PSR-...-24DC/ESD/5X1/1X2/300

Safety relay for emergency stop, safety door and light grid monitoring with adjustable delay time

Data sheet
102104_en_04
© PHOENIX CONTACT 2016-04-29

1 Description

Intended Use

The safety relay is used for emergency stop, safety door, and light grid monitoring.
The safety relay interrupts circuits in a safety-related way.

Possible signal generators

- Emergency stop button
- Door locking mechanisms
- Light grids

Contact type

- 3 undelayed enabling current paths
- 2 delayed enabling current paths
- 1 undelayed enabling current path

The undelayed enabling current paths and the signaling current path drop out according to stop category 0 (EN 60204-1).
The delayed enabling current paths drop out according to stop category 1 (EN 60204-1).

Control

- Single or two channel
- Automatic or manual, monitored start

Achievable safety integrity

- Undelayed contacts suitable up to category 4, PL e (EN ISO 13849-1), SILCL 3 (EN 62061)
- Dropout delayed contacts suitable up to category 3, PL d (EN ISO 13849-1), SILCL 2 (EN 62061)

Additional features

- Adjustable delay time (0.2 s ... 300 s , 24 increments)
- Cross circuiting detection
- Option of screw or spring-cage terminal blocks for plugin
- $\quad 45 \mathrm{~mm}$ housing width

WARNING: Risk of electric shock
Observe the safety regulations and installation notes in the corresponding section.

Make sure you always use the latest documentation.
It can be downloaded from the product at phoenixcontact.net/products.

This document is valid for the products listed in the "Ordering data".
This document meets the same requirements as the original operating instructions with respect to the contents.
2 Table of contents
1 Description 1
2 Table of contents 2
3 Ordering data 3
4 Technical data 3
5 Safety regulations and installation notes. 7
6 Function description 8
7 Function and time diagrams 8
8 Basic circuit diagram 9
9 Derating 9
10 Load curve 9
11 Operating and indication elements 10
12 Mounting and removing 11
13 Wiring 11
14 Startup 12
15 Configuration 13
16 Calculating the power dissipation 14
17 Diagnostics 14
18 Application examples 15
19 Attachment 19

3 Ordering data

	Description
	Safety relay for emergency stop and safety door monitoring up to SIL 3 or Cat. 4, PL e (EN ISO 13849), one- or two-channel operation, automatic or manual activation, $3 \mathrm{~N} / \mathrm{O}$ contacts, $1 \mathrm{~N} / \mathrm{C}$ contact, $2 \mathrm{~N} / \mathrm{O}$ contacts with dropout delay of 0.2 s to 300 s , plug-in screw terminal block
	Safety relay for emergency stop and safety door monitoring up to SIL 3 or Cat. 4, PL e (EN ISO 13849), one- or two-channel operation, automatic or manual activation, 3 N/O contacts, 1 N/C contact, 2 N/O contacts with dropout delay of 0.2 s to 300 s , plug-in spring-cage terminal block

Documentation

User manual, English, for applications for PSR safety relay

Type	Order No.	Pcs./Pkt.
PSR-SCP- 24DC/ESD/5X1/1X2/300	2981428	1
PSR-SPP- 24DC/ESD/5X1/1X2/300	2981431	1
Type	Order No.	Pcs./Pkt.
UM EN SAFETY RELAY APPLICATION	2888712	1

4 Technical data

Hardware/firmware version	
HW/FW	$\geq 09 /$--
The technical data and safety characteristics are valid as of the specified HW/FW version.	
Input data	
Rated control circuit supply voltage U_{S}	24 V DC-15 \% / +10 \%
Rated control supply current I_{S}	typ. 155 mA
Typical inrush current	$200 \mathrm{~mA}\left(\right.$ at U_{S}) $<40 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ to S 10) $<150 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ to S 12) $>-60 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ to S 22) $<40 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ to S 34) $<40 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{s}} / \mathrm{l}_{\mathrm{x}}$ to S35)
Current consumption	$<40 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ to S 10) $<50 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{S}} / \mathrm{I}_{\mathrm{x}}$ to S 12) $>-40 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ to S 22) 0 mA (with $\mathrm{U}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ to S 34) $<5 \mathrm{~mA}$ (with $\mathrm{U}_{\mathrm{s}} / \mathrm{I}_{\mathrm{x}}$ to S 35)
Power consumption at U_{S}	typ. 3.72 W
Voltage at input/start and feedback circuit	24 V DC-15 \% / +10 \%
Filter time	1 ms (at A 1 in the event of voltage dips at U_{s}) max. 1.5 ms (at S10, S12; test pulse width) 7.5 ms (at S10, S12; test pulse rate) Test pulse rate $=5 \times$ Test pulse width
Max. permissible overall conductor resistance (Input and reset circuit at U_{S})	approx. 22Ω (Input and start circuits at U_{S})
Typical response time at U_{S}	$<600 \mathrm{~ms}$ (automatic start) $<70 \mathrm{~ms}$ (manual start)
Typical starting time with U_{s}	$<600 \mathrm{~ms}$ (when controlled via A1)
Typical release time with U_{s}	$<20 \mathrm{~ms}$ (when controlled via S11/S12 and S21/S22) $<20 \mathrm{~ms}$ (when controlled via A1)
Delay time range	$0.2 \mathrm{~s} \ldots 300 \mathrm{~s} \pm 20 \%$ (K3(t), K4(t) can be parameterized)
Recovery time	<1 s
Maximum switching frequency	0.5 Hz
Concurrence input 1/2	∞

Input data	
Operating voltage display	1 x green LED
Status display	$4 \times$ green LEDs
Protective circuit	Surge protection Suppressor diode
Output data	
Contact type	3 enabling current paths undelayed 2 enabling current paths delayed 1 signaling current path undelayed
Contact material	AgSnO_{2}
Minimum switching voltage	5 V AC/DC
Maximum switching voltage	250 V AC/DC (Observe the load curve)
Limiting continuous current	6 A (N/O contact, pay attention to the derating) 6 A (N/C contact)
Maximum inrush current	20 A ($\Delta \mathrm{t} \leq 100 \mathrm{~ms}$, undelayed contacts) 8 A (delayed contacts)
Inrush current, minimum	10 mA
Sq. Total current $I_{T H}{ }^{2}=I_{1}^{2}+I_{2}^{2}+\ldots+I_{N}^{2}$	$55 \mathrm{~A}^{2}$ (observe derating)
Interrupting rating (ohmic load) max.	$\begin{aligned} & 144 \mathrm{~W}(24 \mathrm{~V} \text { DC, } \tau=0 \mathrm{~ms}) \\ & 288 \mathrm{~W}(48 \mathrm{~V} \text { DC, } \tau=0 \mathrm{~ms}) \\ & 110 \mathrm{~W}(110 \mathrm{~V} \mathrm{DC,} \tau=0 \mathrm{~ms} \text {, delayed contacts: } 77 \mathrm{~W}) \\ & 88 \mathrm{~W}(220 \mathrm{~V} \text { DC, } \tau=0 \mathrm{~ms}) \\ & 1500 \text { VA (} 250 \text { V AC, } \tau=0 \mathrm{~ms} \text {, delayed contacts: } 2000 \mathrm{VA}) \end{aligned}$
Maximum interrupting rating (inductive load)	$42 \mathrm{~W}(24 \mathrm{~V} D C, \tau=40 \mathrm{~ms}$, delayed contacts: 48 W) $42 \mathrm{~W}(48 \mathrm{~V}$ DC, $\tau=40 \mathrm{~ms}$, delayed contacts: 40 W) $42 \mathrm{~W}(110 \mathrm{~V}$ DC, $\tau=40 \mathrm{~ms}$, delayed contacts: 35 W) $42 \mathrm{~W}(220 \mathrm{~V} D C, \tau=40 \mathrm{~ms}$, delayed contacts: 33 W)
Switching capacity min.	50 mW
Mechanical service life	10×10^{6} cycles
Switching capacity ($360 / \mathrm{h}$ cycles)	$\begin{aligned} & 4 \text { A (} 24 \mathrm{~V} \text { DC) } \\ & 4 \text { A (230 V AC) } \end{aligned}$
Switching capacity ($3600 / \mathrm{h}$ cycles)	$\begin{aligned} & 2.5 \mathrm{~A}(24 \mathrm{~V}(\mathrm{DC} 13)) \\ & 3 \mathrm{~A}(230 \mathrm{~V}(\mathrm{AC} 15)) \end{aligned}$
Output fuse	$10 \mathrm{AgL} / \mathrm{gG}$ (N/O contact) 6 A gL/gG (N/C contact)
General data	
Relay type	Electromechanical relay with forcibly guided contacts in accordance with EN 50205
Nominal operating mode	100\% operating factor
Degree of protection	IP20
Min. degree of protection of inst. location	IP54
Mounting type	DIN rail mounting
Mounting position	any
Type of housing	PBT yellow
Air clearances and creepage distances between the power circuits	according to DIN EN 50178/VDE 0160
Rated insulation voltage	250 V AC
Rated surge voltage/insulation	Basic insulation 4 kV : between all current paths and housing Safe isolation, reinforced insulation 6 kV : between $13 / 14,23 / 24,33 / 34$, and the remaining current paths between 13/14, 23/24, 33/34 among one another
Degree of pollution	2
Overvoltage category	III

Safety characteristic data according to EN ISO 13849

Category	4 (undelayed contacts) 3 (delayed contacts)
Performance level	e (for delayed contacts PL d)
Duration of use	240 Months
For applications in PLe, the required demand rate for the safety function is once per month.	
Calculation basis	
$B_{10 \mathrm{~L}}$	230000 (At 3 A AC15)
$d_{\text {op }}$	365.25 Days
$h_{\text {op }}$	24 h
$t_{\text {Cycle }}$	3600 s

Safety parameters for EN 62061

SILCL
3 (for delayed contacts SILCL 2)

5 Safety regulations and installation notes

Depending on the application, incorrect handling of the device may pose serious risks for the user or cause damage to equipment.

- Observe all the safety notes and warning instructions provided in this chapter and elsewhere in this document.

General

- Observe the safety regulations of electrical engineering and industrial safety and liability associations.
Disregarding these safety regulations may result in death, serious personal injury or damage to equipment.
- Only use power supply units with safe isolation and SELV/PELV according to EN 50178/VDE 0160.

Startup, mounting, and modifications

Startup, mounting, modifications, and upgrades may only be carried out by an electrically skilled person.

- Before working on the device, disconnect the power.
- Carry out wiring according to the application. Refer to the "Application examples" section for this.
Reliable operation is only ensured if the device is installed in housing protected from dust and humidity.
- Install the device in housing protected from dust and humidity (min. IP54).

In operation

During operation, parts of electrical switching devices carry hazardous voltages.

- Protective covers must not be removed when operating electrical switching devices.
For emergency stop applications, automatic startup of the machine can pose serious risks for the user.
- The machine must be prevented from restarting automatically by a higher-level controller.
With the manual, monitored reset device, a machine start may not be triggered in accordance with EN ISO 13849-1.

Inductive loads can lead to welded relay contacts.

- Connect a suitable and effective protective circuit to inductive loads.
- Implement the protective circuit parallel to the load and not parallel to the switch contact.

Noise emission may occur when operating relay modules. Wireless reception may be disrupted in residential areas.
The device is a Class A product.

- Observe the requirements for noise emission for electrical and electronic equipment (EN 61000-6-4).
- Implement appropriate precautions against noise emission.
Surge voltages can destroy the device.
- Make sure that the output voltage of the voltage supply does not exceed 37 V even in the event of error.

Faulty devices

The devices may be damaged following an error. Correct operation can no longer be ensured.

- In the event of an error, replace the device.

Only the manufacturer or their authorized representative may perform the following activities. Otherwise the warranty is invalidated.

- Repairs to the device
- Opening the housing

Taking out of service and disposal

- Dispose of the device in accordance with environmental regulations.
- Make sure that the device can never be reused.

6 Function description

6.1 Single-channel sensor circuit

The sensor circuit is not designed with redundancy.
The safety relay does not detect short and cross-circuits in the sensor circuit.

6.2 Two-channel sensor circuit

The sensor circuit is designed with redundancy.
Depending on the wiring, the safety relay has cross-circuit detection.

With the corresponding wiring, the safety relay detects short and cross-circuits in the sensor circuit.

6.3 Automatic start

The device starts automatically after the sensor circuit has been closed.

6.4 Manual, monitored start

The device starts with closed sensor circuit once the start circuit has been closed by pressing the reset button.
A connected reset button (connected to S33/S34) is monitored.

6.5 Safe shutdown

When the sensor circuit is opened, the enabling current paths $13 / 14,23 / 24$, and $33 / 34$ open without delay.
The enabling current paths 57/58 and 67/68 open after the delay time has elapsed.
When the enabling current paths are open, the device is in the safe state.
The signaling current path closes.

6.6 Off delay

The enabling current paths 57/58 and 67/68 drop out after the set delay time has elapsed (stop category 1).
Use the rotary switch and DIP switch on the device to set the delay time in 24 increments from 0.2 s to 300 s .

7 Function and time diagrams

7.1 Time diagram for automatic start, two-channel control

- Cross-circuit detection activated

Figure 1 Time diagram for automatic start, two-channel control
7.2 Time diagram for manual start, single-channel control

Figure 2 Time diagram for manual start, single-channel control

Key:

A1/A2	Power supply
S34	Start circuit
S35	
S10 / S12 / S22	Input sensor circuit
$\mathbf{1 3 / 1 4 , 2 3 / 2 4 , 3 3 / 3 4}$	Undelayed enabling current paths
$\mathbf{5 7 / 5 8}, \mathbf{6 7 / 6 8}$	Delayed enabling current paths
$\mathbf{4 1 / 4 2}$	Signaling current path, undelayed
$\mathbf{t}_{\mathbf{d}}$	Delay time

8 Basic circuit diagram

Figure 3 Block diagram
Key:
A1
A2
S33, S34, S35
Y1/Y2
S10, S12
S11
S21
S22
13/14, 23/24, 33/34
41/42
57/58, 67/68
24 V DC power supply
0 V power supply
Start and feedback circuit
Feedback circuit
Input sensor circuit
Output 24 V
Output 0 V
Input sensor circuit
Undelayed enabling current paths
Signaling current path
Delayed enabling current paths

9 Derating

9.1 Any mounting position

The derating curve applies for the following conditions:

- Mounting on a DIN rail in any mounting position
- Devices mounted next to each other without spacing

Figure 4 Derating curve - any mounting position, without spacing

10 Load curve

10.1 Ohmic load

Figure 5 Relay load curve - ohmic load

11 Operating and indication elements

11.1 Connection versions

Figure 6 Connection versions

11.2 Connection assignment

S10, S12 Input sensor circuit
S33, S34, S35 Start and feedback circuit
S11 Output 24 V
A1
S21 Output 0 V
S22 Input sensor circuit
A2 0 V power supply
Y1/Y2
Feedback circuit
Power Power LED (green)
K1
K2
K3(t)
K4(t) Status indicator safety circuit; LED (green)
57/58
67/68
41/42
13/14
23/24
33/34

12 Mounting and removing

- Mount the device on a 35 mm DIN rail according to EN 60715.
- To remove the device, use a screwdriver to release the snap-on foot.

Figure 7 Mounting and removing

13 Wiring

- Connect the cables to the connection terminal blocks using a screwdriver.

Figure 8 Connecting the cables for PSR-SCP-... (Screw terminal block)

PSR-SPP-...

Figure 9 Connecting the cables for PSR-SPP-... (Spring-cage terminal block)

It is recommended that ferrules are used to connect stranded cables.

For compliance with UL approval, use copper wire that is approved up to $60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$.

13.1 Signal generator connection versions

- Connect suitable signal generators to S10/S11/S12 and S21/S22.

1

2

3

Figure 10 Signal generator connection versions
1 Two-channel connection with cross-circuit monitoring
2 Two-channel connection without cross-circuit monitoring
3 Single-channel connection

13.2 Start and feedback circuit connection variants

Automatic start

- Bridge contacts $\mathrm{S} 33 / \mathrm{S} 35$ as well as $\mathrm{Y} 1 / \mathrm{Y} 2$.

Manual, monitored start

- Connect a reset button to contacts S33/S34.
- Bridge contacts Y1/Y2.

A connected reset button is monitored.

Start and feedback circuit

- Place the relevant N / C contact in feedback circuit $\mathrm{Y} 1 / \mathrm{Y} 2$ or in path S33/S34 or S33/S35 to monitor external contactors or extension devices with force-guided contacts.

Figure 11 Start and feedback circuit connection variants
1 Automatic start
2 Automatic start with monitored contact extension
3 Manual, monitored start with monitored contact
extension
4 Manual, monitored start

14 Startup

- Apply the rated control circuit supply voltage (24 V DC) at terminal blocks A1/A2.
The Power LED lights up.
- Close contacts S10/S11/S12 and S21/S22

Automatic start

The enabling current paths $13 / 14,23 / 24,33 / 34$ as well as 57/58, 67/68 close.
Signaling current path $41 / 42$ opens.
The K1, K2, K3(t) and K43(t) LEDs light up.

Manual, monitored start

- Press the reset button.

The enabling current paths $13 / 14,23 / 24,33 / 34$ as well as 57/58, 67/68 close.
Signaling current path $41 / 42$ opens.
The K1, K2, K3(t) and K43(t) LEDs light up.

15 Configuration

15.1 Setting the delay time

Use the rotary switch and DIP switch on the device to set the delay time in 24 increments from 0.2 s to 300 s .
The 24 increments are the result of four periods (DIP switch), each with six delay times (rotary switch), see figure.
To configure the safety relay, proceed as follows:

1. Set a time period using the DIP switches.
2. Set the desired delay time with the rotary switch.

	1	2	3	4	5	6
\square \mathbf{B} \square \mathbf{A}	0,2	0,4	0,6	0,8	1	1,2
\square \square A \square	0,8	1,6	2,4	3,2	4	4,8
	6,4	12,8	19,2	25	32	38
	50	100	150	200	250	300

Figure 12 Configuration of the delay time (in seconds)

WARNING: Danger due to incorrect setting.
An incorrect configuration can result in dangerous machine or system states.

- Check the configuration before starting up for the first time.

15.2 Protection against manipulation

Once the time has been set, the rotary switch and the DIP switch can be protected against manipulation by covering with the label provided.
Operate the safety relay in a locked control cabinet to protect the configuration against manipulation.

Figure 13 Applying the label

16 Calculating the power dissipation

The total power dissipation of the safety relay is based on the input power dissipation and the contact power dissipation for the same and for different load currents.

Input power dissipation
$P_{\text {Input }}=U_{B}^{2} /\left(U_{S} / I_{S}\right)$
Contact power dissipation
With the same load currents:

17 Diagnostics

For the diagnostic description, please refer to the application manual for PSR safety relays.

Function test/proof test

Use the function test to test the safety function. To do this, request the safety function once by pressing the emergency stop button, for example. Check whether the safety function is executed correctly by then switching the device on again via the sensor circuits.
$P_{\text {Contact }}=n \bullet \mathrm{I}_{\mathrm{L}}{ }^{2} \cdot 200 \mathrm{~m} \Omega$
With different load currents:
$\mathrm{P}_{\text {Contact }}=\left(\mathrm{I}_{\mathrm{L} 1}{ }^{2}+\mathrm{I}_{\mathrm{L} 2}{ }^{2}+\ldots+\mathrm{I}_{\mathrm{Ln}}{ }^{2}\right) \cdot 200 \mathrm{~m} \Omega$

Total power dissipation

$\mathrm{P}_{\text {Total }}=\mathrm{P}_{\text {Input }}+\mathrm{P}_{\text {Contact }}$
therefore
$\mathrm{P}_{\text {Total }}=\mathrm{U}_{\mathrm{B}}{ }^{2} /\left(\mathrm{U}_{\mathrm{S}} / \mathrm{I}_{\mathrm{S}}\right)+\mathrm{n} \bullet \mathrm{I}_{\mathrm{L}}{ }^{2} \cdot 200 \mathrm{~m} \Omega$
or
$P_{\text {Total }}=U_{B}^{2} /\left(U_{S} / I_{S}\right)+\left(I_{L 1}{ }^{2}+I_{L}{ }^{2}+\ldots+I_{\mathrm{Ln}}{ }^{2}\right) \cdot 200 \mathrm{~m} \Omega$
Key:
P Power dissipation in mW
$\mathbf{U}_{\mathbf{B}} \quad$ Applied operating voltage
$\mathbf{U}_{\mathbf{S}} \quad$ Rated control circuit supply voltage
$I_{\mathbf{S}} \quad$ Rated control supply current
n Number of enabling current paths used
IL Contact load current

18 Application examples

18.1 Single-channel emergency stop monitoring

- Manual, monitored start
- Monitoring of external contactors
- Suitable up to category 1, PL c (EN ISO 13849-1), SIL 1 (EN 62061)

Figure 14 Single-channel emergency stop monitoring/manual, monitored start
Key:
$\begin{array}{ll}\text { S1 } & \text { Emergency stop button } \\ \text { K3/K4 } & \text { Contactors }\end{array}$

18.2 Two-channel emergency stop monitoring

- Manual, monitored start
- Cross circuiting detection
- Monitoring of external contactors
- \quad Suitable up to category 4, PL e (EN ISO 13849-1), SIL 3 (EN 62061)

L+
(L1)

Figure 15 Emergency stop monitoring/manual, monitored start
Key:

S1	Emergency stop button
K3/K4	Contactors

18.3 Two-channel safety door monitoring

- Manual, monitored start
- Cross circuiting detection
- Monitoring of external contactors
- Suitable up to category 4, PL e (EN ISO 13849-1), SIL 3 (EN 62061)

L+

Figure 16 Safety door monitoring/manual, monitored start
Key:
B1/B2 Mechanical safety door switches
K3/K4 Contactors
18.4 Light grid monitoring/automatic start

- Automatic start
- Cross-circuit detection via light grid
- Monitoring of external contactors
- \quad Suitable up to category 4, PL e (EN ISO 13849-1), SIL 3 (EN 62061)

Figure 17 Light grid monitoring/automatic start
Key:
K3/K4 Contactors

19 Attachment

19.1 Using PSR devices at altitudes greater than 2000 m above sea level

The following section describes the special conditions for using PSR devices at altitudes greater than 2000 m above sea level. Observe the relevant device-specific data (technical data, derating, etc.) according to the product documentation for the individual device.

Using the device at altitudes greater
than 2000 m above sea level up to max. 4500 m above sea level is possible under the following conditions:

1. Limit the rated control circuit supply voltage $\left(U_{S}\right)$ in accordance with the table below. Observe the technical data for the device.

U_{S} according to the technical data for the device	U_{S} when used at altitudes greater than $\mathbf{2 0 0 0} \mathbf{m}$ above sea level
$<150 \mathrm{~V} \mathrm{AC/DC}$	U_{S} according to the technical data for the device still valid
$>150 \mathrm{~V} \mathrm{AC/DC}$	Limited to max. $150 \mathrm{~V} \mathrm{AC/}$ DC

2. Limit the maximum switching voltage in accordance with the table below. Observe the technical data for the device.

Max. switching voltage according to the technical data for the device	Max. switching voltage when used at altitudes greater than 2000 \mathbf{m} above sea level
<150 V AC/DC	Max. switching voltage according to the technical data for the device still valid
>150 V AC/DC	Limited to max. $150 \mathrm{~V} \mathrm{AC/}$ DC

3. Reduce the maximum ambient temperature for operation by the corresponding factor in accordance with the table below.
4. If derating is specified, offset all the points of the derating curve by the corresponding factor in accordance with the table below.

Altitude above sea level	Temperature derating factor
2000 m	1
2500 m	0.953
3000 m	0.906
3500 m	0.859
4000 m	0.813
4500 m	0.766

Example calculation for 3000 m

The following calculation and the illustrated derating curve are provided as examples. Perform the actual calculation and offset the derating curve for the device used according to the technical data and the "Derating" section.
$27^{\circ} \mathrm{C} \cdot 0.906 \approx 24^{\circ} \mathrm{C}$ $55^{\circ} \mathrm{C} \cdot 0.906 \approx 49^{\circ} \mathrm{C}$

Figure 18 Example of a suspended derating curve (red)

19.2 Revision history

Version	Date	Contents
04	$2016-02-04$	New edition of the data sheet

