NPN Silicon Digital Transistor

- Switching circuit, inverter, interface circuit driver circuit
- Built in bias resistor ($R_{1}=10 \mathrm{k} \Omega, R_{2}=47 \mathrm{k} \Omega$)
- BCR135S: Two internally isolated transistors with good matching in one multichip package
- BCR135S: For orientation in reel see package information below

- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

BCR135 BCR135S
BCR135W

Type	Marking							Pin Configuration					Package
BCR135	WJs	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	-	-	-	SOT23					
BCR135S	WJs	$1=\mathrm{E} 1$	$2=\mathrm{B} 1$	$3=\mathrm{C} 2$	$4=\mathrm{E} 2$	$5=\mathrm{B} 2$	$6=\mathrm{C} 1$	SOT363					
BCR135W	WJs	$1=\mathrm{B}$	$2=\mathrm{E}$	$3=\mathrm{C}$	-	-	-	SOT323					

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}	50	V
Collector-base voltage	V_{CBO}	50	
Input forward voltage	$V_{\mathrm{i}(\mathrm{fwd})}$	40	
Input reverse voltage	$V_{\mathrm{i}(\mathrm{rev})}$	6	
Collector current	I_{C}	100	mA
Total power dissipation	$P_{\text {tot }}$		mW
BCR135, $T_{\mathrm{S}} \leq 102^{\circ} \mathrm{C}$		200	
BCR135S, $T_{\mathrm{S}} \leq 115^{\circ} \mathrm{C}$		250	
BCR135W, $T_{\mathrm{S}} \leq 124^{\circ} \mathrm{C}$		250	
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {sta }}$	$-65 \ldots 150$	

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1}$)	$R_{\text {thJS }}$		K/W
BCR135		≤ 240	
BCR135S		≤ 140	
BCR135W		≤ 105	

[^0]Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $I_{\mathrm{C}}=100 \mu \mathrm{~A}, I_{\mathrm{B}}=0$	$V_{\text {(BR)CEO }}$	50	-	-	V
Collector-base breakdown voltage $I_{\mathrm{C}}=10 \mu \mathrm{~A}, I_{\mathrm{E}}=0$	$V_{(\mathrm{BR}) \mathrm{CBO}}$	50	-	-	
Collector-base cutoff current $V_{\mathrm{CB}}=40 \mathrm{~V}, I_{\mathrm{E}}=0$	${ }^{\text {CBO }}$	-	-	100	nA
Emitter-base cutoff current $V_{E B}=6 \mathrm{~V}, I_{C}=0$	IEBO	-	-	167	$\mu \mathrm{A}$
DC current gain ${ }^{1)}$ $I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}$	$h_{\text {FE }}$	70	-	-	-
Collector-emitter saturation voltage ${ }^{1)}$ $I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=0.5 \mathrm{~mA}$	$V_{\text {CEsat }}$	-	-	0.3	V
Input off voltage $I_{C}=100 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V}$	$V_{i(\text { off })}$	0.5	-	1	
Input on voltage $I_{\mathrm{C}}=2 \mathrm{~mA}, V_{\mathrm{CE}}=0.3 \mathrm{~V}$	$V_{\mathrm{i}(\mathrm{on})}$	0.5	-	1.4	
Input resistor	R_{1}	7	10	13	$\mathrm{k} \Omega$
Resistor ratio	R_{1} / R_{2}	0.19	0.21	0.24	-
AC Characteristics					
Transition frequency $I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=100 \mathrm{MHz}$	$f_{\text {T }}$	-	150	-	MHz
Collector-base capacitance $V_{\mathrm{CB}}=10 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {cb }}$	-	3	-	pF

DC current gain $h_{\text {FE }}=f\left(I_{C}\right)$
$V_{C E}=5 \mathrm{~V}$ (common emitter configuration)

Input on Voltage $V_{i_{(o n)}}=f\left(I_{C}\right)$
$V_{C E}=0.3 \mathrm{~V}$ (common emitter configuration)

Collector-emitter saturation voltage

$V_{\text {CEsat }}=f\left(I_{\mathrm{C}}\right), I_{\mathrm{C}} I_{\mathrm{B}}=20$

Input off voltage $V_{i(\text { off })}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=5 \mathrm{~V}$ (common emitter configuration)

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ BCR135

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ BCR135W

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ BCR135S

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BCR135

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$
BCR135

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$
BCR135S

Permissible Puls Load $R_{\text {th } J S}=f\left(t_{\mathrm{p}}\right)$ BCR135S

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ BCR135W

Permissible Pulse Load

Package Outline

1) Lead width can be 0.6 max. in dambar area

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note AN077 (Thermal Resistance Calculation)

