table 141. SENSORHUB12_REG register description 88
Table 142. FIFO_STATUS1 register 88
Table 143. FIFO_STATUS1 register description 88
Table 144. FIFO_STATUS2 register 89
Table 145. FIFO_STATUS2 register description 89
Table 146. FIFO_STATUS3 register 89
Table 147. FIFO_STATUS3 register description 89
Table 148. FIFO_STATUS4 register 90
Table 149. FIFO_STATUS4 register description 90
Table 150. FIFO_DATA_OUT_L register 90
Table 151. FIFO_DATA_OUT_L register description 90
Table 152. FIFO_DATA_OUT_H register 90
Table 153. FIFO_DATA_OUT_H register description. 90
Table 154. TIMESTAMP0_REG register 91
Table 155. TIMESTAMPO_REG register description 91
Table 156. TIMESTAMP1_REG register 91
Table 157. TIMESTAMP1_REG register description 91
Table 158. TIMESTAMP2_REG register 91
Table 159. TIMESTAMP2_REG register description 91
Table 160. STEP_TIMESTAMP_L register 91
Table 161. STEP_TIMESTAMP_L register description 91
Table 162. STEP_TIMESTAMP_H register 92
Table 163. STEP_TIMESTAMP_H register description 92
Table 164. STEP_COUNTER_L register 92
Table 165. STEP_COUNTER_L register description 92
Table 166. STEP COUNTER H register 92
Table 167. STEP_COUNTER_H register description. 92
Table 168. SENSORHUB13_REG register 92
Table 169. SENSORHUB13_REG register description 92
Table 170. SENSORHUB14_REG register 93
Table 171. SENSORHUB14_REG register description 93
Table 172. SENSORHUB15_REG register 93
Table 173. SENSORHUB15_REG register description 93
Table 174. SENSORHUB16_REG register 93
Table 175. SENSORHUB16_REG register description 93
Table 176. SENSORHUB17_REG register 93
Table 177. SENSORHUB17_REG register description 93
Table 178. SENSORHUB18_REG register 94
Table 179. SENSORHUB18_REG register description 94
Table 180. FUNC_SRC1 register 94
Table 181. FUNC_SRC1 register description 94
Table 182. FUNC_SRC2 register 95
Table 183. FUNC_SRC2 register description 95
Table 184. WRIST_TILT_IA register 95
Table 185. WRIST_TILT_IA register description 95
Table 186. TAP_CFG register 96
Table 187. TAP_CFG register description 96
Table 188. TAP_THS_6D register 97
Table 189. TAP_THS_6D register description 97
Table 190. Threshold for D4D/D6D function 97
Table 191. INT_DUR2 register 97
Table 192. INT_DUR2 register description 97
Table 193. WAKE_UP_THS register 98
Table 194. WAKE_UP_THS register description 98
Table 195. WAKE_UP_DUR register 98
Table 196. WAKE_UP_DUR register description 98
Table 197. FREE_FALL register 99
Table 198. FREE_FALL register description 99
Table 199. Threshold for free-fall function 99
Table 200. MD1_CFG register 100
Table 201. MD1_CFG register description 100
Table 202. MD2_CFG register 101
Table 203. MD2_CFG register description 101
Table 204. MASTER_CMD_CODE register 102
Table 205. MASTER_CMD_CODE register description 102
Table 206. SENS_SYNC_SPI_ERROR_CODE register 102
Table 207. SENS_SYNC_SPI_ERROR_CODE register description 102
Table 208. OUT_MAG_RAW_X_L register 102
Table 209. OUT_MAG_RAW_X_L register description 102
Table 210. OUT_MAG_RAW_X_H register 102
Table 211. OUT_MAG_RAW_X_H register description 102
Table 212. OUT_MAG_RAW_Y_L register 103
Table 213. OUT_MAG_RAW_Y_L register description 103
Table 214. OUT_MAG_RAW_Y_H register 103
Table 215. OUT_MAG_RAW_Y_H register description 103
Table 216. OUT_MAG_RAW_Z_L register. 103
Table 217. OUT_MAG_RAW_Z_L register description 103
Table 218. OUT_MAG_RAW_Z_H register 103
Table 219. OUT_MAG_RAW_Z_H register description 103
Table 220. INT_OIS register 104
Table 221. INT_OIS register description. 104
Table 222. CTRL1_OIS register 104
Table 223. CTRL1_OIS register description. 104
Table 224. DEN mode selection 105
Table 225. CTRL2_OIS register 105
Table 226. CTRL2_OIS register description. 105
Table 227. Gyroscope OIS chain LPF1 bandwidth selection 105
Table 228. CTRL3_OIS register 106
Table 229. CTRL3_OIS register description. 106
Table 230. Accelerometer OIS channel bandwidth selection 106
Table 231. Self-test nominal output variation 107
Table 232. X_OFS_USR register 107
Table 233. X_OFS_USR register description 107
Table 234. Y_OFS_USR register 107
Table 235. Y_OFS_USR register description 107
Table 236. Z_OFS_USR register 107
Table 237. Z_OFS_USR register description 107
Table 238. Register address map - Bank A - embedded functions 108
Table 239. Register address map - Bank B - embedded functions 109
Table 240. SLVO_ADD register. 110
Table 241. SLVO_ADD register description 110
Table 242. SLVO_SUBADD register 110
Table 243. SLVO_SUBADD register description. 110
Table 244. SLAVE0_CONFIG register 110
Table 245. SLAVEO_CONFIG register description 111
Table 246. SLV1_ADD register. 111
Table 247. SLV1_ADD register description 111
Table 248. SLV1_SUBADD register 111
Table 249. SLV1_SUBADD register description. 111
Table 250. SLAVE1_CONFIG register 112
Table 251. SLAVE1_CONFIG register description 112
Table 252. SLV2_ADD register. 112
Table 253. SLV2_ADD register description 112
Table 254. SLV2_SUBADD register 112
Table 255. SLV2_SUBADD register description 112
Table 256. SLAVE2_CONFIG register 113
Table 257. SLAVE2_CONFIG register description 113
Table 258. SLV3_ADD register. 113
Table 259. SLV3_ADD register description 113
Table 260. SLV3_SUBADD register 113
Table 261. SLV3_SUBADD register description. 113
Table 262. SLAVE3_CONFIG register 114
Table 263. SLAVE3_CONFIG register description 114
Table 264. DATAWRITE_SRC_MODE_SUB_SLV0 register 114
Table 265. DATAWRITE_SRC_MODE_SUB_SLV0 register description. 114
Table 266. CONFIG_PEDO_THS_MIN register 114
Table 267. CONFIG_PEDO_THS_MIN register description. 114
Table 268. SM_THS register 115
Table 269. SM_THS register description 115
Table 270. PEDO_DEB_REG register 115
Table 271. PEDO_DEB_REG register description 115
Table 272. STEP_COUNT_DELTA register 115
Table 273. STEP_COUNT_DELTA register description. 115
Table 274. MAG_SI_XX register. 116
Table 275. MAG_SI_XX register description 116
Table 276. MAG_SI_XY register. 116
Table 277. MAG_SI_XY register description 116
Table 278. MAG_SI_XZ register. 116
Table 279. MAG_SI_XZ register description 116
Table 280. MAG_SI_YX register. 116
Table 281. MAG_SI_YX register description 116
Table 282. MAG_SI_YY register. 117
Table 283. MAG_SI_YY register description 117
Table 284. MAG_SI_YZ register 117
Table 285. MAG_SI_YZ register description 117
Table 286. MAG_SI_ZX register. 117
Table 287. MAG_SI_ZX register description 117
Table 288. MAG_SI_ZY register. 117
Table 289. MAG_SI_ZY register description 117
Table 290. MAG_SI_ZZ register. 118
Table 291. MAG_SI_ZZ register description. 118
Table 292. MAG_OFFX_L register 118
Table 293. MAG_OFFX_L register description. 118
Table 294. MAG_OFFX_H register. 118
Table 295. MAG_OFFX_H register description 118
Table 296. MAG_OFFY_L register 118
Table 297. MAG_OFFY_L register description. 118
Table 298. MAG_OFFY_H register 119
Table 299. MAG_OFFY_H register description 119
Table 300. MAG_OFFZ_L register 119
Table 301. MAG_OFFZ_L register description 119
Table 302. MAG_OFFZ_H register. 119
Table 303. MAG_OFFZ_H register description 119
Table 304. A_WRIST_TILT_LAT register 120
Table 305. A_WRIST_TILT_LAT register description. 120
Table 306. A_WRIST_TILT_THS register 120
Table 307. A_WRIST_TILT_THS register description 120
Table 308. A_WRIST_TILT_Mask register 120
Table 309. A_WRIST_TILT_Mask register description. 120
Table 310. Reel dimensions for carrier tape of LGA-14 package 124
Table 311. Document revision history. 125

List of figures

Figure 1. Pin connections 20
Figure 2. LSM6DSM connection modes 21
Figure 3. SPI slave timing diagram (in mode 3) 28
Figure 4. $I^{2} \mathrm{C}$ timing diagram 29
Figure 5. Block diagram of filters 34
Figure 6. Gyroscope digital chain - Mode 1 (UI/EIS) and Mode 2 34
Figure 7. Gyroscope digital chain - Mode 3 / Mode 4 (OIS/EIS) 35
Figure 8. Accelerometer chain 36
Figure 9. Accelerometer composite filter (for Modes $1 / 2$ and Mode 3*). 36
Figure 10. Accelerometer composite filter (Mode 4 only*) 37
Figure 11. Read and write protocol (in mode 3) 45
Figure 12. SPI read protocol (in mode 3) 46
Figure 13. Multiple byte SPI read protocol (2-byte example) (in mode 3) 46
Figure 14. SPI write protocol (in mode 3). 47
Figure 15. Multiple byte SPI write protocol (2-byte example) (in mode 3) 47
Figure 16. SPI read protocol in 3-wire mode (in mode 3) 48
Figure 17. LSM6DSM electrical connections in Mode 1 49
Figure 18. LSM6DSM electrical connections in Mode 2 50
Figure 19. LSM6DSM electrical connections in Mode 3 and Mode 4 (auxiliary 3-wire SPI) 51
Figure 20. LSM6DSM electrical connections in Mode 3 and Mode 4 (auxiliary 4-wire SPI) 52
Figure 21. Gyroscope chain 55
Figure 22. Accelerometer chain (available only in Mode 4) 56
Figure 23. LGA-14L $2.5 \times 3 \times 0.86 \mathrm{~mm}$ package outline and mechanical data 122
Figure 24. Carrier tape information for LGA-14 package 123
Figure 25. LGA-14 package orientation in carrier tape 123
Figure 26. Reel information for carrier tape of LGA-14 package 124

1 Overview

The LSM6DSM is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.
The integrated power-efficient modes are able to reduce the power consumption down to 0.65 mA in high-performance mode, combining always-on low-power features with superior sensing precision for an optimal motion experience for the consumer thanks to ultra-low noise performance for both the gyroscope and accelerometer.

The LSM6DSM delivers best-in-class motion sensing that can detect orientation and gestures in order to empower application developers and consumers with features and capabilities that are more sophisticated than simply orienting their devices to portrait and landscape mode.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, click and double-click sensing, activity or inactivity, and wakeup events.

The LSM6DSM supports main OS requirements, offering real, virtual and batch mode sensors. In addition, the LSM6DSM can efficiently run the sensor-related features specified in Android, saving power and enabling faster reaction time. In particular, the LSM6DSM has been designed to implement hardware features such as significant motion, tilt, pedometer functions, timestamping and to support the data acquisition of an external magnetometer with ironing correction (hard, soft).

The LSM6DSM offers hardware flexibility to connect the pins with different mode connections to external sensors to expand functionalities such as adding a sensor hub, auxiliary SPI, etc.
Up to 4 kbyte of FIFO with dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall power saving of the system.

The LSM6DSM fully supports OIS/EIS applications using both the gyroscope and accelerometer sensor. The device can output OIS data through a dedicated auxiliary SPI and includes a dedicated configurable signal processing path for OIS. OIS data can be sent directly to the application processor for data processing. The gyroscope UI signal processing path is completely independent from that of the OIS and is readable through FIFO.

Like the entire portfolio of MEMS sensor modules, the LSM6DSM leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSM is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83 \mathrm{~mm}$ to address ultra-compact solutions.

2 Embedded low-power features

The LSM6DSM has been designed to be fully compliant with Android, featuring the following on-chip functions:

- 4 kbyte data buffering
- 100% efficiency with flexible configurations and partitioning
- Possibility to store timestamp
- Event-detection interrupts (fully configurable):
- Free-fall
- Wakeup
- 6D orientation
- Click And double-click sensing
- Activity / inactivity recognition
- Specific IP blocks with negligible power consumption and high-performance:
- Pedometer functions: step detector and step counters
- Tilt (refer to Section 2.1: Tilt detection for additional information
- Absolute Wrist Tilt (refer to Section 2.2: Absolute wrist tilt for additional information)
- Significant Motion Detection
- Sensor hub
- Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors
- Data rate synchronization with external trigger for reduced sensor access and enhanced fusion

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve both the targets of ultra-low power consumption and robustness during the short duration of dynamic accelerations.

It is based on a trigger of an event each time the device's tilt changes. For a more customized user experience, in the LSM6DSM the tilt function is configurable through:

- a programmable average window
- a programmable average threshold

The tilt function can be used with different scenarios, for example:
a) Triggers when phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
b) Doesn't trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.

2.2 Absolute wrist tilt

The LSM6DSM implements in hardware the Absolute Wrist Tilt (AWT) function which allows detecting when the angle between a selectable accelerometer semi-axis and the horizontal plane becomes higher than a specific user-selectable value.

Configurable threshold and latency parameters are associated with the AWT function: the threshold parameter defines the amplitude of the tilt angle; the latency parameter defines the minimum duration of the AWT event to be recognized. The AWT interrupt signal is generated if the tilt angle is higher than the threshold angle for a period of time equal to or greater than the latency period.

The AWT function is based on the accelerometer sensor only and works at 26 Hz , so the accelerometer ODR must be set at a value of 26 Hz or higher.

By default, the AWT algorithm is applied to the positive X-axis.
In order to enable the AWT function it is necessary to set to 1 both the FUNC_EN bit and the WRIST_TILT_EN bit of CTRL10_C (19h).
The AWT interrupt signal can be driven to the INT2 interrupt pin by setting to 1 the INT2_WRIST_TILT bit of the DRDY_PULSE_CFG (OBh) register; it can also be checked by reading the WRIST_TILT_IA bit of the FUNC_SRC2 (54h) register (it will also clear the interrupt signal if latched).

WRIST_TILT_IA (55h) is the status register to be used to detect which axis has triggered the AWT event (not applicable when using one axis side only).

The full description and an example is given in the dedicated application note.

3 Pin description

Figure 1. Pin connections

3.1 Pin connections

The LSM6DSM offers flexibility to connect the pins in order to have four different mode connections and functionalities. In detail:

- Mode 1: $I^{2} \mathrm{C}$ slave interface or SPI (3- and 4-wire) serial interface is available;
- Mode 2: $I^{2} \mathrm{C}$ slave interface or SPI (3- and 4-wire) serial interface and $I^{2} \mathrm{C}$ interface master for external sensor connections are available;
- Mode 3: $I^{2} \mathrm{C}$ slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface for external sensor connections (i.e. camera module) is available for the gyroscope ONLY;
- Mode 4: $I^{2} \mathrm{C}$ slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface for external sensor connections (i.e. camera module with hybrid OIS) is available for the accelerometer and gyroscope.

Figure 2. LSM6DSM connection modes

In the following table each mode is described for the pin connections and function.

Table 2. Pin description

Pin\#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function
1	SDO/SA0	SPI 4-wire interface serial data output (SDO) $I^{2} \mathrm{C}$ least significant bit of the device address (SAO)	SPI 4-wire interface serial data output (SDO) $I^{2} \mathrm{C}$ least significant bit of the device address (SAO)	SPI 4-wire interface serial data output (SDO) $1^{2} \mathrm{C}$ least significant bit of the device address (SAO)
2	SDx	Connect to VDDIO or GND	$\mathrm{I}^{2} \mathrm{C}$ serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)
3	SCx	Connect to VDDIO or GND	$\mathrm{I}^{2} \mathrm{C}$ serial clock master (MSCL)	Auxiliary SPI 3-wire interface serial port clock (SPC_Aux)
4	INT1	Programmable interrupt 1		
5	VDDIO ${ }^{(1)}$	Power supply for I/O pins		
6	GND	0 V supply		
7	GND	0 V supply		
8	VDD ${ }^{(1)}$	Power supply		
9	INT2	Programmable interrupt 2 (INT2) / Data enable (DEN)	Programmable interrupt 2 (INT2)/ Data enable (DEN)/ $1^{2} \mathrm{C}$ master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2)/ Data enable (DEN)
10	OCS_Aux	Leave unconnected ${ }^{(2)}$	Leave unconnected ${ }^{(2)}$	Auxiliary SPI 3/4-wire interface enable
11	SDO_Aux	Connect to VDDIO or leave unconnected ${ }^{(2)}$	Connect to VDDIO or leave unconnected ${ }^{(2)}$	Auxiliary SPI 3-wire interface: leave unconnected ${ }^{(2)}$ Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)
12	CS	$\mathrm{I}^{2} \mathrm{C} / \mathrm{SPI}$ mode selection (1: SPI idle mode $/ I^{2} \mathrm{C}$ communication enabled; 0: SPI communication mode $/ \mathrm{I}^{2} \mathrm{C}$ disabled)	$\mathrm{I}^{2} \mathrm{C} / \mathrm{SPI}$ mode selection (1: SPI idle mode $/{ }^{2} \mathrm{C}$ communication enabled; 0 : SPI communication mode / $1^{2} \mathrm{C}$ disabled)	$\mathrm{I}^{2} \mathrm{C} / \mathrm{SPI}$ mode selection (1: SPI idle mode $/ I^{2} \mathrm{C}$ communication enabled; 0 : SPI communication mode / $\mathrm{I}^{2} \mathrm{C}$ disabled)
13	SCL	$1^{2} \mathrm{C}$ serial clock (SCL) SPI serial port clock (SPC)	$1^{2} \mathrm{C}$ serial clock (SCL) SPI serial port clock (SPC)	$\mathrm{I}^{2} \mathrm{C}$ serial clock (SCL) SPI serial port clock (SPC)
14	SDA	$I^{2} \mathrm{C}$ serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	$I^{2} \mathrm{C}$ serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	$\mathrm{I}^{2} \mathrm{C}$ serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)

1. Recommended 100 nF filter capacitor.
2. Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

$@ \mathrm{Vdd}=1.8 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Table 3. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
LA_FS	Linear acceleration measurement range			± 2		g
				± 4		
				± 8		
				± 16		
G_FS	Angular rate measurement range			± 125		dps
				± 250		
				± 500		
				± 1000		
				± 2000		
LA_So	Linear acceleration sensitivity ${ }^{(2)}$	FS $= \pm 2$		0.061		mg/LSB
		FS $= \pm 4$		0.122		
		FS $= \pm 8$		0.244		
		FS $= \pm 16$		0.488		
G_So	Angular rate sensitivity ${ }^{(2)}$	FS $= \pm 125$		4.375		mdps/LSB
		FS $= \pm 250$		8.75		
		FS $= \pm 500$		17.50		
		FS $= \pm 1000$		35		
		FS $= \pm 2000$		70		
G_So\%	Sensitivity tolerance ${ }^{(3)}$	at component level		± 1		\%
LA_SoDr	Linear acceleration sensitivity change vs. temperature ${ }^{(4)}$	from -40° to $+85^{\circ}$		± 0.01		\%/ ${ }^{\circ} \mathrm{C}$
G_SoDr	Angular rate sensitivity change vs. temperature ${ }^{(4)}$	from -40° to $+85^{\circ}$		± 0.007		\%/ ${ }^{\circ} \mathrm{C}$
LA_TyOff	Linear acceleration zero-g level offset accuracy ${ }^{(5)}$			± 40		mg
G_TyOff	Angular rate zero-rate level ${ }^{(5)}$			± 2		dps
LA_OffDr	Linear acceleration zero- g level change vs. temperature ${ }^{(4)}$			± 0.1		$\mathrm{mg} /{ }^{\circ} \mathrm{C}$
G_OffDr	Angular rate typical zero-rate level change vs. temperature ${ }^{(4)}$			± 0.015		$\mathrm{dps} /{ }^{\circ} \mathrm{C}$

Table 3. Mechanical characteristics (continued)

1. Typical specifications are not guaranteed.
2. Sensitivity values after factory calibration test and trimming.
3. Subject to change.
4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
5. Values after factory calibration test and trimming.
6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
7. Gyroscope RMS noise in normal/low-power mode is independent of the ODR and FS setting.
8. Accelerometer noise density in high-performance mode is independent of the ODR.
9. Accelerometer RMS noise in normal/low-power mode is independent of the ODR.
10. Noise RMS related to BW = ODR /2 (for ODR /9, typ value can be calculated by Typ *0.6).
11. This ODR is available when accelerometer is in low-power mode.
12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in CTRL5_C (14h), Table 65 for all axes.
13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). $1 \mathrm{LSb}=0.061 \mathrm{mg}$ at $\pm 2 \mathrm{~g}$ full scale.
14. Accelerometer self-test limits are full-scale independent.
15. The sign of the angular rate self-test output change is defined by the STx_G bits in CTRL5_C (14h), Table 64 for all axes.
16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). $1 \mathrm{LSb}=70 \mathrm{mdps}$ at $\pm 2000 \mathrm{dps}$ full scale.

4.2 Electrical characteristics

$@$ Vdd $=1.8 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 4. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for l/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer current consumption in high-performance mode	ODR $=1.6 \mathrm{kHz}$		0.65		mA
IddNM	Gyroscope and accelerometer current consumption in normal mode	ODR $=208 \mathrm{~Hz}$		0.45		mA
IddLP	Gyroscope and accelerometer current consumption in low-power mode	ODR $=52 \mathrm{~Hz}$		0.29		mA
LA_IddHP	Accelerometer current consumption in high-performance mode	$\begin{aligned} & \mathrm{ODR}<1.6 \mathrm{kHz} \\ & \mathrm{ODR} \geq 1.6 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 150 \\ & 160 \end{aligned}$		$\mu \mathrm{A}$
LA_IddNM	Accelerometer current consumption in normal mode	ODR $=208 \mathrm{~Hz}$		85		$\mu \mathrm{A}$
LA_IddLM	Accelerometer current consumption in low-power mode	$\begin{aligned} & \mathrm{ODR}=52 \mathrm{~Hz} \\ & \mathrm{ODR}=12.5 \mathrm{~Hz} \\ & \mathrm{ODR}=1.6 \mathrm{~Hz} \end{aligned}$		$\begin{gathered} \hline 25 \\ 9 \\ 4.5 \end{gathered}$		$\mu \mathrm{A}$
IddPD	Gyroscope and accelerometer current consumption during power-down			3		$\mu \mathrm{A}$
Ton	Turn-on time			35		ms
V_{IH}	Digital high-level input voltage		0.7 *VDD_IO			V
$\mathrm{V}_{\text {IL }}$	Digital low-level input voltage				0.3 *VDD_IO	V
V_{OH}	High-level output voltage	$\mathrm{I}_{\mathrm{OH}}=4 \mathrm{~mA}{ }^{(2)}$	VDD_IO-0.2			V
V_{OL}	Low-level output voltage	$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}^{(2)}$			0.2	V
Top	Operating temperature range		-40		+85	${ }^{\circ} \mathrm{C}$

1. Typical specifications are not guaranteed.
2. 4 mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pad in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL}.

4.3 Temperature sensor characteristics

$@ \mathrm{Vdd}=1.8 \mathrm{~V}, \mathrm{~T}=25^{\circ} \mathrm{C}$ unless otherwise noted.
Table 5. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ${ }^{(1)}$	Max.	Unit
TODR $^{(2)}$	Temperature refresh rate			52		Hz
Toff	Temperature offset ${ }^{(3)}$		-15		+15	${ }^{\circ} \mathrm{C}$
TSen	Temperature sensitivity			256		$\mathrm{LSB}^{\circ}{ }^{\circ} \mathrm{C}$
TST	Temperature stabilization time ${ }^{(4)}$				500	$\mu \mathrm{~s}$
T_ADC_res	Temperature ADC resolution			16		bit
Top	Operating temperature range		-40		+85	${ }^{\circ} \mathrm{C}$

1. Typical specifications are not guaranteed.
2. When the accelerometer is in Low-Power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.
3. The output of the temperature sensor is 0 LSB (typ.) at $25^{\circ} \mathrm{C}$.
4. Time from power ON bit to valid data based on characterization data.

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.
Table 6. SPI slave timing values (in mode 3)

Symbol	Parameter	Value ${ }^{(1)}$		Unit
		Min	Max	
$\mathrm{t}_{\text {(}}$ SPC)	SPI clock cycle	100		ns
$\mathrm{f}_{\mathrm{c}(\mathrm{SPC})}$	SPI clock frequency		10	MHz
$\mathrm{t}_{\text {su(CS }}$	CS setup time	5		ns
$\mathrm{t}_{\mathrm{h}}(\mathrm{CS})$	CS hold time	20		
$\mathrm{t}_{\text {su(SI) }}$	SDI input setup time	5		
$\mathrm{t}_{\mathrm{h}(\mathrm{SI})}$	SDI input hold time	15		
$\mathrm{t}_{\mathrm{v} \text { (SO) }}$	SDO valid output time		50	
$\mathrm{t}_{\mathrm{h} \text { (SO) }}$	SDO output hold time	5		
$\mathrm{t}_{\text {dis(SO) }}$	SDO output disable time		50	

1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

Figure 3. SPI slave timing diagram (in mode 3)

Note: \quad Measurement points are done at $0.2 \cdot \mathrm{Vdd}$ _IO and $0.8 \cdot \mathrm{Vdd}$ _IO, for both input and output ports.

4.4.2 $\quad I^{2} \mathrm{C}$ - inter-IC control interface

Subject to general operating conditions for Vdd and Top.
Figure 4. $1^{2} \mathrm{C}$ timing diagram

4.4.2.1 $I^{2} \mathrm{C}$ slave

Table 7. $1^{2} \mathrm{C}$ slave timing values

Symbol	Parameter	$\mathrm{I}^{2} \mathrm{C}$ standard mode ${ }^{(1)}$		$I^{2} \mathrm{C}$ fast mode ${ }^{(1)}$		Unit
		Min	Max	Min	Max	
$\mathrm{f}_{(S C L)}$	SCL clock frequency	0	100	0	400	kHz
$\mathrm{t}_{\mathrm{w} \text { (SCLL) }}$	SCL clock low time	4.7		1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{w} \text { (SCLH) }}$	SCL clock high time	4.0		0.6		
$\mathrm{t}_{\text {su(SDA) }}$	SDA setup time	250		100		ns
$\mathrm{t}_{\mathrm{h} \text { (SDA) }}$	SDA data hold time	0	3.45	0	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{h}(\mathrm{ST})}$	START condition hold time	4		0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {su(SR) }}$	Repeated START condition setup time	4.7		0.6		
$\mathrm{t}_{\text {su(SP) }}$	STOP condition setup time	4		0.6		
$\mathrm{t}_{\mathrm{w} \text { (SP:SR) }}$	Bus free time between STOP and START condition	4.7		1.3		

1. Data based on standard $I^{2} C$ protocol requirement, not tested in production.

Note: \quad Measurement points are done at $0.2 \cdot \mathrm{Vdd}$ _IO and $0.8 \cdot \mathrm{Vdd}$ _IO, for both ports.

4.4.2.2 $I^{2} \mathrm{C}$ master

When in $I^{2} C$ Master Mode, an external sensor can be connected to LSM6DSM. LSM6DSM supports $I^{2} C$ Master - Fast Mode only.

Table 8. $I^{2} \mathrm{C}$ master timing values

Symbol	Parameter	$I^{2} C$ Master	$\mathbf{I}^{2} \mathrm{C}$ Fast Mode $(\mathbf{m i n})$	Unit
$\mathrm{f}_{(\mathrm{SCL})}$	SCL clock frequency	116.3	0 $(400 \mathrm{kHz} \mathrm{max})$	kHz
$\mathrm{t}_{\mathrm{w}(\mathrm{SCLL})}$	SCL clock low time	5.86	1.3	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{w}(\mathrm{SCLH})}$	SCL clock high time	2.74	0.6	ns
	Data valid time	3.9	-	$\mu \mathrm{s}$
	SDA hold time	≥ 0	0	ns
	SDA setup time	≥ 100	100	ns
$\mathrm{t}_{\text {su(SR) }}$	Repeated START condition setup time	1.56	0.6	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {su(HD) }}$	Repeated START condition hold time	1.56	0.6	$\mu \mathrm{~s}$
$\mathrm{t}_{\text {su(SP) }}$	STOP condition setup time	2.73	0.6	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{w}(\mathrm{SP}: \mathrm{SR})}$	Bus free time between STOP and START condition	21	1.3	$\mu \mathrm{~s}$

4.5 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 9. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature range	-40 to +125	${ }^{\circ} \mathrm{C}$
Sg	Acceleration g for 0.2 ms	10,000	9
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SAO)	-0.3 to Vdd_IO +0.3	V

Note: \quad Supply voltage on any pin should never exceed 4.8 V.
This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, $\pm 1 \mathrm{~g}$ acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2 , leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see Table 3).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see Table 3).

4.6.2 Zero-g and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X -axis and Y -axis, whereas the Z -axis will measure 1 g . Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero- g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero- g level change vs. temperature" in Table 3. The zero- g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see Table 3).

5 Functionality

5.1 Operating modes

In the LSM6DSM, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The LSM6DSM has three operating modes available:

- only accelerometer active and gyroscope in power-down
- only gyroscope active and accelerometer in power-down
- both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo-mode the ODRs are totally independent.

5.2 Gyroscope power modes

In the LSM6DSM, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to ' 0 ', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Lowpower mode is available for lower ODRs $(12.5,26,52 \mathrm{~Hz})$ while normal mode is available for ODRs equal to 104 and 208 Hz .

5.3 Accelerometer power modes

In the LSM6DSM, the accelerometer can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).
To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Lowpower mode is available for lower ODRs $(1.6,12.5,26,52 \mathrm{~Hz})$ while normal mode is available for ODRs equal to 104 and 208 Hz .

5.4 Block diagram of filters

Figure 5. Block diagram of filters

5.4.1 Block diagrams of the gyroscope filters

In the LSM6DSM, the gyroscope filtering chain depends on the mode configuration:

1. Mode 1 (for User Interface (UI) and Electronic Image Stabilization (EIS) functionality through primary interface) and Mode 2

Figure 6. Gyroscope digital chain - Mode 1 (UI/EIS) and Mode 2

In this configuration, the gyroscope ODR is selectable from 12.5 Hz up to 6.66 kHz . A lowpass filter (LPF1) is available if the auxiliary SPI is disabled, for more details about the filter characteristics see Table 69: Gyroscope LPF1 bandwidth selection.

Data can be acquired from the output registers and FIFO over the primary $I^{2} \mathrm{C} /$ SPI interface.
2. Mode 3 / Mode 4 (for OIS and EIS functionality)

Figure 7. Gyroscope digital chain - Mode 3 / Mode 4 (OIS/EIS)

Note: \quad HP_EN_OIS is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary interface.

In this configuration, there are two paths:

- the chain for User Interface (UI) where the ODR is selectable from 12.5 Hz up to 6.66 kHz
- the chain for OIS/EIS where the ODR is at 6.66 kHz and the LPF1 is available. For more details about the filter characteristics see Table 227: Gyroscope OIS chain LPF1 bandwidth selection.

5.4.2 Block diagrams of the accelerometer filters

In the LSM6DSM, the filtering chain for the accelerometer part is composed of the following:

- Analog filter (anti-aliasing)
- Digital filter (LPF1)
- Composite filter

Details of the block diagram appear in the following figure.
Figure 8. Accelerometer chain

The configuration of the digital filter can be set using the LPF1_BW_SEL bit in CTRL1_XL (10h) and the INPUT_COMPOSITE bit in CTRL8_XL (17h).

Figure 9. Accelerometer composite filter (for Modes $1 / 2$ and Mode 3*)

1. Pedometer, step detector and step counter, significant motion and tilt functions.

Note: * Mode 3 is available only if Mode4_EN = 0 and OIS_EN_SPI2 = 1 in CTRL1_OIS (70h).

Figure 10. Accelerometer composite filter (Mode 4 only*)

1. Pedometer, step detector and step counter, significant motion and tilt functions.

Note: \quad *Mode 4 is enabled when Mode4_EN = 1 and OIS_EN_SPI2 = 1 in CTRL1_OIS (70h).

5.5 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but it can wake up only when needed and burst the significant data out from the FIFO.

The LSM6DSM embeds 4 kbytes data FIFO to store the following data:

- gyroscope
- accelerometer
- external sensors
- step counter and timestamp
- temperature

Writing data in the FIFO can be configured to be triggered by the:

- accelerometer/gyroscope data-ready signal; in which case the ODR must be lower than or equal to both the accelerometer and gyroscope ODRs;
- sensor hub data-ready signal;
- step detection signal.

In addition, each data can be stored at a decimated data rate compared to FIFO ODR and it is configurable by the user, setting the FIFO_CTRL3 (08h) and FIFO_CTRL4 (09h) registers. The available decimation factors are $2,3,4,8,16,32$.

The programmable FIFO threshold can be set in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h) using the FTH [10:0] bits.

To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO threshold status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pads of these status events, the configuration can be set in INT1_CTRL (ODh) and INT2_CTRL (0Eh).

The FIFO buffer can be configured according to five different modes:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL5 (OAh) register. To guarantee the correct acquisition of data during the switching into and out of FIFO mode, the first sample acquired must be discarded.

5.5.1 Bypass mode

In Bypass mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty.
Bypass mode is also used to reset the FIFO when in FIFO mode.

5.5.2 FIFO mode

In FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL5 (OAh) (FIFO_MODE_[2:0]) to '000' After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL5 (OAh) (FIFO_MODE_[2:0]) to '001'.

FIFO buffer memorizes up to 4096 samples of 16 bits each but the depth of the FIFO can be resized by setting the FTH [10:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h). If the STOP_ON_FTH bit in FIFO_CTRL4 (09h) is set to '1', FIFO depth is limited up to FTH [10:0] bits in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h).

5.5.3 Continuous mode

Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag FIFO_STATUS2 (3Bh)(FTH) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)(FTH [10:0]).
It is possible to route FIFO_STATUS2 (3Bh) (FTH) to the INT1 pin by writing in register INT1_CTRL (ODh) (INT1_FTH) = '1' or to the INT2 pin by writing in register INT2_CTRL (OEh) (INT2_FTH) = ' 1 '.

A full-flag interrupt can be enabled, INT1_CTRL (ODh) (INT_FULL_FLAG) = '1', in order to indicate FIFO saturation and eventually read its content all at once.
If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the OVER_RUN flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available in FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh)
(DIFF_FIFO [10:0]).

5.5.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt registers FUNC_SRC1 (53h), TAP_SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh).

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.
When the selected trigger bit is equal to ' 0 ', FIFO operates in Continuous mode.

5.5.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (FIFO_CTRL5 (0Ah) (FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers in one of the following interrupt registers FUNC SRC1 (53h), TAP SRC (1Ch), WAKE_UP_SRC (1Bh) and D6D_SRC (1Dh) are equal to '1', otherwise FIFO content is reset (Bypass mode).

5.5.6 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers (FIFO_DATA_OUT_L (3Eh) and FIFO_DATA_OUT_H (3Fh)) and each FIFO sample is composed of 16 bits.
All FIFO status registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh), FIFO_STATUS3 (3Ch), FIFO_STATUS4 (3Dh)) can be read at the start of a reading operation, minimizing the intervention of the application processor.

Saving data in the FIFO buffer is organized in four FIFO data sets consisting of 6 bytes each:

The $1^{\text {st }}$ FIFO data set is reserved for gyroscope data;
The $2^{\text {nd }}$ FIFO data set is reserved for accelerometer data;
The $3^{\text {rd }}$ FIFO data set is reserved for the external sensor data stored in the registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h);
The $4^{\text {th }}$ FIFO data set can be alternately associated to the external sensor data stored in the registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG (39h), to the step counter and timestamp info, or to the temperature sensor data.

6 Digital interfaces

$6.1 \quad I^{2} \mathrm{C} /$ SPI interface

The registers embedded inside the LSM6DSM may be accessed through both the $I^{2} \mathrm{C}$ and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3 .
The serial interfaces are mapped onto the same pins. To select/exploit the $I^{2} \mathrm{C}$ interface, the CS line must be tied high (i.e connected to Vdd_IO).

Table 10. Serial interface pin description

Pin name	Pin description
CS	SPI enable $I^{2} \mathrm{C} /$ SPI mode selection (1: SPI idle mode / $I^{2} \mathrm{C}$ communication enabled; $0:$ SPI communication mode $/ I^{2} \mathrm{C}$ disabled)
SCL/SPC	$I^{2} \mathrm{C}$ Serial Clock (SCL) SPI Serial Port Clock (SPC)
SDA/SDI/SDO	$I^{2} \mathrm{C}$ Serial Data (SDA) SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO)
SDO/SA0	SPI Serial Data Output (SDO) $I^{2} \mathrm{C}$ less significant bit of the device address

6.2 Master $I^{2} \mathrm{C}$

If the LSM6DSM is configured in Mode 2, a master $\mathrm{I}^{2} \mathrm{C}$ line is available. The master serial interface is mapped in the following dedicated pins.

Table 11. Master $\mathrm{I}^{2} \mathrm{C}$ pin details

Pin name	Pin description
MSCL	$1^{2} \mathrm{C}$ serial clock master
MSDA	$1^{2} \mathrm{C}$ serial data master
MDRDY	$1^{2} \mathrm{C}$ master external synchronization signal

6.3 Auxiliary SPI

If LSM6DSM is configured in Mode 3, the auxiliary SPI is available. The auxiliary SPI interface is mapped in the following dedicated pins.

Table 12. Auxiliary SPI pin details

Pin name	Pin description
OCS_Aux	Auxiliary SPI 3/4-wire enable
SDx	Auxiliary SPI 3/4-wire data input (SDI_Aux) and SPI 3-wire data output (SDO_Aux)
SCx	Auxiliary SPI 3/4-wire interface serial port clock
SDO_Aux	SPI serial data

6.4 $\quad I^{2} C$ serial interface

The LSM6DSM $I^{2} \mathrm{C}$ is a bus slave. The $\mathrm{I}^{2} \mathrm{C}$ is employed to write the data to the registers, whose content can also be read back.
The relevant $\mathrm{I}^{2} \mathrm{C}$ terminology is provided in the table below.
Table 13. $\mathrm{I}^{2} \mathrm{C}$ terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the $I^{2} \mathrm{C}$ bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.
The $I^{2} \mathrm{C}$ interface is implemeted with fast mode $(400 \mathrm{kHz}) \mathrm{I}^{2} \mathrm{C}$ standards as well as with the standard mode.
In order to disable the $I^{2} \mathrm{C}$ block, (I2C_disable) $=1$ must be written in CTRL4_C (13h).

6.4.1 $\quad I^{2} C$ operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DSM is 110101 xb . The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is ' 1 ' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is ' 0 ' (address 1101010b). This solution permits to connect and address two different inertial modules to the same $\mathrm{I}^{2} \mathrm{C}$ bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.
The $I^{2} \mathrm{C}$ embedded inside the LSM6DSM behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the CTRL3_C (12h) (IF_INC).

The slave address is completed with a Read/Write bit. If the bit is ' 1 ' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ' 0 ' (Write) the master will transmit to the slave with direction unchanged. Table 14 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 14. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 15. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP
Slave			SAK		SAK		SAK	

Table 16. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 17. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 18. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DAT A		DATA		

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

6.5 SPI bus interface

The LSM6DSM SPI is a bus slave. The SPI allows writing and reading the registers of the device.

The serial interface communicates to the application using 4 wires: CS, SPC, SDI and SDO.
Figure 11. Read and write protocol (in mode 3)

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and SDO are, respectively, the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS.
bit 0 : RW bit. When 0 , the data $\mathrm{DI}(7: 0)$ is written into the device. When 1 , the data $\mathrm{DO}(7: 0)$ from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1-7: address $A D(6: 0)$. This is the address field of the indexed register.
bit 8-15: data $\mathrm{DI}(7: 0)$ (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data $\mathrm{DO}(7: 0)$ (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is ' 0 ', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is ' 1 ', the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.

6.5.1 SPI read

Figure 12. SPI read protocol (in mode 3)

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0 : READ bit. The value is 1 .
bit 1-7: address $A D(6: 0)$. This is the address field of the indexed register.
bit 8-15: data $\mathrm{DO}(7: 0)$ (read mode). This is the data that will be read from the device (MSb first).
bit 16-...: data $\mathrm{DO}(\ldots-8)$. Further data in multiple byte reads.
Figure 13. Multiple byte SPI read protocol (2-byte example) (in mode 3)

6.5.2 SPI write

Figure 14. SPI write protocol (in mode 3)

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.
bit 0 : WRITE bit. The value is 0 .
bit 1 -7: address $A D(6: 0)$. This is the address field of the indexed register.
bit 8-15: data $\mathrm{DI}(7: 0)$ (write mode). This is the data that is written inside the device (MSb first).
bit 16-... : data $\mathrm{DI}(\ldots-8)$. Further data in multiple byte writes.
Figure 15. Multiple byte SPI write protocol (2-byte example) (in mode 3)

6.5.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to ' 1 ' (SPI serial interface mode selection).

Figure 16. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:
bit 0 : READ bit. The value is 1 .
bit 1-7: address $\operatorname{AD}(6: 0)$. This is the address field of the indexed register.
bit 8-15: data $\mathrm{DO}(7: 0)$ (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode.

7 Application hints

7.1 LSM6DSM electrical connections in Mode 1

Figure 17. LSM6DSM electrical connections in Mode 1

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, $\mathrm{C} 2=100 \mathrm{nF}$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the $\mathrm{SP} / / I^{2} \mathrm{C}$ interface.
The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I ${ }^{2} \mathrm{C}$ interface.

7.2 LSM6DSM electrical connections in Mode 2

Figure 18. LSM6DSM electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the $\mathrm{SPI} / I^{2} \mathrm{C}$ interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the $\mathrm{SP} / / \mathrm{I}^{2} \mathrm{C}$ interface.

7.3 LSM6DSM electrical connections in Mode 3 and Mode 4

Figure 19. LSM6DSM electrical connections in Mode 3 and Mode 4 (auxiliary 3-wire SPI)

1. Leave pin electrically unconnected and soldered to PCB.

Figure 20. LSM6DSM electrical connections in Mode 3 and Mode 4 (auxiliary 4-wire SPI)

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C 1 , $\mathrm{C} 2=100 \mathrm{nF}$ ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the $\mathrm{SPI} / \mathrm{I}^{2} \mathrm{C}$ interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the $\mathrm{SPI} / \mathrm{I}^{2} \mathrm{C}$ interface.
Table 19. Internal pin status

pin\#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4
1	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	Default: Input without pull-up. Pull-up is enabled if bit $\text { SIM = } 1$ (SPI 3-wire) in reg 12h.	Default: Input without pull-up. Pull-up is enabled if bit SIM = 1 (SPI 3-wire) in reg 12h.	Default: Input without pull-up. Pull-up is enabled if bit $\text { SIM = } 1$ (SPI 3-wire) in reg 12h.
	SAO	$1^{2} \mathrm{C}$ least significant bit of the device address (SAO)	$1^{2} \mathrm{C}$ least significant bit of the device address (SAO)	${ }^{2}$ C least significant bit of the device address (SAO)			
2	SDx	Connect to VDDIO or GND	$1^{2} \mathrm{C}$ serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3wire serial data output (SDO)	Default: input without pull-up. Pull-up is enabled if bit PULL_UP_EN =1 in reg 1Ah.	Default: input without pull-up. Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.	Default: input without pull-up. Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.
3	SCx	Connect to VDDIO or GND	$1^{2} \mathrm{C}$ serial clock master (MSCL)	Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)	Default: input without pull-up. Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.	Default: input without pull-up. Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.	Default: input without pull-up. Pull-up is enabled if bit PULL_UP_EN = 1 in reg 1Ah.
4	INT1	Programmable interrupt 1	Programmable interrupt 1	Programmable interrupt 1	Default: Output forced to ground	Default: Output forced to ground	Default: Output forced to ground
5	Vdd_IO	Power supply for I/O pins	Power supply for I/O pins	Power supply for I/O pins			
6	GND	0 V supply	0 V supply	0 V supply			
7	GND	0 V supply	0 V supply	0 V supply			
8	Vdd	Power supply	Power supply	Power supply			
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN) / $\mathrm{I}^{2} \mathrm{C}$ master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Default: Output forced to ground	Default: Output forced to ground	Default: Output forced to ground

Table 19. Internal pin status (continued)

pin\#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4
10	$\begin{gathered} \text { OCS_ } \\ \text { Aux } \end{gathered}$	Leave unconnected	Leave unconnected	Auxiliary SPI 3/4-wire interface enabled	Default: Input with pullup. (See note below to disable pull-up)	Default: Input with pullup. (See note below to disable pull-up)	Input without pull-up
11	$\begin{aligned} & \text { SDO } \\ & \text { _Aux } \end{aligned}$	Connect to VDDIO or leave unconnected	Connect to VDDIO or leave unconnected	Auxiliary SPI 3-wire interface: leave unconnected / Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)	Default: Input with pullup. (See note below to disable pull-up)	Default: Input with pullup. (See note below to disable pull-up)	Default: Input without pull-up. Pull-up is enabled if bit SIM_OIS =1 (Aux_SPI 3-wire) in reg 70h.
12	CS	$1^{2} \mathrm{C} /$ SPI mode selection (1:SPI idle mode / $\mathrm{I}^{2} \mathrm{C}$ communication enabled; 0: SPI communication mode $/ I^{2} \mathrm{C}$ disabled)	$I^{2} \mathrm{C} /$ SPI mode selection (1:SPI idle mode $/ \mathrm{I}^{2} \mathrm{C}$ communication enabled; $0: \mathrm{SPI}$ communication mode $/ I^{2} \mathrm{C}$ disabled)	$1^{2} \mathrm{C} /$ SPI mode selection (1:SPI idle mode / $\mathrm{I}^{2} \mathrm{C}$ communication enabled; 0: SPI communication mode $/ I^{2} \mathrm{C}$ disabled)	Default: Input with pullup. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.	Default: Input with pullup. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.	Default: Input with pullup. Pull-up is disabled if bit I2C_disable = 1 in reg 13h.
13	SCL	$1^{2} \mathrm{C}$ serial clock (SCL) / SPI serial port clock (SPC)	$\mathrm{I}^{2} \mathrm{C}$ serial clock (SCL) / SPI serial port clock (SPC)	$1^{2} \mathrm{C}$ serial clock (SCL) / SPI serial port clock (SPC)	Input without pull-up	Input without pull-up	Input without pull-up
14	SDA	$I^{2} \mathrm{C}$ serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	$1^{2} \mathrm{C}$ serial data (SDA)/ SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	$I^{2} \mathrm{C}$ serial data (SDA)/ SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	Input without pull-up	Input without pull-up	Input without pull-up

Internal pull-up value is from $30 \mathrm{k} \Omega$ to $50 \mathrm{k} \Omega$, depending on VDDIO.
The procedure to disable the pull-up on pins 10-11 is as follows:

1. $A P$ side: write $80 h$ in register at address $00 h$
AP side: write 01 h in register at address 05 h
AP side: write 00h in register at address 00h
Note:

8 Auxiliary SPI configurations

When the LSM6DSM is configured in Mode 3 and Mode 4, the auxiliary SPI can be connected to a camera module for OIS/EIS support. In this interface, the SPI can write only to the dedicated registers INT_OIS (6Fh), CTRL1_OIS (70h), CTRL2_OIS (71h), CTRL3_OIS (72h).

8.1 Gyroscope filtering

The gyroscope filtering chain is illustrated in the following figure.
Figure 21. Gyroscope chain

Note: \quad HP_EN_OIS is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary interface.

The auxiliary interface needs to be enabled in CTRL1_OIS (70h).
Gyroscope output values are in registers 22 h to 27 h with selected full scale (FS[1:0]_G_OIS bit in CTRL1_OIS (70h)) and ODR at 6.66 kHz .

LPF1 configuration depends on the setting of the FTYPE_[1;0] _OIS bit in register CTRL2_OIS (71h).

8.2 Accelerometer filtering

Accelerometer filtering is available only when Mode 4 is enabled.

Figure 22. Accelerometer chain (available only in Mode 4)

Accelerometer output values are in registers OUTX_L_XL (28h) through OUTZ_H_XL (2Dh) and ODR at 6.66 kHz .

8.2.1 Accelerometer full scale set from primary interface

If the $\mathrm{SPI} / /^{2} \mathrm{C}$ primary interface is used, the full-scale setting has been configured by the primary interface and CTRL3_OIS (72h) must be set to the same full-scale setting of the primary interface.

8.2.2 Accelerometer full scale set from auxiliary SPI

If the configuration uses only the auxiliary SPI, the full scale can be set using the FS[1:0]_XL_OIS bits in CTRL3_OIS (72h). The configuration of the low-pass filter depends on the setting of the FILTER_XL_CONF_OIS[1:0] bits in register CTRL3_OIS (72h).

$9 \quad$ Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

Table 20. Registers address map

Name	Type	Register address		Default	Comment
		Hex	Binary		
RESERVED	-	00	00000000	-	Reserved
FUNC_CFG_ACCESS	r/w	01	00000001	00000000	Embedded functions configuration register
RESERVED	-	02	00000010	-	Reserved
RESERVED	-	03	00000011	-	Reserved
SENSOR_SYNC_TIME_- FRAME	r / w	04	00000100	00000000	Sensor sync
configuration register					

Table 20. Registers address map (continued)

Name	Type	Register address		Default	Comment
		Hex	Binary		
MASTER_CONFIG	r/w	1A	00011010	00000000	${ }^{1}{ }^{2} \mathrm{C}$ master configuration register
WAKE_UP_SRC	r	1B	00011011	output	Interrupt registers
TAP_SRC	r	1C	00011100	output	
D6D_SRC	r	1D	00011101	output	
STATUS_REG ${ }^{(1) /}$ STATUS_SPIAux ${ }^{(2)}$	r	1E	00011110	output	Status data register for user interface and OIS data
RESERVED	-	1F	00011111	-	Reserved
OUT_TEMP_L	r	20	00100000	output	Temperature output data registers
OUT_TEMP_H	r	21	00100001	output	
OUTX_L_G	r	22	00100010	output	Gyroscope output registers for user interface and OIS data
OUTX_H_G	r	23	00100011	output	
OUTY_L_G	r	24	00100100	output	
OUTY_H_G	r	25	00100101	output	
OUTZ_L_G	r	26	00100110	output	
OUTZ_H_G	r	27	00100111	output	
OUTX_L_XL	r	28	00101000	output	Accelerometer output registers
OUTX_H_XL	r	29	00101001	output	
OUTY_L_XL	r	2A	00101010	output	
OUTY_H_XL	r	2B	00101011	output	
OUTZ_L_XL	r	2C	00101100	output	
OUTZ_H_XL	r	2D	00101101	output	
SENSORHUB1_REG	r	2 E	00101110	output	Sensor hub output registers
SENSORHUB2_REG	r	2 F	00101111	output	
SENSORHUB3_REG	r	30	00110000	output	
SENSORHUB4_REG	r	31	00110001	output	
SENSORHUB5_REG	r	32	00110010	output	
SENSORHUB6_REG	r	33	00110011	output	
SENSORHUB7_REG	r	34	00110100	output	
SENSORHUB8_REG	r	35	00110101	output	
SENSORHUB9_REG	r	36	00110110	output	
SENSORHUB10_REG	r	37	00110111	output	
SENSORHUB11_REG	r	38	00111000	output	
SENSORHUB12_REG	r	39	00111001	output	

Table 20. Registers address map (continued)

Name	Type	Register address		Default	Comment
		Hex	Binary		
FIFO_STATUS1	r	3A	00111010	output	FIFO status registers
FIFO_STATUS2	r	3B	00111011	output	
FIFO_STATUS3	r	3C	00111100	output	
FIFO_STATUS4	r	3D	00111101	output	
FIFO_DATA_OUT_L	r	3E	00111110	output	FIFO data output registers
FIFO_DATA_OUT_H	r	3 F	00111111	output	
TIMESTAMPO_REG	r	40	01000000	output	Timestamp output registers
TIMESTAMP1_REG	r	41	01000001	output	
TIMESTAMP2_REG	r/w	42	01000010	output	
RESERVED	-	43-48		-	Reserved
STEP_TIMESTAMP_L	r	49	01001001	output	Step counter timestamp registers
STEP_TIMESTAMP_H	r	4A	01001010	output	
STEP_COUNTER_L	r	4B	01001011	output	Step counter output registers
STEP_COUNTER_H	r	4C	01001100	output	
SENSORHUB13_REG	r	4D	01001101	output	Sensor hub output registers
SENSORHUB14_REG	r	4E	01001110	output	
SENSORHUB15_REG	r	4F	01001111	output	
SENSORHUB16_REG	r	50	01010000	output	
SENSORHUB17_REG	r	51	01010001	output	
SENSORHUB18_REG	r	52	01010010	output	
FUNC_SRC1	r	53	01010011	output	Interrupt registers
FUNC_SRC2	r	54	01010100	output	
WRIST_TILT_IA	r	55	01010101	output	Interrupt register
RESERVED	-	56-57		-	Reserved
TAP_CFG	r/w	58	01011000	00000000	Interrupt registers
TAP_THS_6D	r/w	59	01011001	00000000	
INT_DUR2	r/w	5A	01011010	00000000	
WAKE_UP_THS	r/w	5B	01011011	00000000	
WAKE_UP_DUR	r/w	5C	01011100	00000000	
FREE_FALL	r/w	5D	01011101	00000000	
MD1_CFG	r/w	5E	01011110	00000000	
MD2_CFG	r/w	5F	01011111	00000000	
MASTER_CMD_CODE	r/w	60	01100000	00000000	

Table 20. Registers address map (continued)

Name	Type	Register address		Default	Comment
		Hex	Binary		
SENS_SYNC_SPI_ ERROR_CODE	r/w	61	01100001	00000000	
RESERVED	-	62-65		-	Reserved
OUT_MAG_RAW_X_L	r	66	01100110	output	External magnetometer raw data output registers
OUT_MAG_RAW_X_H	r	67	01100111	output	
OUT_MAG_RAW_Y_L	r	68	01101000	output	
OUT_MAG_RAW_Y_H	r	69	01101001	output	
OUT_MAG_RAW_Z_L	r	6A	01101010	output	
OUT_MAG_RAW_Z_H	r	6B	01101011	output	
RESERVED	-	6C-6E		-	Reserved
INT_OIS	r/w	6F	01101111	00000000	
CTRL1_OIS	r/w	70	01110000	00000000	Control registers for OIS connection
CTRL2_OIS	r/w	71	01110001	00000000	
CTRL3_OIS	r/w	72	01110010	00000000	
X_OFS_USR	r/w	73	01110011	00000000	Accelerometer user offset correction
Y_OFS_USR	r/w	74	01110100	00000000	
Z_OFS_USR	r/w	75	01110101	00000000	
RESERVED	-	76-7F		-	Reserved

1. This register status is read using the primary interface for user interface data.
2. This register status is read using the auxiliary SPI for OIS data.

10 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

10.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r / w).
Table 21. FUNC_CFG_ACCESS register

FUNC_ CFG_EN	$0^{(1)}$	FUNC_- CFG_EN_B	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 22. FUNC_CFG_ACCESS register description

FUNC_CFG_ EN	Enable access to the embedded functions configuration registers bank A and $\mathrm{B}^{(1)}$. Default value: 0 . Refer to Table 23.
FUNC_CFG_	
EN_B	Enable access to the embedded functions configuration register bank $\mathrm{B}^{(1)}$. Default value: 0 . Refer to Table 23.

1. The embedded functions configuration registers details are available in Section 11: Embedded functions register mapping, Section 12: Embedded functions registers description - Bank A, and Section 13: Embedded functions registers description - Bank B.

Table 23. Configuration of embedded functions register banks

FUNC_CFG_EN	FUNC_CFG_EN_B	Status of embedded register banks
0	0	Bank A and B disabled (default)
0	1	Forbidden
1	0	Bank A enabled
1	1	Bank B enabled

10.2 SENSOR_SYNC_TIME_FRAME (04h)

Sensor synchronization time frame register (r/w).
Table 24. SENSOR_SYNC_TIME_FRAME register

$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	TPH_3	TPH_2	TPH_1	TPH_0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 25. SENSOR_SYNC_TIME_FRAME register description

TPH_ [3:0]	Sensor synchronization time frame with the step of 500 ms and full range of 5 s. Unsigned 8-bit. Default value: 00000000 (sensor sync disabled)

10.3 SENSOR_SYNC_RES_RATIO (05h)

Sensor synchronization resolution ratio (r/w)
Table 26. SENSOR_SYNC_RES_RATIO register

$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	RR_1	RR_0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 27. SENSOR_SYNC_RES_RATIO register description

	Resolution ratio of error code for sensor synchronization:
00: SensorSync, Res_Ratio $=2-11$	
01: SensorSync, Res_Ratio $=2-12$	
	10: SensorSync, Res_Ratio $=2-13$
	11: SensorSync, Res_Ratio $=2-14$

10.4 FIFO_CTRL1 (06h)

FIFO control register (r/w).
Table 28. FIFO_CTRL1 register

FTH_7	FTH_6	FTH_5	FTH_4	FTH_3	FTH_2	FTH_1	FTH_0

Table 29. FIFO_CTRL1 register description

FTH_[7:0]	FIFO threshold level setting ${ }^{(1)}$. Default value: 00000000. Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level. Minimum resolution for the FIFO is 1 LSB = 2 bytes (1 word) in FIFO

1. For a complete watermark threshold configuration, consider FTH_[10:8] in FIFO_CTRL2 (07h).

10.5 FIFO_CTRL2 (07h)

FIFO control register (r/w).
Table 30. FIFO_CTRL2 register

TIMER_PEDO _FIFO_EN	TIMER_PEDO _FIFO_DRDY	$0^{(1)}$	$0^{(1)}$	FIFO_- TEMP_EN	FTH10	FTH_9	FTH_8

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 31. FIFO_CTRL2 register description

TIMER_PEDO _FIFO_EN	Enable pedometer step counter and timestamp as $4^{\text {th }}$ FIFO data set. Default: 0 (0: disable step counter and timestamp data as $4^{\text {th }}$ FIFO data set; 1: enable step counter and timestamp data as $4^{\text {th }}$ FIFO data set)
TIMER_PEDO FIFO_DRDY	FIFO write mode ${ }^{(1)}$. Default: 0 (0: enable write in FIFO based on XL/Gyro data-ready; 1: enable write in FIFO at every step detected by step counter.)
FIFO_TEMP_EN	Enable the temperature data storage in FIFO. Default: 0. (0: temperature not included in FIFO; 1: temperature included in FIFO)
FTH_[10:8]	FIFO threshold level setting ${ }^{(2)}$. Default value: 0000 Watermark flag rises when the number of bytes written to FIFO after the next write is greater than or equal to the threshold level. Minimum resolution for the FIFO is 1LSB = 2 bytes (1 word) in FIFO

1. This bit is effective if the DATA_VALID_SEL_FIFO bit of the MASTER_CONFIG (1Ah) register is set to 0 .
2. For a complete watermark threshold configuration, consider FTH_[7:0] in FIFO_CTRL1 (06h)

10.6 FIFO_CTRL3 (08h)

FIFO control register (r/w).
Table 32. FIFO_CTRL3 register

$0^{(1)}$	$0^{(1)}$	DEC_FIFO _GYRO2	DEC_FIFO _GYRO1	DEC_FIFO _GYRO0	DEC_FIFO _XL2	DEC_FIFO _XL1	DEC_FIFO _XL0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 33. FIFO_CTRL3 register description

DEC_FIFO_GYRO [2:0]	Gyro FIFO (first data set) decimation setting. Default: 000 For the configuration setting, refer to Table 34.
DEC_FIFO_XL [2:0]	Accelerometer FIFO (second data set) decimation setting. Default: 000 For the configuration setting, refer to Table 35.

Table 34. Gyro FIFO decimation setting

DEC_FIFO_GYRO [2:0]	Configuration
000	Gyro sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 35. Accelerometer FIFO decimation setting

DEC_FIFO_XL[2:0]	Configuration
000	Accelerometer sensor not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

10.7 FIFO_CTRL4 (09h)

FIFO control register (r/w).
Table 36. FIFO_CTRL4 register

STOP_	ONLY_HIGH	DEC_DS4	DEC_DS4	DEC_DS4	DEC_DS3	DEC_DS3	DEC_DS3
ON_-							
FTH	_DATTA	_FIFO2	_FIFO1	_FIFO0	_FIFO2	_FIFO1	_FIFO0

Table 37. FIFO_CTRL4 register description

STOP_ON_FTH	Enable FIFO threshold level use. Default value: 0. (0: FIFO depth is not limited; 1: FIFO depth is limited to threshold level)
ONLY_HIGH_DATA	8-bit data storage in FIFO. Default: 0 (0: disable MSByte only memorization in FIFO for XL and Gyro; 1: enable MSByte only memorization in FIFO for XL and Gyro in FIFO)
DEC_DS4_FIFO[2:0]	Fourth FIFO data set decimation setting. Default: 000 For the configuration setting, refer to Table 38.
DEC_DS3_FIFO[2:0]	Third FIFO data set decimation setting. Default: 000 For the configuration setting, refer to Table 39.

Table 38. Fourth FIFO data set decimation setting

DEC_DS4_FIFO[2:0]	Configuration
000	Fourth FIFO data set not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

Table 39. Third FIFO data set decimation setting

DEC_DS3_FIFO[2:0]	Configuration
000	Third FIFO data set not in FIFO
001	No decimation
010	Decimation with factor 2
011	Decimation with factor 3
100	Decimation with factor 4
101	Decimation with factor 8
110	Decimation with factor 16
111	Decimation with factor 32

10.8 FIFO_CTRL5 (OAh)

FIFO control register (r/w).
Table 40. FIFO_CTRL5 register

$0^{(1)}$	ODR_	ODR_-	ODR_	ODR_	FIFO_-	FIFO_-1	FIFO_-
	FIFO_3	FIFO_2	FIFO_1	FIFO_0	MODE_2	MODE_1	MODE_0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 41. FIFO_CTRL5 register description

ODR_FIFO_[3:0]	FIFO ODR selection, setting FIFO_MODE also. Default: 0000 For the configuration setting, refer to Table 42.
FIFO_MODE_[2:0]	FIFO mode selection bits, setting ODR_FIFO also. Default value: 000 For the configuration setting, refer to Table 43.

Table 42. FIFO ODR selection

ODR_FIFO_[3:0]	
0000	FIFO disabled
0001	FIFO ODR is set to 12.5 Hz
0010	FIFO ODR is set to 26 Hz
0011	FIFO ODR is set to 52 Hz
0100	FIFO ODR is set to 104 Hz
0101	FIFO ODR is set to 208 Hz
0110	FIFO ODR is set to 416 Hz
0111	FIFO ODR is set to 833 Hz
1000	FIFO ODR is set to 1.66 kHz
1001	FIFO ODR is set to 3.33 kHz
1010	FIFO ODR is set to 6.66 kHz

1. If the device is working at an ODR slower than the one selected, FIFO ODR is limited to that ODR value. Moreover, these bits are effective if both the DATA VALID_SEL FIFO bit of MASTER_CONFIG (1Ah) and the TIMER_PEDO_FIFO_DRDY bit of FIFO_CTRL2 $2(07 h$) are set to 0.

Table 43. FIFO mode selection

FIFO_MODE_[2:0]	Configuration mode
000	Bypass mode. FIFO disabled.
001	FIFO mode. Stops collecting data when FIFO is full.
010	Reserved
011	Continuous mode until trigger is deasserted, then FIFO mode.
100	Bypass mode until trigger is deasserted, then Continuous mode.
101	Reserved
110	Continuous mode. If the FIFO is full, the new sample overwrites the older one.
111	Reserved

10.9 DRDY_PULSE_CFG (OBh)

DataReady configuration register (r/w).
Table 44. DRDY_PULSE_CFG register

DRDY_ PULSED	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	INT2_- WRIST_TILT

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 45. DRDY_PULSE_CFG register description

DRDY_- PULSED	Enable pulsed DataReady mode. Default value: 0 (0: DataReady latched mode. Returns to 0 only after output data has been read; 1: DataReady pulsed mode. The DataReady pulses are 75μ s long.)
INT2_-_ WRIST_TIT	Wrist tilt interrupt on INT2 pad. Default value: 0 (0: disabled; $1:$ enabled) $)$

10.10 INT1_CTRL (ODh)

INT1 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT1. The pad's output will supply the OR combination of the selected signals.

Table 46. INT1_CTRL register

INT1_STEP_	INT1_SIGN	INT1_FULL	INT1_-	INT1_	INT1_	INT1_-	INT1_
DETECTOR	_MOT	_FLAG	FIFO_OVR	FTH	BOOT	DRDY_G	DRDY_XL

Table 47. INT1_CTRL register description

INT1_STEP_ DETECTOR	Pedometer step recognition interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_SIGN_MOT	Significant motion interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FULL_FLAG	FIFO full flag interrupt enable on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FIFO_OVR	FIFO overrun interrupt on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_FTH	FIFO threshold interrupt on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_BOOT	Boot status available on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY_G	Gyroscope Data Ready on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
INT1_DRDY_XL	Accelerometer Data Ready on INT1 pad. Default value: 0 (0: disabled; 1: enabled)

10.11 INT2_CTRL (0Eh)

INT2 pad control register (r/w).
Each bit in this register enables a signal to be carried through INT2. The pad's output will supply the OR combination of the selected signals.

Table 48. INT2_CTRL register

INT2_STEP DELTA	INT2_STEP COUNT_OV	INT2 FULL_FLAG	INT2 FIFO_OVR	$\begin{gathered} \text { INT2 } \\ \text { FTH } \end{gathered}$	INT2 DRDY _TEMP	$\begin{gathered} \text { INT2_-_ } \\ \text { DRDY_G } \end{gathered}$	$\begin{gathered} \text { INT2_- } \\ \text { DRDY_XL } \end{gathered}$

Table 49. INT2_CTRL register description

INT2_STEP_DELTA	Pedometer step recognition interrupt on delta time ${ }^{(1)}$ enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_STEP_COUNT_OV	Step counter overflow interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_FULL_FLAG	FIFO full flag interrupt enable on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_FIFO_OVR	FIFO overrun interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_FTH	FIFO threshold interrupt on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_TEMP	Temperature Data Ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_G	Gyroscope Data Ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)
INT2_DRDY_XL	Accelerometer Data Ready on INT2 pad. Default value: 0 (0: disabled; 1: enabled)

1. Delta time value is defined in register STEP_COUNT_DELTA (15h).

10.12 WHO_AM_I (OFh)

Who_AM_I register (r). This register is a read-only register. Its value is fixed at 6Ah.

Table 50. WHO_AM_I register

0	1	1	0	1	0	1	0

10.13 CTRL1_XL (10h)

Linear acceleration sensor control register 1 (r/w).
Table 51. CTRL1_XL register

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	FS_XL1	FS_XL0	LPF1_BW_ SEL	BW0_XL

Table 52. CTRL1_XL register description

ODR_XL [3:0]	Output data rate and power mode selection. Default value: 0000 (see Table 53).
FS_XL [1:0]	Accelerometer full-scale selection. Default value: 00. $(00: \pm 2 \mathrm{~g} ; 01: \pm 16 \mathrm{~g} ; 10: \pm 4 \mathrm{~g} ; 11: \pm 8 \mathrm{~g})$
LPF1_BW_SEL	Accelerometer digital LPF (LPF1) bandwidth selection. For bandwidth selection refer to CTRL8_XL (17h).
BW0_XL	Accelerometer analog chain bandwidth selection (only for accelerometer ODR $\geq 1.67 \mathrm{kHz})$. $(0: B W @ 1.5 \mathrm{kHz} ;$ $1: B W @ 400 \mathrm{~Hz})$

Table 53. Accelerometer ODR register setting

ODR_- XL3	ODR_- XL2	ODR_ XL1	ODR_ XL0	ODR selection [Hz] when XL_HM_MODE $=\mathbf{1}$	ODR selection [Hz] when XL_HM_MODE $=\mathbf{0}$
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power only)	12.5 Hz (high performance)
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)
1	1	x	x	Not allowed	Not allowed

10.14 CTRL2_G (11h)

Angular rate sensor control register $2(r / w)$.
Table 54. CTRL2_G register

ODR_G3	ODR_G2	ODR_G1	ODR_G0	FS_G1	FS_G0	FS_125	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 55. CTRL2_G register description

ODR_G [3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to Table 56)
FS_G [1:0]	Gyroscope full-scale selection. Default value: 00 (00: 250 dps; 01: 500 dps; 10: $1000 \mathrm{dps} ; 11: 2000 \mathrm{dps})$
FS_125	Gyroscope full-scale at 125 dps. Default value: 0 (0: disabled; 1: enabled)

Table 56. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE $=1$	ODR [Hz] when G_HM_MODE $=\mathbf{0}$
0	0	0	0	Power down	Power down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance	6.66 kHz (high performance)
1	0	1	1	Not available	Not available

10.15 CTRL3_C (12h)

Control register 3 (r/w).

Table 57. CTRL3_C register

BOOT	BDU	H_LACTIVE	PP_OD	SIM	IF_INC	BLE	SW_RESET

Table 58. CTRL3_C register description

BOOT	Reboots memory content. Default value: 0 (0: normal mode; 1: reboot memory content)
BDU	Block Data Update. Default value: 0 (0: continuous update; 1: output registers not updated until MSB and LSB have been read)
H_LACTIVE	Interrupt activation level. Default value: 0 (0: interrupt output pads active high; 1: interrupt output pads active low)
PP_OD	Push-pull/open-drain selection on INT1 and INT2 pads. Default value: 0 (0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0 (0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (2'C or SPI). Default value: 1 (0: disabled; 1: enabled)
BLE	Big/Little Endian Data selection. Default value 0 (0: data LSB @ lower address; 1: data MSB @ lower address)
SW_RESET	Software reset. Default value: 0 (0: normal mode; 1: reset device) This bit is automatically cleared.

10.16 CTRL4_C (13h)

Control register 4 (r/w).
Table 59. CTRL4_C register

DEN_- XL_EN	SLEEP	INT2_on__ INT1	DEN_DRDY _INT1	DRDY_- MASK	I2C_disable	LPF1_SEL_G	$0^{(1)}$

Table 60. CTRL4_C register description

DEN_XL_EN	Extend DEN functionality to accelerometer sensor. Default value: 0 (0: disabled; 1: enabled)
SLEEP	Gyroscope sleep mode enable. Default value: 0 (0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pad enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pads; 1: all interrupt signals in logic or on INT1 pad)
DEN_DRDY_INT1	DEN DRDY signal on INT1 pad. Default value: 0 (0: disabled; 1: enabled)
DRDY_MASK	Configuration 1 data available enable bit. Default value: 0 (0: DA timer disabled; 1: DA timer enabled)
I2C_disable	Disable I ${ }^{2}$ C interface. Default value: 0 (0: both I2 C and SPI enabled; 1: $\mathrm{I}^{2} \mathrm{C}$ disabled, SPI only)
LPF1_SEL_G	Enable gyroscope digital LPF1 if auxiliary SPI is disabled; the bandwidth can be selected through FTYPE [1:0] in CTRL6_C (15h) (0: disabled; 1: enabled)

10.17 CTRL5_C (14h)

Control register 5 (r/w).
Table 61. CTRL5_C register

ROUNDING2	ROUNDING1	ROUNDING0	DEN _LH	ST1_G	ST0_G	ST1_XL	ST0_XL

Table 62. CTRL5_C register description

ROUNDING[2:0]	Circular burst-mode (rounding) read from output registers through the primary interface. Default value: 000 (000: no rounding; Others: refer to Table 63)
DEN_LH	DEN active level configuration. Default value: 0 (0: active low; 1: active high)
ST_G [1:0]	Angular rate sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to Table 64)
ST_XL [1:0]	Linear acceleration sensor self-test enable. Default value: 00 (00: Self-test disabled; Other: refer to Table 65)

Table 63. Output registers rounding pattern

ROUNDING[2:0]	\quad Rounding pattern
000	No rounding
001	Accelerometer only
010	Gyroscope only
011	Gyroscope + accelerometer
100	Registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) only
101	Accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h)
110	Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h) and registers from SENSORHUB7_REG (34h) to SENSORHUB12_REG (39h)
111	Gyroscope + accelerometer + registers from SENSORHUB1_REG (2Eh) to SENSORHUB6_REG (33h)

Table 64. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 65. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

10.18 CTRL6_C (15h)

Angular rate sensor control register 6 (r/w).

Table 66. CTRL6_C register

TRIG_EN	LVL1_EN	LVL2_EN	XL_HM_MODE	USR_- OFF_W	$0^{(1)}$	FTYPE_1	FTYPE_0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 67. CTRL6_C register description

TRIG_EN	DEN data edge-sensitive trigger enable. Refer to Table 68.
LVL1_EN	DEN data level-sensitive trigger enable. Refer to Table 68.
LVL2_EN	DEN level-sensitive latched enable. Refer to Table 68.
XL_HM_MODE	High-performance operating mode disable for accelerometer. Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
USR_OFF_W	Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h) $0=2^{-10}$ $1 / L S B$ $1=2^{-6}$ g/LSB
FTYPE[1:0]	Gyroscope's low-pass filter (LPF1) bandwidth selection Table 69 shows the selectable bandwidth values (available if auxiliary SPI is disabled).

Table 68. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 69. Gyroscope LPF1 bandwidth selection

FTYPE[1:0]	ODR $=800 \mathrm{~Hz}$		ODR $=1.6 \mathrm{kHz}$		ODR $=3.3 \mathrm{kHz}$		ODR $=6.6 \mathrm{kHz}$	
	BW	Phase delay ${ }^{(1)}$						
00	245 Hz	14°	315 Hz	10°	343 Hz	8°	351 Hz	$7{ }^{\circ}$
01	195 Hz	17°	224 Hz	12°	234 Hz	10°	237 Hz	9°
10	155 Hz	19°	168 Hz	15°	172 Hz	12°	173 Hz	11°
11	293 Hz	13°	505 Hz	8°	925 Hz	6°	937 Hz	5°

[^0]
10.19 CTRL7_G (16h)

Angular rate sensor control register 7 (r/w).
Table 70. CTRL7_G register

G_HM_MODE	HP_EN_G	HPM1_G	HPMO_G	$0^{(1)}$	ROUNDING_- STATUS	$0^{(1)}$	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 71. CTRL7_G register description

G_HM_MODE	High-performance operating mode disable for gyroscope(1). Default: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
HP_EN_G	Gyroscope digital high-pass filter enable. The filter is enabled only if the gyro is in HP mode. Default value: 0 (0: HPF disabled; 1: HPF enabled)
HPM_G[1:0]	Gyroscope digital HP filter cutoff selection. Default: 00 $(00=16 \mathrm{mHz}$ $01=65 \mathrm{mHz}$ $10=260 \mathrm{mHz}$ $11=1.04 \mathrm{~Hz})$
ROUNDING_	Source register rounding function on WAKE_UP_SRC (1Bh), TAP_SRC (1Ch), D6D_SRC (1Dh), STATUS_REG (1Eh), and FUNC_SRC1 (53h) registers in the primary interface. Default value: 0 (0: Rounding disabled; 1: Rounding enabled)

10.20 CTRL8_XL (17h)

Linear acceleration sensor control register 8 (r/w).
Table 72. CTRL8_XL register

$\begin{gathered} \hline \text { LPF2_XL_ } \\ \text { EN }_{-} \end{gathered}$	$\begin{aligned} & \text { HPCF } \\ & \text { XL1 } \end{aligned}$	$\begin{gathered} \hline \text { HPCF_ }^{\prime} \\ \text { XLO } \end{gathered}$	HP_REF _MODE	$\begin{gathered} \text { INPUT_- } \\ \text { COMPOSITE } \end{gathered}$	$\begin{gathered} \text { HP_SLOPE_ } \\ \bar{X} L_{-} \text {EN } \end{gathered}$	$0^{(1)}$	$\begin{gathered} \text { LOW_PASS } \\ \text { _ON_6D } \end{gathered}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 73. CTRL8_XL register description

LPF2_XL_EN	Accelerometer low-pass filter LPF2 selection. Refer to Figure 9.
HPCF_XL[1:0]	Accelerometer LPF2 and high-pass filter configuration and cutoff setting. Refer to Table 74.
HP_REF_MODE	Enable HP filter reference mode. Default value: 0 $\left(0:\right.$ disabled; 1: enabled $\left.{ }^{(1)}\right)$
INPUT_COMPOSITE	Composite filter input selection. Default: 0 (0: ODR/2 low pass filtered sent to composite filter (default) 1: ODR/4 low pass filtered sent to composite filter)
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 9.
LOW_PASS_ON_6D	LPF2 on 6D function selection. Refer to Figure 9.

1. When enabled, the first output data has to be discarded.

Table 74. Accelerometer bandwidth selection

$\begin{aligned} & \text { HP_SLOPE_ } \\ & \mathbf{X}_{L_{1}} \text { EN } \end{aligned}$	LPF2_XL_EN	LPF1_BW_SEL	HPCF_XL[1:0]	INPUT COMPOSITE	Bandwidth
$\begin{gathered} 0 \\ \text { (low-pass path) }^{(1)} \end{gathered}$	0	0	-	-	ODR/2
		1	-	-	ODR/4
	1	-	00	1 (low noise) 0 (low latency)	ODR/50
			01		ODR/100
			10		ODR/9
			11		ODR/400
$\begin{gathered} 1 \\ \left(\text { high-pass path) }{ }^{(2)}\right. \end{gathered}$	-	-	00	0	ODR/4
			01		ODR/100
			10		ODR/9
			11		ODR/400

1. The bandwidth column is related to LPF1 if LPF2_XL_EN $=0$ or to LPF2 if LPF2_XL_EN $=1$.
2. The bandwidth column is related to the slope filter if HPCF_XL[1:0] = 00 or to the HP filter if HPCF_XL[1:0] = 01/10/11.

10.21 CTRL9_XL (18h)

Linear acceleration sensor control register 9 (r / w).
Table 75. CTRL9_XL register

DEN_X	DEN_Y	DEN_Z	DEN_XL_G	$0^{(1)}$	SOFT_EN	$0^{(1)}$	$0^{(1)}$

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 76. CTRL9_XL register description

DEN_X	DEN value stored in LSB of X-axis. Default value: 1 (0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN_Y	DEN value stored in LSB of Y-axis. Default value: 1 (0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB)
DEN_Z	DEN value stored in LSB of Z-axis. Default value: 1 (0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB)
DEN_XL_G	DEN stamping sensor selection. Default value: 0 $(0:$ DEN pin info stamped in the gyroscope axis selected by bits [7:5]; 1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
SOFT_EN	Enable soft-iron correction algorithm for magnetometer ${ }^{(1)}$. Default value: 0 (0: soft-iron correction algorithm disabled; 1: soft-iron correction algorithm enabled)

1. This bit is effective if the IRON_EN bit of MASTER_CONFIG (1Ah) and FUNC_EN bit of CTRL10_C (19h) are set to 1 .

10.22 CTRL10_C (19h)

Control register 10 (r/w).
Table 77. CTRL10_C register

WRIST_- TILT_EN	$0^{(1)}$	TIMER_ EN	PEDO_ EN	TILT_- EN	FUNC_EN	PEDO_RST _STEP	SIGN_- MOTION_EN

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 78. CTRL10_C register description

WRIST_TILT_EN	Enable wrist tilt algorithm. ${ }^{(1)(2)}$ Default value: 0 (0: wrist tilt algorithm disabled; 1: wrist tilt algorithm enabled)
TIMER_EN	Enable timestamp count. The count is saved in TIMESTAMPO_REG (40h), TIMESTAMP1_REG (41h) and TIMESTAMP2_REG (42h). Default: 0 (0: timestamp count disabled; 1: timestamp count enabled)
PEDO_EN	Enable pedometer algorithm. ${ }^{(2)}$ Default value: 0 (0: pedometer algorithm disabled; 1: pedometer algorithm enabled)
TILT_EN	Enable tilt calculation. ${ }^{(2)}$
FUNC_EN	Enable embedded functionalities (pedometer, tilt, wrist tilt, significant motion detection, sensor hub and ironing). Default value: 0 (0: disable functionalities of embedded functions and accelerometer filters; 1: enable functionalities of embedded functions and accelerometer filters)
PEDO_RST_ STEP	Reset pedometer step counter. Default value: 0 (0: disabled; 1: enabled)
SIGN_MOTION_EN	Enable significant motion detection function. ${ }^{(2)}$ Default value: 0 (0: disabled; 1: enabled)

1. By default, the wrist tilt algorithm is applied to the positive X -axis.
2. This is effective if the FUNC_EN bit is set to ' 1 '.

10.23 MASTER_CONFIG (1Ah)

Master configuration register (r/w).

Table 79. MASTER_CONFIG register

$\begin{gathered} \text { DRDY_ON } \\ \text { _INT1 } \end{gathered}$	DATA_VALID _SEL__FIFO	$0^{(1)}$	START CONFIG	PULL_UP _EN	$\begin{aligned} & \text { PASS_} \\ & \text { THROUGH } \\ & \text { _MODE } \end{aligned}$	IRON_EN	MASTER_ ON

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 80. MASTER_CONFIG register description

$\begin{aligned} & \text { DRDY_ON_ } \\ & \text { INT1 } \end{aligned}$	Manage the Master DRDY signal on INT1 pad. Default: 0 (0: disable Master DRDY on INT1; 1: enable Master DRDY on INT1)
DATA_VALID_ SEL_FIFO	Selection of FIFO data-valid signal. Default value: 0 (0 : data-valid signal used to write data in FIFO is the XL/Gyro data-ready or step detection ${ }^{(1)}$; 1: data-valid signal used to write data in FIFO is the sensor hub data-ready)
START CONFIG	Sensor Hub trigger signal selection. Default value: 0 (0 : Sensor hub signal is the XL/Gyro data-ready; 1: Sensor hub signal external from INT2 pad.)
PULL_UP_EN	Auxiliary $I^{2} \mathrm{C}$ pull-up. Default value: 0 (0 : internal pull-up on auxiliary $\mathrm{I}^{2} \mathrm{C}$ line disabled; 1 : internal pull-up on auxiliary $\mathrm{I}^{2} \mathrm{C}$ line enabled)
PASS_THROUGH _MODE	$1^{2} \mathrm{C}$ interface pass-through. Default value: 0 (0: pass-through disabled; 1: pass-through enabled)
IRON_EN	Enable hard-iron correction algorithm for magnetometer ${ }^{(2)}$. Default value: 0 (0 :hard-iron correction algorithm disabled; 1: hard-iron correction algorithm enabled)
MASTER_ON	Sensor hub $I^{2} \mathrm{C}$ master enable ${ }^{(2)}$. Default: 0 (0 : master $I^{2} C$ of sensor hub disabled; 1 : master $I^{2} C$ of sensor hub enabled)

1. If the TIMER_PEDO_FIFO_DRDY bit in FIFO_CTRL2 $(07 h)$ is set to 0 , the trigger for writing data in FIFO is XL/Gyro dabta-ready, otherwise it's the step detection.
2. This is effective if the FUNC_EN bit is set to ' 1 '.

10.24 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (r).
Table 81. WAKE_UP_SRC register

0	0	FF_IA	SLEEP_- STATE_IA	WU_IA	X_WU	Y_WU	$Z_{-} W U$

Table 82. WAKE_UP_SRC register description

FF_IA	Free-fall event detection status. Default: 0 (0: free-fall event not detected; 1: free-fall event detected)
SLEEP_ STATE_IA	Sleep event status. Default value: 0 (0: sleep event not detected; 1: sleep event detected)
WU_IA	Wakeup event detection status. Default value: 0 (0: wakeup event not detected; 1: wakeup event detected.)
X_WU	Wakeup event detection status on X-axis. Default value: 0 (0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y_WU	Wakeup event detection status on Y-axis. Default value: 0 (0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z_WU	Wakeup event detection status on Z-axis. Default value: 0 (0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

10.25 TAP_SRC (1Ch)

Tap source register (r).
Table 83. TAP_SRC register

0	TAP_IA	SINGLE_ TAP	DOUBLE_ TAP	TAP_SIGN	X_TAP	Y_TAP

Table 84. TAP_SRC register description

TAP_IA	Tap event detection status. Default: 0 (0: tap event not detected; 1: tap event detected)
SINGLE_TAP	Single-tap event status. Default value: 0 (0: single tap event not detected; 1: single tap event detected)
DOUBLE_TAP	Double-tap event detection status. Default value: 0 (0: double-tap event not detected; 1: double-tap event detected.)
TAP_SIGN	Sign of acceleration detected by tap event. Default: 0 (0: positive sign of acceleration detected by tap event; 1: negative sign of acceleration detected by tap event)
X_TAP $^{\text {TAp event detection status on X-axis. Default value: 0 }}$	
Y_TAP	Tap (0: tap event on X-axis not detected; 1: tap event on X-axis detected)
Z_TAP	Tap event detection status on Y-axis. Default value: 0 (0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
Tap event detection status on Z-axis. Default value: 0 (0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)	

10.26 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)
Table 85. D6D_SRC register

DEN_DRDY	D6D_IA	ZH	ZL	YH	YL	XH	XL

Table 86. D6D_SRC register description

$\begin{aligned} & \text { DEN } \\ & \text { DRDY } \end{aligned}$	DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. ${ }^{(1)}$
$\begin{aligned} & \text { D6D_ } \\ & \text { IA } \end{aligned}$	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0 (0 : change position not detected; 1 : change position detected)
ZH	Z-axis high event (over threshold). Default value: 0 (0 : event not detected; 1 : event (over threshold) detected)
ZL	Z-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)
YH	Y -axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over-threshold) detected)
YL	Y -axis low event (under threshold). Default value: 0 (0 : event not detected; 1: event (under threshold) detected)
XH	X-axis high event (over threshold). Default value: 0 (0 : event not detected; 1 : event (over threshold) detected)
XL	X-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)

1. The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the DRDY_PULSE_CFG (OBh) register.

10.27 STATUS_REG/STATUS_SPIAux (1Eh)

The STATUS_REG register is read by the primary interface $\mathrm{SPI} / \mathrm{I}^{2} \mathrm{C}(r)$.

Table 87. STATUS_REG register

0	0	0	0	0	TDA	GDA	XLDA

Table 88. STATUS_REG register description

TDA	Temperature new data available. Default: 0 (0: no set of data is available at temperature sensor output; 1: a new set of data is available at temperature sensor output)
GDA	Gyroscope new data available. Default value: 0 (0: no set of data available at gyroscope output; 1: a new set of data is available at gyroscope output)
XLDA	Accelerometer new data available. Default value: 0 (0: no set of data available at accelerometer output; 1: a new set of data is available at accelerometer output)

The STATUS_SPIAux register is read by the auxiliary SPI.
Table 89. STATUS_SPIAux register

| 0 | 0 | 0 | 0 | 0 | GYRO
 SETTLING | GDA |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | XLDA

Table 90. STATUS_SPIAux description

GYRO_- SETTLING	High when the gyroscope output is in the settling phase
GDA	Gyroscope data available (reset when one of the high parts of the output data is read)
XLDA	Accelerometer data available (reset when one of the high parts of the output data is read)

10.28 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 91. OUT_TEMP_L register

Temp7	Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0

Table 92. OUT_TEMP_H register

Temp15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8

Table 93. OUT_TEMP register description

Temp[15:0]	Temperature sensor output data The value is expressed as two's complement sign extended on the MSB.

10.29 OUTX_L_G (22h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 94. OUTX_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 95. OUTX_L_G register description

$D[7: 0]$	Pitch axis (X) angular rate value (LSbyte) $D[15: 0]$ expressed in two's complement and its value depends on the interface used: SPI1/I2C: Gyro UI chain pitch axis output SPI2: Gyro OIS chain pitch axis output

10.30 OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.
If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 96. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 97. OUTX_H_G register description

$D[15: 8]$	Pitch axis (X) angular rate value (MSbyte) $\mathrm{D}[15: 0]$ expressed in two's complement and its value depends on the interface used: SPI1/2 $\mathrm{C}: ~ \mathrm{Gyro}$ UI chain pitch axis output SPI2: Gyro OIS chain pitch axis output

10.31 OUTY_L_G (24h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 98. OUTY_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 99. OUTY_L_G register description

	Roll axis (Y) angular rate value (LSbyte) $D[15: 0]$ expressed in two's complement and its value depends on the interface used: SPI1/I2 $\mathrm{C}: ~ G y r o ~ U I ~ c h a i n ~ r o l l ~ a x i s ~ o u t p u t ~$
SPI2: Gyro OIS chain roll axis output	

10.32 OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.
If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 100. OUTY_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 101. OUTY_H_G register description

$D[15: 8]$	Roll axis (Y) angular rate value (MSbyte) $D[15: 0]$ expressed in two's complement and its value depends on the interface used: SPI1/I $2 \mathrm{C}: ~ G y r o ~ U I ~ c h a i n ~ r o l l ~ a x i s ~ o u t p u t ~$
SPI2: Gyro OIS chain roll axis output	

10.33 OUTZ_L_G (26h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 102. OUTZ_L_G register

D7	D6	D5	D4	D3	D2	D1	D0

Table 103. OUTZ_L_G register description

$D[7: 0]$	Yaw axis (Z) angular rate value (LSbyte) $D[15: 0]$ expressed in two's complement and its value depends on the interface used: SPI1/2²C: Gyro UI chain yaw axis output SPI2: Gyro OIS chain yaw axis output

10.34 OUTZ_H_G (27h)

Angular rate sensor Yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.
If this register is read by the primary interface, data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.
If this register is read by the auxiliary interface, data are according to the full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 104. OUTZ_H_G register

D15	D14	D13	D12	D11	D10	D9	D8

Table 105. OUTZ_H_G register description

$D[15: 8]$	Yaw axis (Z) angular rate value (MSbyte) $D[15: 0]$ expressed in two's complement and its value depends on the interface used: SPI1/I2C: Gyro UI chain yaw axis output SPI2: Gyro OIS chain yaw axis output

10.35 OUTX_L_XL (28h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Accelerometer data can be read also from AUX SPI @6.6 kHz.
Table 106. OUTX_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 107. OUTX_L_XL register description

$D[7: 0]$	X-axis linear acceleration value (LSbyte)

10.36 OUTX_H_XL (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16 -bit word in two's complement.
Accelerometer data can be read also from AUX SPI @ 6.6 kHz.

Table 108. OUTX_H_XL register

D15	D14	D13	D12	D11	D10	D9	D8

Table 109. OUTX_H_XL register description

$\mathrm{D}[15: 8]$	X-axis linear acceleration value (MSbyte)

10.37 OUTY_L_XL (2Ah)

Linear acceleration sensor Y -axis output register (r). The value is expressed as a 16-bit word in two's complement.
Accelerometer data can be read also from AUX SPI @ 6.6 kHz.
Table 110. OUTY_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 111. OUTY_L_XL register description

$D[7: 0]$	Y-axis linear acceleration value (LSbyte)

10.38 OUTY_H_XL (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.
Accelerometer data can be read also from AUX SPI @6.6 kHz.
Table 112. OUTY_H_XL register

D15	D14	D13	D12	D11	D10	D9	D8

Table 113. OUTY_H_XL register description

$\mathrm{D}[15: 8]$	Y-axis linear acceleration value (MSbyte)

10.39 OUTZ_L_XL (2Ch)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.
Accelerometer data can be read also from AUX SPI @ 6.6 kHz .
Table 114. OUTZ_L_XL register

D7	D6	D5	D4	D3	D2	D1	D0

Table 115. OUTZ_L_XL register description

$D[7: 0]$	Z-axis linear acceleration value (LSbyte)

10.40 OUTZ_H_XL (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.
Accelerometer data can be read also from AUX SPI @ 6.6 kHz.
Table 116. OUTZ_H_XL register

D15	D14	D13	D12	D11	D10	D9	D8

Table 117. OUTZ_H_XL register description

$D[15: 8]$	Z-axis linear acceleration value (MSbyte)

10.41 SENSORHUB1_REG (2Eh)

First byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 118. SENSORHUB1_REG register

SHub1_7	SHub1_6	SHub1_5	SHub1_4	SHub1_3	SHub1_2	SHub1_1	SHub1_0

Table 119. SENSORHUB1_REG register description
SHub1_[7:0] \quad First byte associated to external sensors

10.42 SENSORHUB2_REG (2Fh)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operations configurations (for external sensors from $x=0$ to $x=3$).

Table 120. SENSORHUB2_REG register

SHub2_7	SHub2_6	SHub2_5	SHub2_4	SHub2_3	SHub2_2	SHub2_1	SHub2_0

Table 121. SENSORHUB2_REG register description
SHub2_[7:0] Second byte associated to external sensors

10.43 SENSORHUB3_REG (30h)

Third byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operations configurations (for external sensors from $x=0$ to $x=3$).

Table 122. SENSORHUB3_REG register

SHub3_7	SHub3_6	SHub3_5	SHub3_4	SHub3_3	SHub3_2	SHub3_1	SHub3_0

Table 123. SENSORHUB3_REG register description
SHub3_[7:0] \quad Third byte associated to external sensors

10.44 SENSORHUB4_REG (31h)

Fourth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 124. SENSORHUB4_REG register

SHub4_7	SHub4_6	SHub4_5	SHub4_4	SHub4_3	SHub4_2	SHub4_1	SHub4_0

Table 125. SENSORHUB4_REG register description
SHub4_[7:0] \quad Fourth byte associated to external sensors

10.45 SENSORHUB5_REG (32h)

Fifth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 126. SENSORHUB5_REG register

SHub5_7	SHub5_6	SHub5_5	SHub5_4	SHub5_3	SHub5_2	SHub5_1	SHub5_0

Table 127. SENSORHUB5_REG register description
SHub5_[7:0] \quad Fifth byte associated to external sensors

10.46 SENSORHUB6_REG (33h)

Sixth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 128. SENSORHUB6_REG register

SHub6_7	SHub6_6	SHub6_5	SHub6_4	SHub6_3	SHub6_2	SHub6_1	SHub6_0

Table 129. SENSORHUB6_REG register description
SHub6_[7:0] Sixth byte associated to external sensors

10.47 SENSORHUB7_REG (34h)

Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 130. SENSORHUB7_REG register

SHub7_7	SHub7_6	SHub7_5	SHub7_4	SHub7_3	SHub7_2	SHub7_1	SHub7_0

Table 131. SENSORHUB7_REG register description
SHub7_[7:0] \quad Seventh byte associated to external sensors

10.48 SENSORHUB8_REG (35h)

Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 132. SENSORHUB8_REG register

SHub8_7	SHub8_6	SHub8_5	SHub8_4	SHub8_3	SHub8_2	SHub8_1	SHub8_0

Table 133. SENSORHUB8_REG register description
SHub8_[7:0] Eighth byte associated to external sensors

10.49 SENSORHUB9_REG (36h)

Ninth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 134. SENSORHUB9_REG register

SHub9_7	SHub9_6	SHub9_5	SHub9_4	SHub9_3	SHub9_2	SHub9_1	SHub9_0

Table 135. SENSORHUB9_REG register description
SHub9_[7:0] \quad Ninth byte associated to external sensors

10.50 SENSORHUB10_REG (37h)

Tenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 136. SENSORHUB10_REG register

SHub10_7	SHub10_6	SHub10_5	SHub10_4	SHub10_3	SHub10_2	SHub10_1	SHub10_0

Table 137. SENSORHUB10_REG register description
SHub10_[7:0] Tenth byte associated to external sensors

10.51 SENSORHUB11_REG (38h)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 138. SENSORHUB11_REG register

SHub11_7	SHub11_6	SHub11_5	SHub11_4	SHub11_3	SHub11_2	SHub11_1	SHub11_0

Table 139. SENSORHUB11_REG register description

SHub11_[7:0]	Eleventh byte associated to external sensors

10.52 SENSORHUB12_REG (39h)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $\mathrm{x}=0$ to $\mathrm{x}=3$).

Table 140. SENSORHUB12_REG register

SHub12_7	SHub12_6	SHub12_5	SHub12_4	SHub12_3	SHub12_2	SHub12_1	SHub12_0

Table 141. SENSORHUB12_REG register description
SHub12[7:0] \quad Twelfth byte associated to external sensors

10.53 FIFO_STATUS1 (3Ah)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 142. FIFO_STATUS1 register

$\begin{aligned} & \text { DIFF__ }_{-7} \\ & \text { FIFO_ } \end{aligned}$	$\begin{aligned} & \text { DIFF_- } \\ & \text { FIFO_6 } \end{aligned}$	$\begin{aligned} & \text { DIFF_ } \\ & \text { FIFO_5 } \end{aligned}$	$\begin{aligned} & \text { DIFF } \\ & \text { FIFO_4 } \end{aligned}$	$\begin{aligned} & \text { DIFF } \\ & \text { FIFO_3 } \end{aligned}$	$\begin{aligned} & \text { DIFF_- } \\ & \text { FIFO_2 } \end{aligned}$	$\begin{aligned} & \hline \text { DIFF_- } \\ & \text { FIFO_1 } \end{aligned}$	$\begin{aligned} & \text { DIFF_- } \\ & \text { FIFO_0 } \end{aligned}$

Table 143. FIFO_STATUS1 register description
DIFF_FIFO_[7:0] \quad Number of unread words (16-bit axes) stored in FIFO ${ }^{(1)}$.

1. For a complete number of unread samples, consider DIFF_FIFO [10:8] in FIFO_STATUS2 (3Bh)

10.54 FIFO_STATUS2 (3Bh)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 144. FIFO_STATUS2 register

WaterM	OVER_RUN	$\begin{gathered} \text { FIFO_FULL_ } \\ \text { SMART } \end{gathered}$	$\begin{aligned} & \hline \overline{\text { FIFO_ }} \\ & \text { EMPTY } \end{aligned}$	0	$\begin{aligned} & \hline \text { DIFF }_{-} \\ & \text {FIFO_10 } \end{aligned}$	$\begin{aligned} & \text { DIFF_- } \\ & \text { FIFO_9 } \end{aligned}$	$\begin{aligned} & \hline \text { DIFF_- } \\ & \text { FIFO_8 } \end{aligned}$

Table 145. FIFO_STATUS2 register description

WaterM	FIFO watermark status. The watermark is set through bits FTH_[7:0] in FIFO_CTRL1 (06h). Default value: 0 (0: FIFO filling is lower than watermark level
1: FIFO ; filling is equal to or higher than the watermark level)	

1. FIFO watermark level is set in FTH_[10:0] in FIFO_CTRL1 (06h) and FIFO_CTRL2 (07h)
2. For a complete number of unread samples, consider DIFF_FIFO [7:0] in FIFO_STATUS1 (3Ah)

10.55 FIFO_STATUS3 (3Ch)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 146. FIFO_STATUS3 register

$\begin{aligned} & \text { FIFO_} \\ & \text { PATTER } \end{aligned}$ _7	FIFO PATTERN \ldots	$\begin{gathered} \text { FIFO } \\ \text { PATTERN } \\ .5 \end{gathered}$	$\begin{gathered} \text { FIFO } \\ \text { PATTERN } \\ \quad 4 \end{gathered}$	$\begin{gathered} \text { FIFO } \\ \text { PATTERN } \\ \ldots \end{gathered}$	$\begin{gathered} \text { FIFO } \\ \text { PATTERN } \\ \quad 2 \end{gathered}$	$\begin{gathered} \text { FIFO } \\ \text { PATTER } \\ \quad 1 \end{gathered}$	FIFO PATTERN 0

Table 147. FIFO_STATUS3 register description

FIFO_
PATTERN_[7:0]

10.56 FIFO_STATUS4 (3Dh)

FIFO status control register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 148. FIFO_STATUS4 register

0	0	0	0	0	0	FIFO_- PATTERN_9	FIFO_E PATTERN_8

Table 149. FIFO_STATUS4 register description

FIFO_- PATTERN_[9:8]	Word of recursive pattern read at the next reading.

10.57 FIFO_DATA_OUT_L (3Eh)

FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 150. FIFO_DATA_OUT_L register

DATA_ OUT FIFO - 7	DATA_ OUT FIFO 6	DATA_ OUT FIFO 5	DATA_ OUT FIFO 4	DATA_ OUT FIFO - 3	DATA_ OUT FIFO L- 2	DATA OUT FIFO - 1	DATA_ OUT FIFO - 0

Table 151. FIFO_DATA_OUT_L register description

DATA_OUT_FIFO_L_[7:0]	FIFO data output (first byte)

10.58 FIFO_DATA_OUT_H (3Fh)

FIFO data output register (r). For a proper reading of the register, it is recommended to set the BDU bit in CTRL3_C (12h) to 1.

Table 152. FIFO_DATA_OUT_H register

$\begin{aligned} & \hline \text { DATA- } \\ & \text { OUT- }_{-} \\ & \text {FIFO H } \end{aligned}$	DATA_ OUT_ FIFO_H_6	DATA_ OUT FIFO_H_5	$\begin{gathered} \text { DATA_- } \\ \text { OUT_- } \\ \text { FIFO_H_4 } \end{gathered}$	$\begin{gathered} \text { DATA_ } \\ \text { OUT_- }^{-} \\ \text {FIFO_H_3 } \end{gathered}$	DATA_ OUT FIFO_H_2	$\begin{aligned} & \text { DATA_ } \\ & \text { OUT_-___ }_{\text {FIFO_H_1 }} \end{aligned}$	DATA_ OUT FIFO_H_0

Table 153. FIFO_DATA_OUT_H register description
DATA_OUT_FIFO_H_[7:0] \quad FIFO data output (second byte)

10.59 TIMESTAMPO_REG (40h)

Timestamp first (least significant) byte data output register (r). The value is expressed as a 24 -bit word and the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch).

Table 154. TIMESTAMP0_REG register

| TIMESTA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MP0_7 | | TIMESTA |
| :---: |
| MP0_6 |\quad| TIMESTA |
| :---: |
| MP0_5 | | TIMESTA |
| :---: |
| MP0_4 | | TIMESTA |
| :---: |
| MP0_3 | | TIMESTA |
| :---: |
| MP0_2 | | TIMESTA |
| :---: |
| MP0_1 | | TIMESTA |
| :---: |
| MP0_0 |

Table 155. TIMESTAMP0_REG register description
TIMESTAMP0_[7:0] TIMESTAMP first byte data output

10.60 TIMESTAMP1_REG (41h)

Timestamp second byte data output register (r). The value is expressed as a 24 -bit word and the bit resolution is defined by setting value in WAKE_UP_DUR (5Ch).

Table 156. TIMESTAMP1_REG register

| TIMESTA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MP1_7 | MP1_6 | MP1_5 | MP1_4 | MP1_3 | MP1_2 | MP1_1 | MP1_0 |

Table 157. TIMESTAMP1_REG register description
TIMESTAMP1_[7:0] \quad TIMESTAMP second byte data output

10.61 TIMESTAMP2_REG (42h)

Timestamp third (most significant) byte data output register (r/w). The value is expressed as a 24-bit word and the bit resolution is defined by setting the value in WAKE_UP_DUR (5Ch). To reset the timer, the AAh value has to be stored in this register.

Table 158. TIMESTAMP2_REG register

| TIMESTA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MP2_7 | MP2_6 | MP2_5 | MP2_4 | MP2_3 | MP2_2 | MP2_1 | MP2_0 |

Table 159. TIMESTAMP2_REG register description

```
TIMESTAMP2_[7:0] TIMESTAMP third byte data output
```


10.62 STEP_TIMESTAMP_L (49h)

Step counter timestamp information register (r). When a step is detected, the value of TIMESTAMP_REG1 register is copied in STEP_TIMESTAMP_L.

Table 160. STEP_TIMESTAMP_L register

STEP_	STEP_	STEP_-	STEP_	STEP_信	STEP_	STEP_	STEP
TIMESTA							
MP_L_7	MP_L_6	MP_L_5	MP_L_4	MP_L_3	MP_L_2	MP_L_1	MP_L_0

Table 161. STEP_TIMESTAMP_L register description STEP_TIMESTAMP_L[7:0] \quad Timestamp of last step detected.

10.63 STEP_TIMESTAMP_H (4Ah)

Step counter timestamp information register (r). When a step is detected, the value of TIMESTAMP_REG2 register is copied in STEP_TIMESTAMP_H.

Table 162. STEP_TIMESTAMP_H register

STEP_	STEP_	STEP_-	STEP_	STEP_-	STEP_	STEP_-	STEP_
TIMESTA							
MP_H_7	MP_H_6	MP_H_5	MP_H_4	MP_H_3	MP_H_2	MP_H_1	MP_H_0

Table 163. STEP_TIMESTAMP_H register description
STEP_TIMESTAMP_H[7:0] Timestamp of last step detected.

10.64 STEP_COUNTER_L (4Bh)

Step counter output register (r).
Table 164. STEP_COUNTER_L register

| STEP_CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNTER_L |
| _7 | _ | -5 | 4 | _3 | 2 | _1 | _0 |

Table 165. STEP_COUNTER_L register description
STEP_COUNTER_L_[7:0] \quad Step counter output (LSbyte)

10.65 STEP_COUNTER_H (4Ch)

Step counter output register (r).
Table 166. STEP_COUNTER_H register

| STEP_CO |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UNTER_H |
| \ldots | \ldots | $_5$ | $_4$ | $\ldots 3$ | $_2$ | $_1$ | \ldots |

Table 167. STEP_COUNTER_H register description
STEP_COUNTER_H_[7:0] \quad Step counter output (MSbyte)

10.66 SENSORHUB13_REG (4Dh)

Thirteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $\mathrm{x}=0$ to $\mathrm{x}=\overline{3}$).

Table 168. SENSORHUB13_REG register

SHub13_7	SHub13_6	SHub13_5	SHub13_4	SHub13_3	SHub13_2	SHub13_1	SHub13_0

Table 169. SENSORHUB13_REG register description
SHub13_[7:0] \quad Thirteenth byte associated to external sensors

10.67 SENSORHUB14_REG (4Eh)

Fourteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 170. SENSORHUB14_REG register

SHub14_7	SHub14_6	SHub14_5	SHub14_4	SHub14_3	SHub14_2	SHub14_1	SHub14_0

Table 171. SENSORHUB14_REG register description
SHub14_[7:0] Fourteenth byte associated to external sensors

10.68 SENSORHUB15_REG (4Fh)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 172. SENSORHUB15_REG register

SHub15_7	SHub15_6	SHub15_5	SHub15_4	SHub15_3	SHub15_2	SHub15_1	SHub15_0

Table 173. SENSORHUB15_REG register description
SHub15_[7:0] \quad Fifteenth byte associated to external sensors

10.69 SENSORHUB16_REG (50h)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 174. SENSORHUB16_REG register

SHub16_7	SHub16_6	SHub16_5	SHub16_4	SHub16_3	SHub16_2	SHub16_1	SHub16_0

Table 175. SENSORHUB16_REG register description
SHub16_[7:0]

Sixteenth byte associated to external sensors

10.70 SENSORHUB17_REG (51h)

Seventeenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 176. SENSORHUB17_REG register

SHub17_7	SHub17_6	SHub17_5	SHub17_4	SHub17_3	SHub17_2	SHub17_1	SHub17_0

Table 177. SENSORHUB17_REG register description
SHub17_[7:0] Seventeenth byte associated to external sensors

10.71 SENSORHUB18_REG (52h)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from $x=0$ to $x=3$).

Table 178. SENSORHUB18_REG register

SHub18_7	SHub18_6	SHub18_5	SHub18_4	SHub18_3	SHub18_2	SHub18_1	SHub18_0

Table 179. SENSORHUB18_REG register description
SHub18_[7:0] Eighteenth byte associated to external sensors

10.72 FUNC_SRC1 (53h)

Significant motion, tilt, step detector, hard/soft-iron and sensor hub interrupt source register (r).

Table 180. FUNC_SRC1 register

| STEP
 COUNT
 _DELTA
 _IA | MOTION_IA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Table 181. FUNC_SRC1 register description

STEP_COUNT DELTA_IA	Pedometer step recognition on delta time status. Default value: 0 (0: no step recognized during delta time; 1: at least one step recognized during delta time)
SIGN_ MOTION_IA	Significant motion event detection status. Default value: 0 (0: significant motion event not detected; 1: significant motion event detected)
TILT_IA	Tilt event detection status. Default value: 0 (0: tilt event not detected; 1: tilt event detected)
STEP_- DETECTED	Step detector event detection status. Default value: 0 (0: step detector event not detected; 1: step detector event detected)
STEP__ OVERFLOW	Step counter overflow status. Default value: 0 (0: step counter value < 216; 1: step counter value reached 2^{16})
HI_FAIL	Fail in hard/soft-ironing algorithm.
SI_END_OP	Hard/soft-iron calculation status. Default value: 0 (0: Hard/soft-iron calculation not concluded; 1: Hard/soft-iron calculation concluded)
SENSORHUB_ END_OP	Sensor hub communication status. Default value: 0 (0: sensor hub communication not concluded; 1: sensor hub communication concluded)

10.73 FUNC_SRC2 (54h)

Wrist tilt interrupt source register (r).
Table 182. FUNC_SRC2 register

0	SLAVE3- NACK	SLAVE2_ NACK	SLAVE1- NACK	SLAVE0- NACK	0	0	WRIST_ TILT_IA

Table 183. FUNC_SRC2 register description

SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
WRIST_TILT_IA	Wrist tilt event detection status. Default value: 0 (0: Wrist tilt event not detected; $1:$ Wrist tilt event detected)

10.74 WRIST_TILT_IA (55h)

Wrist tilt interrupt source register (r).

Table 184. WRIST_TILT_IA register

WRIST TILT_IA Xpos	WRIST_ TILT_IA_ Xneg	WRIST TILT_IA Ypos	WRIST TILT_IA Yneg	WRIST TILT_IA Zpos	WRIST_ TILT_IA Zneg	0	0

Table 185. WRIST_TILT_IA register description
$\left.\left.\begin{array}{|c|l|}\hline \text { WRIST_ } & \begin{array}{l}\text { Absolute Wrist Tilt event detection status on X-positive axis. Default value: } 0 \\ \text { TILT_IA_Xpos }\end{array} \\ \hline \text { WRIST_Absolute Wrist Tilt event on X-positive axis not detected; } \\ \text { 1: Absolute Wrist Tilt event on X-positive axis detected) }\end{array}\right] \begin{array}{l}\text { Absolute Wrist Tilt event detection status on X-negative axis. Default value: } 0 \\ \text { TILT_IA_Xneg }\end{array} \begin{array}{l}\text { (0: Absolute Wrist Tilt event on X-negative axis not detected; } \\ \text { 1: Absolute Wrist Tilt event on X-negative axis detected) }\end{array}\right]$

10.75 TAP_CFG (58h)

Enables interrupt and inactivity functions, configuration of filtering, and tap recognition functions (r/w).

Table 186. TAP_CFG register

INTERRUPTS_ ENABLE	INACT_EN1	INACT_EN0	SLOPE_FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR

Table 187. TAP_CFG register description

INTERRUPTS ENABLE	Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default value: 0 (0: interrupt disabled; 1: interrupt enabled)
INACT_EN[1:0]	Enable inactivity function. Default value: 00 (00: disabled 01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change; 10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode; 11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)
$\begin{array}{\|l} \left\lvert\, \begin{array}{l} \text { SLOPE_ } \\ \text { FDS } \end{array}\right. \end{array}$	HPF or SLOPE filter selection on wake-up and Activity/Inactivity functions. Refer to Figure 9. Default value: 0 (0: SLOPE filter applied; 1: HPF applied)
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; $1: \mathrm{X}$ direction enabled)
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1: Y direction enabled)
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 ($0: Z$ direction disabled; 1: Z direction enabled)
LIR	Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)

10.76 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r / w).
Table 188. TAP_THS_6D register

D4D_ EN	SIXD_THS1	SIXD_THS0	TAP_THS4	TAP_THS3	TAP_THS2	TAP_THS1	TAP_THS0

Table 189. TAP_THS_6D register description

D4D_EN	4D orientation detection enable. Z-axis position detection is disabled. Default value: 0 (0: enabled; 1: disabled)
SIXD_THS[1:0]	Threshold for 4D/6D function. Default value: 00 For details, refer to Table 190.
TAP_THS[4:0]	Threshold for tap recognition. Default value: 00000 1 LSb corresponds to FS_XL/2

Table 190. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	80 degrees
01	70 degrees
10	60 degrees
11	50 degrees

10.77 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w).
Table 191. INT_DUR2 register

DUR3	DUR2	DUR1	DUR0	QUIET1	QUIET0	SHOCK1	SHOCK0

Table 192. INT_DUR2 register description

DUR[3:0]	Duration of maximum time gap for double tap recognition. Default: 0000 When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
QUIET[1:0]	Expected quiet time after a tap detection. Default value: 00 Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2^{*} ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4*ODR_XL time.
SHOCK[1:0]	Maximum duration of overthreshold event. Default value: 00 Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8*ODR_XL time.

10.78 WAKE_UP_THS (5Bh)

Single and double-tap function threshold register (r/w).
Table 193. WAKE_UP_THS register

SINGLE DOUBLE_TAP	0	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0

Table 194. WAKE_UP_THS register description

SINGLE_DOUBLE_TAP	Single/double-tap event enable. Default: 0 (0: only single-tap event enabled; 1: both single and double-tap events enabled)
WK_THS[5:0]	Threshold for wakeup. Default value: 000000 1 LSb corresponds to FS_XL/2

10.79 WAKE_UP_DUR (5Ch)

Free-fall, wakeup, timestamp and sleep mode functions duration setting register (r/w).
Table 195. WAKE_UP_DUR register

FF_DUR5	WAKE_- DUR1	WAKE_ DUR0	TIMER_ HR	SLEEP_ DUR3	SLEEP_ DUR2	SLEEP_- DUR1	SLEEP_- DUR0

Table 196. WAKE_UP_DUR register description

FF_DUR5	Free fall duration event. Default: 0 For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in FREE_FALL (5Dh) configuration. 1 LSB = 1 ODR_time
WAKE_DUR[1:0]	Wake up duration event. Default: 00 1LSB = 1 ODR_time
TIMER_HR	Timestamp register resolution setting ${ }^{(1)}$. Default value: 0 ($0: 1 \mathrm{LSB}=6.4 \mathrm{~ms} ; 1: 1 \mathrm{LSB}=25 \mu \mathrm{~s}$)
SLEEP_DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR) 1 LSB = 512 ODR

1. Configuration of this bit affects TIMESTAMPO_REG (40h), TIMESTAMP1_REG (41h), TIMESTAMP2_REG (42h), STEP_TIMESTAMP_L (49h), STEP_TIMESTAMP_H (4Ah), and STEP_COUNT_DELTA (15h) registers.

10.80 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w).
Table 197. FREE_FALL register

FF_DUR4	FF_DUR3	FF_DUR2	FF_DUR1	FF_DUR0	FF_THS2	FF_THS1	FF_THS0

Table 198. FREE_FALL register description

FF_DUR[4:0]	Free-fall duration event. Default: 0 For the complete configuration of the free fall duration, refer to FF_DUR5 in WAKE_UP_DUR (5Ch) configuration
FF_THS[2:0]	Free fall threshold setting. Default: 000 For details refer to Table 199.

Table 199. Threshold for free-fall function

FF_THS[2:0]	\quad Threshold value
000	156 mg
001	219 mg
010	250 mg
011	312 mg
100	344 mg
101	406 mg
110	469 mg
111	500 mg

10.81 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w).
Table 200. MD1_CFG register

INT1- INACT- STATE	INT1- SINGLE_- TAP	INT1_WU	INT1_FF	INT1_- DOUBLE_- TAP	INT1_6D	INT1_TILT	INT1 TIMER

Table 201. MD1_CFG register description

INT1_INACT_ STATE	Routing on INT1 of inactivity mode. Default: 0 (0: routing on INT1 of inactivity disabled; 1: routing on INT1 of inactivity enabled)
INT1_SINGLE_ TAP	Single-tap recognition routing on INT1. Default: 0 (0: routing of single-tap event on INT1 disabled; 1: routing of single-tap event on INT1 enabled)
INT1_WU	Routing of wakeup event on INT1. Default value: 0 (0: routing of wakeup event on INT1 disabled; 1: routing of wakeup event on INT1 enabled)
INT1_FF	Routing of free-fall event on INT1. Default value: 0 (0: routing of free-fall event on INT1 disabled; 1: routing of free-fall event on INT1 enabled)
INT1_DOUBLE	Routing of tap event on INT1. Default value: 0 (0: routing of double-tap event on INT1 disabled; 1: routing of double-tap event on INT1 enabled)
TAP	Routing of 6D event on INT1. Default value: 0 (0: routing of 6D event on INT1 disabled; 1: routing of 6D event on INT1 enabled)
INT1_6D	Routing of tilt event on INT1. Default value: 0 (0: routing of tilt event on INT1 disabled; 1: routing of tilt event on INT1 enabled)
INT1_TILT	Routing of end counter event of timer on INT1. Default value: 0 (0: routing of end counter event of timer on INT1 disabled; 1: routing of end counter event of timer event on INT1 enabled)
INT1_TIMER	

10.82 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w).
Table 202. MD2_CFG register

INT2- INACT- STATE	INT2- SINGLE_- TAP	INT2_WU	INT2_FF	INT2_- DOUBLE_- TAP	INT2_6D	INT2_TILT	INT2_- IRON

Table 203. MD2_CFG register description

INT2_INACT_ STATE	Routing on INT2 of inactivity mode. Default: 0 (0: routing on INT2 of inactivity disabled; 1: routing on INT2 of inactivity enabled)
INT2_SINGLE_	Single-tap recognition routing on INT2. Default: 0 (0: routing of single-tap event on INT2 disabled; 1: routing of single-tap event on INT2 enabled)
INT2_WU	Routing of wakeup event on INT2. Default value: 0 (0: routing of wakeup event on INT2 disabled; 1: routing of wake-up event on INT2 enabled)
INT2_FF	Routing of free-fall event on INT2. Default value: 0 (0: routing of free-fall event on INT2 disabled; 1: routing of free-fall event on INT2 enabled)
INT2_DOUBLE	Routing of tap event on INT2. Default value: 0 (0: routing of double-tap event on INT2 disabled; 1: routing of double-tap event on INT2 enabled)
INT2_6D	Routing of 6D event on INT2. Default value: 0 (0: routing of 6D event on INT2 disabled; 1: routing of 6D event on INT2 enabled)
INT2_TILT	Routing of tilt event on INT2. Default value: 0 (0: routing of tilt event on INT2 disabled; 1: routing of tilt event on INT2 enabled)
INT2_IRON	Routing of soft-iron/hard-iron algorithm end event on INT2. Default value: 0 (0: routing of soft-iron/hard-iron algorithm end event on INT2 disabled; 1: routing of soft-iron/hard-iron algorithm end event on INT2 enabled)

10.83 MASTER_CMD_CODE (60h)

Table 204. MASTER_CMD_CODE register

MASTER_-	MASTER_	MASTER_-	MASTER_	MASTER_-	MASTER_	MASTER_	MASTER_
CMD_-	CMD_-_	CMD_-	CMD_-	CMD_-	CMD_-	CMD_-	CMD_-
CODE7	CODE6	CODE5	CODE4	CODE3	CODE2	CODE1	CODE0

Table 205. MASTER_CMD_CODE register description

MASTER_CMD_ CODE[7:0]	Master command code used for stamping for sensor sync. Default value: 0

10.84 SENS_SYNC_SPI_ERROR_CODE (61h)

Table 206. SENS_SYNC_SPI_ERROR_CODE register

ERROR_-	ERROR_-	ERROR_	ERROR_	ERROR_	ERROR_-	ERROR_	ERROR_-
CODE7	CODE6	CODE5	CODE4	CODE3	CODE2	CODE1	CODE0

Table 207. SENS_SYNC_SPI_ERROR_CODE register description
ERROR_CODE[7:0] \quad Error code used for sensor synchronization. Default value: 0

10.85 OUT_MAG_RAW_X_L (66h)

External magnetometer raw data (r).
Table 208. OUT_MAG_RAW_X_L register

D7	D6	D5	D4	D3	D2	D1	D0

Table 209. OUT_MAG_RAW_X_L register description

$D[7: 0]$	X-axis external magnetometer value (LSbyte)

10.86 OUT_MAG_RAW_X_H (67h)

External magnetometer raw data (r).
Table 210. OUT_MAG_RAW_X_H register

D15	D14	D13	D12	D11	D10	D9	D8

Table 211. OUT_MAG_RAW_X_H register description

$\mathrm{D}[15: 8]$	X-axis external magnetometer value (MSbyte)

10.87 OUT_MAG_RAW_Y_L (68h)

External magnetometer raw data (r).
Table 212. OUT_MAG_RAW_Y_L register

D7	D6	D5	D4	D3	D2	D1	D0

Table 213. OUT_MAG_RAW_Y_L register description

$D[7: 0]$	Y-axis external magnetometer value (LSbyte)

10.88 OUT_MAG_RAW_Y_H (69h)

External magnetometer raw data (r).
Table 214. OUT_MAG_RAW_Y_H register

D15	D14	D13	D12	D11	D10	D9	D8

Table 215. OUT_MAG_RAW_Y_H register description

$\mathrm{D}[15: 8]$	Y-axis external magnetometer value (MSbyte)

10.89 OUT_MAG_RAW_Z_L (6Ah)

External magnetometer raw data (r).
Table 216. OUT_MAG_RAW_Z_L register

D7	D6	D5	D4	D3	D2	D1	D0

Table 217. OUT_MAG_RAW_Z_L register description

$D[7: 0]$	Z-axis external magnetometer value (LSbyte)

10.90 OUT_MAG_RAW_Z_H (6Bh)

External magnetometer raw data (r).
Table 218. OUT_MAG_RAW_Z_H register

D15	D14	D13	D12	D11	D10	D9	D8

Table 219. OUT_MAG_RAW_Z_H register description

$D[15: 8]$	Z-axis external magnetometer value (MSbyte)

10.91 INT_OIS (6Fh)

OIS interrupt configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 220. INT_OIS register

INT2_DRDY _OIS	LVL2_ OIS	-	-	-	-	-	-

Table 221. INT_OIS register description

INT2_DRDY_OIS	Enables the OIS chain DRDY on the INT2 pad. This setting has priority over all other INT2 settings.
LVL2_OIS	Enables level-sensitive latched mode on the OIS chain. Default value: 0

10.92 CTRL1_OIS (70h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 222. CTRL1_OIS register

BLE- OIS	LVL1- OIS 2	SIM- OIS	MODE4_- EN	FS1_G_ OIS	FSO_G_- OIS	FS_125_- OIS	OIS_EN_ SPI2

Table 223. CTRL1_OIS register description

BLE_OIS	Big/Little Endian data selection. Default value: 0 (0: output LSbyte at lower register address; 1: output LSbyte at higher register address)
LVL1_OIS	Enables level-sensitive trigger mode on OIS chain. Default value: 0
SIM_OIS	SPI2 3- or 4-wire mode. Default value: 0 (0: 4-wire SPI2; 1: 3-wire SPI2)
MODE4_EN	Enables accelerometer OIS chain if OIS_EN_SPI2 = 1. Default value: 0 (0: disable; 1: enable)
FS[1:0]_	Gyroscope OIS chain full-scale selection. (00: 250 dps; 01: 500 dps; 10: 1000 dps; $11: 2000 ~ d p s) ~$
FS_125	Selects gyroscope's OIS chain full scale 125 dps (0: FS selected through bits FS[1:0]_G_OIS; $1=125$ dps)
OIS	Enables OIS chain data processing for gyro in Mode 3 and Mode 4 (mode4_en $=1$) and accelerometer data in and Mode 4 (mode4_en = 1). When the OIS chain is enabled, the OIS outputs are available through the SPI2 in registers OUTX_L_G (22h) through OUTZ_H_G (27h) and STATUS_REG/STATUS_SPIAux (1Eh), and LPF1 is dedicated to this chain.
SPI2	

DEN mode selection can be done using the LVL1_OIS bit of register CTRL1_OIS (70h) and the LVL2_OIS bit of register INT_OIS (6Fh).
DEN mode on the OIS path is active in the gyroscope only.
Table 224. DEN mode selection

LVL1_OIS, LVL2_OIS	DEN mode
10	Level-sensitive trigger mode is selected
11	Level-sensitive latched mode is selected

10.93 CTRL2_OIS (71h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 225. CTRL2_OIS register

$0^{(1)}$	$0^{(1)}$	HPM1_ OIS	HPM0_ OIS	$0^{(1)}$	FTYPE_1_- OIS $_{-}$	FTYPE_0_ $^{\text {OIS }}$	HP_EN_ OIS

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 226. CTRL2_OIS register description

	Gyroscope's OIS chain digital high-pass filter cutoff selection. Default value: 00 (00: $16 \mathrm{mHz} ;$ HPM[1:0]_OIS $1: 65 \mathrm{mHz} ;$ $11: 1.04 \mathrm{~Hz})$
FTYPE_[1:0]_OIS	Gyroscope's digital LPF1 filter bandwidth selection Table 227 shows cutoff and phase values obtained with all configurations
HP_EN_OIS	Enables gyroscope's OIS chain HPF. This filter is available on the OIS chain only if HP_EN_G in CTRL7_G (16h) is set to '0'(1).

1. HP_EN_OIS is active to select HPF on the auxiliary SPI chain only if HPF is not already used in the primary īnterface.

Table 227. Gyroscope OIS chain LPF1 bandwidth selection

FTYPE_[1:0]_OIS	ODR = 6.6 kHz	
	BW	Phase delay @ 20 Hz
00	351 Hz	7°
01	237 Hz	9°
10	173 Hz	11°
11	937 Hz	5°

Sampling data with frequency equal or higher to 3.3 kHz is recommended.
If data is down-sampled @ 1 kHz , it is recommended to use a cutoff @ 173 Hz .
If data is down-sampled @ 2 kHz , it is recommended to use a cutoff @ 237 Hz .

10.94 CTRL3_OIS (72h)

OIS configuration register. Primary interface for read-only (r); only Aux SPI can write to this register (r/w).

Table 228. CTRL3_OIS register

| DEN_LH
 _OIS | FS1_XL
 _OIS | FSO_XL_-
 OIS | FILTER_XL_C
 ONF_OIS_1 | FILTER_XL_
 CONF_OIS_
 0 | ST1_OIS | STO_OIS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | ST_OIS_- |
| :---: |
| CLAMPDIS |

Table 229. CTRL3_OIS register description

DEN_LH_OIS	Polarity of DEN signal on OIS chain (0: DEN pin is active-low; 1: DEN pin is active-high)
FS[1:0]_XL_OIS	Accelerometer OIS channel full-scale selection. Default value: 00 $\begin{aligned} & (00: 2 \mathrm{~g} ; \\ & 01: 16 \mathrm{~g} ; \\ & 10: 4 \mathrm{~g} ; \\ & 11: 8 \mathrm{~g}) \end{aligned}$ These two bits act only when the accelerometer UI chain is in power-down, otherwise the accelerometer FS value is selected only from the UI side (but it is readable also from the OIS side).
FILTER_XL_CONF_OIS [1:0]	Accelerometer OIS channel bandwidth selection (see Table 230)
ST[1:0]_OIS	Gyroscope OIS chain self-test selection Table 231 lists the output variation when the self-test is enabled and ST_OIS_CLAMPDIS = '1'. Default value: 00 (00: Normal mode; 01: Positive sign self-test; 10: Normal mode; 11: Negative sign self-test)
ST_OIS_CLAMPDIS	Gyro OIS chain clamp disable (0 : All gyro OIS chain outputs $=8000 \mathrm{~h}$ during self-test applied from primary interface; 1: OIS chain self-test outputs as shown in Table 231 if self-test applied from primary or auxiliary interfaces)

Table 230. Accelerometer OIS channel bandwidth selection

FILTER_XL_ CONF_OIS [1:0]	ODR_UI = 0 ODR UI $\mathbf{1} \mathbf{1 6 0 0} \mathbf{~ H z}$		ODR UI $\leq \mathbf{8 0 0} \mathbf{~ H z ~}$	
	BW	Phase delay ${ }^{(1)}$	BW	Phase delay ${ }^{(1)}$
00	140 Hz	9.39°	128 Hz	11.5°
01	68.2 Hz	17.6°	66.5 Hz	19.7°
10	636 Hz	2.96°	329 Hz	5.08°
11	295 Hz	5.12°	222 Hz	7.23°

[^1]Table 231. Self-test nominal output variation

Full scale	Output variation [dps]
2000	400
1000	200
500	100
250	50
125	25

10.95 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally added to the acceleration value measured on the X-axis.

Table 232. X _OFS_USR register

X_OFS_	X_OFS_-	X_OFS_-	X_OFS_-	X_OFS_-	X_OFS_-	X_OFS_	X_OFS_
USR_7	USR_6	USR_5	USR_4	USR_3	USR_2	USR_1	USR_0

Table 233. X_OFS_USR register description

X_OFS_USR_ $[7: 0]$	Accelerometer X-axis user offset correction expressed in two's complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].

10.96 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally added to the acceleration value measured on the $\overline{\mathrm{Y}}$-axis.

Table 234. Y_OFS_USR register

Y_OFS_-	Y_OFS_-	Y_OFS_-	Y_OFS_-	Y_OFS_-	Y_OFS_-	Y_OFS_	Y_OFS_
USR_7	USR_6	USR_5	USR_4	USR_3	USR_2	USR_1	USR_0

Table 235. Y_OFS_USR register description

Y_OFS_USR_- [7:0]	Accelerometer Y-axis user offset correction expressed in two's complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].

10.97 Z_OFS_USR (75h)

Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 236. Z_OFS_USR register

Z_OFS_	Z_OFS_-	Z_OFS_-	Z_OFS_-	Z_OFS_-	Z_OFS_-	Z_OFS_	Z_OFS_-
USR_7	USR_6	USR_5	USR_4	USR_3	USR_2	USR_1	USR_0

Table 237. Z_OFS_USR register description

Z_OFS_USR_- [7:0]	Accelerometer Z-axis user offset correction expressed in two's complement, weight depends on the CTRL6_C(4) bit. The value must be in the range [-127 127].

11 Embedded functions register mapping

The tables given below provide a list of the first (A) and second (B) bank registers related to the embedded functions available in the device and the corresponding addresses.

The embedded functions registers of bank A are accessible when FUNC_CFG_EN is set to ' 1 ' in FUNC_CFG_ACCESS (01h).

The embedded functions registers of bank B are accessible when both FUNC_CFG_EN and FUNC_CFG_EN_B set to '1' in FUNC_CFG_ACCESS (01h).

Note: \quad All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

Table 238. Register address map - Bank A - embedded functions

Name	Type	Register address		Default	Comment
		Hex	Binary		
SLV0_ADD	r/w	02	00000010	00000000	
SLV0_SUBADD	r/w	03	00000011	00000000	
SLAVE0_CONFIG	r/w	04	00000100	00000000	
SLV1_ADD	r/w	05	00000101	00000000	
SLV1_SUBADD	r/w	06	00000110	00000000	
SLAVE1_CONFIG	r/w	07	00000111	00000000	
SLV2_ADD	r/w	08	00001000	00000000	
SLV2_SUBADD	r/w	09	00001001	00000000	
SLAVE2_CONFIG	r/w	0A	00001010	00000000	
SLV3_ADD	r/w	OB	00001011	00000000	
SLV3_SUBADD	r/w	OC	00001100	00000000	
SLAVE3_CONFIG	r/w	OD	00001101	00000000	
DATAWRITE_SRC MODE_SUB_SLV0	r/w	OE	00001110	00000000	
CONFIG_PEDO_THS_MIN	r/w	OF	00001111	00010000	
RESERVED	-	10-12		-	Reserved
SM_THS	r/w	13	00010011	00000110	
PEDO_DEB_REG	r/w	14	00010100	01101110	
STEP_COUNT_DELTA	r/w	15	00010101	00000000	
MAG_SI_XX	r/w	24	00100100	00001000	
MAG_SI_XY	r/w	25	00100101	00000000	
MAG_SI_XZ	r/w	26	00100110	00000000	
MAG_SI_YX	r/w	27	00100111	00000000	
MAG_SI_YY	r/w	28	00101000	00001000	

Table 238. Register address map - Bank A - embedded functions (continued)

Name	Type	Register address		Default	Comment
		Hex	Binary		
MAG_SI_YZ	r/w	29	00101001	00000000	
MAG_SI_ZX	r/w	$2 A$	00101010	00000000	
MAG_SI_ZY	r/w	2B	00101011	00000000	
MAG_SI_ZZ	r/w	2C	00101100	00001000	
MAG_OFFX_L	r/w	2D	00101101	00000000	
MAG_OFFX_H	r/w	2E	00101110	00000000	
MAG_OFFY_L	r/w	$2 F$	00101111	00000000	
MAG_OFFY_H	r/w	30	00110000	00000000	
MAG_OFFZ_L	r/w	31	00110001	00000000	
MAG_OFFZ_H	r/w	32	00110010	00000000	

Table 239. Register address map - Bank B - embedded functions

Name	Type	Register address		Default	Comment
		Hex	Binary		
A_WRIST_TILT_LAT	r/w	50	01010000	00001111	
RESERVED	-	$51-53$			Reserved
A_WRIST_TILT_THS	r/w	54	01010100	00100000	
RESERVED	-	$55-58$			Reserved
A_WRIST_TILT_Mask	r/w	59	01011001	11000000	

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

12 Embedded functions registers description - Bank A

Note: \quad All modifications of the content of the embedded functions registers have to be performed with the device in power-down mode.

12.1 SLV0_ADD (02h)

$1^{2} \mathrm{C}$ slave address of the first external sensor (Sensor1) register (r/w).

Table 240. SLV0_ADD register

Slave0_ add6	Slave0_ add5	Slave0_- add4	Slave0_- add3	Slave0_ add2	Slave0_- add1	Slave0_ add0	rw_0

Table 241. SLVO_ADD register description

Slave0_add[6:0]	I^{2} C slave address of Sensor1 that can be read by sensor hub. Default value: 0000000
rw_0	Read/write operation on Sensor1. Default value: 0 (0: write operation; 1: read operation)

12.2 SLV0_SUBADD (03h)

Address of register on the first external sensor (Sensor1) register (r/w).

Table 242. SLVO_SUBADD register

Slave0_ reg7	Slave0_ reg6	Slave0_ reg5	Slave0_ reg4	Slave0_ reg3	Slave0_ reg2_	Slave0_ reg1	Slave0_ reg0

Table 243. SLV0_SUBADD register description
Slave0_reg[7:0]
Address of register on Sensor1 that has to be read/write according to the rw_0 bit value in SLVO_ADD (02h). Default value: 00000000

12.3 SLAVE0_CONFIG (04h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w).

Table 244. SLAVE0_CONFIG register

Slave0_ rate1	Slave0_ rate0	Aux_sens _on1	Aux_sens _on0	Src_mode	Slave0_- numop2	Slave0_ numop1	Slave0_ numop0

Table 245. SLAVE0_CONFIG register description

	Decimation of read operation on Sensor1 starting from the sensor hub trigger. Default value: 00 (00: no decimation 01: update every 2 samples Slave0_rate[1:0] 10: update every 4 samples 11: update every 8 samples)
Aux_sens_on[1:0]	Number of external sensors to be read by sensor hub. Default value: 00 (00: one sensor 01: two sensors 10: three sensors 11: four sensors)
Src_mode	Source mode conditioned read (1). Default value: 0 (0: source mode read disabled; 1: source mode read enabled)
Slave0_numop[2:0]	Number of read operations on Sensor1.

1. Read conditioned by the content of the register at address specified in the

DATAWRITE_SRC_MODE_SUB_SLVO (OEh) register. If the content is non-zero, the operation continues with the reading of $\overline{\text { the }}$ address specified in the SLVO_SUBADD (03h) register, else the operation is interrupted.

12.4 SLV1_ADD (05h)

$\mathrm{I}^{2} \mathrm{C}$ slave address of the second external sensor (Sensor2) register (r/w).

Table 246. SLV1_ADD register

Slave1_ add6	Slave1_- add5	Slave1_ add4	Slave1_ add3	Slave1_ add2	Slave1_ add1	Slave1_ add0	r_1

Table 247. SLV1_ADD register description

Slave1_add[6:0]	$I^{2} \mathrm{C}$ slave address of Sensor2 that can be read by sensor hub. Default value: 0000000
$\mathrm{r}_{-} 1$	Read operation on Sensor2 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

12.5 SLV1_SUBADD (06h)

Address of register on the second external sensor (Sensor2) register (r/w).

Table 248. SLV1_SUBADD register

Slave1_ reg7	Slave1_ reg6	Slave1_ reg5	Slave1_ reg4	Slave1_ reg3	Slave1_ reg2	Slave1_ reg1	Slave1_ reg0

Table 249. SLV1_SUBADD register description

Slave1_reg[7:0]	Address of register on Sensor2 that has to be read according to the r_1 bit value in SLV1_ADD (05h). Default value: 00000000

12.6 SLAVE1_CONFIG (07h)

Second external sensor (Sensor2) configuration register (r/w).
Table 250. SLAVE1_CONFIG register

Slave1_ rate1	Slave1_ rate0	write_once	$0^{(1)}$	$0^{(1)}$	Slave1_ numop2	Slave1_- numop1	Slave1_ numop0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 251. SLAVE1_CONFIG register description

	Decimation of read operation on Sensor2 starting from the sensor hub trigger. Default value: 00 (00: no decimation Slave1_rate[1:0] 01: update every 2 samples 10: update every 4 samples 11: update every 8 samples)
write_onceSlave 0 write operation is performed only at the first sensor hub cycle. ${ }^{(1)}$ Default value: 0 0: write operation for each sensor hub cycle 1: write operation only for the first sensor hub cycle	
	Number of read operations on Sensor2.

1. This is effective if the Aux_sens_on[1:0] field in SLAVEO_CONFIG (04h) is set to a value other than 00.

12.7 SLV2_ADD (08h)

$I^{2} \mathrm{C}$ slave address of the third external sensor (Sensor3) register (r / w).
Table 252. SLV2_ADD register

Slave2_ add6	Slave2_ add5	Slave2_- add4	Slave2_ add3	Slave2_- add2	Slave2_ add1	Slave2_- add0	r_2

Table 253. SLV2_ADD register description

Slave2_add[6:0]	$I^{2} \mathrm{C}$ slave address of Sensor3 that can be read by sensor hub. Default value: 0000000
r_2	Read operation on Sensor3 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

12.8 SLV2_SUBADD (09h)

Address of register on the third external sensor (Sensor3) register (r/w).
Table 254. SLV2_SUBADD register

Slave2_ reg7	Slave2_ reg6	Slave2_ reg5	Slave2_ reg4	Slave2_- reg3	Slave2_ reg2	Slave2_ reg1	Slave2_ reg0

Table 255. SLV2_SUBADD register description
Slave2_reg[7:0]
Address of register on Sensor3 that has to be read according to the r_2 bit value in SLV2_ADD (08h). Default value: 00000000

12.9 SLAVE2_CONFIG (OAh)

Third external sensor (Sensor3) configuration register (r/w).

Table 256. SLAVE2_CONFIG register

Slave2_ rate1	Slave2_- rate0	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	Slave2 numop2	Slave2 -1 numop1	Slave2 numop0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 257. SLAVE2_CONFIG register description

	Decimation of read operation on Sensor3 starting from the sensor hub trigger. Default value: 00 Slave2_rate[1:0] (00: no decimation 01: update every 2 samples $10:$ update every 4 samples 11: update every 8 samples)
Slave2_numop[2:0]	Number of read operations on Sensor3.

12.10 SLV3_ADD (0Bh)

$\mathrm{I}^{2} \mathrm{C}$ slave address of the fourth external sensor (Sensor4) register (r/w).

Table 258. SLV3_ADD register

Slave3_- add6	Slave3_ add5	Slave3_- add4	Slave3_ add3	Slave3_ add2	Slave3_ add1	Slave3_ add0	r_3

Table 259. SLV3_ADD register description

Slave3_add[6:0]	1^{2} C slave address of Sensor4 that can be read by the sensor hub. Default value: 0000000
r_3	Read operation on Sensor4 enable. Default value: 0 (0: read operation disabled; 1: read operation enabled)

12.11 SLV3_SUBADD (OCh)

Address of register on the fourth external sensor (Sensor4) register (r/w).

Table 260. SLV3_SUBADD register

Slave3_ reg7	Slave3_ reg6	Slave3_ reg5	Slave3_ reg4	Slave3_ reg3	Slave3_ reg2	Slave3_- reg1	Slave3_ reg0

Table 261. SLV3_SUBADD register description
Slave3_reg[7:0]
Address of register on Sensor4 that has to be read according to the $r_{-} 3$ bit value in SLV3_ADD (OBh). Default value: 00000000

12.12 SLAVE3_CONFIG (ODh)

Fourth external sensor (Sensor4) configuration register (r/w).

Table 262. SLAVE3_CONFIG register

Slave3_ rate1	Slave3_ rate0	$0^{(1)}$	$0^{(1)}$	$0^{(1)}$	Slave3_ numop2	Slave3_ numop1	Slave3_ numop0

1. This bit must be set to ' 0 ' for the correct operation of the device.

Table 263. SLAVE3_CONFIG register description

	Decimation of read operation on Sensor4 starting from the sensor hub trigger. Default value: 00 (00: no decimation Slave3_rate[1:0] 10: update every 2 samples 11: update every 4 samples 8 Slave3_numop[2:0]
Number of read operations on Sensor4.	

12.13 DATAWRITE_SRC_MODE_SUB_SLV0 (0Eh)

Data to be written into the slave device register (r/w).

Table 264. DATAWRITE_SRC_MODE_SUB_SLV0 register

Slave_ dataw7	Slave_ dataw6	Slave_ dataw5	Slave_ dataw4	Slave dataw3	Slave_ dataw2	Slave_ dataw1	Slave dataw0

Table 265. DATAWRITE_SRC_MODE_SUB_SLV0 register description

Slave_dataw[7:0]	Data to be written into the slave device according to the rw_0 bit in SLVO_ADD (02h) register or address to be read in source mode. Default value: 00000000

12.14 CONFIG_PEDO_THS_MIN (0Fh)

Table 266. CONFIG_PEDO_THS_MIN register

PEDO_FS	0	0	ths_min_4	ths_min_3	ths_min_2	ths_min_1	ths_min_0

Table 267. CONFIG_PEDO_THS_MIN register description

PEDO_FS	Pedometer data elaboration at 4 g. (0: elaboration of $2 g$ data; $1:$ elaboration of 4 g data)
ths_min_[4:0]	Minimum threshold to detect a peak. Default is 10h.

12.15 SM_THS (13h)

Significant motion configuration register (r/w).

Table 268. SM_THS register

$\begin{gathered} \hline \text { SM_TH_ }_{7} \text { THS } \end{gathered}$	$\underset{6}{\text { SM_THS_ }}$	$\underset{5}{\text { SM_THS_ }}$	$\underset{4}{S M_{-} \text {THS_ }}$	$\underset{3}{\text { SM_THS_}_{-}}$	$\begin{gathered} \mathrm{SM}_{2} \mathrm{THS} \\ \hline \end{gathered}$	$\underset{1}{\text { SM_THS_ }}$	$\underset{0}{\text { SM_THS_ }}$

Table 269. SM_THS register description

SM_THS[7:0]	Significant motion threshold. Default value: 00000110

12.16 PEDO_DEB_REG (14h)

Table 270. PEDO_DEB_REG register

| DEB |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| TIME4 | TIME3 | TIME2 | TIME1 | TIME | STEP2 | STEP1 | STEP0 |

Table 271. PEDO_DEB_REG register description

DEB_TIME[4:0]	Debounce time. If the time between two consecutive steps is greater than DEB_TIME*80ms, the debouncer is reactivated. Default value: 01101
DEB_STEP[2:0]	Debounce threshold. Minimum number of steps to increment step counter (debounce). Default value: 110

12.17 STEP_COUNT_DELTA (15h)

Time period register for step detection on delta time (r/w).
Table 272. STEP_COUNT_DELTA register

SC_-	SC_-	SC_-	SC_-_	SC_-	SC_-	SC_-	SC_-
DELTA_7	DELTA_6	DELTA__5	DELTA_4	DELTA_3	DELTA_2	DELTA_1	DELTA_0

Table 273. STEP_COUNT_DELTA register description

$$
\begin{array}{|l|l|}
\hline \text { SC_DELTA[7:0] } & \text { Time period value }{ }^{(1)}(1 \text { LSB }=1.6384 \mathrm{~s}) \\
\hline
\end{array}
$$

1. This value is effective if the TIMER_EN bit of CTRL10_C (19h) is set to 1 and the TIMER_HR bit of WAKE_UP_DUR (5Ch) is set to 0 .

12.18 MAG_SI_XX (24h)

Soft-iron matrix correction register (r/w).
Table 274. MAG_SI_XX register

$\begin{gathered} \hline \text { MAG_SI__ } \\ \text { XX_7 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XX_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XX_5 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI__ } \\ \text { XX_4 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XX_3 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XX_2 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XX_1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XX_0 } \end{gathered}$

Table 275. MAG_SI_XX register description
MAG_SI_XX_[7:0] \quad Soft-iron correction row1 col1 coefficient ${ }^{(1)}$. Default value: 00001000

1. Value is expressed in sign-module format.

12.19 MAG_SI_XY (25h)

Soft-iron matrix correction register (r/w).
Table 276. MAG_SI_XY register

$\begin{gathered} \hline \text { MAG_SI_ } \\ X Y _7 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XY_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ X Y _5 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ X Y _4 \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \text { XY_3 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XY_2 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ X Y _1 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XY_0 } \end{gathered}$

Table 277. MAG_SI_XY register description
MAG_SI_XY_[7:0] \quad Soft-iron correction row1 col2 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

12.20 MAG_SI_XZ (26h)

Soft-iron matrix correction register (r/w).
Table 278. MAG_SI_XZ register

$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XZ_7 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XZ_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XZ } 5 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ X Z _4 \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \text { XZ_3 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XZ_2 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ X Z_{-} 1 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { XZ_0 } \end{gathered}$

Table 279. MAG_SI_XZ register description

MAG_SI_XZ_[7:0]	Soft-iron correction row1 col3 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

12.21 MAG_SI_YX (27h)

Soft-iron matrix correction register (r/w).
Table 280. MAG_SI_YX register

MAG_SI_-	MAG_SI_						
YX_7	YX_6	YX_5	YX_4	YX_3	YX_2	YX_1	YX_0

Table 281. MAG_SI_YX register description

MAG_SI_YX_[7:0]	Soft-iron correction row2 col1 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

12.22 MAG_SI_YY (28h)

Soft-iron matrix correction register (r/w).
Table 282. MAG_SI_YY register

$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_7 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_5 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \mathrm{YY}^{-} 4 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_3 } \end{gathered}$	$\begin{gathered} \text { MAG_SI } \\ \text { YY_2 } \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \text { YY_1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { YY_0 } \end{gathered}$

Table 283. MAG_SI_YY register description
MAG_SI_YY_[7:0] \quad Soft-iron correction row2 col2 coefficient ${ }^{(1)}$. Default value: 00001000

1. Value is expressed in sign-module format.

12.23 MAG_SI_YZ (29h)

Soft-iron matrix correction register (r/w).
Table 284. MAG_SI_YZ register

$\begin{gathered} \hline \text { MAG_SI_ } \\ Y_{Z} _7 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _6 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _5 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _4 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _3 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _2 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _1 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Y Z _0 \end{gathered}$

Table 285. MAG_SI_YZ register description
MAG_SI_YZ_[7:0] \quad Soft-iron correction row2 col3 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

12.24 MAG_SI_ZX (2Ah)

Soft-iron matrix correction register (r/w).
Table 286. MAG_SI_ZX register

MAG_SI_-	MAG_SI_ ZX_7	MAG_SI_ ZX_6	MAG_SI_ ZX_4	MAG_SI_ ZX_3	MAG_SI_ ZX_2	MAG_SI_ ZX_1	MAG_SI_ ZX_0

Table 287. MAG_SI_ZX register description
MAG_SI_ZX_[7:0] \quad Soft-iron correction row3 col1 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

12.25 MAG_SI_ZY (2Bh)

Soft-iron matrix correction register (r/w).
Table 288. MAG_SI_ZY register

$\begin{gathered} \text { MAG_SI_ } \\ \text { ZY_7 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZY_6 } \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \mathrm{ZY}_{-} 5 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \mathrm{ZY}-4 \end{gathered}$	$\begin{gathered} \text { MAG_SI_ } \\ \text { ZY_3 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI } \\ \text { ZY_2 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI } \\ Z Y \text { __1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Z Y _0 \end{gathered}$

Table 289. MAG_SI_ZY register description
MAG_SI_ZY_[7:0] \quad Soft-iron correction row3 col2 coefficient ${ }^{(1)}$. Default value: 00000000

1. Value is expressed in sign-module format.

12.26 MAG_SI_ZZ (2Ch)

Soft-iron matrix correction register (r/w).
Table 290. MAG_SI_ZZ register

$\begin{gathered} \hline \text { MAG_SI_- } \\ \text { ZZ_7 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ Z Z-5 \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_4 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_3 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_2 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_1 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_SI_ } \\ \text { ZZ_0 } \end{gathered}$

Table 291. MAG_SI_ZZ register description
MAG_SI_ZZ_[7:0] \quad Soft-iron correction row3 col3 coefficient ${ }^{(1)}$. Default value: 00001000

1. Value is expressed in sign-module format.

12.27 MAG_OFFX_L (2Dh)

Offset for X-axis hard-iron compensation register (r/w). The value is expressed as a 16 -bit word in two's complement.

Table 292. MAG_OFFX_L register

| MAG_OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X_L_7 | X_L_6 | X_L_5 | X_L_4 | X_L_3 | X_L_2 | X_L_1 | X_L_0 |

Table 293. MAG_OFFX_L register description
MAG_OFFX_L_[7:0] \quad Offset for X-axis hard-iron compensation. Default value: 00000000

12.28 MAG_OFFX_H (2Eh)

Offset for X -axis hard-iron compensation register (r / w). The value is expressed as a 16 -bit word in two's complement.

Table 294. MAG_OFFX_H register

| MAG_OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X_H_7 | X_H_6 | X_H_5 | X_H_4 | X_H_3 | X_H_2 | X_H_1 | X_H_0 |

Table 295. MAG_OFFX_H register description
MAG_OFFX_H_[7:0] \quad Offset for X-axis hard-iron compensation. Default value: 00000000

12.29 MAG_OFFY_L (2Fh)

Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16-bit word in two's complement.

Table 296. MAG_OFFY_L register

| MAG_OFF |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y_L_7 | Y_L_6 | Y_L_5 | Y_L_4 | Y_L_3 | Y_L_2 | Y_L_1 | Y_L_0 |

Table 297. MAG_OFFY_L register description
MAG_OFFY_L_[7:0] \quad Offset for Y-axis hard-iron compensation. Default value: 00000000

12.30 MAG_OFFY_H (30h)

Offset for Y-axis hard-iron compensation register (r/w). The value is expressed as a 16 -bit word in two's complement.

Table 298. MAG_OFFY_H register

$\begin{gathered} \text { MAG_OFF } \\ \text { Y_H_7 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Y_H_6 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Y_H_5 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Y_H_4 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { YH3 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_OFF } \\ \text { Y_H_2 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Y_H_1 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Y_H_O } \end{gathered}$

Table 299. MAG_OFFY_H register description
MAG_OFFY_H_[7:0] \quad Offset for Y-axis hard-iron compensation. Default value: 00000000

12.31 MAG_OFFZ_L (31h)

Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16 -bit word in two's complement.

Table 300. MAG_OFFZ_L register

$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_7 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_6 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_OFF } \\ \text { Z_L_5 } \end{gathered}$	$\begin{gathered} \hline \text { MAG_OFF } \\ \text { Z_L_4 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ Z_{1} \text { L_3 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_L_2 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ Z_{-} \text {L_1 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ Z_{-} \text {L_O } \end{gathered}$

Table 301. MAG_OFFZ_L register description
MAG_OFFZ_L_[7:0] \mid Offset for Z-axis hard-iron compensation. Default value: 00000000

12.32 MAG_OFFZ_H (32h)

Offset for Z-axis hard-iron compensation register (r/w). The value is expressed as a 16 -bit word in two's complement.

Table 302. MAG_OFFZ_H register

$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_7 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_6 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_5 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_4 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_3 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_2 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ Z_{-}{ }^{\prime} \text { _1 } \end{gathered}$	$\begin{gathered} \text { MAG_OFF } \\ \text { Z_H_0 } \end{gathered}$

Table 303. MAG_OFFZ_H register description
MAG_OFFZ_H_[7:0] \quad Offset for Z-axis hard-iron compensation. Default value: 00000000

13 Embedded functions registers description - Bank B

13.1 A_WRIST_TILT_LAT (50h)

Absolute Wrist Tilt latency register (r/w).
Table 304. A_WRIST_TILT_LAT register

| WRIST_TILT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| _TIMER7 | _ TIMER6 | _ TIMER5 | _ TIMER4 | _ TIMER3 | _TIMER2 | _ TIMER1 | _ TIMER0 |

Table 305. A_WRIST_TILT_LAT register description

WRIST TILT TIMER[7:0]

13.2 A_WRIST_TILT_THS (54h)

Absolute Wrist Tilt threshold register (r/w).

Table 306. A_WRIST_TILT_THS register

WRIST TILT_THS7	$\begin{aligned} & \text { WRIST_} \\ & \text { TILT_THS6 } \end{aligned}$	$\begin{aligned} & \text { WRIST__ }^{\text {TILT_THS5 }} \end{aligned}$	$\begin{aligned} & \text { WRIST_- } \\ & \text { TILT_THS4 } \end{aligned}$	WRIST- TILT THS3	$\begin{aligned} & \text { WRIST_- }_{2} \\ & \text { TILT_THS2 } \end{aligned}$	$\begin{aligned} & \text { WRIST_ }^{\prime} \\ & \text { TILT_THS1 } \end{aligned}$	$\begin{aligned} & \text { WRIST_ }_{1} \\ & \text { TILT_THS0 } \end{aligned}$

Table 307. A_WRIST_TILT_THS register description
WRIST_TILT_THS[7:0] \quad Absolute wrist tilt threshold parameters. 1 LSB $=15.625 \mathrm{mg}$. Default value: $20 \mathrm{~h}(500 \mathrm{mg})$

13.3 A_WRIST_TILT_Mask (59h)

Absolute Wrist Tilt mask register (r/w).
Table 308. A_WRIST_TILT_Mask register

WRIST_TILT_- MASK_Xpos	WRIST_TILT_- MASK_Xneg	WRIST_TILT_- MASK_Ypos	WRIST_TILT_ MASK_Yneg	WRIST_TILT_ MASK_Zpos	WRIST_TILT_ MASK__Zneg	0	0

Table 309. A_WRIST_TILT_Mask register description

WRIST_TILT_MASK_Xpos	Absolute wrist tilt positive X-axis enable. Default value: 1 (0: disable; 1: enable)
WRIST_TILT_MASK_Xneg	Absolute wrist tilt negative X-axis enable. Default value: 1 (0: disable; 1: enable)
WRIST_TILT_MASK_Ypos	Absolute wrist tilt positive Y-axis enable. Default value: 0 (0: disable; 1: enable)
WRIST_TILT_MASK_Yneg	Absolute wrist tilt negative Y-axis enable. Default value: 0 (0: disable; 1: enable)
WRIST_TILT_MASK_Zpos	Absolute wrist tilt positive Z-axis enable. Default value: 0 (0: disable; 1: enable)
WRIST_TILT_MASK_Zneg	Absolute wrist tilt negative Z-axis enable. Default value: 0 (0: disable; 1: enable)

14 Soldering information

The LGA package is compliant with the ECOPACK ${ }^{\circledR}$, RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Land pattern and soldering recommendations are available at www.st.com/mems.

15 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK ${ }^{\circledR}$ specifications, grade definitions and product status are available at: www.st.com
ECOPACK is an ST trademark.

15.1 LGA-14L package information

Figure 23. LGA-14L $2.5 \times 3 \times 0.86 \mathrm{~mm}$ package outline and mechanical data

15.2 LGA-14 packing information

Figure 24. Carrier tape information for LGA-14 package

Figure 25. LGA-14 package orientation in carrier tape

Figure 26. Reel information for carrier tape of LGA-14 package

Table 310. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)	
A (max)	330
B (min)	1.5
C	13 ± 0.25
D (min)	20.2
N (min)	60
G	$12.4+2 /-0$
$\mathrm{~T}(\max)$	18.4

16 Revision history

Table 311. Document revision history

Date	Revision	Changes
03-May-2017	6	Updated Section 4.4.2: I^{2} C - inter-IC control interface (added Table 8: I^{2} C master timing values) Updated Figure 13 and Figure 15
Updated footnotes 1 and 2 of Table 20: Registers address map Updated description of SW_RESET bit in Table 58: CTRL3_C register description Updated bit 0 in CTRL1_XL (10h) Updated description of INT_OIS (6Fh), CTRL1_OIS (70h), CTRL2_OIS (71h) and CTRL3_OIS (72h) Updated description of X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h) Minor textual updates		
29-Sep-2017	7	Updated Table 3: Mechanical characteristics Specified SPI mode 3 in Section 4.4.1: SPI - serial peripheral interface and throughout Section 6: Digital interfaces

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics - All rights reserved

[^0]: 1. Phase delay @ 20 Hz
[^1]: 1. Phase delay @ 20 Hz
