

STA2058

TESEO™

GPS platform high-sensitivity baseband

Data Brief

Features

- Single chip baseband with embedded Flash
- Complete embedded memory system:
 - Flash 256 KB +16 Kbytes
 - RAM 64 Kbytes
- 66 MHz ARM7TDMI 32 bit processor
- High performance GPS engine (HPGPS)
- SBAS (WAAS and EGNOS) supported
- Sensitivity (-146 dBm acquisition, -159 dBm tracking)
- Time to first fix (1s reacquisition, 2.5 s hot start, 34 s warm start, 39 s cold start)
- Accuracy (2 m autonomous)
- External memory interface (EMI) supporting up to 64 Mbite of external SRAM, Flash and ROM
- Extensive GPS receiver interfaces:
 48 GPIOs, 4 UARTs, 2 SPIs, 2 I2Cs,
 2 CANs 2.0, 1 USB 1.1,1 HDLC and 4 channels
 ADC
- ST proprietary Flash embedded technology
- LFBGA144 and LQFP64 lead-free package
- -40 °C to 85 °C operating temperature range

Evaluation kits

- STA2058 module reference design (25x25mm)
- Evaluation board hosting STA2058 module
- SDK board (for application SW development)

Description

STA2058 is the high-sensitivity baseband of TESEO GPS platform which include the STA5620 RF Front-End.

The embedded Flash memory enables the equipment manufacturer to load the entire GPS software (including tracking, acquisition, navigation and data output) after customizing its interfaces to his needs. A standard GPS library is available from ST.

TESEO is the ideal solution for consumer, handheld, PND (portable navigation), in vehicle navigation and telematics systems.

SBAS (WAAS and EGNOS) feature is also supported.

Table 1. Device summary

Order code	Package	EMI (External Memory Interface)	Packing	Automotive grade
STA2058	LQFP64 (10x10x1.4mm)	No	Tray	No
STA2058TR	LQFP64 (10x10x1.4mm)	No	Tape and reel	No
STA2058EX	LFBGA144 (10x10x1.7mm)	Yes	Tray	No
STA2058EXTR	LFBGA144 (10x10x1.7mm)	Yes	Tape and reel	No
STA2058EXA	LFBGA144 (10x10x1.7mm)	Yes	Tray	Yes
STA2058EXATR	LFBGA144 (10x10x1.7mm)	Yes	Tape and reel	Yes

 September 2013
 Rev 4
 1/20

Contents STA2058

Contents

1	Feat	ures summary
2	Pin o	description5
	2.1	Logic symbol
3	Syst	em block diagram6
	3.1	Package LFBGA144
	3.2	Package LQFP64
	3.3	Power supply pins
4	Elec	Package LFBGA144
	4.1	DC electrical characteristic
	4.2	AC electrical characteristics
	4.3	nRSTIN input filter characteristics
	4.4	Flash electrical characteristics
	4.5	Oscillator electrical characteristics
	4.6	ADC electrical characteristics
	4.7	PLL electrical characteristics
	4.8	LVD electrical characteristics
	4.9	GPS performances
5	Pack	kage information
OS)	Des:	sion history
D	Kevi	SION NISTOLV

STA2058 Features summary

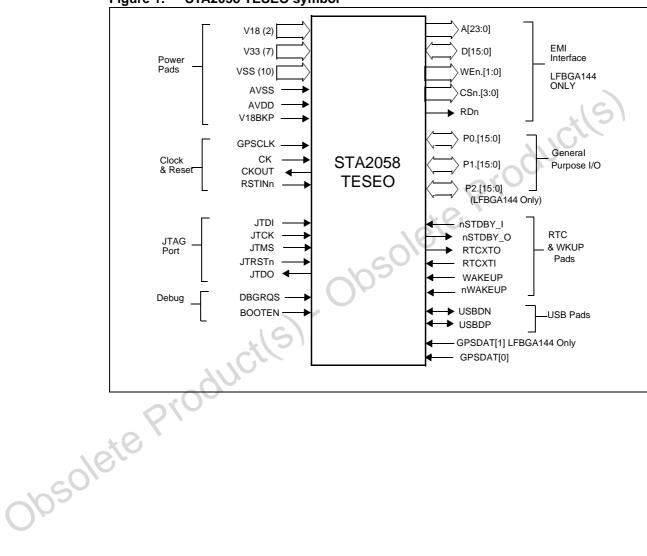
Features summary

ARM7TDMI 16/32 bit RISC CPU based host microcontroller running at a frequency up to 66 MHz.

- Complete embedded memory system:
 - Flash 256 Kbytes + 16 Kbytes (100 KB erasing/programming cycles)
 - RAM 64 Kbytes.
- External memory interface provides glueless support for up to four banks of external SRAM, Flash, ROM.
- High performance GPS engine (HPGPS).
- roducils ST Proprietary CMOS (0.18 µm) Flash embedded technology.
- SBAS (WAAS and EGNOS) supported
- -40 °C to 85 °C operating temperature range.
- 144-pin LFBGA package and 64-pin LQFP package
- Power supply:
 - 3.0 V to 3.6 V operating supply range for Input/Output periphery
 - 3.0 V to 3.6 V operating supply range for A/D Converter reference
 - 1.8 V operating supply range for core supply provided either by internal voltage regulator (with external stabilization capacitor) or by external supply voltage.
- Reset and clock control unit able to provide low power modes (WAIT, SLOW, STOP, STANDBY) and to generate the internal clock from the external reference through integrated PLL.
- 48 programmable general purpose I/O, each pin programmable independently as digital input or digital output; 40 (30 in LQFP64) are multiplexed with peripheral functions; 16 can generate an interrupt on input level/transition.
- Real time clock module with 32 kHz low power oscillator and separate power supply to continue running during standby mode.
- 16-bit Watchdog timer with 8 bits prescaler for system reliability and integrity.
- 2 CAN modules compliant with the CAN specification V2.0 part B (active) and bit rate can be programmed up to 1 MBaud. One additional CAN at 1 Mbps (for STA2058 EM SIP version)
- Four 16-bit programmable timers with 7 bit prescaler, up to two input capture/output compare, one pulse counter function, one PWM channel with selectable frequency each.
- 4 channels 12-bit sigma-delta analog to digital converter, single channel or multi channel conversion modes, single-shot or continuous conversion modes, sample rate 1 kHz, conversion range 0-2.5 V.
- Three serial communication interfaces (UART) allow full duplex, asynchronous, communications with external devices, independently programmable TX and RX baud rates up to 625 Kbaud.
- One UART adapted to suit smart card interface needs, for asynchronous SC as defined by ISO 7816-3. It includes SC clock generation.
- Two serial peripheral interfaces (SPI) allow full duplex, synchronous communications with external devices, master or slave operation, max baud rate of 5.5 Mb/s. One SPI may be used as multimedia card interface.

Features summary STA2058

• Two I²C Interfaces provide multi-master and slave functions, support normal and fast I²C mode (400 KHz), 7/10 bit addressing modes. One I²C Interface is multiplexed with one SPI, so either 2 x SPI + 1 x I²C or 1 x SPI + 2 x I²C may be used at a time.


- Enhanced interrupt controller supports 32 interrupt vectors, independently maskable, with interrupt vector table for faster response and 16 priority levels, software programmable for each source. Up to 2 maskable interrupts may be mapped on FIQ.
- Wakeup unit allows exiting from power down modes by detection of an event on two
 external pins (one is active high and other is active low) or on internal real time clock
 alarm.
- USB unit V1.1 compliant, software configurable endpoint setting, USB suspend/resume support
- High level data link controller (HDLC) unit supports full duplex operating mode, NRZ, NRZI, FM0 and MANCHESTER modes, and internal 8-bit baud rate generator.

STA2058 Pin description

2 Pin description

2.1 Logic symbol

Figure 1. STA2058 TESEO symbol

577

3 System block diagram

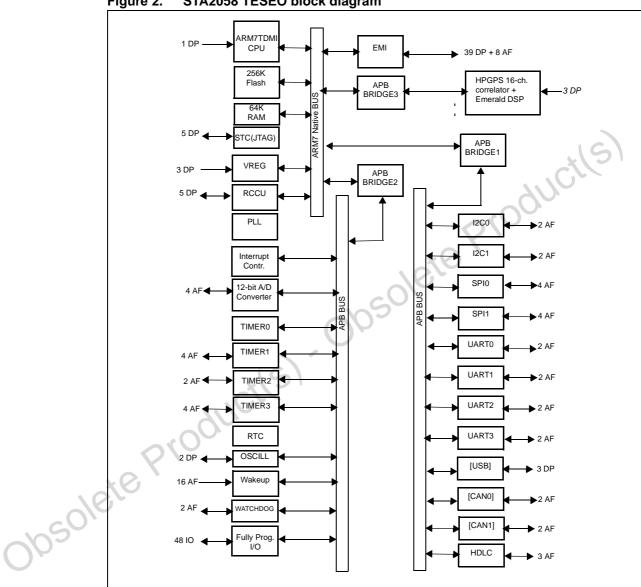


Figure 2. STA2058 TESEO block diagram

577

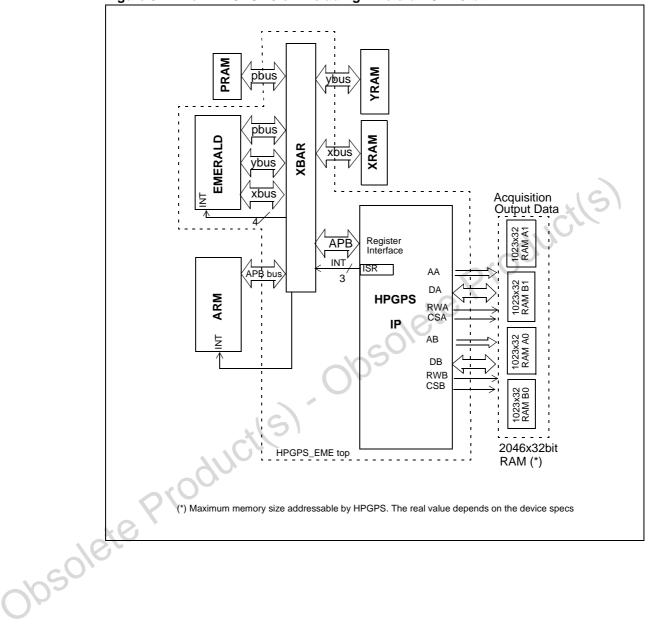


Figure 3. New HPGPS 16-ch including Emerald DSP 16-bit

577

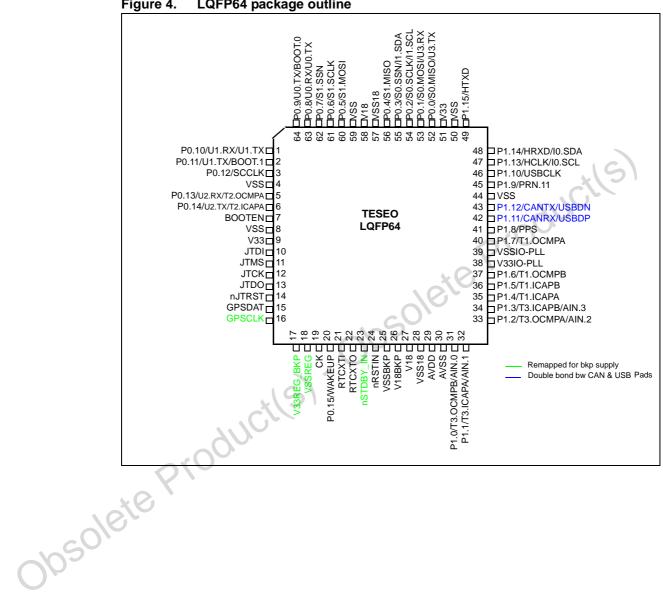

3.1 Package LFBGA144

Table 2. Ball out for LFBGA144 package

	Α	В	С	D	E	F	G	Н	J	К	L	М
1	P0.10/ U1.RX/ U1.TX	P2.0/ CSn.0	P2.1/ CSn.1	VSS	P2.2/ CSn.2	P2.6/ A.22	BOOTEN	P2.12	P2.13	P2.15	JTDI	NC
2	VSS	RDN	P0.11/ U1.TX/ BOOT.1	V33	P2.3/ CSn.3	P2.8	P2.9/ CAN1_TX	JTMS	JTRSTn	GPSCLK	GPSDAT1	V33REG_B KP
3	V33	P0.9/ U0.TX/ BOOT.0	P0.12/ SCCLK	P0.13/ U2.RX/ T2.OCMP A	P2.4/ A.20	NC	P2.10/ CAN1_RX	JTCK	GPSDAT0	V33	VSSREG	DBGRQS
4	P0.6/ S1.SCLK	P0.7/ S1.SSN	P0.8/ U0.RX/U0. TX	P0.14/ U2.TX/ T2.ICAPA	P2.5/ A.21	VSS	P2.11	JTDO	СК	CKOUT	VSS	VSS
5	A.19	WEn.1	WEn.0	P0.5/ S1.MOSI	P2.7/ A.23	VSS	P2.14	NC	RTCXTO	RTCXTI	WAKEUP_ PA	P0.15/ WAKEUP
6	P0.3/ S0.SSN/ I1.SDA	A.15	A.16	A.17	A.18	V33	V18	V18	V18BKP	V18BKP	VSSBKP	nSTDBY_IN
7	P0.2/ S0.SCLK/ I1.SCL	P0.1/ S0.MOSI/ U3.RX	P0.4/ S1.MISO	VSS	V18	A.14	D.12	D.1	D.0	nSTDBY_ O	VSS18	RSTINn
8	A.9	A.10	A.11	A.13	P0.0/ S0.MISO/ U3.TX	A.0	D.11	P1.12/ CANTX	AVSS	AVSS	D.3	D.2
9	VSS18	V33	A.5	A.6	V33	D.15	D.10	P1.8/ PPS	D.9	P1.0/ T3.OCMP B/ AIN.0	NC	AVDD
10	A.8	V33	P1.15/ HTXD	P1.13/ HCLK/ I0.SCL	VSS	D.14	USBDN	P1.7/ T1.OCMP B	D.8	P1.5/ T1.ICAPB	P1.1/ T3.ICAPA/ AIN.1	D.4
11	A.7	NC	P1.14/ HRXD/ I0.SDA	P1.10/ USBCLK	A.2	D.13	USBDP	VSSIO- PLL	D.5	P1.4/ T1.ICAPA	P1.3/ T3.ICAPB/ AIN.3	AVDD
12	A.12	A.4	A.3	P1.9/ PRN.11	A.1	P1.11/ CANRX	NC	V33IO-PLL	P1.6/ T1.OCMPA	D.7	D.6	P1.2/ T3.OCMPA/ AIN.2

3.2 Package LQFP64

Figure 4. LQFP64 package outline

3.3 Power supply pins

Table 3. Power supply pins

Symbol	I/O	Function	LQFP 64	LFBGA144
V ₃₃	-	Digital supply voltage for I/O circuitry (3.3 Volt)	9, 51	D2,A3,K3,F6,B9 , E9,B10
V _{SS}	-	Digital ground for I/O circuitry	4, 8, 44, 50, 59	D1,A2,F4,L4,M 4, F5, D7,E10
V _{33IO-PLL}	-	Digital supply voltage for I/O circuitry and for PLL reference (3.3V)	38	H12
V _{SSIO-PLL}	-	Digital ground for I/O circuitry and for PLL reference	39	H11
V _{33REG_B} KP	-	Digital supply voltage for backup block I/O circuitry and for ballast I/O (3.3V)	17	M2
V _{SSREG}	-	Digital ground for ballast I/O	18	L3
V ₁₈	-	Digital supply voltage for core circuitry (1.8 Volt): when using the internal voltage regulator, this pin shall not be driven by an external voltage supply, but a capacitance of at least $10\mu F$ (tantalum, low series resistance) + 33nF (ceramic) shall be connected between these pins and V_{SS18} to guarantee on-chip voltage stability.	27, 58	G6, H6,E7
V _{SS18}	-	Digital Ground for core circuitry	28, 57	A9,L7
V _{18BKP} - C		Digital supply voltage for backup block (RTC, oscillator, Wake-up controller - 1.8 Volt): when using the internal voltage regulator, this pin shall not be driven by an external voltage supply, but a capacitance of at least $1\mu F$ shall be connected between this pin and $V_{\mbox{\footnotesize SSBKP}}$ to guarantee on-chip voltage stability.	26	J6,K6
V _{SSBKP}	-	Digital Ground for backup logic	25	L6
AV_{DD}	-	Analog supply voltage for the A/D converter	29	M9, M11
AV _{SS}	-	Analog supply Ground for the A/D converter	30	J8,K8

Note:

 V_{33} and $V_{33IO\text{-}PLL}$ are all internally connected. Same for V_{SS} and $V_{SSIO\text{-}PLL}$.

All V_{SS} , V_{SS18} , V_{SSBKP} AV_{SS} pins must be tied together to the common ground plane, taking care of noise filtering, especially on AVss

STA2058 Electrical characteristic

4 Electrical characteristic

4.1 DC electrical characteristic

 V_{33} = 3.3 V \pm 10 %, T_A = -40 / 85 °C unless otherwise specified.

Table 4. DC electrical characteristic

Comple ed	Parameter	Took conditions	Value				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
\/	Input high level CMOS	With or w/o hysteresis	0.7V ₃₃		1.0	V	
V_{IH}	Input high level	P0.15 (WAKEUP) only	1.8		110	V	
W	Input low level CMOS	With or w/o hysteresis		21	0.3V ₃₃	V	
V_{IL}	Input low level	P0.15 (WAKEUP) only		.00	0.7	V	
M	Input hysteresis CMOS Schmitt trigger		0.4	0.8	1.2	V	
V _{HYS}	Input hysteresis Schmitt trigger	P0.15 (WAKEUP) only	0.3	0.5		V	
.,	Output high level high current pins	Push Pull, I _{OH} = 8mA	V ₃₃ -0.8				
V _{OH}	Output high level standard current pins	Push Pull, I _{OH} = 4mA	V ₃₃ -0.8				
W	Output low level	Push Pull, I _{OH} = 8mA			0.4	V	
V_{OL}	standard current pins	Push Pull, I _{OH} = 4mA			0.4	V	
R _{WPU}	Weak pull-up resistor	Measured at 0.5V ₃₃		100		kΩ	
R _{WPD}	Weak pull-down resistor	Measured at 0.5V ₃₃		100		kΩ	

Electrical characteristic STA2058

4.2 AC electrical characteristics

Table 5. AC electrical characteristics

 $V_{33} = 3.3 \text{ V} \pm 10 \text{ %}, T_A = 27 \text{ °C}$ unless otherwise specified.

Symbol	Mode	System sleek	Value			Unit
Symbol		System clock	Min.	Тур.	Max.	Onit
I _{DDRUN}	RUN mode	33 MHz system clock		60		mA
I _{DDWFI}	WFI mode	1 MHz system clock		5		mA
I _{DDLP}	LPWFI mode	32 kHz system clock		300		μA
I _{DDSTP}	STOP mode	Main VReg off, Flash in power-down		200	110	μΑ
I _{DDSB1}	STANDBY_1 mode	LP VReg and 32kHz Osc on		15	30	μA
I _{DDSB0}	STANDBY_0 mode	LP VReg, LVD, 32kHz Osc bypassed		3	10	μA

Note:

IDDRUN is the consumption in applications exploiting the full performances of the core. A typical GPS application would run at 33MHz, at the maximum frequency (66MHz) the power consumption is IDDRUN = 150 mA (typ).

In WFI mode the VReg and Flash are ON to guarantees the minimum interrupt response time.

Table 6. AC electrical characteristics

 V_{33} = 3.3 V ± 10%, T_A = -40 / 85 °C unless otherwise specified.

Symbol	Mode	System clock		Unit		
	Wiode	System clock	Min.	Тур.	Max.	Oilit
F _{CPU}	CPU max frequency	Executing from RAM or EMI			66	MHz
F _{MAX}	Flash max frequency	Executing from Flash			60	MHz

4.3 nRSTIN input filter characteristics

 V_{33} = 3.3 V \pm 10 %, T_A = -40 / 85 $^{\circ}\mathrm{C}$ unless otherwise specified.

Table 7. nRSTIN input filter characteristics

Symbol	Mode	System clock		Unit		
	Wiode	System clock	Min.	Тур.	Max.	
t _{FR}	nRSTIN input filtered pulse				100	ns
t _{NFR}	nRSTIN input not filtered pulse		1.2			μs

STA2058 Electrical characteristic

4.4 Flash electrical characteristics

 V_{33} = 3.3 \pm 10%, T_A = -40 / 85 $^{\circ}\mathrm{C}$ unless otherwise specified.

Table 8. Flash program/erase characteristics 1

Symbol	Parameter	Test conditions			- Unit	
Syllibol	Farameter	rest conditions	Тур	Max (C ₀)	Max (C _{max})	Oilit
t _{PW}	Word program		40			μs
t _{PDW}	Double word program		60			μs
t _{PB0}	Bank 0 program (256K)	Double word program	1.6	2.1	4.3	s
t _{PB1}	Bank 1 program (16K)	Double word program	130	170	300	ms
t _{ES}	Sector erase (64K)	Not preprogrammed Preprogrammed	2.3 1.9	4.0 3.3	4.9 4.1	S
t _{ES}	Sector erase (8K)	Not preprogrammed Preprogrammed	0.7 0.6	1.1	1.36 1.26	S
t _{ES}	Bank 0 erase (256K)	Not preprogrammed Preprogrammed	8.0 6.6	13.7 11.2	17.2 14.0	S
t _{ES}	Bank 1 erase (16K)	Not preprogrammed Preprogrammed	0.9 0.8	1.5 1.3	1.87 1.66	S
t _{RPD}	Recovery from power-down	OA			20	μs
t _{PSL}	Program suspend latency				10	μs
t _{ESL}	Erase suspend latency	(5)			300	μs

Note:

 C_0 : T_A = 85 °C after 0 cycles C_{max} : T_A = 85 °C after max number of cycles

Flash program/erase characteristics 2 Table 9.

Symbol	Parameter	Conditions -		Unit		
			Min	Тур	Max	Oille
5	Endurance		10			Kcycles
	Endurance (Bank1 sectors)		100			Kcycles
	Data retention		20			Years
t _{ESR}	Erase suspend rate	Min time from erase resume to next erase suspend	20			ms

Electrical characteristic STA2058

4.5 Oscillator electrical characteristics

 V_{33} = 3.3 \pm 10 %, T_A = -40 / 85 °C unless otherwise specified.

Figure 5. Crystal oscillator and resonator

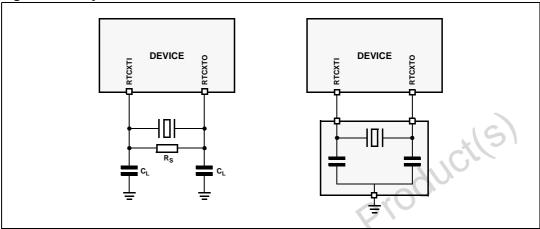


Table 10. Oscillator electrical characteristics

Symbol	Parameter	Test conditions		Unit		
Symbol	i didilicioi	rest conditions	Min	Тур	Max	
g _m	Oscillator transconductance	, 0		8		μA/V
t _{STUP}	Oscillator startup time	Stable V _{DD}			2.5	s

4.6 ADC electrical characteristics

 V_{33} = 3.3 \pm 10%, A_{VDD} = 3.3V \pm 10%, T_{A} = -40 / 85 °C unless otherwise specified.

Table 11. ADC electrical characteristics

Symbol	Parameter	Test conditions		Unit			
Syllibol	rai ameter	rest conditions	Min	Тур	Max	Oilit	
RES	Resolution	Sinewave with ΔV_{IN} amplitude		12		bits	
ΔV_{IN}	Input voltage range		0		2.5	V	
F _{Mod}	Modulator oversampling frequency				2.1	MHz	
IBW	Input bandwidth				F _{Mod} /40 96	kHz	
N _{ch}	Number of input channels				4	n	
PBR	Passband ripple				0.1	dB	
SINAD	S/N and distortion		56	63		dB	
THD	Total harmonic distortion		60	74		dB	

577

STA2058 Electrical characteristic

Table 11. ADC electrical characteristics (continued)

Symbol	Parameter	Test conditions		Unit			
Symbol	Farameter	rest conditions	Min	Тур	Max	Oill	
Z _{IN}	Input impedance	F _{Mod} = 2 MHz	1			$M\Omega$	
C _{IN}	Input capacitance				5	pF	
I _{ADC}	Power consumption	T _A =27 °C		2.5	3.0	mA	
I _{STBY}	Standby power consumption	T _A =27 °C			1	μΑ	

4.7 PLL electrical characteristics

 V_{33} = 3.3 \pm 10 %, $V_{33IOPLL}$ = 3.3 \pm 10 %, T_{A} = -40 / 85 °C unless otherwise specified.

Table 12. PLL electrical characteristics

Symbol	Parameter	Test conditions	0	Unit		
Symbol	Farameter	rest conditions	Min	Тур	Max	Offic
T _{PLL1}	PLL reference clock	FREF_RANGE=0	1.5		3.0	MHz
T _{PLL2}	PLL reference clock	FREF_RANGE=1 MX[1:0]='00' or '01'	3.0		8.25	MHz
T _{PLL3}	PLL reference clock	FREF_RANGE=1 MX[1:0]='10' or '11'	3.0		6	MHz
T _{LOCK}	PLL lock time	FREF_RANGE=0 Stable Input Clock Stable V _{33IOPLL} , V ₁₈			300	μs
T _{LOCK}	PLL lock time	FREF_RANGE=1 Stable Input Clock Stable V _{33IOPLL} , V ₁₈			600	μs
ΔT_{JITTER}	PLL jitter (peak to peak)	T _{PLL} = 4 MHz, MX[1:0]='11' Global Output division=32 (Output Clock=2 MHz)		0.7	2	ns

4.8 LVD electrical characteristics

 V_{33} = 3.3 \pm 10 %, T_A = -40 / 85 °C unless otherwise specified.

Table 13. LVD electrical characteristics

Symbol	Parameter	Test conditions		Unit			
Symbol	r ai ailletei	rest conditions	Min	Тур	Max	Oilit	
T _{LVD}	LVD Threshold	Main and LP LVD's		1.3		V	
ΔV	VLPREG - T _{LVD}	Main regulator off	50			mV	

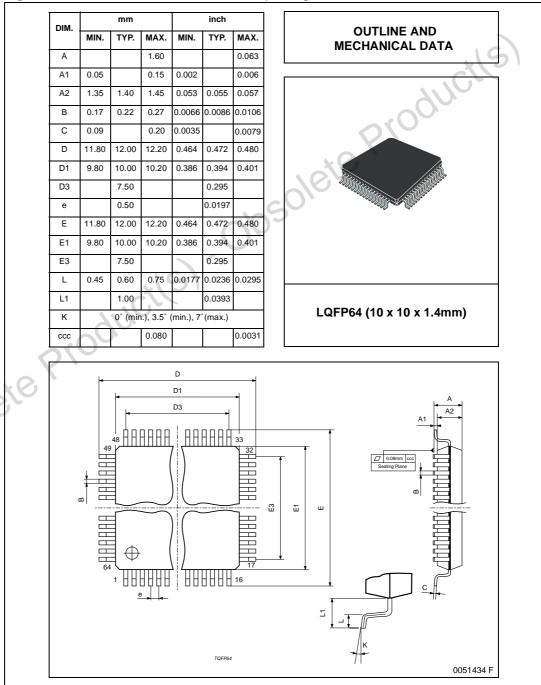
Electrical characteristic STA2058

4.9 GPS performances

 $V_{33} = 3.3 \pm 10$ %, $T_A = 27$ °C, unless otherwise specified

Table 14. GPS performances

Parameter Reacquisition HOt start Warm start Cold start Autonomous Acquisition (Warm start)	Test conditions 50%, -130dBm, Fu 2ppm, Tu ± 2, Pu 30km CEP 50%, 24hr static at - 130dBm	Min	Typ <1 <2.5 <34 <39	Max	Unit s s
HOt start Warm start Cold start Autonomous	Tu ± 2, Pu 30km CEP 50%, 24hr static at -		<2.5 <34		S
Warm start Cold start Autonomous	Tu ± 2, Pu 30km CEP 50%, 24hr static at -		<34	1	_
Cold start Autonomous	CEP 50%, 24hr static at -				S
Autonomous			<39		
					S
Acquisition (Warm start)		2		Inc.	m
	With external LNA		-146		dBr
Tracking			-159		dBr
ite Product	(6)				
	te Product	ite Productis). Obsoli	Tracking Obsole it obsole	te Productis) obsole	te Product(s). Obsole


STA2058 Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

Figure 6. LQFP64 mechanical data and package dimensions

Package information STA2058

Figure 7. LFBG144 mechanical data and package dimensions

DIM.	mm inch			OUTLINE AND			
DIW.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	MECHANICAL DATA
Α	1.21		1.70	0.0476		0.0669	
A1	0.21			0.0083			
A2		1.12			0.0441		
b	0.35	0.40	0.45	0.0138	0.0157	0.0177	
D	9.85	10.0	10.15	0.3878	0.3937	0.3996	
D1		8.80			0.3465		
Е	9.85	10.0	10.15	0.3878	0.3937	0.3996	*/
E1		8.80			0.3465		
е		0.80			0.0315		Body: 10 x 10 x 1.7mm
F		0.60			0.0236		210
ddd			0.10			0.0039	
eee			0.15			0.0059	LFBGA144 Low Profile Fine Pitch Ball Grid Array
fff			0.08			0.0031	Low Frome Fine Fitch Ball Ond Array
	000	K C J C		E1		000	SEATING PLANE A2 A2 C C C C C C C C C C C C C
21	,	F C C C C B C			7 8 9 1		A1 A1

STA2058 Revision history

6 Revision history

Table 15. Document revision history

	Date	Revision	Changes						
	23-Apr-2007	1	Initial release.						
	25-Jun-2007	2	Added features summary, pin description, electrical characteristics and packages information.						
	19-Mar-2009	3	Updated Table 1: Device summary on page 1. Updated ECOPACK description in Section 5: Package information on page 17.						
	22-Sep-2013	4	Updated Disclaimer.						
Obsolete Product(s)									

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

577