

CMOS 3 V/5 V, Wide Bandwidth Quad 2:1 Mux in Chip Scale Package

ADG784

FEATURES

Low Insertion Loss and On Resistance: 4 Ω Typical

On-Resistance Flatness <2 Ω

Bandwidth >200 MHz

Single 3 V/5 V Supply Operation

Rail-to-Rail Operation

Very Low Distortion: <1%

Low Quiescent Supply Current (100 nA Typical)

Fast Switching Times

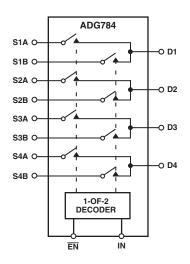
ton 10 ns

tope 4 ns

TTL/CMOS Compatible

For Functionally Equivalent Devices in 16-Lead QSOP/

SOIC Packages, See ADG774


APPLICATIONS 100VG-AnyLAN Token Ring 4 Mbps/16 Mbps

ATM25/155 NIC Adapter and Hubs

Audio and Video Switching

Relay Replacement

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG784 is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet gives high switching speed and low on resistance. The on-resistance variation is typically less than 0.5 Ω with an input signal ranging from 0 V to 5 V.

The bandwidth of the ADG784 is greater than 200 MHz and this, coupled with low distortion (typically 0.5%), makes the part suitable for switching fast ethernet signals.

The on-resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed, coupled with high signal bandwidth, also makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

The ADG784 operates from a single 3.3 V/5 V supply and is TTL logic compatible. The control logic for each switch is shown in the Truth Table.

These switches conduct equally well in both directions when ON, and have an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. The ADG784 switches exhibit break-beforemake switching action.

PRODUCT HIGHLIGHTS

- 1. Also Available as ADG774 in 16-Lead QSOP and SOIC.
- 2. Wide Bandwidth Data Rates >200 MHz.
- 3. Ultralow Power Dissipation.
- Extended Signal Range.
 The ADG784 is fabricated on a CMOS process giving an increased signal range that fully extends to the supply rails.
- 5. Low Leakage over Temperature.
- Break-Before-Make Switching.
 This prevents channel shorting when the switches are configured as a multiplexer.
- 7. Crosstalk is typically -70 dB @ 30 MHz.
- 8. Off isolation is typically -60 dB @ 10 MHz.
- 9. Available in Chip Scale Package (CSP).

REV. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADG784—SPECIFICATIONS

SINGLE SUPPLY ($V_{DD} = 5 \text{ V} \pm 10\%$, GND = 0 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

	B Version				
Daniel and the second	2500	T _{MIN} to	TT *4	Total Complisions (Community	
Parameter	25°C	T _{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V		
On Resistance (R _{ON})	2.2	_	Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
O. D. L. W. I. D.		5	Ω max		
On Resistance Match Between	0.15		0 4	V = 0 V to V I = 10 mA	
Channels ($\Delta R_{\rm ON}$)	0.15	0.5	Ω typ Ω max	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
On Resistance Flatness (R _{FLAT(ON)})	0.5	0.5	Ω typ	$V_{\rm D} = 0 \text{ V to } V_{\rm DD}; I_{\rm S} = -10 \text{ mA}$	
On resistance Frances (RFLAT(ON))	0.5	1	Ω max	VD = 0 V to VDD, IS = 10 HM1	
T DAYLA OD OLIDDDINES					
LEAKAGE CURRENTS	1001		Δ.	XI - 4 5 XI XI - 1 XI XI - 1 XI XI - 4 5 XI	
Source OFF Leakage I _S (OFF)	±0.01	±1	nA typ nA max	$V_D = 4.5 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 4.5 \text{ V};$ Test Circuit 2	
Drain OFF Leakage I _D (OFF)	$\pm 0.5 \\ \pm 0.01$	Ξ1	nA max	$V_D = 4.5 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 4.5 \text{ V};$	
Drain Orr Leakage ID (Orr)	± 0.01 ± 0.5	±1	nA typ	$v_D = 4.5 \text{ v}, v_S = 1 \text{ v}, v_D = 1 \text{ v}, v_S = 4.5 \text{ v},$ Test Circuit 2	
Channel ON Leakage ID, IS (ON)	± 0.01	<u>- 1</u>	nA typ	$V_D = V_S = 4.5 \text{ V}; V_D = V_S = 1 \text{ V}; \text{ Test Circuit } 3$	
chamier of the Leanage 10, 15 (of t)	±0.5	±1	nA max	VD Vg 115 V, VD Vg 1 V, 1 cot checks	
DICITAL DIDITO					
DIGITAL INPUTS		2.4	V min		
Input High Voltage, V_{INH} Input Low Voltage, V_{INL}		2.4 0.8	V max		
Input Current		0.8	VIIIax		
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INI}$ or V_{INH}	
TINL OF TIME	0.001	±0.5	μA max	VIN VINL OF VINH	
DYNAMIC CHARACTERISTICS ²					
t _{ON}		10	ns typ	$R_{L} = 100 \Omega, C_{L} = 35 pF,$	
ON		20	ns max	$V_S = 3 \text{ V}$; Test Circuit 4	
t_{OFF}		4	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$,	
OII		8	ns max	V _S = 3 V; Test Circuit 4	
Break-Before-Make Time Delay, t _D		5	ns typ	$R_L = 100 \Omega, C_L = 35 pF,$	
		1	ns min	$V_{S1} = V_{S2} = 5 \text{ V}$; Test Circuit 5	
Off Isolation		-65	dB typ	$R_L = 100 \Omega$, $f = 10 MHz$; Test Circuit 7	
Channel-to-Channel Crosstalk		- 75	dB typ	$R_L = 100 \Omega$, $f = 10 MHz$; Test Circuit 8	
Bandwidth –3 dB		240	MHz typ	$R_L = 100 \Omega$; Test Circuit 6	
Distortion		0.5	% typ	$R_L = 100 \Omega$	
Charge Injection		10	pC typ	$C_L = 1 \text{ nF}$; Test Circuit 9	
$C_{\rm S}$ (OFF)		10	pF typ	f = 1 kHz	
$C_{\rm D}$ (OFF)		20 30	pF typ	f = 1 kHz f = 1 MHz	
$C_D, C_S(ON)$			pF typ		
POWER REQUIREMENTS				$V_{\rm DD} = 5.5 \text{ V}$	
				Digital Inputs = 0 V or V_{DD}	
I_{DD}		1	μA max		
T	0.001		μA typ	X - 7 X	
$I_{ m IN}$		1	μA typ	$V_{\rm IN} = 5 \text{ V}$	
I _O		100	mA max	$V_S/V_D = 0 V$	

-2-REV. A

NOTES ¹Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

SINGLE SUPPLY ($V_{DD} = 3~V~\pm~10\%$, GND = 0 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

Parameter	25°C	B Version T_{MIN} to T_{MAX}	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~\mathrm{V}$ to V_{DD}	V	
On Resistance (R _{ON})	4	0 1 10 100	Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
(1401)	1	10	Ω max	, p 0 , 10 , DD, 12 10 1111 1
On Resistance Match Between				
Channels (ΔR_{ON})	0.15		Ω typ	$V_{\rm D} = 0 \text{ V to } V_{\rm DD}, I_{\rm S} = -10 \text{ mA}$
		0.5	Ω max	L D C C C C C C C C C C C C C C C C C C
On Resistance Flatness (R _{FLAT(ON)})	2		Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
(1241(614))		4	Ω max	
LEAKAGE CURRENTS				
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_D = 3 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 3 \text{ V};$
Source Of F Leakage IS (OFF)	± 0.01 ± 0.5	±1	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.01	<u>- 1</u>	nA typ	$V_D = 3 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 3 \text{ V};$
Diam Off Leakage in (Off)	± 0.51	±1	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01	_1	nA typ	$V_D = V_S = 3 \text{ V}; V_D = V_S = 1 \text{ V}; \text{ Test Circuit } 3$
Chamier CTV Zeakage 1D, 13 (CTV)	±0.5	±1	nA max	The state of the s
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V_{INI}		0.4	V max	
Input Current		0.4	VIIIax	
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
INL OF THE	0.001	±0.5	μA max	TIN TINE 32 TINH
DYNAMIC CHARACTERISTICS ²				
t _{ON}		12	ns typ	$R_{L} = 100 \Omega, C_{L} = 35 pF,$
UN		25	ns max	$V_S = 1.5 \text{ V}$; Test Circuit 4
t _{OFF}		5	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$,
OFF		10	ns max	$V_S = 1.5 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D		5	ns typ	$R_L = 100 \Omega, C_L = 35 pF,$
		1	ns min	$V_{S1} = V_{S2} = 3$ V; Test Circuit 5
Off Isolation		-65	dB typ	$R_L = 50 \Omega$, $f = 10 MHz$; Test Circuit 7
Channel-to-Channel Crosstalk		-75	dB typ	$R_L = 50 \Omega$, $f = 10 MHz$; Test Circuit 8
Bandwidth -3 dB		240	MHz typ	$R_L = 50 \Omega$; Test Circuit 6
Distortion		2	% typ	$R_{\rm L} = 50 \Omega$
Charge Injection		3	pC typ	$C_L = 1 \text{ nF}$; Test Circuit 9
$C_{S}(OFF)$		10	pF typ	f = 1 kHz
C_{D} (OFF)		20	pF typ	f = 1 kHz
$C_D, C_S(ON)$		30	pF typ	f = 1 MHz
POWER REQUIREMENTS				V _{DD} = 3.3 V
ī		1	11 / 200 000	Digital Inputs = 0 V or V_{DD}
I_{DD}	0.001	1	μA max	
T	0.001	1	μA typ	V = 2V
$egin{array}{l} I_{ ext{IN}} & & & & & & & & & & & & & & & & & & $		1 100	μA typ mA max	$ \begin{vmatrix} V_{\rm IN} = 3 \text{ V} \\ V_{\rm S}/V_{\rm D} = 0 \text{ V} \end{vmatrix} $
1()		100	IIIA IIIAX	VS/VD - OV

Specifications subject to change without notice.

Table I. Truth Table

EN	IN	D1	D2	D 3	D4	Function
1	X	Hi-Z	Hi-Z	Hi-Z	Hi-Z	DISABLE
0	0	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

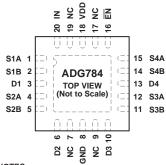
REV. A -3-

NOTES

1 Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

ADG784


ABSOLUTE MAXIMUM RATINGS¹

NOTES

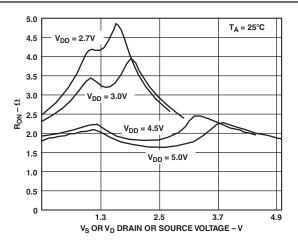
¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

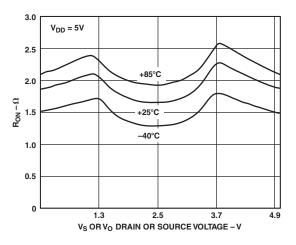
PIN CONFIGURATION

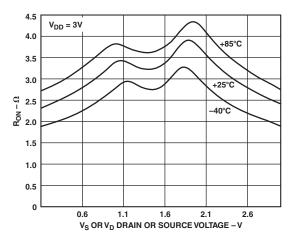
NOTES
1. NC = NO CONNECT.
2. EXPOSED PAD TIED TO SUBSTRATE, GND.

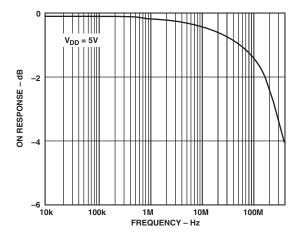
TERMINOLOGY

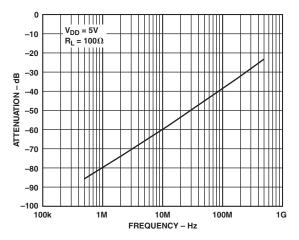

TERMINOLOGI					
$\overline{ m V_{DD}}$	Most Positive Power Supply Potential.				
GND	Ground (0 V) Reference.				
S	Source Terminal. May be an input or output.				
D	Drain Terminal. May be an input or output.				
IN	Logic Control Input.				
$\overline{\mathrm{EN}}$	Logic Control Input.				
R_{ON}	Ohmic resistance between D and S.				
$\Delta R_{\rm ON}$	On Resistance match between any two channels i.e., $R_{ON} \max - R_{ON} \min$.				
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on resis- tance as measured over the specified analog signal range.				
I _S (OFF)	Source Leakage Current with the switch "OFF."				
I_D (OFF)	Drain Leakage Current with the switch "OFF."				
I_D , I_S (ON)	Channel Leakage Current with the switch "ON."				
$V_{D}(V_{S})$	Analog Voltage on Terminals D, S.				
C_{S} (OFF)	"OFF" Switch Source Capacitance.				
C_D (OFF)	"OFF" Switch Drain Capacitance.				
C_D , C_S (ON)	"ON" Switch Capacitance.				
t _{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.				
$t_{ m OFF}$	Delay between applying the digital control input and the output switching Off.				
t _D	"OFF" time or "ON" time measured between the 90% points of both switches, when switching from one address state to another. See Test Circuit 5.				
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.				
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.				
Bandwidth	Frequency response of the switch in the ON state measured at 3 dB down.				
Distortion	$R_{\rm FLAT(ON)}/R_{\rm L}$				

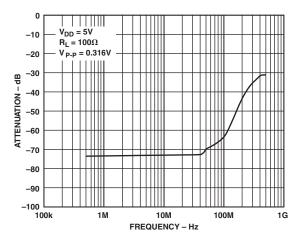
CAUTION_


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG784 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


Typical Performance Characteristics—ADG784


TPC 1. On Resistance as a Function of V_D (V_S) for Various Single Supplies


TPC 2. On Resistance as a Function of V_D (V_S) for Different Temperatures with 5 V Single Supplies


TPC 3. On Resistance as a Function of V_D (V_S) for Different Temperatures with 3 V Single Supplies

TPC 4. On Response vs. Frequency

TPC 5. Off Isolation vs. Frequency

TPC 6. Crosstalk vs. Frequency

REV. A -5-

ADG784

TPC 7. Charge Injection vs. Source Voltage

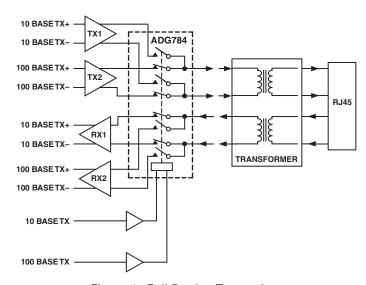


Figure 1. Full Duplex Transceiver

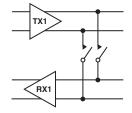
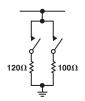
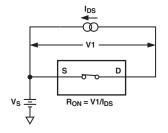
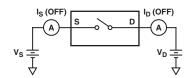


Figure 2. Loop Back

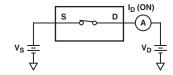


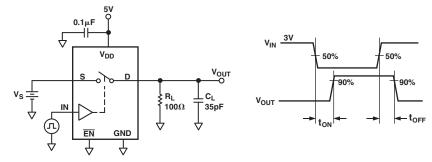

Figure 3. Line Termination

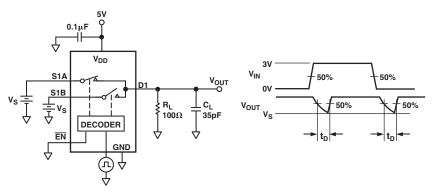


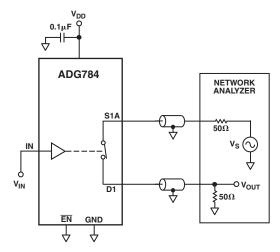

Figure 4. Line Clamp

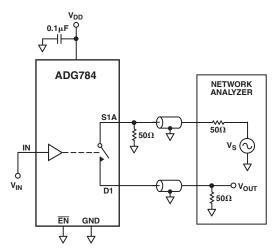
-6- REV. A

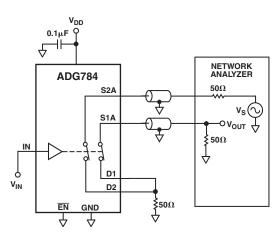

Test Circuits

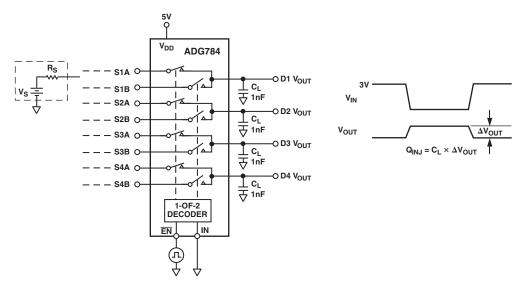



Test Circuit 2. Off Leakage


Test Circuit 3. On Leakage


Test Circuit 4. Switching Times


Test Circuit 5. Break-Before-Make Time Delay


Test Circuit 6. Bandwidth

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

Test Circuit 9. Charge Injection

OUTLINE DIMENSIONS

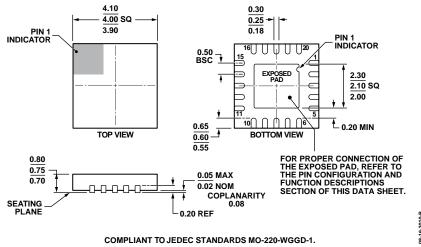


Figure 37. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 4 mm × 4 mm Body, Very Very Thin Quad (CP-20-6) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG784BCPZ	−40°C to +85°C	20-Lead LFCSP_WQ	CP-20-6
ADG784BCPZ-REEL	-40°C to +85°C	20-Lead LFCSP_WQ	CP-20-6
ADG784BCPZ-REEL7	-40°C to +85°C	20-Lead LFCSP_WQ	CP-20-6

¹ Z = RoHS Compliant Part.

REVISION HISTORY

2/13-Rev. 0 to Rev. A

Changes to Pin Configuration	4
Updated Outline Dimensions	
Changes to Ordering Guide	Q

4/01—Revision 0: Initial Version

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Analog Devices Inc.:

ADG784BCPZ-REEL7 ADG784BCPZ