# Stackpole Electronics, Inc.

Pulse Withstanding Thick Film Chip Resistor

Resistive Product Solutions

#### Features:

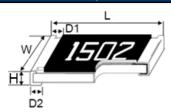
- Excellent pulse withstanding performance
- Broad resistance range
- Higher anti-surge performance compared with RMCF Series
- Standard power RPC, 5% and wider tolerances, are untrimmed
- 1% and wider tolerances are qualified to AEC-Q200
- RoHS compliant and halogen free
- Lower values may be available contact factory



| Electrical Specifications |                        |                    |                     |                           |                                      |              |          |  |
|---------------------------|------------------------|--------------------|---------------------|---------------------------|--------------------------------------|--------------|----------|--|
| Type / Code               | Power Rating (Watts)   | Maximum<br>Working | Maximum<br>Overload | Resistance<br>Temperature | Ohmic Range $(\Omega)$ and Tolerance |              |          |  |
|                           | @ 70°C Voltage Voltage |                    | Coefficient         | 0.5%                      | 1%                                   | 5%, 10%, 20% |          |  |
| RPC0603                   | 0.1W                   | 50V                | 4001/               | ±200 ppm/°C               | 10 - 294                             | 1 - 294      | 1 - 270  |  |
| KFC0603                   | 0.177                  | 50 V               | 100V                | ±100 ppm/°C               |                                      | 300 - 1M     |          |  |
| DDCCCC                    | 0.25W                  | 150V               | 300V                | ±200 ppm/°C               | 10 - 294                             | 1 - 294      | 1 - 270  |  |
| RPC0805                   |                        |                    |                     | ±100 ppm/°C               | 300 - 20M                            |              |          |  |
| RPC1206                   | 0.33W                  | 200V               | 400V                | ±200 ppm/°C               | 10 - 20                              |              | 1 - 20   |  |
| KFC1200                   |                        |                    |                     | ±100 ppm/°C               | 20.5                                 | - 20M        | 22 - 20M |  |
| RPC1210                   | 0.5W                   | 0.5W 200V          | 400V                | ±200 ppm/°C               | 10 - 20                              |              | 1 - 20   |  |
| RPC1210                   |                        |                    |                     | ±100 ppm/°C               | 20.5                                 | - 20M        | 22 - 20M |  |
| DD00040                   | 0.75W                  | 0.75W 400V         | 800V                | ±200 ppm/°C               | 10 - 20                              |              | 1 - 20   |  |
| RPC2010                   |                        |                    |                     | ±100 ppm/°C               | 20.5                                 | - 20M        | 22 - 20M |  |
| DDC2542                   | 1.5W 500V              | 4.514/             | V 1000V             | ±200 ppm/°C               | 10 - 20                              |              | 1 - 20   |  |
| RPC2512                   |                        | 5007               |                     | ±100 ppm/°C               | 20.5                                 | - 20M        | 22 - 20M |  |

Working Voltage =  $\sqrt{(P^*R)}$  or Max. Working Voltage listed above, whichever is lower.

Overload Voltage = 2.5\*v(P\*R) or Max. Overload Voltage listed above, whichever is lower.


| Electrical Specifications – High Power |                      |                            |                     |                           |                                      |         |          |  |
|----------------------------------------|----------------------|----------------------------|---------------------|---------------------------|--------------------------------------|---------|----------|--|
| Type / Code                            | Power Rating (Watts) | Maximum<br>Working Voltage | Maximum<br>Overload | Resistance<br>Temperature | Ohmic Range $(\Omega)$ and Tolerance |         |          |  |
|                                        | @ 70°C               | Working Voltage            | Voltage             | Coefficient               | 0.5%                                 | 1%      | 5%       |  |
| RPC0603 -HP                            | 0.25W                | 150V                       | 100V                | ±200 ppm/°C               | 10 - 294                             | 1       | l - 294  |  |
| KPC0003HP                              |                      |                            |                     | ±100 ppm/°C               | 300 - 1M                             |         |          |  |
| DDC000E LID                            | 0.4W                 | 150V                       | 300V                | ±200 ppm/°C               | 10 - 294                             | 1 - 294 |          |  |
| RPC0805HP                              |                      |                            |                     | ±100 ppm/°C               | 300 - 1M                             |         |          |  |
| BDC1206 UD                             | 0.5W 20              | 200V                       | 400V                | ±200 ppm/°C               | 10 - 20                              |         | 1 - 20   |  |
| RPC1206HP                              |                      |                            |                     | ±100 ppm/°C               | 20.5                                 | - 20M   | 22 - 20M |  |
| DDC4040 LID                            | 0.75W                | 0.75W 200V                 | 400V                | ±200 ppm/°C               | 10 - 20                              |         | 1 - 20   |  |
| RPC1210HP                              |                      |                            |                     | ±100 ppm/°C               | 20.5                                 | - 20M   | 22 - 20M |  |
| DDC2040 LID                            | 1W 400\              | 414/                       | 0001/               | ±200 ppm/°C               | 10 - 20                              |         | 1 - 20   |  |
| RPC2010HP                              |                      | 4007                       | 800V                | ±100 ppm/°C               | 20.5                                 | - 20M   | 22 - 1M  |  |

1

Working Voltage =  $V(P^*R)$  or Max. Working Voltage listed above, whichever is lower.

Overload Voltage = 2.5\*v(P\*R) or Max. Overload Voltage listed above, whichever is lower.

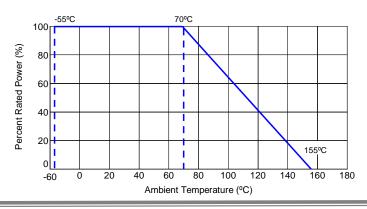
## **Mechanical Specifications**



| Type / Code | Weight (g)<br>(1000 pcs) | L<br>Body Length                     | W<br>Body Width              | H<br>Body Height             | D1 Top Termination           | D2<br>Bottom Termination     | Unit         |
|-------------|--------------------------|--------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------|
| RPC0603     | 2.042                    | $0.063 \pm 0.004$<br>$1.60 \pm 0.10$ | 0.031 ± 0.004<br>0.80 ± 0.10 | 0.018 ± 0.004<br>0.45 ± 0.10 | 0.012 ± 0.008<br>0.30 ± 0.20 | 0.012 ± 0.008<br>0.30 ± 0.20 | inches<br>mm |
| RPC0805     | 4.368                    | 0.079 ± 0.004<br>2.00 ± 0.10         | 0.049 ± 0.004<br>1.25 ± 0.10 | 0.020 ± 0.004<br>0.50 ± 0.10 | 0.014 ± 0.008<br>0.35 ± 0.20 | 0.016 ± 0.008<br>0.40 ± 0.20 | inches<br>mm |
| RPC1206     | 8.947                    | 0.122 ± 0.004<br>3.10 ± 0.10         | 0.061 ± 0.004<br>1.55 ± 0.10 | 0.022 ± 0.004<br>0.55 ± 0.10 | 0.020 ± 0.010<br>0.50 ± 0.25 | 0.020 ± 0.008<br>0.50 ± 0.20 | inches<br>mm |
| RPC1210     | 15.959                   | 0.122 ± 0.004<br>3.10 ± 0.10         | 0.102 ± 0.006<br>2.60 ± 0.15 | 0.022 ± 0.004<br>0.55 ± 0.10 | 0.020 ± 0.010<br>0.50 ± 0.25 | 0.020 ± 0.008<br>0.50 ± 0.20 | inches<br>mm |
| RPC2010     | 24.241                   | 0.197 ± 0.004<br>5.00 ± 0.10         | 0.098 ± 0.006<br>2.50 ± 0.15 | 0.022 ± 0.004<br>0.55 ± 0.10 | 0.024 ± 0.010<br>0.60 ± 0.25 | 0.020 ± 0.008<br>0.50 ± 0.20 | inches<br>mm |
| RPC2512     | 39.448                   | 0.250 ± 0.004<br>6.35 ± 0.10         | 0.122 ± 0.006<br>3.10 ± 0.15 | 0.022 ± 0.004<br>0.55 ± 0.10 | 0.024 ± 0.010<br>0.60 ± 0.25 | 0.020 ± 0.008<br>0.50 ± 0.20 | inches<br>mm |

| Performance Characteristics                             |                                         |                                |                                                                                     |  |  |  |  |
|---------------------------------------------------------|-----------------------------------------|--------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|
| ltem                                                    | Test Method                             | Test Specification             | Test Condition                                                                      |  |  |  |  |
| Temperature Coefficient of Resistance (T.C.R.)          | JIS-C-5201-1 4.8<br>IEC-60115-1 4.8     | Within the specified tolerance | -55°C ~+125°C, 25°C is the reference temperature                                    |  |  |  |  |
| Short Time Overload                                     | JIS-C-5201-1 4.13<br>IEC-60115-1 4.13   | ±(1%+0.05Ω)                    | RCWV*2.5 or max. overload voltage whichever is lower for 5 seconds                  |  |  |  |  |
| Insulation Resistance                                   | JIS-C-5201-1 4.6<br>IEC-60115-1 4.6     | ≥10G                           | Max. overload voltage for 1 minute                                                  |  |  |  |  |
| Endurance<br>Tolerances of 0.5%, 1%                     | JIS-C-5201-1 4.25<br>IEC-60115-1 4.25.1 | ±(1%+0.05Ω)                    | 70 ± 2°C, RCWV for 1000 hours<br>with 1.5 hours "ON" and 0.5 hour "OFF"             |  |  |  |  |
| Endurance<br>Tolerances of 5%, 10%, 20%                 | JIS-C-5201-1 4.25<br>IEC-60115-1 4.25.1 | ±(3%+0.05Ω)                    | 70 ± 2°C, RCWV for 1000 hours<br>with 1.5 hours "ON" and 0.5 hour "OFF"             |  |  |  |  |
| Damp Heat with Load<br>Tolerances of 0.5%, 1%           | JIS-C-5201-1 4.24                       | ±(0.5%+0.05Ω)                  | 40 ± 2°C, 90~95% R.H, RCWV for 1000 hour<br>with 1.5 hours "ON" and 0.5 hour "OFF"  |  |  |  |  |
| Damp Heat with Load<br>Tolerances of 5%, 10%, 20%       | JIS-C-5201-1 4.24                       | ±(3%+0.05Ω)                    | 40 ± 2°C, 90~95% R.H, RCWV for 1000 hours<br>with 1.5 hours "ON" and 0.5 hour "OFF" |  |  |  |  |
| Dry Heat<br>Tolerances of 0.5%, 1%                      | JIS-C-5201-1 4.23<br>IEC-60115-1 2.23.2 | ±(0.5%+0.05Ω)                  | At +155°C for 1000 hours                                                            |  |  |  |  |
| Dry Heat<br>Tolerances of 5%, 10%, 20%                  | JIS-C-5201-1 4.23<br>IEC-60115-1 2.23.2 | ±(3%+0.05Ω)                    | At +155°C for 1000 hours                                                            |  |  |  |  |
| Bending Strength                                        | JIS-C-5201-1 4.33<br>IEC-60115-1 4.33   | ±(1%+0.05Ω)                    | Bending once for 5 seconds 2010, 2512 sizes: 2mm; other sizes: 3mm                  |  |  |  |  |
| Solderability                                           | JIS-C-5201-1 4.17<br>IEC-60115-1 4.17   | 95% min. coverage              | $245 \pm 5^{\circ}$ C for 3 seconds                                                 |  |  |  |  |
| Resistance to Soldering Heat tolerances of 0.5%, 1%     | JIS-C-5201-1 4.18<br>IEC-60115-1 4.18   | ±(0.5%+0.05Ω)                  | 260 ± 5°C for 10 seconds                                                            |  |  |  |  |
| Resistance to Soldering Heat tolerances of 5%, 10%, 20% | JIS-C-5201-1 4.18<br>IEC-60115-1 4.18   | ±(1%+0.05Ω)                    | 260 ± 5°C for 10 seconds                                                            |  |  |  |  |

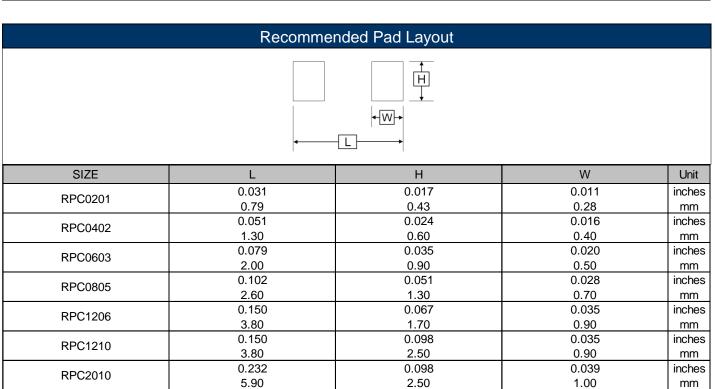
Rev Date: 03/02/2018


| Performance Characteristics (cont.)                    |                                           |                                                          |                                                |  |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------|----------------------------------------------------------|------------------------------------------------|--|--|--|--|--|
| Item                                                   | Test Method                               | Test Specification                                       | Test Condition                                 |  |  |  |  |  |
| Voltage Proof                                          | JIS-C-5201-1 4.7<br>IEC-60115-1 4.7       | No Breakdown or flashover                                | 1.42 times max. operating voltage for 1 minute |  |  |  |  |  |
| Leaching                                               | JIS-C-5201-1 4.18<br>IEC-60068-2-58-8.2.1 | Individual leaching area ≤5%<br>Total leaching area ≤10% | 260 ± 5°C for 30 seconds                       |  |  |  |  |  |
| Rapid Change of Temperature tolerances of 0.5%, 1%     | JIS-C-5201-1 4.18<br>IEC-60115-1 4.18     | ±(0.5%+0.05Ω)                                            | -55°C to + 150°C , 5 cycles                    |  |  |  |  |  |
| Rapid Change of Temperature tolerances of 5%, 10%, 20% | JIS-C-5201-1 4.18<br>IEC-60115-1 4.18     | ±(1%+0.05Ω)                                              | -55°C to + 150°C , 5 cycles                    |  |  |  |  |  |

RCWV (Rated Continuous Working Voltage)=  $v(P^*R)$  or Max. Working Voltage whichever is

Storage Temperature: 25±3°C; humidity < 80% R.H.

#### Packaging Specifications - Paper Tape Тор Таре **Bottom Tape** P<sub>0</sub> Direction of unreeling Resistor Paper Tape W F Type Μ Ε Unit $0.043 \pm 0.004$ $0.075 \pm 0.004$ $0.315 \pm 0.008$ $0.069 \pm 0.004$ $0.138 \pm 0.002$ inches **RPC0603** $1.10 \pm 0.10$ $1.90 \pm 0.10$ $8.00 \pm 0.20$ $1.75 \pm 0.10$ $3.50 \pm 0.05$ mm $0.063 \pm 0.004$ $0.069 \pm 0.004$ $0.138 \pm 0.002$ $0.094 \pm 0.008$ $0.315 \pm 0.008$ inches RPC0805 $1.60 \pm 0.10$ $2.40 \pm 0.20$ $8.00 \pm 0.20$ $1.75 \pm 0.10$ $3.50 \pm 0.05$ mm $0.075 \pm 0.004$ $0.138 \pm 0.008$ $0.315 \pm 0.008$ $0.069 \pm 0.004$ $0.138 \pm 0.002$ inches RPC1206 $1.75 \pm 0.10$ $3.50 \pm 0.05$ $1.90 \pm 0.10$ $3.50 \pm 0.20$ $8.00 \pm 0.20$ mm $0.110 \pm 0.004$ $0.138 \pm 0.008$ $0.069 \pm 0.004$ $0.138 \pm 0.002$ $0.315 \pm 0.008$ inches RPC1210 $2.80 \pm 0.10$ $3.50 \pm 0.20$ $8.00 \pm 0.20$ $1.75 \pm 0.10$ $3.50 \pm 0.05$ mm ØD0 K1/K2 Unit Type $P_0$ P1 P2 0.157 ± 0.004 0.157 ± 0.394 $0.079 \pm 0.002$ $0.059 \pm 0.004$ $0.028 \pm 0.004$ inches **RPC0603** $0.70 \pm 0.10$ $4.00 \pm 0.10$ $4.00 \pm 10.00$ $2.00 \pm 0.05$ $1.50 \pm 0.10$ mm $0.157 \pm 0.004$ $0.157 \pm 0.394$ $0.079 \pm 0.002$ $0.059 \pm 0.004$ $0.033 \pm 0.004$ inches RPC0805 $4.00 \pm 0.10$ $4.00 \pm 10.00$ $2.00 \pm 0.05$ $1.50 \pm 0.10$ $0.85 \pm 0.10$ mm $0.157 \pm 0.004$ $0.157 \pm 0.394$ $0.079 \pm 0.002$ $0.059 \pm 0.004$ $0.033 \pm 0.004$ inches RPC1206 $4.00 \pm 10.00$ $2.00 \pm 0.05$ $1.50 \pm 0.10$ $0.85 \pm 0.10$ $4.00 \pm 0.10$ mm $0.157 \pm 0.004$ $0.157 \pm 0.394$ $0.079 \pm 0.002$ $0.059 \pm 0.004$ $0.033 \pm 0.004$ inches **RPC1210** $4.00 \pm 0.10$ $4.00 \pm 10.00$ $2.00 \pm 0.05$ $1.50 \pm 0.10$ $0.85 \pm 0.10$ mm


Power Derating Curve:



Rev Date: 03/02/2018

# Packaging Specifications – Embossed Plastic Tape Top Tape Do Direction of unreeling Direction of unreeling Direction of unreeling

| Type      | L              | M                | W                | E             | F             | Unit   |
|-----------|----------------|------------------|------------------|---------------|---------------|--------|
| RPC2010   | 0.110 ± 0.008  | 0.217 ± 0.008    | 0.472 ± 0.012    | 0.069 ± 0.004 | 0.217 ± 0.002 | inches |
| 102010    | 2.80 ± 0.20    | $5.50 \pm 0.20$  | $12.00 \pm 0.30$ | 1.75 ± 0.10   | 5.50 ± 0.05   | mm     |
| RPC2512   | 0.138 ± 0.008  | 0.264 ± 0.008    | 0.472 ± 0.012    | 0.069 ± 0.004 | 0.217 ± 0.002 | inches |
| INF GZ51Z | 3.50 ± 0.20    | $6.70 \pm 0.20$  | $12.00 \pm 0.30$ | 1.75 ± 0.10   | 5.50 ± 0.05   | mm     |
| Туре      | P <sub>0</sub> | P1               | P2               | ØD0           | K1/K2         | Unit   |
| DDC2040   | 0.157 ± 0.004  | 0.157 ± 0.394    | 0.079 ± 0.002    | 0.059 ± 0.004 | 0.047 - 0.000 | inches |
| RPC2010   | 4.00 ± 0.10    | 4.00 ± 10.00     | $2.00 \pm 0.05$  | 1.50 ± 0.10   | 1.20 - 0.00   | mm     |
| RPC2512   | 0.157 ± 0.004  | 0.157 ± 0.394    | 0.079 ± 0.002    | 0.059 ± 0.004 | 0.047 - 0.000 | inches |
| KF02312   | 4.00 ± 0.10    | $4.00 \pm 10.00$ | $2.00 \pm 0.05$  | 1.50 ± 0.10   | 1.20 - 0.00   | mm     |



0.126

3.20

RPC2512

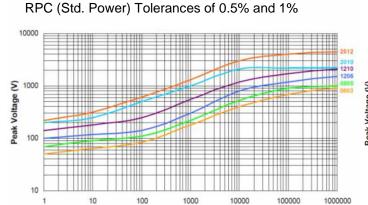
0.283

7.20

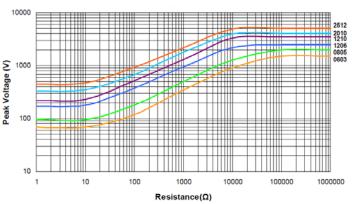
inches

mm

0.039


1.00

#### Lightning Surge

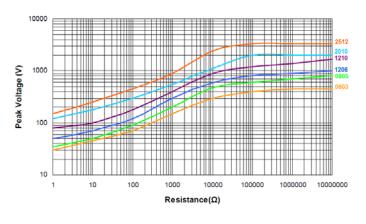

Resistors are tested in accordance with IEC 60115-1 using both 1.2/50us and 10/700 pulse shapes. The limit of acceptance is a shift in resistance of less than 1% from the initial value. (\*)

#### 1. 1.2/50us Lightning Surge

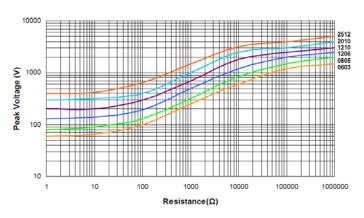
RPC-HP (High Power) All Tolerances



RPC (Std. Power) Tolerances of 5%, 10% and 20%




(\*) Note: Data provided shows typical performance and is for reference only.


Resistance(Ω)

#### 2. 10/700us Lightning Surge(\*)

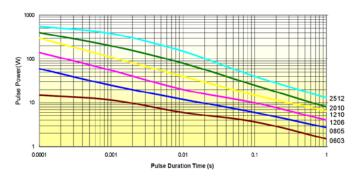
RPC-HP (High Power) All Tolerances RPC (Std. Power) Tolerances of 0.5% and 1%

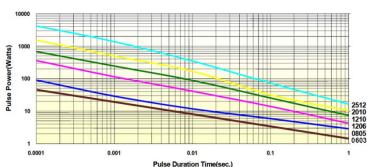


RPC (Std. Power)
Tolerances of 5%, 10% and 20%



(\*) Note: Data provided shows typical performance and is for reference only.


#### Pulse Withstand Capacity


The single impulse graph is the result of 50 impulses of rectangular shape applied at one minute intervals. The limit of acceptance was a shift in resistance of less than 1% from the initial value. The power applied was subject to the restrictions of the maximum permissible impulse voltage graph shown.

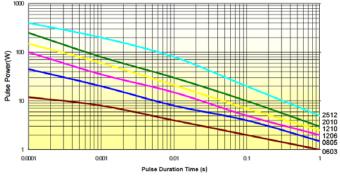
Single Pulse Power (100 Ohm)

RPC-HP (High Power) All Tolerances RPC (Std. Power) Tolerances of 0.5% and 1%

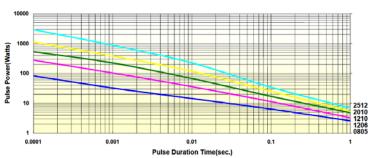
RPC (Std. Power)
Tolerances of 5%, 10% and 20%



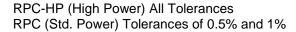



This data is for the  $100\Omega$  resistance value for each size. Pulse power handling is dependent on the resistance value. For resistance values higher or lower than  $100\Omega$ , contact Stackpole for advice on pulse handling characteristics of your particular resistance value of interest.

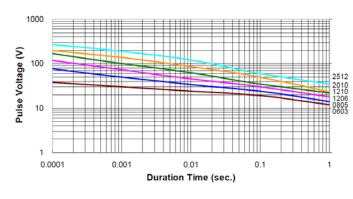
#### Continuous Pulse

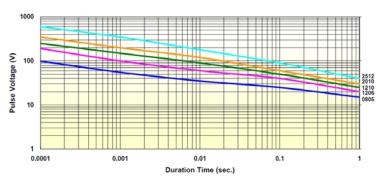

The continuous load graph was obtained by applying repetitive rectangular pulses where the pulse period was adjusted so that the average power dissipated in the resistor was equal to its rated power at 70°C. Again the limit of acceptance was a shift in resistance of less than 1% from the initial value.

Continuous Pulse Power (100 Ohm)


RPC-HP (High Power) All Tolerances RPC (Std. Power) Tolerances of 0.5% and 1%




RPC (Std. Power)
Tolerances of 5%, 10% and 20%




Pulse Voltage (100 Ohm)



RPC (Std. Power)
Tolerances of 5%, 10% and 20%





#### RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 2). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament.

|                               | RoHS Compliance Status                                       |                                  |                                         |                                      |                                                          |                                                |  |  |  |
|-------------------------------|--------------------------------------------------------------|----------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------------------------|------------------------------------------------|--|--|--|
| Standard<br>Product<br>Series | Description                                                  | Package /<br>Termination<br>Type | Standard<br>Series<br>RoHS<br>Compliant | Lead-Free Termination<br>Composition | Lead-Free<br>Mfg. Effective Date<br>(Std Product Series) | Lead-Free<br>Effective Date<br>Code<br>(YY/WW) |  |  |  |
| RPC                           | Pulse Withstanding Thick Film<br>Surface Mount Chip Resistor | SMD                              | YES(1)                                  | 100% Matte Sn over Ni                | Jan-03                                                   | 03/01                                          |  |  |  |

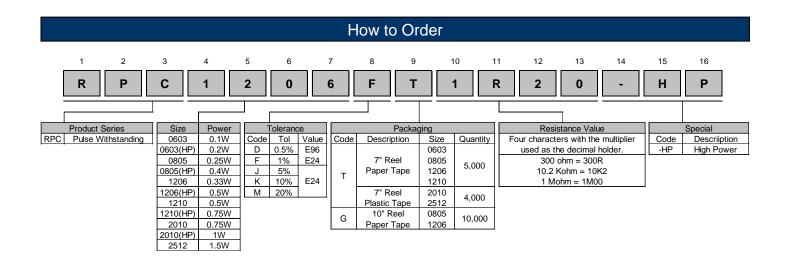
Note (1): RoHS Compliant by means of exemption 7c-I.

#### "Conflict Metals" Commitment

We at Stackpole Electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the Eastern Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.

### Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.


# Stackpole Electronics, Inc.

Pulse Withstanding Thick Film Chip Resistor

Resistive Product Solutions

#### **Environmental Policy**

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

