MC74HC165A

8-Bit Serial or
 Parallel-Input/ Serial-Output Shift Register High-Performance Silicon-Gate CMOS

The MC74HC165A is identical in pinout to the LS165. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs

This device is an 8-bit shift register with complementary outputs from the last stage. Data may be loaded into the register either in parallel or in serial form. When the Serial Shift/Parallel Load input is low, the data is loaded asynchronously in parallel. When the Serial Shift/Parallel Load input is high, the data is loaded serially on the rising edge of either Clock or Clock Inhibit (see the Function Table).

The 2 -input NOR clock may be used either by combining two independent clock sources or by designating one of the clock inputs to act as a clock inhibit.

Features

- Output Drive Capability: 10 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7 A
- Chip Complexity: 286 FETs or 71.5 Equivalent Gates
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are $\mathrm{Pb}-$ Free, Halogen Free and are RoHS Compliant

ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

ORDERING INFORMATION
See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

MC74HC165A

$\frac{\text { SERIAL SHIFT/ }}{\text { PARALLEL LOAD }}$	$1 \bullet$	16	V_{CC}
CLOCK	2	15] CLOCK INHIBIT
E [3	14]
F	4	13] C
G [5	12] ${ }^{\text {B }}$
H [6	11]
\bar{Q}_{H} [7	10	${ }^{\text {S }}$ A
GND [8	9	Q_{H}

Figure 1. Pin Assignments

Figure 2. Logic Diagram

FUNCTION TABLE

Inputs					Internal Stages		Output	Operation
Serial Shift/ Parallel Load	Clock	Clock Inhibit	$\mathrm{S}_{\text {A }}$	A-H		Q_{B}		
L	X	X	X	a ... h	a	b	h	Asynchronous Parallel Load
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \Gamma \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & Q_{A n} \\ & Q_{A n} \end{aligned}$	$\begin{aligned} & Q_{G n} \\ & Q_{G n} \end{aligned}$	Serial Shift via Clock
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	Γ	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & Q_{A n} \\ & Q_{A n} \end{aligned}$	$\begin{aligned} & Q_{G n} \\ & Q_{G n} \end{aligned}$	Serial Shift via Clock Inhibit
$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{H} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$	No Change			Inhibited Clock
H	L	L	X	X	No Change			No Clock

$X=$ don't care $\quad Q_{A n}-Q_{G n}=$ Data shifted from the preceding stage

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{C C}$	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$V_{\text {in }}$	DC Input Voltage (Referenced to GND)	-0.5 to $V_{C C}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (Referenced to GND)	-0.5 to $V_{C C}+0.5$	V
$1{ }_{\text {in }}$	DC Input Current, per Pin	± 20	mA
Iout	DC Output Current, per Pin	± 25	mA
Icc	DC Supply Current, V_{CC} and GND Pins	± 50	mA
P_{D}	Power Dissipation in Still Air Plastic DIP \dagger SOIC Package \dagger TSSOP Package \dagger	$\begin{aligned} & 750 \\ & 500 \\ & 450 \end{aligned}$	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP, SOIC or TSSOP Package)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
\dagger Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
TSSOP Package: $-6.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)		2.0	6.0	V
$\mathrm{V}_{\text {in }}, \mathrm{V}_{\text {out }}$	DC Input Voltage, Output Voltage (Referenced to GND)		0	V_{CC}	V
$\mathrm{T}_{\text {A }}$	Operating Temperature, All Package Types		-55	+ 125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 1)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline 1000 \\ & 600 \\ & 500 \\ & 400 \end{aligned}$	ns

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	V_{cc} V	Guaranteed Limit			Unit	
				- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$		
V_{IH}	Minimum High-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \left.\right\|_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} \hline 1.5 \\ 2.1 \\ 3.15 \\ 4.2 \end{gathered}$	V	
V_{IL}	Maximum Low-Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.1 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mathrm{l}_{\text {out }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	$\begin{gathered} \hline 0.5 \\ 0.9 \\ 1.35 \\ 1.80 \end{gathered}$	V	
V_{OH}	Minimum High-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mid \\|_{\text {outt }} \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V	
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \left.\right\|_{l_{\text {out }} \mid \leq 2.4 \mathrm{~mA}} \\ & \left.\right\|_{\text {out }} \mid \leq 4.0 \mathrm{~mA} \\ & \left\|l_{\text {out }}\right\| \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.48 \\ & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 2.34 \\ & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 3.70 \\ & 5.20 \end{aligned}$	V	

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\underset{\mathbf{V}}{\mathbf{v}_{\mathrm{cc}}}$	Guaranteed Limit			Unit		
				- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$			
VOL	Maximum Low-Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\text {IL }} \\ & \mathrm{I}_{\text {out }} \leq 20 \leq 20 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V		
		$\begin{array}{\|ll} \hline \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} & \\|_{\text {out }} \leq 2.4 \mathrm{~mA} \\ & \left.\right\|_{\text {out }} \leq 4.0 \mathrm{~mA} \\ & \\|_{\text {out }} \leq 5.2 \mathrm{~mA} \end{array}$	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.40 \end{aligned}$			
$\mathrm{l}_{\text {in }}$	Maximum Input Leakage Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$		
Icc	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \mathrm{l}_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	6.0	4	40	160	$\mu \mathrm{A}$		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$)

Symbol	Parameter	V_{cc} V	Guaranteed Limit			Unit
			- 55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{f}_{\text {max }}$	Maximum Clock Frequency (50\% Duty Cycle) (Figures 1 and 8)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 6 \\ 18 \\ 30 \\ 35 \end{gathered}$	$\begin{aligned} & \hline 4.8 \\ & 17 \\ & 24 \\ & 28 \end{aligned}$	$\begin{gathered} 4 \\ 15 \\ 20 \\ 24 \end{gathered}$	MHz
$t_{\text {PLH }}$, $t_{\text {PHL }}$	Maximum Propagation Delay, Clock (or Clock Inhibit) to Q_{H} or $\overline{\mathrm{Q}}_{\mathrm{H}}$ (Figures 1 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 150 \\ & 52 \\ & 30 \\ & 26 \end{aligned}$	$\begin{gathered} \hline 190 \\ 63 \\ 38 \\ 33 \end{gathered}$	$\begin{gathered} \hline 225 \\ 65 \\ 45 \\ 38 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Maximum Propagation Delay, Serial Snitt/Parallel Load to Q_{H} or Q_{H} (Figures 2 and 8)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 175 \\ 58 \\ 35 \\ 30 \end{gathered}$	$\begin{gathered} 220 \\ 70 \\ 44 \\ 37 \end{gathered}$	$\begin{gathered} 265 \\ 72 \\ 53 \\ 45 \end{gathered}$	ns
$\begin{aligned} & \text { tpLH, } \\ & \text { tpHL }^{2} \end{aligned}$	Maximum Propagation Delay, Input H to Q_{H} or $\overline{\mathrm{Q}}_{\mathrm{H}}$ (Figures 3 and 8)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 150 \\ & 52 \\ & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & \hline 190 \\ & 63 \\ & 38 \\ & 33 \end{aligned}$	$\begin{gathered} 225 \\ 65 \\ 45 \\ 38 \end{gathered}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{TLLH}}, \\ & \mathrm{t}_{\mathrm{TH}} \end{aligned}$	Maximum Output Transition Time, Any Output (Figures 1 and 8)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} 110 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance	-	10	10	10	pF

		Typical @ 25 ${ }^{\circ} \mathbf{C}, \mathbf{V}_{\mathbf{C C}}=\mathbf{5 . 0} \mathbf{~ V}$	
C_{PD}	Power Dissipation Capacitance (Per Package)*	$\mathbf{p F}$	

[^0]TIMING REQUIREMENTS (Input $t_{r}=t_{f}=6 \mathrm{~ns}$)

Symbol	Parameter	v_{cc}	Guaranteed Limit			Unit
			-55 to $25^{\circ} \mathrm{C}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Parallel Data Inputs to Serial Shift/ParalleI Load (Figure 4)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 55 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Input SA to Clock (or Clock Inhibit) (Figure 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 110 \\ & 55 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Serial ShiftParalleI Load to Clock (or Clock Inhibit) (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 55 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, Clock to Clock Inhibit (Figure 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 110 \\ 55 \\ 22 \\ 19 \end{gathered}$	ns
$t_{\text {h }}$	Minimum Hold Time, Serial Shift/Parallel Load to Parallel Data Inputs (Figure 4)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock (or Clock Inhibit) to Input SA (Figure 5)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
$t_{\text {h }}$	Minimum Hold Time, Clock (or Clock Inhibit) to Serial Shift/Parallel Load (Figure 6)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Minimum Recovery Time, Clock to Clock Inhibit (Figure 7)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 30 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 95 \\ & 40 \\ & 19 \\ & 16 \end{aligned}$	$\begin{aligned} & 110 \\ & 55 \\ & 22 \\ & 19 \end{aligned}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse Width, Clock (or Clock Inhibit) (Figure 1)	$\begin{aligned} & 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 100 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{t}_{\text {w }}$	Minimum Pulse width, Serial Shift/Parallel Load (Figure 2)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 70 \\ & 27 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 32 \\ & 19 \\ & 16 \end{aligned}$	$\begin{gathered} \hline 100 \\ 36 \\ 22 \\ 19 \end{gathered}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times (Figure 1)	$\begin{aligned} & \hline 2.0 \\ & 3.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	$\begin{gathered} \hline 1000 \\ 800 \\ 500 \\ 400 \end{gathered}$	ns

MC74HC165A

PIN DESCRIPTIONS

INPUTS

A, B, C, D, E, F, G, H (Pins 11, 12, 13, 14, 3, 4, 5, 6)

Parallel Data inputs. Data on these inputs are asynchronously entered in parallel into the internal flip-flops when the Serial Shift/Parallel Load input is low.

SA (Pin 10)

Serial Data input. When the Serial Shift/ $\overline{\text { Parallel Load }}$ input is high, data on this pin is serially entered into the first stage of the shift register with the rising edge of the Clock.

CONTROL INPUTS

Serial Shift/Parallel Load (Pin 1)

Data-entry control input. When a high level is applied to this pin, data at the Serial Data input (SA) are shifted into the register with the rising edge of the Clock. When a low level
is applied to this pin, data at the Parallel Data inputs are asynchronously loaded into each of the eight internal stages.

Clock, Clock Inhibit (Pins 2, 15)

Clock inputs. These two clock inputs function identically. Either may be used as an active-high clock inhibit. However, to avoid double clocking, the inhibit input should go high only while the clock input is high.
The shift register is completely static, allowing Clock rates down to DC in a continuous or intermittent mode.

OUTPUTS

$\mathbf{Q}_{\mathrm{H}}, \overline{\mathbf{Q}}_{\mathbf{H}}$ (Pins 9, 7)

Complementary Shift Register outputs. These pins are the noninverted and inverted outputs of the eighth stage of the shift register.

ORDERING INFORMATION

Device	Package	Shipping †
MC74HC165ANG	PDIP-16 (Pb-Free)	500 Units / Rail
MC74HC165ADG	SOIC-16 (Pb-Free)	48 Units / Rail
MC74HC165ADR2G	SOIC-16 (Pb-Free)	2500 Units / Reel
NLV74HC165ADR2G*	SOIC-16 (Pb-Free)	2500 Units / Reel
MC74HC165ADTR2G	TSSOP-16 (Pb-Free)	2500 Units / Reel
NLV74HC165ADTR2G*	TSSOP-16 (Pb-Free)	2500 Units / Reel
MC74HC165AMNTWG	QFN16 (Pb-Free)	3000 Units / Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

Figure 3. Serial-Shirt Mode

Figure 5. Parallel-Load Mode

Figure 7. Serial-Shift Mode

Figure 9. Serial-Shift, Clock-Inhibit Mode

Figure 4. Parallel-Load Mode

Figure 6. Parallel-Load Mode

Figure 8. Serial-Shift Mode

*Includes all probe and jig capacitance
Figure 10. Test Circuit

MC74HC165A

EXPANDED LOGIC DIAGRAM

TIMING DIAGRAM

MC74HC165A

PACKAGE DIMENSIONS

PDIP-16
CASE 648-08
ISSUE U

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES.
2. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS-3.
3. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE NOT TO EXCEED 0.10 INCH.
4. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR TO DATUM C.
5. DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
6. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE LEADS, WHERE THE LEADS EXIT THE BODY.
7. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE CORNERS).

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	----	0.210	---	5.33
A1	0.015	---	0.38	---
A2	0.115	0.195	2.92	4.95
b	0.014	0.022	0.35	0.56
b2	0.060 TYP		1.52 TYP	
C	0.008	0.014	0.20	0.36
D	0.735	0.775	18.67	19.69
D1	0.005	----	0.13	---
E	0.300	0.325	7.62	8.26
E1	0.240	0.280	6.10	7.11
e	0.100	BSC	2.54	BSC
eB	---	0.430	---	10.92
L	0.115	0.150	2.92	3.81
M	----	10°	---	10°

MC74HC165A

PACKAGE DIMENSIONS

SOLDERING FOOTPRINT

MC74HC165A

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F
ISSUE B

SOLDERING FOOTPRINT

PACKAGE DIMENSIONS

QFN16, 2.5x3.5, 0.5P
CASE 485AW
ISSUE O

DETAIL A ALTERNATE TERMINAL CONSTRUCTIONS

EXPOSED Cu
MOLD CMPD

DETAIL B
alternate CONSTRUCTIONS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSIONS b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	
D	2.50	
BSC		
D2	0.85	
E	3.50 BSC	
E2	1.85	
e	2.15	
K	0.50	0.20
LSC	---	
L1	0.35	0.45
L1	---	0.15

BOTTOM VIEW

*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the (01) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

[^0]: * Used to determine the no-load dynamic power consumption: $P_{D}=C_{P D} V_{C C}{ }^{2 f}+I_{C C} V_{C C}$.

