DIGITALLY CONTROLLED AUDIO PROCESSOR WITH SURROUND SOUND MATRIX AND VOICE CANCELLER

1 FEATURES

- 1 STEREO (4STEREO) INPUT + 1 MIXER INPUT
- INPUT ATTENUATION CONTROL IN 0.5dB STEP
- VOICE CANCELLER IS AVAILABLE
- TREBLE MIDDLE AND BASS CONTROL
- THREE SURROUND MODES ARE AVAILABLE
- MUSIC: 4 SELECTABLE RESPONSES
- MOVIE AND SIMULATED: 256 SELECTABLE RESPONSES
- 2 SPEAKERS AND 2 RECORD ATTENUATORS:
- 2 INDEPENDENT SPEAKERS AND 2 INDEPENDENT RECORD CONTROL IN 1dB STEP FOR BALANCE FACILITY
- AVAILABILITY OF LOUDSPEAKER EQUALIZATION FIXED BY EXTERNAL COMPONENTS
- INDEPENDENT MUTE FUNCTION
- ALL FUNCTIONS PROGRAMMABLE VIA SERIAL BUS

Figure 1. Package

Table 1. Order Codes

Part Number	Package
TDA7431S	SDIP42
TDA7430	TQFP44
TDA7430TR	Tape \& Reel

2 DESCRIPTION

The TDA7430/TDA7431 is volume tone (bass middle and treble) balance (Left/Right) processors voice canceller for quality audio applications in car radio and $\mathrm{Hi}-\mathrm{Fi}$ systems.
They reproduce surround sound by using programmable phase shifters and a signal matrix.
Control of all the functions is accomplished by serial bus. The AC signal setting is obtained by resistor networks and switches combined with operational amplifiers. Thanks to the used BIPOLAR/CMOS Technology,
Low Distortion, Low Noise and DC stepping are obtained.

Figure 2. Pin Connection (TDA7430)

Figure 3. Pin Connection (TDA7431)

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{S}	Operating Supply Voltage	11	V
$\mathrm{~T}_{\mathrm{amb}}$	Operating Ambient Temperature	0 to 70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature Range	-55 to 150	${ }^{\circ} \mathrm{C}$

Table 3. Quick Reference Data

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{S}	Supply Voltage	7	9	10.2	V
$\mathrm{~V}_{\mathrm{CL}}$	Max Input Signal Handling	2			$\mathrm{~V}_{\mathrm{RMS}}$
THD	Total Harmonic Distortion $\mathrm{V}=0.1 \mathrm{Vrms} \mathrm{f}=1 \mathrm{KHz}$		0.01	0.1	$\%$
$\mathrm{~S} / \mathrm{N}$	Signal to Noise Ratio $\mathrm{V}_{\text {out }}=1 \mathrm{Vrms}($ mode $=$ OFF)		106		dB
SC_{C}	Channel Separation $\mathrm{f}=1 \mathrm{KHz}$		90		dB
	Treble Control (2dB step)	-14		14	dB
	Middle Control (2dB step)	-14		14	dB
	Bass Control (2dB step)	-14		14	dB
	Balance Control 1dB step (LCH, RCH)	-79		0	dB
	Mute Attenuation		100		dB

Table 4. Thermal Data

Symbol	Parameter	Value	Unit
$R_{\text {th } j \text {-pin }}$	Thermal Resistance Junction-pins	85	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Figure 4. TEST CIRCUIT (TDA7430)

Figure 5. TEST CIRCUIT (TDA7431)

Figure 6. Block Diagram (TDA7430)

Figure 7. Block Diagram (TDA7431)

Table 5. Electrical Characteristcs (refer to the test circuit $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=9 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{~K} \Omega$, $\mathrm{V}_{\text {in }}=1 \mathrm{Vrms}$; $R_{G}=600 \Omega$, all controls flat $(G=0 d B)$, Effect $C T R L=-6 d B, M O D E=O F F ; f=1 \mathrm{KHz}$ unless otherwise specified).

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
SUPPLY						
V_{S}	Supply Voltage		7	9	10.2	V
Is	Supply Current		10	18	26	mA
SVR	Ripple Rejection	LCH / RCH out, Mode = OFF	60	80		dB
INPUT STAGE						
RIN	Input Resistance		35	50	65	$\mathrm{K} \Omega$
V_{CL}	Clipping Level	THD $=0.3 \%$	2	2.5		$\mathrm{V}_{\mathrm{rms}}$
Crange	Control Range			31.5	\bigcirc	dB
Avmin	Min. Attenuation		-1	0	1	dB
Avmax	Max. Attenuation		31	31.5	32	dB
Astep	Step Resolution		,	0.5	1	dB
$V_{D C}$	DC Steps	adjacent att. step	-3	0	3	mV
Avo1	Voice Canceler Output 1	$\begin{aligned} & \mathrm{LIN}_{\mathrm{IN}}=\mathrm{R}_{\mathrm{IN}}, R_{\text {IN }}=\mathrm{ON}, \\ & \mathrm{Vmix}=0 \mathrm{~V} \text { FIX, OdB attenuation } \end{aligned}$	5	6	7	dB
Avoz	Voice Canceler Output 2	$\begin{aligned} & \mathrm{LIN}_{\mathrm{IN}}=\mathrm{RIN}_{\mathrm{I}}=0 \mathrm{~V}, \\ & \mathrm{Vmix}_{\mathrm{mix}}=1 \mathrm{~V}_{\mathrm{rms}} \text { FIX, OdB attenuation } \end{aligned}$	-1	0	1	dB
Avo3	Voice Canceler Output 3	$\mathrm{L}_{\mathrm{IN}}=\mathrm{R}_{\mathrm{IN}}, \mathrm{Vmix}_{\text {mix }}=0 \mathrm{~V} \text { FIX, }$ OdB attenuation	5	6	7	dB
RLPV	Low Pass Filter Resistance		22.4	32	41.6	$\mathrm{K} \Omega$
$\mathrm{R}_{\text {MIX }}$	Input Impedance		70	100	130	$\mathrm{K} \Omega$
BASS CONTROL						
G_{b}	Control Range	Max. Boost/cut	± 11.5	± 14.0	± 16.0	dB
BSTEP	Step Resolution		1	2	3	dB
RB	Internal Feedback Resistance		32	44	56	$\mathrm{K} \Omega$
MIDDLE CONTROL						
G_{m}	Control Range	Max. Boost/cut	± 11.5	± 14.0	± 16.0	dB
Mstep	Step Resolution		1	2	3	dB
RM	Internal Feedback Resistance		17.5	25	32.5	K Ω
TREBLE CONTROL						
G_{t}	Control Range	Max. Boost/cut	± 13.0	± 14.0	± 15.0	dB
TSTEP	Step Resolution		1	2	3	dB

Table 5. Electrical Characteristcs (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
EFFECT CONTROL						
Crange	Control Range		± 13.0		6	dB
SStep	Step Resolution		0.5	1	1.5	dB
SURROUND SOUND MATRIX TEST CONDITION (Phase Resistor Selection D0=0, D1=1, D2=0. D3=1, D4=0, D5=1, D6=0, D7=1						
Goff	In-phase Gain (OFF)	Mode OFF, Input signal of 1 kHz , $1.4 \mathrm{~V}_{\text {p-p }}, \mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}, \mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$	-1	0	1	dB
DGOFF	LR In-phase Gain Difference (OFF)	Mode OFF, Input signal of 1 kHz , $1.4 \mathrm{~V}_{\text {p-p }}, \mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}, \mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$	-1	0		
$\mathrm{G}_{\mathrm{MOV}}$	In-phase Gain (Movie)	$\begin{aligned} & \text { Movie mode, Effect Ctrl }=-6 \mathrm{~dB} \\ & 1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\text {p-p }}, \\ & \mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}, L_{\text {in }} \rightarrow \text { Lout } \end{aligned}$		8		dB
DGMOV	LR In-phase Gain Difference (Movie)	Movie mode, Effect Ctrl = -6dB Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ $\left(\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}\right)$ - $\left(\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}\right)$	8	0		dB
Gmus	In-phase Gain (Music)	Music mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ ($\left.\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}\right),\left(\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}\right)$		7		dB
DGMUS	LR In-phase Gain Difference (Music)	Music mode, Effect Ctrl $=-6 \mathrm{~dB}$ Input signal of $1 \mathrm{kHz}, 1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ ($\mathrm{R}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}$),$\left(\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}\right)$		0		dB
LMON1	Simulated L Output 1	Simulated Mode, Effect Ctrl $=-6 d B$ Input signal of 250 Hz , $1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		4.5		dB
LMON2	Simulated L Output 2	Simulated Mode, Effect Ctrl =-6dB Input signal of 1 kHz , $1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\text {in }} \text { and } \mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		-4.0		dB
Lmon3	Simulated L Output 3	Simulated Mode, Effect Ctrl =-6dB Input signal of 3.6 kHz , $1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{L}_{\text {out }}$		7.0		dB
$\mathrm{R}_{\text {MON1 }}$	Simulated R Output 1	Simulated Mode, Effect Ctrl =-6dB Input signal of 250 Hz , $1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}$		-4.5		dB
RMON2	Simulated R Output 2	Simulated Mode, Effect Ctrl =-6dB Input signal of 1 kHz , $1.4 \mathrm{~V}_{\text {p-p }}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}$		3.8		dB
$\mathrm{R}_{\text {MON3 }}$	Simulated R Output 3	Simulated Mode, Effect Ctrl =-6dB Input signal of 3.6 kHz , $1.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \mathrm{R}_{\text {in }}$ and $\mathrm{L}_{\text {in }} \rightarrow \mathrm{R}_{\text {out }}$		-20		dB
RLP1	Low Pass Filter Resistance		7	10	13	K Ω
$\mathrm{R}_{\mathrm{HPI}}$	High Pass Filter Resistance		42	60	78	K Ω
RLPF	LP Pin Impedance		7	10	13	K Ω

7/23

Table 5. Electrical Characteristcs (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
SURROUBND SOUBND MATRIX PHASE						
RPS10	Phase Shifter 1: D1 = 0, D0 = 0		8.3	11.8	15.2	$\mathrm{K} \Omega$
RPS11	Phase Shifter 1: D1 = 0, D0 = 1		10	14.1	18.3	K Ω
RPS12	Phase Shifter 1: D1 = 1, D0 =		12.6	17.9	23.3	$\mathrm{K} \Omega$
RpS13	Phase Shifter 1: D1 = 1, D0 = 1		26.4	37.3	48.85	$\mathrm{K} \Omega$
Rps20	Phase Shifter 2: D3 = 0, D2 = 0		4	5.6	7.2	$\mathrm{K} \Omega$
RpS21	Phase Shifter 2: D3 = 0, D2 = 1		4.8	6.8	8.7	$\mathrm{K} \Omega$
Rps22	Phase Shifter 2: D3 = 1, D2 = 0		6	8.4	10.9	$\mathrm{K} \Omega$
RPS23	Phase Shifter 2: D3 = 1, D2 = 1		12.9	18.3	23.7	$\mathrm{K} \Omega$
RPS30	Phase Shifter 3: D5 = 0, D4 = 0		8.5	12.1	15.6	$\mathrm{K} \Omega$
RpS31	Phase Shifter 3: D5 = 0, D4 = 1		10.2	14.5	18.7	$\mathrm{K} \Omega$
RPS32	Phase Shifter 3: D5 = 1, D4 = 0		12.7	18.1	23.3	$\mathrm{K} \Omega$
RPS33	Phase Shifter 3: D5 = 1, D4 = 1		27.4	39.1	50.75	$\mathrm{K} \Omega$
Rps40	Phase Shifter 4: D7 = 0, D6 = 0		8.5	12.1	15.6	$\mathrm{K} \Omega$
RPS41	Phase Shifter 4: D7 = 0, D6 = 1	-	10.2	14.5	18.7	$\mathrm{K} \Omega$
RPS42	Phase Shifter 4: D7 = 1, D6 = 0	,	12.7	18.1	23.3	$\mathrm{K} \Omega$
RPS43	Phase Shifter 4: D7 = 1, D6 = 1	\bigcirc	27.4	39.1	50.75	$\mathrm{K} \Omega$
SPEAKER \& RECORD ATTENUATORS						
Crange	Control Range			79		dB
$\mathrm{S}_{\text {STEP }}$	Step Resolution		-0.5	1	1.5	dB
$\mathrm{E}_{\text {A }}$	Attenuation set error	$\mathrm{A}_{\mathrm{v}}=0$ to -20dB	-1.5	0	1.5	dB
		$A_{v}=-20$ to -79 dB	-3	0	2	dB
V ${ }_{\text {DC }}$	DC Steps	adjacent att. steps	-3	0	3	mV
Amute	Output Mute Condition		+70	100		dB
RVEA	Input Impedance		21	30	39	K Ω
AUDIO OUTPUTS						
$\mathrm{N}_{\text {O(OFF) }}$	Output Noise (OFF)	Output Mute, Flat BW $=20 \mathrm{~Hz}$ to 20 KHz		$\begin{aligned} & 4 \\ & 5 \end{aligned}$		$\begin{aligned} & \mu \mathrm{V}_{\mathrm{rms}} \\ & \mu \mathrm{~V}_{\mathrm{rms}} \end{aligned}$
NO (MOV)	Output Noise (Movie)	```Mode = Movie BW = 20Hz to 20KHz```		30		$\mu \mathrm{V}_{\mathrm{rms}}$
$\mathrm{N}_{\mathrm{O} \text { (Mus) }}$	Output Noise (Music)	$\begin{aligned} & \text { Mode }=\text { Music } \\ & B W=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \end{aligned}$		30		$\mu \mathrm{V}_{\text {rms }}$
NO (MON)	Output Noise (Simulated)	Mode Simulated BW $=20 \mathrm{~Hz}$ to 20 KHz		30		$\mu \mathrm{V}_{\text {rms }}$

Table 5. Electrical Characteristcs (continued)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
d	Distorsion	$\mathrm{A}_{\mathrm{V}}=0 ; \mathrm{V}_{\text {in }}=1 \mathrm{~V}_{\text {rms }}$		0.01	0.1	\%
Sc	Channel Separation		70	90		dB
V OCL	Clipping Level	$\mathrm{d}=0.3 \%$	2	2.5		Vrms
Rout	Output Resistance		10	40	70	Ω
Vout	DC Voltage Level			3.8		V
BUS INPUTS						
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				1	V
V_{IH}	Input High Voltage		3			V
In	Input Current		-5		+5	mA
V_{O}	Output Voltage SDA Acknowledge	$\mathrm{I} \mathrm{O}=1.6 \mathrm{~mA}$			0.4	V

$3 \quad I^{2} \mathrm{C}$ BUS INTERFACE

Data transmission from microprocessor to the TDA7430/TDA7431 and viceversa takes place through the 2 wires $I^{2} C$ BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

3.1 Data Validity

As shown in fig. 8, the data on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

3.2 Start and Stop Conditions

As shown in fig. 9 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

3.3 Byte Format

Every byte transferred on the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

3.4 Acknowledge

The master ($\mu \mathrm{P}$) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see fig. 10). The peripheral (audioprocessor) that acknowledges has to pull-down (LOW) the SDA line during this clock pulse.
The audioprocessor which has been addressed has to generate an acknowledge after the reception of each byte, otherwise the SDA line remains at the HIGH level during the ninth clock pulse time. In this case the master transmitter can generate the STOP information in order to abort the transfer.

3.5 Transmission without Acknowledge

Avoiding to detect the acknowledge of the audioprocessor, the $\mu \mathrm{P}$ can use a simpler transmission: simply it waits one clock without checking the slave acknowledging, and sends the new data.
This approach of course is less protected from misworking.

Figure 8. Data validity on the $\mathrm{I}^{2} \mathrm{C}$ bus

Figure 9. Timing Diagram of $I^{2} \mathrm{C}$ bus

Figure 10. Acknowledge on the $\mathrm{I}^{2} \mathrm{C}$ bus

4 SOFTWARE SPECIFICATION

4.1 Interface Protocol

The interface protocol comprises:

- A start condition (S)
- A chip address byte, containing the TDA7430/TDA7431 address
- A subaddress bytes
- A sequence of data (N byte + achnowledge)
- A stop condition (P)

Figure 11.

5 EXAMPLES

5.1 No Incremental Bus

The TDA7430/TDA7431 receives a start condition, the correct chip address, a subaddress with the MSB $=0$ (no incremental bus), N -datas (all these datas concern the subaddress selected), a stop condition.

Figure 12.

5.2 Incremental Bus

The TDA7430/TDA7431 receives a start condition, the correct chip address, a subaddress with the MSB $=1$ (incremental bus): now it is in a loop condition with an autoincrease of the subaddress whereas SUBADDRESS from "1XXX1010" to "1XXX1111" of DATA are ignored. The DATA 1 concern thesubaddress sent, and the DATA 2 concern the subaddress sent plus one in the loop etc, and at the end it receivers the stop condition.

Figure 13.

6 DATA BYTES

Address $=80(H E X)$ ADDR open; 82 (HEX): need to connect supply

6.1 Function Selection

Table 6. The first byte (Subaddress)

MSB	\bigcirc					LSB		SUBADDRESS
D7	D6	D5	D4	D3	D2	D1	D0	
B	X	X	X	0	0	0	0	INPUT ATTENUATION
B	X	X	X	0	0	0	1	SURROUND \& OUT \& EFFECT CONTROL
B	X	X	X	0	0	1	0	PHASE RESISTOR
B	X	X	X	0	0	1	1	BASS \& NATURAL BASE
B	X	X	X	0	1	0	0	MIDDLE \& TREBLE
B	X	X	X	0	1	0	1	SPEAKER ATTENUATION "L"
B	X	X	X	0	1	1	0	SPEAKER ATTENUATION "R"
B	X	X	X	0	1	1	1	AUX ATTENUATION "L"
B	X	X	X	1	0	0	0	AUX ATTENUATION"R"
B	X	X	X	1	0	0	1	INPUT MULTIPLEXER, \& AUX OUT

$B=1$ incremental bus; active
$B=0$ no incremental bus;
$\mathrm{X}=$ indifferent 0,1

Table 7. INPUT ATTENUATION SELECTION

INPUT ATTENUATION $=0 \sim-31.5 \mathrm{~dB}$

Table 8.

D7	D6	D5	D4	D3	D2	D1	D0	REAR SWITCH
X	0							REARIN, REAROUT PIN ACTIVE
X	1							NO REARIN, REAROUT PIN

Table 9. SURROUND SELECTION

Table 10. PHASE RESISTOR SELECTION

Table 11. BASS SELECTION

MSB								
D7	D6	D5	D4	D3	D2	D1	D0	B DB STEPS
				0	0	0	0	-14
				0	0	0	1	-12
				0	0	1	0	-10
				0	0	1	1	-8
				0	1	0	0	-6
				0	1	0	1	-4
				0	1	1	0	-2
				1	1	1	1	0
				1	1	1	1	0
				1	1	0	0	0

Table 12. SPEAKER/AUX ATT. R \& L SELECTION

X = INDIFFERENT 0,1
SPEAKER/AUX ATTENUATION $=0 \mathrm{~dB} \sim-79 \mathrm{~dB}$

Table 13. MIDDLE \& TREBLE SELECTION

Table 14. VOICE CANCELLER/INPUT/RECOUT L \& R SELECTION

Table 15.

POWER ON RESET	
BASS \& MIDDLE	2 dB
TREBLE	OdB
SURROUND \& OUT CONTROL+ EFFECT CONTROL	OFF + FIX + MAX ATTENUATION
SPEAKER/AUX ATTENUATION L \&R	MUTE
INPUT ATTENUATION + REAR SWITCH	MAX ATTENUATION + ON
NATURAL BASE	OFF
INPUT	IN1

Figure 14. PINS: L-OUT, R-OUT, RECOUT-L, RECOUT-R,

Figure 15. PIN: HP1

Figure 16. PIN: HP2

Figure 17. PIN: VAR-L, VAR-R,

Figure 18. PIN: L-IN, R-IN, L-IN2, R-IN2, L-IN3, R-IN3, L-IN4, R-IN4,

Figure 19. PIN: LP1

Figure 20. PIN: CREF

Figure 21. PIN: SCL, SDA

Figure 22. PIN: PS1, PS2, PS3, PS4, LP

Figure 23. PIN: ADDR

Figure 24. PIN: REARIN

Figure 25. PIN: MIX

Figure 26. PINS: REAEROUT, BASSO-L, BASSO-R

Figure 27. BASS-LI, BASS-RI, MIDDLE-L, MIDDLE-RII

Figure 28. PIN: BASS-LO, BASS-RO, MIDDLELO, MIDDLE-RO,

Figure 29. PIN:TREBLE-L, TREBLE-R,

Figure 31. NBLIN, NBRIN

Figure 32. NBLO, NBRO

Figure 30. PIN VOUT REF,

Figure 33. TQFP44 (10 x 10) Mechanical Data \& Package Dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
B	0.30	0.37	0.45	0.012	0.015	0.018
C	0.09		0.20	0.004		0.008
D	11.80	12.00	12.20	0.464	0.472	0.480
D1	9.80	10.00	10.20	0.386	0.394	0.401
D3		8.00			0.315	
E	11.80	12.00	12.20	0.464	0.472	0.480
E1	9.80	10.00	10.20	0.386	0.394	0.401
E3		8.00			0.315	
e		0.80			0.031	
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	
k		$0^{\circ}(m i n),. 3.5^{\circ}($ typ. $), 7^{\circ}(m a x)$.				

OUTLINE AND
MECHANICAL DATA

Figure 34. SDIP42 Mechanical Data \& Package Dimensions

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			5.08			0.20
A1	0.51			0.020		
A2	3.05	3.81	4.57	0.120	0.150	0.180
B	0.38	0.46	0.56	0.0149	0.0181	0.0220
B1	0.89	1.02	1.14	0.035	0.040	0.045
c	0.23	0.25	0.38	0.0090	0.0098	0.0150
D	36.58	36.83	37.08	1.440	1.450	1.460
E	15.24		16.00	0.60		0.629
E1	12.70	13.72	14.48	0.50	0.540	0.570
e		1.778			0.070	
e1		15.24			0.60	
e2			18.54			0.730
e3			1.52			0.060
L	2.54	3.30	3.56	0.10	0.130	0.140

OUTLINE AND
MECHANICAL DATA

Table 16. Revision History

Date	Revision	Description of Changes
January 2004	9	First Issue in EDOCS DMS
June 2004	10	Changed the Style-sheet in compliance to the new "Corporate Technical Pubblications Design Guide"

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com

