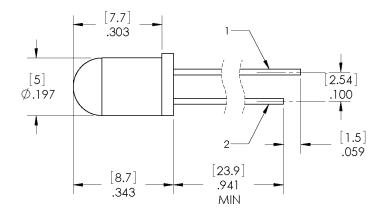
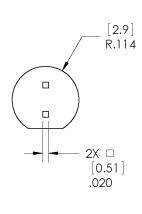


OVLFx3C7

Features:

- High brightness with well-defined spatial radiation patterns
- UV-resistant epoxy lens
- 30° Beam Angle


Description:


Each device in the OVLFx3C7 series is a high-intensity LED mounted in a clear plastic T-1¾ package. The LED provides a well-defined and even emission pattern. The UV-resistant epoxy lens makes this device an optimal solution for outdoor applications.

Applications:

- Traffic and pedestrian signals
- Signage and architectural lighting
- Backlighting
- Automotive

Part Number	Material	Emitted Color	Intensity Typ. mcd	Lens Color
OVLFB3C7	InGaN	Blue	5,200	Clear
OVLFG3C7	InGaN	Green	16,000	Clear
OVLFR3C7	AllnGaP	Red	7,400	Clear
OVLEY3C7	AllnGaP	Yellow	7.400	Clear

1 ANODE

2 CATHODE

DIMENSIONS ARE IN INCHES AND [MILLIMETERS].

Leadframe material is iron alloy with tin-plated leads

DO NOT LOOK DIRECTLY
AT LED WITH
UNSHIELDED EYES OR
DAMAGE TO RETINA MAY

General Note

ATTENTION

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

TT Electronics | Optek Technology, Inc. 1645 Wallace Drive, Ste. 130, Carrollton, TX USA 75006 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com

© TT electronics plc Issue C 08/2017 Page 1

Electrical Specifications

Absolute Maximum Ratings (T_A = 25° C unless otherwise noted)

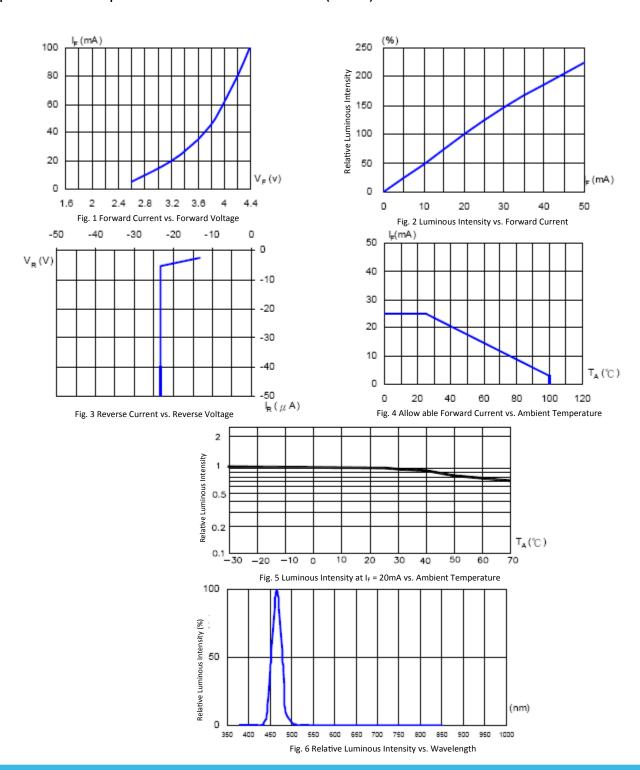
7. Laborate maximum natings (1.4 23 e amess etnerwise netea)		
Storage Temperature Range		-40 ~ +100 °C
Operating Temperature Range		-40 ~ +100 °C
Reverse Voltage		5 V
Continuous Forward Current	Blue, Green	25 mA
Continuous Forward Current	Red, Yellow	50 mA
Peak Forward Current (10% Duty Cycle, 1 kHz)	Blue, Green	100 mA
Peak Forward Current (10% Duty Cycle, 1 kHz)	Red, Yellow	100 mA
Power Dissipation	Blue, Green	100 mW
Power Dissipation	Red, Yellow	120 mW
Current Linearity vs Ambient Temperature	Blue, Green	-0.29 mA/° C
Current Linearity vs Ambient Temperature	Red, Yellow	-0.72 mA/° C
Electrostatic Discharge Classification (JEDEC-JESD22-A114F)		Class 1C
LED Junction Temperature		125° C
Lead Soldering Temperature (4 mm from the base of the epoxy bulb)		260° C / 5 seconds

Electrical Characteristics

SYMBOL	PARAMETER	COLOR	MIN	ТҮР	MAX	UNITS	CONDITIONS	
I _V	Luminous Intensity	Blue	3,115	5,200		mcd	. 20 4	
		Green	8,550	16,000				
		Red	4,360	7,400			I _F = 20 mA	
		Yellow	4,360	7,400			1	
	Forward Voltage	Blue	2.6	3.4	4.0	· V	I _F = 20 mA	
V		Green						
V _F		Red	1.8	2.0	2.4			
		Yellow	1.6					
I _R	Reverse Current	Blue			10	μА		
		Green					V _R = 5 V	
		Red						
		Yellow						
	Dominant Wavelength	Blue	460	470	475	nm	I _F = 20 mA	
,		Green	519	525	531			
$\lambda_{ extsf{D}}$		Red	620	623	630			
		Yellow	585	589	595			
Δλ	Spectra Half Width	Blue				nm	I _F = 20 mA	
		Green		25				
		Red						
		Yellow						
20½H-H	H 50% Power Angle			30		deg	I _F = 20 mA	

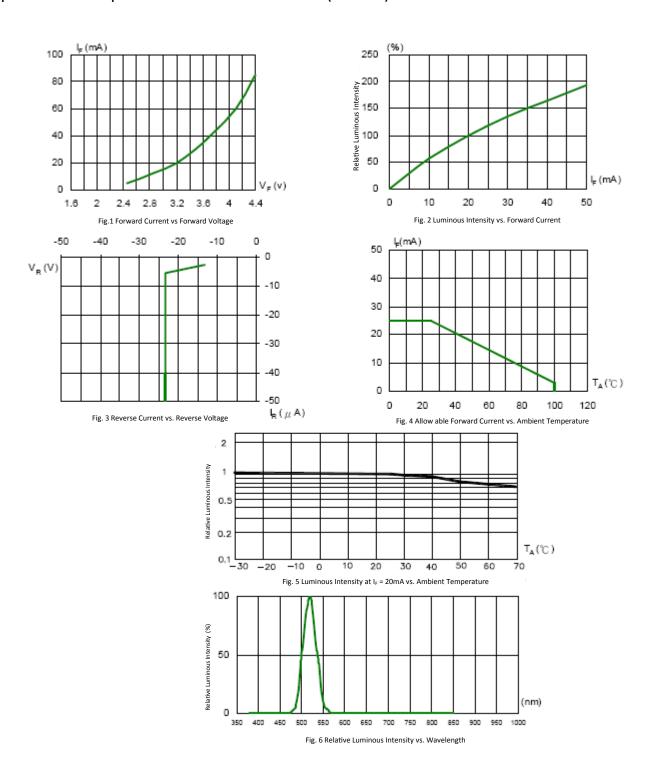
General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

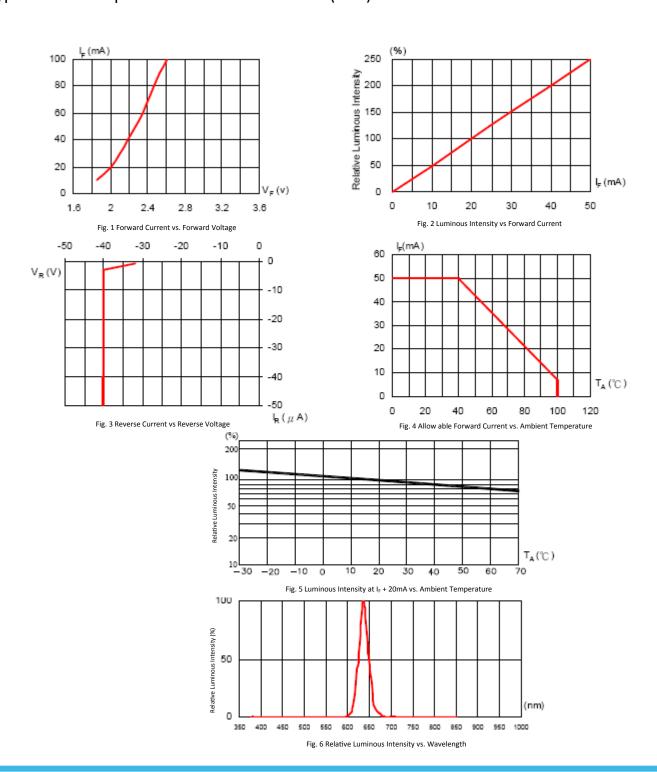

TT Electronics | Optek Technology, Inc. 1645 Wallace Drive, Ste. 130, Carrollton, TX USA 75006 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com

© TT electronics plc Issue C 08/2017 Page 2

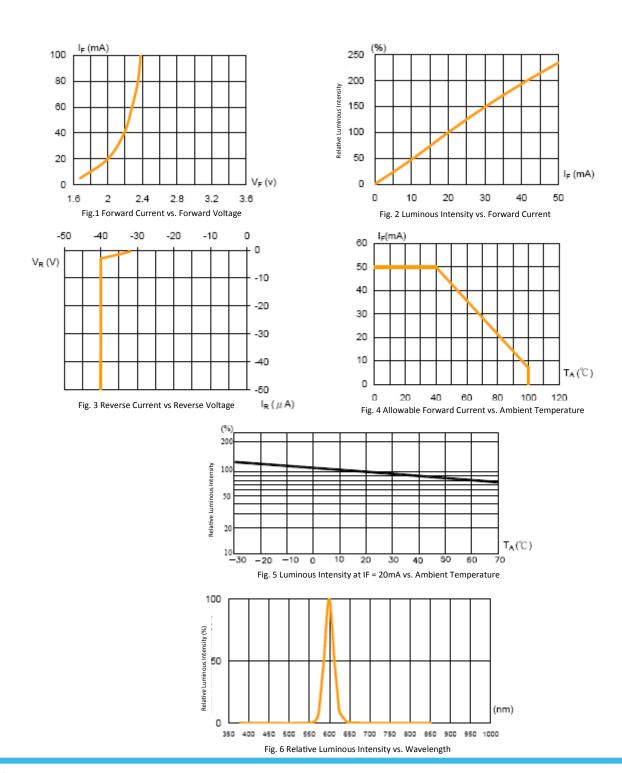
OVLFx3C7


Typical Electro-Optical Characteristics Curves (BLUE)

OVLFx3C7


Typical Electro-Optical Characteristics Curves (GREEN)

OVLFx3C7


Typical Electro-Optical Characteristics Curves (RED)

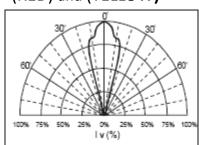
OVLFx3C7

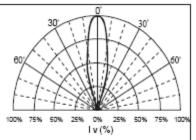
Typical Electro-Optical Characteristics Curves (YELLOW)

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

TT Electronics | Optek Technology, Inc. 1645 Wallace Drive, Ste. 130, Carrollton, TX USA 75006 | Ph: +1 972 323 2200 www.ttelectronics.com | sensors@ttelectronics.com


© TT electronics plc Issue C 08/2017 Page 6



Beam Pattern


(RED) and (YELLOW)

(BLUE) and (GREEN)

Packaging: 500 pcs per bulk bag with desiccant

OVLFx3C7

Reliability Test

Classi- fication	Test Item	Standard Test Method	Test Conditions	Duration	Unit	Acc / Rej Criteria	Result
Life Test	Operation Life Test (OLT)	MIL-STD-750D Method 1026.3	$T_A=25^{\circ}C$, $I_F=30\text{mA}$ *	1000 Hrs	100	0 / 1	Pass
	High Temperature Storage (HTS)	MIL-STD-750D Method 1032.1	T _A =100°C	1000 Hrs	100	0 / 1	Pass
Environment Test	Low Temperature Storage (LTS)	MIL-STD-750D Method 1032.1	T _A =-40°C	1000 Hrs	100	0 / 1	Pass
	Temp. & Humidity with Bias (THB)	MIL-STD-750D Method 103B	T _A =85°C , Rh=85% I _F =20mA **	500 Hrs	100	0 / 1	Pass
	Thermal Shock Test (TST)	MIL-STD-750D Method 1056.1	0°C ~ 100°C 2min 2min	100 cycles	100	0 / 1	Pass
	Temperature Cycling Test (TCT)	MIL-STD-750D Method 1051.5	-40°C ~ 25°C ~ 100°C ~ 25°C 30min 5min 30min 5min	100 cycles	100	0 / 1	Pass
Mechanical Test	Solderability	MIL-STD-750D Method 2026.4	235±5℃ , 5 sec	1 time	20	0 / 1	Pass
	Resistance to Soldering Heat	MIL-STD-750D Method 2031.1	260±5°C → 10 sec	1 time	20	0 / 1	Pass
	Lead Integrity	MIL-STD-750D Method 2036.3	Load 2.5N (0.25kgf) 0°~90°~0°, bend	3 times	20	0 / 1	Pass

Remark : (*) I_F =30mA for AlInGaP chip ; I_F =20mA for InGaN chip (**) I_F =20mA for AlInGaP chip ; I_F =10mA for InGaN chip

2. Failure Criteria (T_A =25°C):

Test Item	Symbol	Test Conditions	Criteria for Judgment			
	Symbol		Min.	Max.		
Luminous Intensity	$I_{ m V}$	I _F =20 mA	LSL×0.7 **			
Voltage (Forward)	V_{F}	I _F =20 mA		USL×1.1 *		

(*) USL: Upper Standard Level , (**) LSL: Lower Standard Level