fircher elektronik – E

to cool to protect to connect

f.con.e 14/15 Sockets Connectors

Brackets

art. no. 1706 G	1 0	art. no. BL KG 3	page G 53	art. no. DB 37 SMD TR	page 15	art. no. DIL 08 SMD SK5 Z	page F 8
1831 Z		BL LP 1	G 51	DB 37 5MD 1K DB 37 T	12	DIL 10 G	Fć
ASL 06 SMD		BL LP 2	G 51	DB 37 WW 3	13	DIL 10 M	F 2
ASL 08 SMD		BL LP 3	G 51	DB 57 WW 5	13	DIL 10 U	F 3
ASL 10 SMD		BL LP 4	G 51	DB 50 LA	13	DIL 14 E	E 4
ASL 12 SMD		BL LP 5 SMD	G 57	DB 50 LA DB 50 T	14	DIL 14 C	F ć
ASL 12 SMD		BL LP 6 SMD	G 57	DB 50 WW 3	12	DIL 14 0	F 2
ASL 14 SMD		BLM 1 SMD	G 73	DB 50 WW 5	11	DIL 14 M DIL 14 N	F 2
			G 73	DB BK 09 DB BK 09 LP	12	DIL 14 N DIL 14 O	F 2
ASL 20 SMD		BLM 2 SMD BLM 3 SMD	G 73	DB BK 15			F 2 F 3
ASL 26 SMD ASL 34 SMD		BLM KG 1	G 73 G 71	DB BK 15 DB BK 15 LP	11	DIL 14 P DIL 14 PEK	F G
		BLM KG 2	G 71	DB BK 25		DIL 14 PER DIL 14 U	F 4
ASL 40 SMD		BLM LA 1		DB BK 25 LP			Fd
ASL 50 SMD			G 71		12	DIL 14 W 90	
ASLA 06 G		BLM LG 1	G 71	DB BK 37	11	DIL 16 06 E Z	F 5
ASLA 08 G		BLM LG 2	G 71	DB BK 37 LP	12	DIL 16 06 H Z	F 5
ASLA 10 G		BLP 1	G 66	DB BK 50	11	DIL 16 E	F 4
ASLA 12 G		BLP 2	G 66	DBM 13K3 L20	14	DIL 16 G	Fé
ASLA 14 G		BLR 1 025 Z	G 72	DBM 3K3 L20	114	DIL 16 M	F 2
ASLA 16 G		BLR 1 050 Z	G 72	DBM 7K2 L20	114	DIL 16 N	F 2
ASLA 20 G		BLR 2 050 Z	G 72	DB WE 3	15	DIL 16 O	F 2
ASLA 26 G		BLR 2 100 Z	G 72	DB WE 4	15	DIL 16 P	F 3
ASLA 34 G		BLR 3 025 Z	G 72	DB WK	15	DIL 16 PEK	F 4
ASLA 40 G	=	BLR 3 050 Z	G 72	DB WMV 4	15	DIL 16 Q	F 3
ASLA 50 G	=	BLR 4 100 Z	G 72	DB WP 9	17	DIL 16 SMD M	F 8
ASLG 06		BLR 6 SMD 100 Z	G 74	DB WP 15	117	DIL 16 SMD SK5 Z	F 8
ASLG 08		BLR 7 SMD 50 Z	G 74	DB WP 25	117	DIL 18 06 E Z	F 5
ASLG 10	H 2	BLY 1	G 67	DB WR	15	DIL 18 06 H Z	F 5
ASLG 12	H 2	BLY 2	G 67	DB WR 3	16	DIL 18 E	F⊿
ASLG 14	H 2	BLY 3	G 67	DB WR 4	16	DIL 18 M	F 2
ASLG 16		BLY 4	G 67	DDH 3 E	L 6	DIL 20 E	F 4
ASLG 20		BLY 5 SMD	G 68	DDH 3 M	L 6	DIL 20 G	Fά
ASLG 26		BLY 6 SMD	G 68	DDH 3 R	L 6	DIL 20 M	F 2
ASLG 34		BLY 8 SMD	G 69	DDH 5 E	L 7	DIL 20 O	F 2
ASLG 40		BLY 9 SMD	G 70	DDH 5 L	L 7	DIL 20 Q	F 3
ASLG 50		CAB 3 06 03 Z	F 15	DDH 3L	L 6	DIL 20 SMD M	F 8
BADM 09		CAB 3 08 03 Z	F 15	DF 1 MK 9 Z	G 75	DIL 20 SMD M DIL 20 SMD SK5 Z	F 8
BADM 15		CAB 3 12 03 Z	F 15	DF 1 MK 9 Z DF 2 MK 9 Z	G 75	DIL 20 3MD 3K5 2 DIL 22 03 M	F 2
BADM 15 BADM 25		CAB 3 12 03 Z	F 15	DF 2 OK 9 Z	G 75 G 75	DIL 22 03 M DIL 22 M	F 2
BADM 25 BADM 37		CAB 3 14 03 Z		DF OB 06	G 75 G 75	DIL 22 M DIL 22 O	F 2
BADM 37 BADP 09		CAB 3 16 03 Z CAB 4 G	F 15		G 75 G 75	DIL 22 O DIL 22 U	
		CAB 4 G	G 76	DF OB 07		DIL 22 0 DIL 24 03 M	FG
BADP 15			G 76	DF OB 10	G 75		F 2
BADP 25		CAB 5 05 G	G 76	DF OB 17	G 75	DIL 24 03 SMD M	F 8
BADP 37		CAB 5 10 G	G 76	DH 3 R	L 5	DIL 24 04 M	F 2
BADP 50		CAB 5 Z	G 76	DH 3 V	L 4	DIL 24 M	F
BK 01 32		CAB 6 05 G	G 76	DH 3 W	L 5	DIL 24 U	F
BL 1		CAB 6 10 G	G 76	DH 5 R	L 5	DIL 28 03 M	F 2
BL 2		CAB 6 Z	G 76	DH 5 SRC	L 4	DIL 28 E	F 4
BL 3		CAB 9 G	G 77	DH 5 VC	L 4	DIL 28 M	F 2
BL 4		CAB 10 G S	G 77	DH 5 W	L 5	DIL 28 SMD M	F 8
BL 5		CAB 11 G S	G 77	DH 09	121		F ₄
BL 5 025	G 53	CAB 15 G S	G 77	DH 15	21	DIL 32 M	F2
BL 6	G 53	CB 1	F 14	DH 25	21	DIL 36 M	FΩ
BL 6 025	G 53	CB 3	F 14	DH 37	I 21	DIL 40 E	F
3L 7	G 53	CB 6	F 14	DH 50	121	DILS 04 PK 5	Fα
3L 8		DB 9 P	116	DH SG 09	118	DILS 06 PK 3	Fd
SL 9		DB 15 P	116	DH SG 15	118		F
BL 10		DB 25 P	116	DH SG 25	118	DILS 08 GB LO	F
BL 11 254		DB 37 P	116	DH SG 37	118		F
BL 11 508		DB 09 L	13	DH SG 50	118	DILS 14 GA LO	F
BL 12 650		DB 09 LA	13	DH SV 09	119	DILS 14 GB LO	F
BL 12 762		DB 09 SMD TR	115	DH SV 15	119	DILS 14 GO	F
BL 13		DB 09 T	113	DH SV 25	119		F
BL 14		DB 09 WW 3	12	DH SV 25	119	DILS 16 6 PK 3	F
BL 15 SMD 043		DB 15 L	3	DH SV 50	119		F J
		DB 15 LA					
BL 15 SMD 089			4	DIL 4 OR	F 5	DILS 16 GB LO	F
BL 16 SMD 067		DB 15 SMD TR	115	DIL 6 E	F 4		F
BL 16 SMD 113		DB 15 T	2	DIL 6 M	F 2	DILS 16 PK 3	F
BL 17 SMD		DB 15 WW 3	13	DIL 6 P	F 3	DILS 16 PK 5	F
BL 18 141		DB 25 L	13	DIL 8 1 OR	F 5	DILS 18 GA LO	F
BL 18 219		DB 25 LA	4	DIL 8 2 OR	F 5		F
BL 19 141		DB 25 SMD TR	15	DIL 8 E	F 4	DILS 18 GO	F
	G 56	DB 25 T	12	DIL 8 G	F 6		F
					F 0		E -
		DB 25 WW 3	13	DIL 8 M	F 2	DILS 24 GA LO	Г
BL 19 219 BL 20 SMD BL 21 650		DB 25 WW 3 DB 37 L	3	DIL 8 M DIL 8 O	F 2 F 2		F 7 F 7

art. no.	page	art. no.	page	art. no.	page	art. no.	page
DILS 28 6 PK 3	F 7	FD S 15 L 1000	110	КНРС 016	K 8	КНРС 398 О	K 23
DILS 28 GB LO	F 7	FD S 15 T 1000	19	КНРС 017	К 9	КНРС 404	K 23
DILS 28 GO	F 7	FD S 25 L 1000	110	КНРС 018	K 15	KHPC 407	K 23
DILS 40 6 PK 3	F 7	FD S 25 T 1000	19	КНРС 019	K 14	КНРС 439	K 24
DILS 40 GA LO	F 7	FD S 37 L 1000	110	КНРС 022	K 16	KHPC 454	K 11
DILS 40 GB LO	F 7	FD S 37 T 1000	19	КНРС 024	K 14	КНРС 455	K 15
DILS 40 GO	F 7	FLMP 06	Η 5	KHPC 026	K 17	KK 04 Z	Η 9
DLH 21 AGEH	L 7	FLMP 08	H 5	KHPC 027	K 17	KK 06 Z	H 9
DLH 21 ASEH	L 7	FLMP 10	H 5	KHPC 028	K 17	KK 08 Z	H 9
DLH 21 AYEH	L 7	FLMP 12	H 5	KHPC 029	K 20	KK 10 Z	H 9
DS 9 P	116	FLMP 14	H 5	KHPC 031	K 19	KK 10 Z	H 9
DS 15 P	116	FLMP 14	H 5	KHPC 032	K 19	KK 12 Z KK 14 Z	H 9
DS 25 P	116	FLMP 20	H 5	KHPC 032	K 19	KK 14 Z KK 16 Z	H 9
DS 37 P				KHPC 033			
	116	FLMP 26	H 5		K 20	KK 18 Z	H 9
DS 09 L	13	FLMP 34	H 5	KHPC 035	K 19	KK 20 Z	H 9
DS 09 LA	4	FLMP 40	H 5	KHPC 036	K 20	KK 24 Z	H 9
DS 09 SMD TR	115	FLMP 50	H 5	KHPC 038	K 13	KK 28 Z	H 9
DS 09 T	12	FV 03	H 4	КНРС 040	K 14	KK 40 Z	H 9
DS 09 WW 3	13	FV 04	H 4	КНРС 041	K 13	KK W	H 10
DS 15 L	3	FV 05	H 4	КНРС 042	K 16	KT 0915	I 22
DS 15 LA	4	FV 06	H 4	КНРС 043	K 18	KT 2550	I 22
DS 15 SMD TR	115	FV 07	H 4	KHPC 051	K 20	KT SV	I 20
DS 15 T	12	FV 08	H 4	КНРС 052	K 17	LB 02 G	F 14
DS 15 WW 3	3	FV 10	H 4	КНРС 053	K 10	LB 03 G	F 14
DS 25 L	3	FV 12	H 4	КНРС 054	K 17	LB 04 G	F 14
DS 25 LA	4	FV 13	H 4	KHPC 058	K 19	LB 06 G	F 14
DS 25 SMD TR	115	FV 14	H 4	KHPC 061	K 13	LB SL 0508	F 15
DS 25 T	12	FV 16	H 4	KHPC 065	K 11	LB SL 0762	F 15
DS 25 WW 3	13	FV 17	H 4	KHPC 069	K 15	LB SL 1016	F 15
DS 37 L	13	FV 18	H 4	KHPC 070	K 17	LB SL 1524	F 15
DS 37 LA	4	FV 20	H 4	KHPC 072	K 10	LB SL LP 039 SMD	F 16
DS 37 SMD TR	115	FV 24	H 4	KHPC 072	K 14	LB SLY 06	F 15
DS 37 T	12	FV 25	H 4	KHPC 075	K 14	LEB 01 G	F 14
DS 37 WW 3	12	HD B 15 L	17	KHPC 076	K 10	LEB 02 G	F 14
DS 50 L	13	HD B 15 T	18	KHPC 078		LEB 02 G	F 14
					K 13		
DS 50 LA	4	HD B 26 L	17	KHPC 085	K 22	LL 30 HRP	L 8
DS 50 T	12	HD B 26 T	18	KHPC 093	K 8	LL 30 HRS	L 8
DS 50 WW 3	13	HD B 44 L	17	KHPC 094	K 8	LL 30 PRB 032	L9
DS BK 09	11	HD B 44 T	18	KHPC 095	K 9	LL 30 PRB 064	L 9
DS BK 09 LP	112	HD \$ 15 L	17	КНРС 096	K 8	LL 30 PRB 089	L 9
DS BK 15	11	HD S 15 T	18	КНРС 131	К 9	LL 30 PRL 032	L 9
DS BK 15 LP	112	HD S 26 L	17	КНРС 138	K 11	LL 30 PRL 064	L 9
DS BK 25	11	HD S 26 T	18	КНРС 141	K 11	LL 30 PRL 089	L 9
DS BK 25 LP	112	HD S 44 L	17	КНРС 142	K 10	LL 30 PRL 127	L 9
DS BK 37	111	HD S 44 T	18	КНРС 143	K 11	LL 30 PRL 159	L 9
DS BK 37 LP	112	HFD 09	124	КНРС 144	K 11	LL 30 VRFS 024	L 9
DS BK 50	11	HFD 15	124	КНРС 160	K 11	LL 30 VRFS 050	L 9
DSM 13K3 L20	113	HFD 25	124	КНРС 177	K 12	LL 30 VRFS 075	L 9
DSM 3K3 L20	113	HFD 37	24	КНРС 178	K 12	LL 30 WRFP 038	L 8
DSM 7K2 L20	113	HFK B 09	124	КНРС 179	K 12	LL 30 WRFP 050	L 8
DS WE 3	5	HFK B 15	124	КНРС 185	K 13	LL 30 WRFP 076	L 8
DS WE 4	15	HFK B 25	24	КНРС 187	K 13	LL 30 WRFP 102	L 8
DS WK	5	HFK S 09	124	КНРС 188	K 14	LL 35 HVS	L 8
DS WMV 4	15	HFK S 15	124	КНРС 189	K 13	LL 60 WRB 254	L 9
DS WP 9	117	HFK S 25	124	КНРС 200	K 15	MAH 31	L 2
DS WP 15	117	ISQ 04	F 13	KHPC 218	K 15	MAH 41	L 2
DS WP 25	117	ISQ 05	F 13	KHPC 225	K 15	MAH 51	L 2
DS WR	15	ISQ 06	F 13	KHPC 229	K 16	MAH 61	L 2
DS WR 3	16	ISQ 07	F 13	KHPC 230	K 16	MAH 71	L 2
DS WR 4	16	ISQ 08	F 13	KHPC 241	K 16	MAH 81	L 2
D W 9 37	H 10	KHPC 0 L	К 3	KHPC 242	K 16	MAH 89	L 2
FD A 09 1000	19	KHPC 0 O	К З	KHPC 243	K 17	MAH 99	L 2
FD A 15 1000	19	KHPC 002	K 8	KHPC 262	K 18	MAH 301	L 3
	19						
FD A 25 1000			K 8	KHPC 267	K 20	MAH 302	L 3
FD A 37 1000	19	KHPC 005	K 11	KHPC 270	K 19	MAH 303	L 3
FD B 09 L 1000	10	KHPC 006	K 10	KHPC 271	K 19	MAH 304	L 3
FD B 09 T 1000	19	KHPC 007	K 8	KHPC 277	K 20	MAH 305	L 3
FD B 15 L 1000	110	KHPC 008	K 8	KHPC 295	K 20	MAH 306	L 3
FD B 15 T 1000	19	КНРС 009	K 10	KHPC 308	K 20	MAH 307	L 3
FD B 25 L 1000	110	KHPC 010	K 8	KHPC 325	K 21	MAH 308	L 3
FD B 25 T 1000	19	KHPC 011	K 8	KHPC 335	K 22	MAH 309	L 3
FD B 37 L 1000	110	KHPC 012	K 10	KHPC 365	K 23	MAH 310	L 3
FD B 37 T 1000	19	KHPC 013	К 9	КНРС 390	K 22	MAH 401	L 2
	9 10	КНРС 014	K 9 K 8	КНРС 390 КНРС 391	K 22 K 22	MAH 402	L 2
FD B 37 T 1000							

art. no.	page	art. no.	page	art. no.	page	art. no.	page
MAH 404	L 2	MK LP 242	G 5	PVY 50	H 7	SL 3 182	G 9
MAH 405	L 2	PCI 0 L	К З	PVY W	H 10	SL 3 207	G 9
MAH 406	L 2	PCI 0 O	К 3	QS 25 GS	F 13	SL 4 025	G 9
MAH 407	L 2	PCI 004	K 7	RS HH	19	SL 4 101	G 9
MAH 408	L 2	PCI 005	K 7	RS SH 3	19	SL 4 152	G 9
MAH 409	L 2	PCI 006 O	К 7	RS SH 4	19	SL 5 071	G 13
MAH 410	L 2	PCI 011	К 9	RS SH D	120	SL 5 097	G 13
MAH 501	L 3	PCI 012	К 9	SB 1	F 19	SL 5 121	G 13
MAH 502	L 3	PCI 013	K 10	SB 2	F 19	SL 5 147	G 13
MAH 503	L 3	PCI 014	K 14	SB 3	F 19	SL 5 156	G 13
MAH 504	L 3	PCI 015	K 14	SB 4	F 19	SL 5 172	G 13
MAH 505	L 3	PCI 016 L	K 17	SB 5	F 19	SL 5 197	G 13
MAH 506	L 3	PCI 017	K 17	SB 6	F 19	SL 5 223	G 13
MAH 508	L 3	PCI 018	K 17	SB 9	F 20	SL 5 237	G 13
MAH 509	L 3 L 3	PCI 020	K 18	SB 12	F 20	SL 5 285	G 13
MAH 510 MIC 03	F 8	PCI 021 PCI 031 O	K 21 K 12	SB 13 SB 15	F 20 F 20	SL 5 315 SL 5 360	G 13 G 13
MIC 05 MIC 06	F 8	PCI 031 0	K 12 K 12	SB 16	F 20 F 20	SL 5 415	G 13
MK 01	G 45	PCI 032 PCI 033	K 12 K 13	SBAU 1 04	F 20 H 8	SL 5 525	G 13
MK 01 MK 02	G 43 G 2	PCI 035	K 13 K 19	SBAU 1 06	H 8	SL 5 525 SL 6 071	G 13
MK 02 MK 03	G 2 G 2	PCI 035	К 9	SBAU 1 08	H 8	SL 6 097	G 13
MK 03 MK 04	G 2	PCI 039 0	K 10	SBAU 1 10	H 8	SL 6 121	G 13
MK 04 MK 05	G 2	PCI 041	K 10	SBAU 1 12	H 8	SL 6 147	G 13
MK 05 MK 06	G 46	PCI 045	K 14 K 15	SBAU 1 14	H 8	SL 6 156	G 13
MK 00 MK 07	G 46	PCI 047	K 13	SBAU 1 16	H 8	SL 6 172	G 13
MK 07 MK 08	G 3	PCI 055	K 23	SBAU 1 17	H 8	SL 6 197	G 13
MK 00 MK 10	G 3	PCI 055	K 12	SBAU 1 18	H 8	SL 6 223	G 13
MK 12 X 2	G 45	PCI 005	K 12	SBAU 1 20	H 8	SL 6 237	G 13
MK 12 X 2 MK 13 X 1	G 45	PCI 072	K 18	SBAU 06 S	H 8	SL 6 285	G 13
MK 13 X 2	G 45	PCI 076	K 18	SBAU 10 S	H 8	SL 6 315	G 13
MK 14 X 1	G 4	PCI 077	K 18	SBAU 14 S	H 8	SL 6 360	G 13
MK 14 X 2	G 4	PCI 083	K 21	SBAU 16 S	H 8	SL 6 415	G 13
MK 14 X 3	G 4	PCI 104	K 22	SBAU 20 S	H 8	SL 6 525	G 13
MK 15	G 4	PCI LP L	K 4	SBAU 26 S	H 8	SL 7	G 6
MK 17	G 45	PCI LP O	K 4	SBAU 34 S	H 8	SL 8	G 6
MK 21	G 54	PCI R1	К 6	SB W	H 10	SL 9	G 6
MK 22 SMD	G 62	PEK G	F 17	SIL 1	G 49	SL 10 SMD 040	G 21
MK 23 SMD	G 64	PF 53	F 10	SIL 2	G 49	SL 10 SMD 052	G 21
MK 24 SMD	G 63	PF 54	F 10	SIL 3	G 49	SL 10 SMD 062	G 21
MK 25 SMD	G 63	PF 58 2	F 10	SK 02	F 18	SL 10 SMD 078	G 21
MK 26 SMD	G 18	PF 58 23	F 10	SK 03	F 18	SL 10 SMD 104	G 21
MK 27 SMD	G 20	PF 510	F 11	SK 04 Z	F 18	SL 10 SMD 130	G 21
MK 51	G 4	PK 1	F 17	SK 05	F 18	SL 11 097	G 7
MK 201	G 45	PK 4 Z	F 18	SK 06	F 17	SL 11 112	G 7
MK 202	G 2	PLCC 20	F 9	SK 08 G	F 18	SL 11 124	G 7
MK 203	G 2	PLCC 20 SMD	F 9	SK 13 X 2 G	F 17	SL 11 139	G 7
MK 204	G 2	PLCC 28	F 9	SK 14 X 2	F 18	SL 11 164	G 7
MK 205	G 2	PLCC 28 SMD	F 9	SK 19	F 17	SL 11 190	G 7
MK 207	G 46	PLCC 32	F 9	SK 40 G	F 18	SL 11 214	G 7
MK 208	G 3	PLCC 32 SMD	F 9	SK 41	F 18	SL 11 240	G 7
MK 210	G 3	PLCC 44	F 9	SK 42	F 18	SL 11 265	G 7
MK 212 X 2	G 45	PLCC 44 SMD	F 9	SKB 5 Z	F 17	SL 11 316	G 7
MK 213 X 1	G 45	PLCC 52	F 9	SKB 9 Z	F 17	SL 11 SMD 040	G 22
MK 213 X 2	G 45	PLCC 52 SMD	F 9	SL 1 025	G 7	SL 11 SMD 052	G 22
MK 214 X 1	G 4	PLCC 68	F 9	SL 1 053	G 7	SL 11 SMD 062	G 22
MK 214 X 2 MK 214 X 3	G 4	PLCC 68 SMD PLCC 84	F 9 F 9	SL 1 078	G 7	SL 11 SMD 078	G 22 G 22
MK 214 X 3 MK 217	G 4 G 45	PLCC 84 SMD	F 9 F 9	SL 1 104 SL 1 128	G 7 G 7	SL 11 SMD 104 SL 11 SMD 130	G 22 G 22
MK 220 SMD	G 45 G 65	PO A	G 48	SL 1 154	G 7	SL 12 SMD 031	G 22 G 23
MK 220 SMD MK 221	G 54	PQ 18	F 13	SL 1 179	G 7		G 23
MK 222 SMD	G 62	PQ 18 W	F 13	SL 1 230	G 7	SL 12 SMD 032	G 23
MK 223 SMD	G 64	PSB 03 G	F 14	SL 2 025	G 7	SL 12 SMD 005	G 23
MK 226 SMD MK 226 SMD	G 19	PV 06	H 6	SL 2 053	G 7	SL 12 SMD 083	G 23
MK 228 THR	G 47	PV 10	H 6	SL 2 078	G 7		G 23
MK 220 111K MK 251	G 4	PV 14	H 6	SL 2 104	G 7	SL 13 071	G 14
MK LP 18	G 46	PV 16	H 6	SL 2 128	G 7		G 14
MK LP 19	G 46	PV 20	H 6	SL 2 154	G 7	SL 13 122	G 14
MK LP 40	G 5	PV 26	H 6	SL 2 179	G 7		G 14
MK LP 41	G 5	PV 34	H 6	SL 2 230	G 7	SL 13 187	G 14
MK LP 42	G 5	PV 40	H 6	SL 3 025	G 9	SL 13 235	G 14
MK LP 43	G 5	PV 50	H 6	SL 3 053	G 9	SL 13 265	G 14
MK LP 218	G 46	PV W	H 10	SL 3 080	G 9	SL 13 310	G 14
MK LP 219	G 46	PVY 20	Η 7	SL 3 101	G 9	SL 13 365	G 14
MK LP 240	G 5	PVY 40	Η 7	SL 3 131	G 9	SL 14 071	G 14
MK LP 241	G 5	PVY 44	Η 7	SL 3 152	G 9	SL 14 097	G 14

art. no.	page	art. no.	page	art. no.	page	art. no.	page
SL 14 122	G 14	SLM N 1 063	G 37	SLV W 2 KA 030 16	G 39	SSK S 37	I 25
SL 14 147	G 14	SLM N 1 092	G 37	SLV W 2 KA 030 20	G 39	TF 53	F 12
SL 14 187	G 14	SLM N 1 117	G 37	SLV W 2 KA 030 26	G 39	TF 54	F 12
SL 14 235	G 14	SLM N 11 063	G 37	SLV W 2 KA 030 30	G 39	TF 56	F 12
SL 14 265	G 14	SLM N 11 117	G 37	SLV W 2 KA 030 34	G 39	TF 58	F 12
SL 14 310	G 14	SLP 1 16 117	G 28	SLV W 2 KA 030 40	G 39	TF 183	F 12
SL 14 365	G 14	SLP 1 16 129	G 28	SLV W 2 KA 030 50	G 39	TF 184	F 12
SL 15 SMD 107	G 27	SLP 1 16 144	G 28	SLV W 2 KA 030 72	G 39	TF 510	F 12
SL 15 SMD 182	G 27	SLP 1 16 195	G 28	SLV W 2 KA 054 10	G 39	TF 512	F 12
SL 15 SMD 207	G 27	SLP 1 32 139	G 28	SLV W 2 KA 054 14	G 39	TF G	F 17
SL 16 SMD 107	G 27	SLP 1 32 164	G 28	SLV W 2 KA 054 16	G 39	V	I 23
SL 16 SMD 157	G 27	SLP 2 16 117	G 28	SLV W 2 KA 054 20	G 39	V 2	I 23
SL 16 SMD 182	G 27	SLP 2 16 129	G 28	SLV W 2 KA 054 26	G 39	VBK 1	H 10
SL 16 SMD 207	G 27	SLP 2 16 144	G 28	SLV W 2 KA 054 30	G 39	VFL 06	H 5
SL 16 SMD 247	G 27	SLP 2 16 195	G 28	SLV W 2 KA 054 34	G 39	VFL 08	H 5
SL 17 SMD 058	G 24	SLP 2 32 139	G 28	SLV W 2 KA 054 40	G 39	VFL 10	H 5
SL 17 SMD 083	G 24	SLP 2 32 164	G 28	SLV W 2 KA 054 50	G 39	VFL 12	H 5
SL 17 SMD 109	G 24	SLR 1 025	G 42	SLV W 2 KA 054 72	G 39	VFL 14	H 5
SL 18 042	G 10	SLR 1 050	G 42	SLV W 2 SMD 048	G 40	VFL 16	H 5
SL 18 082	G 10	SLR 2 050	G 42	SLV W 2 SMD 073	G 40	VFL 20	H 5
SL 18 108	G 10	SLR 3 025	G 42	SLV W 3 SMD 048	G 41	VFL 26	H 5
SL 18 132	G 10	SLR 3 050	G 42	SLV W 3 SMD 073	G 41	VFL 34	H 5
SL 19 082	G 10	SLR 4 050	G 42	SLV W 11 055	G 38	VFL 40	H 5
SL 19 108	G 10	SLR 4 100	G 42	SLV W 11 080	G 38	VFL 50	H 5
SL 19 132	G 10	SLR 5 SMD 50 G	G 43	SLV W 11 105	G 38	VG 2	23
SL 20 THR 097	G 8	SLU 10 165	G 16	SLV W 22 055	G 38	WWPS 1 G	F 17
SL 20 THR 112	G 8	SLU 10 191	G 16	SLV W 22 080	G 38	ZEPV 06	H 6
SL 20 THR 124	G 8	SLU 10 241	G 16	SLV W 22 105	G 38	ZEPV 10	Η 6
SL 20 THR 139	G 8	SLU 10 266	G 16	SLY 1 081	G 30	ZEPV 14	Η 6
SL 20 THR 164	G 8	SLU 16 165	G 16	SLY 1 085	G 30	ZEPV 16	H 6
SL 21 THR 097	G 8	SLU 16 191	G 16	SLY 1 098	G 30	ZEPV 20	H 6
SL 21 THR 112	G 8	SLU 16 241	G 16	SLY 1 104	G 30	ZEPV 26	Η 6
SL 21 THR 124	G 8	SLU 16 266	G 16	SLY 1 139	G 30	ZEPV 34	H 6
SL 21 THR 139	G 8	SLU 20 165	G 16	SLY 2 081	G 30	ZEPV 40	H 6
SL 21 THR 164	G 8	SLU 20 191	G 16	SLY 2 085	G 30	ZEPV 50	H 6
SL 22 097	G 7	SLU 20 241	G 16	SLY 2 098	G 30		
SL 22 112	G 7	SLU 20 266	G 16	SLY 2 104	G 30		
SL 22 124	G 7	SLU 26 165	G 16	SLY 2 139	G 30		
SL 22 139	G 7	SLU 26 191	G 16	SLY 3 035	G 30		
SL 22 164	G 7	SLU 26 241	G 16	SLY 3 041	G 30		
SL 22 190	G 7	SLU 26 266	G 16	SLY 3 082 G	G 30		
SL 22 214	G 7	SLU 40 165	G 16	SLY 3 082 Z	G 30		
SL 22 240	G 7	SLU 40 191	G 16	SLY 4 035	G 30		
SL 22 265	G 7	SLU 40 241	G 16	SLY 4 082 G	G 30		
SL 22 316	G 7	SLU 40 266	G 16	SLY 4 082 Z	G 30		
SLK 3 025	G 9	SLU 50 165	G 16	SLY 4 041 G	G 30		
SLK 4 025	G 9	SLU 50 191	G 16	SLY 4 041 Z	G 30		
SL KA 3 072	G 17	SLU 50 241	G 16	SLY 5 040	G 31		
SL KA 3 085	G 17	SLU 50 266	G 16	SLY 5 075	G 31		
SL KA 3 108	G 17	SLUP 31 10	G 29	SLY 5 081 G	G 31		
SL KG 3 113	G 17	SLUP 31 16	G 29	SLY 5 081 Z	G 31		
SL KG 3 126	G 17	SLUP 31 20	G 29	SLY 5 122 G	G 31		
SL KG 3 147	G 17	SLV N 1 055	G 37	SLY 5 122 Z	G 31		
SL LP 1 082	G 11	SLV N 1 080	G 37	SLY 6 040	G 31		
SL LP 1 097	G 11	SLV N 1 105	G 37	SLY 6 075	G 31		
SL LP 1 112	G 11	SLV N 1 130	G 37	SLY 6 081 G	G 31		
SL LP 1 139	G 11	SLV N 11 055	G 37	SLY 6 081 Z	G 31		
SL LP 1 164	G 11	SLV N 11 080	G 37	SLY 6 122 G	G 31		
SL LP 1 190	G 11	SLV N 11 105	G 37	SLY 6 122 Z	G 31		
SL LP 2 082	G 11	SLV W 1 055	G 38	SLY 7 SMD 036	G 33		
SL LP 2 097	G 11	SLV W 1 080	G 38	SLY 7 SMD 045	G 33		
SL LP 2 112	G 11	SLV W 1 105	G 38	SLY 7 SMD 062	G 33		
SL LP 2 139	G 11	SLV W 1 130	G 38	SLY 8 SMD 036	G 34		
SL LP 2 164	G 11	SLV W 1 KA 030	G 39	SLY 8 SMD 045	G 34		
SL LP 2 190	G 11	SLV W 1 KA 055	G 39	SLY 8 SMD 062	G 34		
SL LP 3 041	G 12	SLV W 1 KA 080	G 39	SLY 9 SMD 040	G 35		
SL LP 3 069	G 12	SLV W 1 KA 105	G 39	SLY 9 SMD 040	G 35		
SL LP 4 041	G 12	SLV W 1 KA 105 SLV W 1 SMD 048	G 39 G 40	SLY 10 SMD 040	G 36		
SL LP 4 041 SL LP 4 069	G 12 G 12	SLV W 1 SMD 048 SLV W 1 SMD 073	G 40 G 40	SSK B 09	125		
SL LP 5 SMD 038	G 25	SLV W 1 SMD 073 SLV W 2 055	G 40 G 38		125		
SL LP 5 SMD 038 SL LP 5 SMD 051	G 25 G 25	SLV W 2 035 SLV W 2 080	G 38	SSK B 15	125		
SL LP 5 SMD 051	G 25	SLV W 2 080 SLV W 2 105	G 38	SSK B 25 SSK B 37	125		
SL LP 6 SMD 088	G 25 G 26	SLV W 2 105 SLV W 2 130	G 38		125		
SL LP 6 SMD 038	G 26 G 26	SLV W 2 130 SLV W 2 KA 030 10	G 38 G 39	SSK S 09 SSK S 15	125		
SL LP 6 SMD 051	G 26 G 26	SLV W 2 KA 030 10 SLV W 2 KA 030 14	G 39	SSK S 25	125		
	0 20		0.07		125		

Index

Brackets for PC	K 3-24
Connector-sleeves	F 19-20
Direct female connectors	G 75
D-Sub accessoires	22-25
D-Sub connector for flat ribbon cable	11-12
D-Sub connector in pressfit technology	16-17
D-Sub connectors High Density	7-8
D-Sub filter connector	9-10
D-Sub hoods	18-21
D-Sub in SMD-mounting	15
D-Sub mixed layout connectors	13-14
D-Sub standard connectors	2-6
Female connector	H 4-7
Female headers	G 45-74
High-precision contacts, loose	F 17-18
High-precision sockets and plugs for DIL-IC	F 2-8
Jumper links / Separable jumpers	F 14-16
Jumpers	G 76-77
LED-holders	L 4-7
Light pipes for SMDs	L 8-9
Male headers	G 2-45
Printed circuit connector	H 8-10
Shroud-male header	H 2-3
Sockets for crystal oscillators	F 13
Sockets for IC-PLCC	F 9
Sockets for TO cases	F 10-12
Spacers for LED	L 2-3

Technical introduction for the connector catalogue

General points

Product specified characteristics for the particular article can be found in the category "technical data"! Additional customer specified advice and solution proposals will be supported from the R&D department of company Fischer Elektronik GmbH & Co. KG.

Surface – electroplating processes

In general all contacts are coated with a nickel barrier layer (1,3-3 µm) before they get tinned or gold-plated. This will also apply for selective gold-plated contacts.

For the selective coated contacts the complete contact will be nickel-plated including the carrier strip first. After this the contact side will be gold-plated and the solder side tinned, usually in the "dipping method" or "brush method". Depending on the overall contact length the middle area is exclusively nickel-plated.

The layer thickness of the gold-plating is at least 0,2 µm Au, the layer thickness of the tinning is 4-6 µm! Other layer thicknesses are possible upon request.

The tinning is done with pure tin. The solderability is guaranteed for at least 1 year after shipment. At appropriate storage in closed packing this period can be increased significantly.

Dimensional tolerance

Generally the DIN ISO 2768m is applied to all products! Moreover following additions have to be noticed:

- the length tolerance of contact pins is +/-0,2mm
- the space allowance is +/-0,03mm, the overall space allowance over 36 pins +/-0,2mm
- the shape tolerance of the insulating body is defined by +/-0,15mm
- the separation of number of pins by means of cutting: +0,6mm/-0,3mm
- the separation of number of pins by means of sawing: +0,1mm/-0,4mm (no standard)

Quality grading in conformity with DIN 41652 Depending on the layer thickness of the gold-plating the contacts can be classified in quality classes. A distinction is made in three quality classes:

Quality class 1: at least 500 cycles of operation, layer thickness accordingly at least 1,2µm Au

Quality class 2: at least 200 cycles of operation, layer thickness accordingly at least 0,75µm Au

Quality class 3: at least 50 cycles of operation, layer thickness accordingly at least 0,2µm Au

By tinning contacts max. 10 cycles of operation can be guaranteed by using "tin on tin".

Precision socket contacs

These contacts are two-piece parts and consist on a sleeve (turned part) and a spring element (stamped part). The spring element (Clip) is always gold-plated (depending on the article at least 0,2 µm Au or at least 0,75 µm Au). The sleeve is usually tinned, for some versions also optionally gold-plated (at least 0,2 µm Au).

Contact carrier material made of high-temperature resistant plastic

The plastics used for the male and female headers are mainly high-temperature resistant which means that they are suitable for the use in the reflow soldering technique.

This applies primarily for SMD components as well as for plug connectors which are constructed for wave soldering. In the catalogue those products are marked with a 260°C logo in the header of the particular page.

C

D

F

G

Н

foyer of the company

motivated employees

committed field service

innovative product development

Explanations – references – printings

260°C		plastic of the insulator is suitable for reflow-soldering up to 260 °C
l ∎∎		components are suitable for soldering technique (THT)
•••• ••• ••• 2,54		components are suitable for SMD technique
		components are suitable for press-fit mounting
2,54		components are suitable for the corresponding grid
		index area: shows topics/categories
F		"current"
G		"following"
G 15		page number
Male headers 2.00 THT Male headers 2.54 THT Technical data Flat cable	 → G 50 - 52 → G 8 - 18 → G 72 - 76 → H 11 	footnotes, give references to pages with combinable or similar products
G = gold-plated Z = tin-plated S = selective gold-plated		option for surface finishing

Imprinting of cardholders - Your and our time is expensive

An order for imprinting must state the font, the font size and the exact position of the imprint with dimensions, taking in account of countersunk holes etc.. When placing the first order, the company logo must be supplied as a vector file. If these conditions are not complied with, the order for imprinting may have to be rejected, or additional costs will have to be charged.

Compliance with the following Adobe Illustrator (.ai)	criteria ensures smooth handling:
CorelDraw (.cdr)	without half-tone images, fonts transformed into paths or supplied
Macromedia Free Hand (.fh) QuarkXPress (.qxd)	all fonts enclosed; half-tone images colour-separated (full-tone or scale colours) and with correct resolution (300 dpi colour, black / white 600 dpi), no RGB

All this takes additional time and consequently incurs extra costs. The usability must be checked by our printing shop: In most cases, Adobe Acrobat (.pdf); screen formats (.jpg, .gif, .png) and paper copies, stickers and similar are not suitable for preparing printer's copies!

Copies that definitely cannot be used: Imperfect copies such as fax copies / Microsoft Office files (.doc, .xls, .ppt) can only be used for information or for transmitting texts.

Please always add dimensional drawings (.dxf) to the parts to be imprinted! Please note as a general rule: Retouching work extending beyond the standard time will be invoiced additionally at cost price.

No part of this catalogue may be reproduced or distributed without prior written consent of Fischer Elektronik. All data contained in this catalogue, in texts, illustrations, documents and descriptions are subject to copyright and the provisions of DIN ISO 16016. All rights reserved. © Copyright Fischer Elektronik 1969 ... 2014

Precision sockets and plugs for ICs with high Precision sockets and plugs for ICS with high Precision sockets and plugs for DIL-ICs Customer specified DIL-IC sockets Mounting sockets for discrete components, jumper links and connectors

Precision sockets and plugs for ICs with high PLCC-socket for soldering technology (THT)
PLCC-socket for SMD technology – low profile

- type of packaging: bar magazine

Precision sockets and plugs for DIL-ICs

- precision sockets and plugs in soldering (THT) and SMD technology
- DIL-IC sockets with extractor
- open and closed design

Customer specified DIL-IC sockets

- sockets for LED displays
- Dual-in-line plug in adapter
 IC-sockets partially loaded with oscillators and relays

Mounting sockets for discrete components, jumper links and connectors

- sockets for TO 5 cases
- plug-in sockets for chrystal oscillators jumper links with and without insulators
- precision pins and bushings, bulk
- connectors, with and without insulator

260

2.54

R

D

C

High-precision sockets and plugs for DIL-IC

- other number of contacts upon request!

SMD sockets for PLCC Sockets for TO 5 and TO 3 Jumper links Sockets for crystal oscillators

F 9 F 10 - 11 F 14 - 15 **→** F 13

Single precision contacts Teflon sockets/TO 5 & TO 18 **Connector-sleeves Technical data**

F 17 – 18 → F 12 F 19 – 20 → **→** F 21 – 27

F 2

Downloaded from Arrow.com.

2.54

High-precision sockets and plugs for DIL-IC

.

C

SMD sockets for PLCC Sockets for TO 5 and TO 3 Jumper links Sockets for crystal oscillators $\begin{array}{l} \rightarrow \quad F \ 9 \\ \rightarrow \quad F \ 10 \ - \ 11 \\ \rightarrow \quad F \ 14 \ - \ 15 \\ \rightarrow \quad F \ 13 \end{array}$

Single precision contacts Teflon sockets/TO 5 & TO 18 Connector-sleeves Technical data $\begin{array}{r} \rightarrow \quad F \ 17 - 18 \\ \rightarrow \quad F \ 12 \\ \rightarrow \quad F \ 19 - 20 \\ \rightarrow \quad F \ 21 - 27 \end{array}$

F 3

High-precision sockets and plugs for DIL-IC

Socket layout for various numbers of contacts for DIL-IC, closed frame

DIL-IC-sockets with extractor

B

D

뒥

Ξ

C

Μ

SMD sockets for PLCC	→	F 9	Single precision contacts
Programmable headers	→	F 15	Sockets for LED
Sockets for TO 5 and TO 3	→	F 10 – 11	Connector-sleeves
High-prec. male headers 2.54 THT	→	G 45 – 46	Technical data

260°C

High-precision sockets and plugs for DIL-IC

IC-sockets partially equipped, e.g. for oscillators and relays

LED display sockets of 0.6" pitch

		∞ A • • • • • • • • • • • • • • • • • • •	4,3		
art. no.	no. of	dim. [mm]	art. no.	no. c	
	contacts	A		conta	cts A
DIL 16 06 E Z	16	20.3	DIL 18 06 E Z	18	22.8
		Q Q Q Q Q Q Q Q Q Q Q Q Q Q	L	◆ ◆	
art. no.	no. of	dim. [mm]	art. no.	no. c	
	contacts	A		conta	cts A
DIL 16 06 H Z	16	20.3	DIL 18 06 H Z	18	22.8
contact spring:	,	gold-plated			
contact sleeve:		tin-plated			

N

F 5

Sockets für PLCC Connector-sleeves Sockets for crystal oscillators Mounting tool for DIL/PLCC $\begin{array}{l} \rightarrow & F \ 9 \\ \rightarrow & F \ 19 \ -20 \\ \rightarrow & F \ 13 \\ \rightarrow & F \ 8 \end{array}$

Single precision contacts Jumper links Teflon sockets/TO 5 & TO 18 Technical data $\begin{array}{r} \rightarrow \quad F \ 17 - 18 \\ \rightarrow \quad F \ 14 - 15 \\ \rightarrow \quad F \ 12 \\ \rightarrow \quad F \ 21 - 27 \end{array}$

High-precision sockets and plugs for DIL-IC

LED display sockets in vertical construction

	~
	(((
-2	0
-2023 A.M.	
	-
Chan and a second se	
19.	1
112	
1 Contra	
THE T	

260°

		7,62							
art. no.	no. of	dim. [mm]	art. no.	no. of	dim. [mm]				
	contacts	А		contacts	А				
DIL 8 G Z	8	10.1	DIL 16 G	16	20.3				
DIL 10 G	10	12.7	DIL 20 G	20	25.4				
DIL 14 G	14	17.7							
please indicate:	surface a G = gold Z = tin-p	-plated							

contact spring:

gold-plated

DIL adaptor plugs

DILS 06 PK 3 DILS 14 PK 3	6 14	7.6	5.08	DILS 16 PK 5 DILS 18 PK 5	16	20.3	17.78
DILS 04 PK 5	contacts 4	A 5.0	B 2.54	DILS 16 PK 3	contacts	A 20.3	B 17.78
art. no.	no. of	dim.	[mm]	art. no.	no. of	dim.	[mm]
		2 0,45	3)15		- 2,54 - 2,54 - 2,54 - 5 - 5 - 5 - 5 - 5 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7		$\begin{array}{c} 2,54 \\ \hline \\ $
with .	PK 3		SK 02 (≙	PK 5) F	РК 3	SK 02 (≙ PK 5)

Sockets für PLCC Connector-sleeves Sockets for crystal oscillators Mounting tool for DIL/PLCC $\begin{array}{l} \rightarrow \quad F \ 9 \\ \rightarrow \quad F \ 19 - 20 \\ \rightarrow \quad F \ 13 \\ \rightarrow \quad F \ 8 \end{array}$

Single precision contacts Jumper links Teflon sockets/TO 5 & TO 18 Technical data $\begin{array}{l} \rightarrow \quad F \ 17 \\ \rightarrow \quad F \ 14 - 15 \\ \rightarrow \quad F \ 12 \\ \rightarrow \quad F \ 21 - 27 \end{array}$

F 6

2.54

B

D

Ξ

C

F

Downloaded from Arrow.com.

2.54

High-precision sockets and plugs for DIL-IC

DIL platforms

- suitable for **DIL-cases** DILS ... GA LO

art. no.	no. of		dım. [mm]	art. no.	no. of		dım. [mm]
	contacts	А	В	С		contacts	А	В	C
DILS 08 GO	8	12.4	12.5	7.62	DILS 24 GO	24	32.8	20.1	15.24
DILS 14 GO	14	20.0	12.5	7.62	DILS 28 GO	28	37.8	20.1	15.24
DILS 16 GO	16	22.6	12.5	7.62	DILS 40 GO	40	53.1	20.1	15.24
DILS 18 GO	18	25.2	12.5	7.62					
surface of contact:			gold-plated						

DIL cases - grid spacing 2.54 mm

- suitable for **DIL** plugs DILS ... GO

art. no.		dim. [mm]		art. no.		dim. [mm]	
	В	Н	L		В	Н	L
DILS 08 GA LO	12.5	6.7	12.4	DILS 14 GB LO	12.5	11.7	20.0
DILS 14 GA LO	12.5	6.7	20.0	DILS 16 GB LO	12.5	11.7	22.6
DILS 16 GA LO	12.5	6.7	22.6	DILS 18 GB LO	12.5	11.7	25.2
DILS 18 GA LO	12.5	6.7	25.2	DILS 24 GB LO	20.1	11.7	32.8
DILS 24 GA LO	20.1	6.7	32.8	DILS 28 GB LO	20.1	11.7	37.8
DILS 40 GA LO	20.1	6.7	53.1	DILS 40 GB LO	20.1	11.7	53.1
DILS 08 GB LO	12.5	11.7	12.4				

Sockets für PLCC Connector-sleeves Sockets for crystal oscillators Mounting tool for DIL/PLCC $\begin{array}{l} \rightarrow \quad F \ 9 \\ \rightarrow \quad F \ 19 - 20 \\ \rightarrow \quad F \ 13 \\ \rightarrow \quad F \ 8 \end{array}$

Single precision contacts Jumper links Teflon sockets/TO 5 & TO 18 Technical data $\begin{array}{r} \rightarrow \quad F \ 17 \\ \rightarrow \quad F \ 14 - 15 \\ \rightarrow \quad F \ 12 \\ \rightarrow \quad F \ 21 - 27 \end{array}$

260°C

2.54

R

D

Ξ

C

i.

High-precision sockets and plugs for DIL-IC

SMD-plug for DIL

- with SK 5-contacts
- other number of contacts on request!

art. no.	no. of		dım.	[mm]		art. no.	no. of		dım.	[mm]	
	contacts	A	В	С	D		contacts	А	В	С	D
DIL 08 SMD SK5 Z	8	7.62	10.1	3.5	10.0	DIL 20 SMD SK5 Z	20	7.62	10.1	3.5	25.2
DIL 16 SMD SK5 Z	16	7.62	10.1	3.5	20.1						
surface of contact:			tin-pla	ted							

SMD-socket for DIL-IC

- other number of contacts upon request!

IC-mounting tools - Design DIL

MIC 06 material:	15.24 polyacetole, non-conductive			
MIC 03	7.62			
art. no.	spacing of confact rows [mm]			

Sockets für PLCC	-
Connector-sleeves	-
Sockets for crystal oscillators	-
Mounting tool for DIL/PLCC	-
-	

Single precision contacts Jumper links Teflon sockets/TO 5 & TO 18 Technical data

F 9

F 13

F 8

F 19 - 20

 $\begin{array}{l} \rightarrow \quad F \ 17 \\ \rightarrow \quad F \ 14 - 15 \\ \rightarrow \quad F \ 12 \\ \rightarrow \quad F \ 21 - 27 \end{array}$

F 8

Sockets for IC-PLCC

- PLCC sockets for case design $\,$ EIA/JEDEC TYPE "A" $\,$

- **VPE** = packing unit (pieces/tube)

2

Ξ

C

- data sheet for pin configuration of individual PLCC sockets available upon request
- dual polarity indicators guarantee the correct alignment of the chip
- drainage holes for easier inside cleaning
- test holes are moulded next to each contact

THUMMAN AND AND AND AND AND AND AND AND AND A		+0,45 × 0,25	- D2					2,54	c/03
art. no.	no. of	packing		1	I	dim. [mm]		1	1
	contacts	unit	A 1	A 2	B 1	B 2	С	Ø D1	Ø D2
PLCC 20	20	39	5.08	5.08	15.55	15.55	16.7	10.16	10.16
PLCC 28	28	33	7.62	7.62	18.10	18.10	20.3	12.70	12.70
PLCC 32	32	29	7.62	10.16	18.10	20.70	22.2	12.70	15.24
PLCC 44	44	25	12.70	12.70	23.20	23.20	27.5	17.78	17.78
PLCC 52	52	23	15.24	15.24	25.70	25.70	31.0	20.32	20.32
PLCC 68	68	19	20.32	20.32	30.80	30.80	37.3	25.40	25.40
PLCC 84	84	16	25.40	25.40	36.00	36.00	44.5	30.48	30.48
surface of contact:		tin-	plated						

SMD sockets for PLCC - low profile housing

- these PLCC sockets conform to case designs EIA/JEDEC TYPE "A"
- **VPE** = packing unit (pieces/tube)*dimensions ±0.2 mm; tin-plated phosphorbronze socket contacts
- dual polarity indicators guarantee the correct alignment of the chip
- drainage holes for easier inside cleaning
- test holes are moulded next to each contact
- efficient heat dissipation
- packing: bar magazine

	Ø		B ±0.2 D ±0.2 + + + + - - - - - - - - - - - - - - -	A	0 <mark>1</mark>	4	
art. no.	no. of	packing unit			dim. [mm]		
	contacts		А	В	C	D	Q
			15.50	15 50	5.00		1 / 0

	confacts		A	В	C	D	Q
PLCC 20 SMD	20	39	15.58	15.58	5.08	5.08	16.0
PLCC 28 SMD	28	33	18.12	18.12	7.62	7.62	20.6
PLCC 32 SMD	32	29	18.12	20.66	7.62	10.16	22.5
PLCC 44 SMD	44	26	23.40	23.40	12.70	12.70	27.5
PLCC 52 SMD	52	23	25.74	25.74	15.24	15.24	31.1
PLCC 68 SMD	68	20	30.82	30.82	20.32	20.32	38.8
PLCC 84 SMD	84	17	35.90	35.90	25.40	25.40	44.8
surface of contact:		tin-pla	ted				·

F 9

Sockets for DIL-IC Sockets for LED Connector-sleeves Single precision contacts $\begin{array}{r} \rightarrow F 2 - 4 \\ \rightarrow F 5 - 6 \\ \rightarrow F 19 - 20 \\ \rightarrow F 17 - 18 \end{array}$

Teflon sockets/TO 5 & TO 18 Jumper links SMD socket for DIL-IC Technical data $\begin{array}{l} \rightarrow \quad F \ 12 \\ \rightarrow \quad F \ 14 - 15 \\ \rightarrow \quad F \ 8 \\ \rightarrow \quad F \ 21 - 27 \end{array}$

Sockets for TO ... cases

Transistor sockets for TO 5

fransistor sockets	tor TO 5		
	45° R 1,5 80 45° V V V V V V V V V V V V V V V V V V V	Ø 1,8 Ø 1,55 Ø 1,55 Ø 1,35 Ø 0,5	2,9 50 8 3,9 7,4
art. no.		no. of contacts	
PF 53		3	
	45° R 1,5 80 80 80 80 80 80 80 80 80 80 80 80 80 8	 ∞ ∞	2,9 5 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
art. no.		no. of contacts	
PF 54		<u>4</u> ۲	
	45° 73° 73° 8° 8° 8° 8° 8° 8° 8° 8° 8° 8	Ø 1,8 0 0 1,55 0 0 1,55 0 0 1,55 0 0 1,35 0 0,5	5, 00 4,2 7,4
art. no.		no. of contacts	
PF 58 23		8	
please indicate:	surface of contact G = gold-plated Z = tin-plated		
contact spring:	gold-plated		
contact sleeve:	gold-plated		
	45° R 1,5 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2,9 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
art. no.		no. of contacts	
un. no.			
		8	
PF 58 2 G contact spring:	gold-plated	8	

Teflon sockets/TO 5 & TO 18 Connector-sleeves Sockets for DIL-IC Single precision contacts Jumper links Sockets for LED SMD socket for DIL-IC Technical data $\begin{array}{r} \rightarrow \quad F \ 14 - 15 \\ \rightarrow \quad F \ 5 - 6 \\ \rightarrow \quad F \ 8 \\ \rightarrow \quad F \ 21 - 27 \end{array}$

d.

Д

B

C

D

C

E

K

5

Ν

260°C

F 10

N

Downloaded from Arrow.com.

Sockets for TO ... cases

Sockets for TO 5

	R 1,5 36°		2,9 5° 8° 4,2 7,4
art. no.		no. of contacts	
PF 510 G		10	
contact spring:	gold-plated		
contact sleeve:	gold-plated		

4

260°C

D

G

Μ

N

F 11

Teflon sockets/TO 5 & TO 18 Connector-sleeves Sockets for DIL-IC Single precision contacts $\begin{array}{l} \rightarrow & F \ 12 \\ \rightarrow & F \ 19 - 20 \\ \rightarrow & F \ 2 - 4 \\ \rightarrow & F \ 17 - 18 \end{array}$

Jumper links Sockets for LED SMD socket for DIL-IC Technical data $\begin{array}{r} \rightarrow & F \, 14 - 15 \\ \rightarrow & F \, 5 - 6 \\ \rightarrow & F \, 8 \\ \rightarrow & F \, 21 - 27 \end{array}$

Sockets for TO ... cases

Transistor sockets - teflon sockets for TO 5

$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
TF 53 3 TF 54 4 Image: state spring: Image: state spring: state spring state spring: state spring state spring:				€0 0 5 43 5 4 4 5 5 4 5 5 4 5 5 5 5 5 5 5 5
Image: space of the space of	art. no.	no. of contacts	art. no.	no. of contacts
Image: State of the state of	TF 53	3	TF 54	4
TF 56 6 TF 58 8 Image: state strain of the str				
Image: Non-of-contactsImage: Non-of-contacts <th>art. no.</th> <th>no. of contacts</th> <th>art. no.</th> <th>no. of contacts</th>	art. no.	no. of contacts	art. no.	no. of contacts
Image: Note of the second se	TF 56	6	TF 58	8
TF 510 10 TF 512 12 contact spring: gold-plated				
contact spring: gold-plated	art. no.	no. of contacts	art. no.	no. of contacts
	TF 510	10	TF 512	12
	contact spring:	gold-plated		
	contact sleeve:			

Transistor sockets - teflon sockets for TO 18

	R 0,5	£'L		R 0'2 B 0'2	6'9 Ø 0,5
art. no.	no. of	contacts	art. no.	no. of c	ontacts
TF 183		3	TF 184	4	
contact spring:		gold-plated	·		
contact sleeve: gold-plated					

Programmable headers	→ F15
Sockets for TO 5 and TO 3	→ F10-11
Sockets für PLCC	→ F9
Single contacts metal strip	→ G 49

Downloaded from Arrow.com.

M

B

D

н

F

C

E

K

Sockets for crystal oscillators

Precision sockets for crystal oscillators in case HC 18

Insulators for crystal oscillators

 $\mathbf{*} = \mathbf{equates \ self \ retaining}$

			C	D
ISQ 04	HC-18/U/ HC-49/U/ HC-43/U		-	0.71
ISQ 05	HC-18/U/ HC-49/	U/ HC-43/U	-	*
ISQ 06	HC-18/U/ HC-49/	U/ HC-43/U	2.4	0.71
ISQ 07	HC-18/U/ HC-49/U/ HC-43/U		2.4	*
ISQ 08	HC-50/U/ HC-42/U/ HC-25/U		-	1.30
dialectric strength: 9 kV				
name of foil: MYLAR				
heat resistance: 250°C				
material thickness: 0.127 mm				

.

D

Ν

F 13

Teflon sockets/TO 5 & TO 18 Connector-sleeves Sockets für PLCC Sockets for LED $\begin{array}{rrr} \rightarrow & F & 12 \\ \rightarrow & F & 19 - 20 \\ \rightarrow & F & 9 \\ \rightarrow & F & 5 - 6 \end{array}$

High-prec. male headers 2.54 THT \rightarrow G 45 - 46Single precision contacts \rightarrow F 17 - 18Sockets for DIL-IC \rightarrow F 2 - 4Technical data \rightarrow F 21 - 27

Jumper links / Separable jumpers

Jumper links

B

D

F

C

SMD socket for DIL-IC

→

→ F 8 **Technical data**

→

F 21 – 27

Jumper links / Separable jumpers

separable jumpers for soldering technology

- the contacts have a preformed dividing groove and can easily be separated with a screwdriver

	7.8		,5	6,2 0,25 7,62			
art. no.	no. of	dim.	[mm]	art. no.	no. of	dim.	[mm]
	con-	А	В		con-	А	В
	tacts				tacts		
CAB 3 06 03 Z	6	7.30	5.08	CAB 3 14 03 Z	14	17.46	15.24
CAB 3 08 03 Z	8	9.84	7.62	CAB 3 16 03 Z	16	20.00	17.78
CAB 3 12 03 Z	12	14.92	12.70				
surface of contact:	· I	tin-plc	ited	l.			1

Jumper links, grid spacing 2.54 mm, \Box 0.635 mm

- **separable!** any requested number of contact can be delivered

Z = tin-plated

Jumper links, grid spacing 2.00 mm, 🗆 0.5 mm

- **separable!** any requested number of contact can be delivered

DIL platform adapters & cases Sockets for LED Sockets for DIL-IC Connector-sleeves $\begin{array}{r} \rightarrow \quad F6-7 \\ \rightarrow \quad F5-6 \\ \rightarrow \quad F2-4 \\ \rightarrow \quad F19-20 \end{array}$

Teflon sockets/TO 5 & TO 18 Single precision contacts SMD socket for DIL-IC Technical data $\begin{array}{r} \rightarrow \ \ F \ 12 \\ \rightarrow \ \ F \ 17 - 18 \\ \rightarrow \ \ F \ 8 \\ \rightarrow \ \ F \ 21 - 27 \end{array}$

C

.

D

Jumper links / Separable jumpers

260°(

2.54

B

D

Ξ

C

T

K

Jumper link for LED- and standard-PCBs - in SMD-technology – □ 0,635 mm - separable! any requested number of contact can be delivered (n-1) x 2,54 2,5 \square Ì 3,9 2.54 3,9 2,54 0,635 0 (n x 2,54) art. no. LB SL LP 039 SMD ... please indicate: ... no. of contacts ... surface of contact 2 - 20 G = gold-plated $\mathbf{Z} = tin-plated$

DIL platform adapters & cases Sockets for LED Sockets for DIL-IC **Connector-sleeves**

Teflon sockets/TO 5 & TO 18 Single precision contacts SMD socket for DIL-IC **Technical data**

 \rightarrow F12 → F17 – 18 → F8 → F 21 - 27

F 16

Downloaded from Arrow.com.

2.54

High-precision contacts, loose

Female contacts for Ø 0.5 mm art. no. art. no.

Female contact for 0.64 mm 🗆 and Ø 0.80 mm

F 17

Downloaded from Arrow.com.

Sockets for DIL-IC **Connector-sleeves** Teflon sockets/TO 5 & TO 18 **Jumper links**

→ F2-4 → F19 F 12 → → F 14 – 15 SMD socket for DIL-IC F 8 → High-precision female headers THT → G 2 – 6 F 5 – 6 Sockets for LED → **Technical data** → F 21 – 27

High-precision contacts, loose

Contacts with solder head

Male contacts

2.54

B

D

킈

Ξ

C

T

K

Sockets for DIL-IC Sockets for LED Sockets für PLCC Teflon sockets/TO 5 & TO 18 Connector-sleeves Jumper links SMD socket for DIL-IC Technical data $\begin{array}{l} \rightarrow \quad F \ 19 \\ \rightarrow \quad F \ 14 - 15 \\ \rightarrow \quad F \ 8 \\ \rightarrow \quad F \ 21 - 27 \end{array}$

N

 \rightarrow F9

→ F5-6

F 21 – 27

→ F13

→

Connector-sleeves

For 0.4 mm with BeCu spring 3 μ m Ni, 1 μ m Au

For 0.4 mm with bronze spring, teflon insulated

For 0.8 mm, slotted

Sockets für PLCC

Sockets for crystal oscillators

Sockets for LED

Technical data

For 1 mm, slotted

F 19

High-prec. male headers 2.54 THT \rightarrow G 45 - 46Teflon sockets/TO 5 & TO 18 \rightarrow F 12High-precision female headers THT \rightarrow G 2 - 6Jumper links \rightarrow F 14 - 15

Downloaded from Arrow.com.

M

C

Connector-sleeves

For 1 mm, slotted, plastic insulated

For 1 mm, with BeCu spring 3 µm Ni, 1 µm Au

For 1 mm, slotted, plastic insulated

For 2 mm, slotted, plastic insulated

For 2 mm, slotted, plastic insulated, separable

High-prec. male headers 2.54 THT Teflon sockets/TO 5 & TO 18 High-precision female headers TH1 Jumper links	→ F12	Sockets für PLCC Sockets for LED Sockets for crystal oscillators Technical data	 → F9 → F5-6 → F13 → F21-27 	
--	-------	--	---	--

B

d.

Ξ

<

F 20

Technical data Sockets

	DIL E, DIL M, DIL N, DIL OR	DIL O, DIL P, DIL Q, DIL U	DIL PEK	DIL 06 E Z, DIL 06 H Z	
contact material	CuZn-alloy				
surface contact / contact sleeve	Ni+≥0.2µm Au/	′ Ni+46µm Sn	Ni+≥0.2µm Au	Ni+46µm Sn	
inner contact spring material	CuBe-alloy		СиВе	-alloy	
inner contact spring surface	Ni+0,25µm Au		Ni+0,75µm Au	Ni+0,25µm Au	
plugability for circuit points	0,22x0,25mm 0,4x0,55mm/ Ø0,40,56mm		0,22x0,25mm 0,4x0,55mm/ Ø0,40,56mm		
insert depth	2.53.6mm		2.53.6mm		
insertion / drawing force	4 lamellas con- tact/ 1.8 N/1.4 N		4 lamellas contact/ 1.8 N/1.4 N		
shock resistance	50 g				
vibration resistance max.		1:	5 g		
volume resistance		10	mΩ		
contact resistance		4	mΩ		
contact resistance after 1000 cycles		7	mΩ		
capacity between two adjacent contacts		0,4	4 pF		
nominal current		1.	5 A		
nominal voltage		150	V DC		
test voltage		10	00 V		
insulating body material		PPS	, GF		
temperature range		-40°C +200°	°C/ (260°C/10 s)		
class of flammibility		UL 9	24 V-0		
specific insulation resistance		>10	¹² Ω·m		

C

D

Μ

Ν

F 21

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Technical data Sockets

	DIL G, DIL 14 W 90	DILS PK	DILS GO	DILS LO
contact material	CuZn	-alloy	CuSn alloy	
surface contact / contact sleeve	Ni+46µm Sn	Ni+≥0	.2μm Aυ	
inner contact spring material	CuBe-alloy			
inner contact spring surface	Ni+0,75µm Au			
plugability for circuit points	0,22x0,25mm 0,4x0,55mm/ Ø0,40,56mm			
insert depth	2.53.6mm			
insertion / drawing force	4 lamellas con- tact/ 1.8 N/1.4 N			
shock resistance		50 g		
vibration resistance max.		15 g		
volume resistance		10 mΩ		
contact resistance	4 mΩ			
contact resistance after 1000 cycles		7 mΩ		
capacity between two adjacent contacts		0,4 pF		
nominal current		1.5 A		
nominal voltage		150 V DC		
test voltage		1000 V		
insulating body material		PPS, GF		PA 4.6. GF
temperature range	-40°C	-40°C +200°C/ (260°C/10 s)		-40°C +163°C/ (260°C/10 s)
class of flammibility		UL 9	4 V-0	
specific insulation resistance		>10¹2 Ω·m		

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

A

B

D

Ξ

F

G

ī.

K

N

Ν

22

Technical data Sockets

	DIL SMD M, DILSMD SK5	міс	PLCC, PLCC SMD	TF
contact material	CuZn-alloy		CuSn alloy	CuZn-alloy
surface contact / contact sleeve	Ni+≥0.2µm Au/ Ni+46µm Sn		Ni+24µm Sn	Ni+≥0.2µm Au
inner contact spring material	CuBe-alloy			CuBe-alloy
inner contact spring surface	Ni+0,25µm Au			Ni+0,75µm Au
plugability for circuit points	0,22x0,25mm 0,4x0,55mm/ Ø0,40,56mm			0,22x0,25mm 0,4x0,55mm/ Ø0,40,56mm
insert depth	2.53.6mm			2.53.6mm
insertion / drawing force	4 lamellas con- tact/ 1.8 N/1.4 N			4 lamellas con- tact/ 1.8 N/1.4 N
shock resistance	50 g			50 g
vibration resistance max.	15 g			15 g
volume resistance	10 mΩ		>30 mΩ	10 mΩ
contact resistance				4 mΩ
contact resistance after 1000 cycles				7 mΩ
capacity between two adjacent contacts	0,4 pF			
nominal current	1.5 A		1 A	1.5 A
nominal voltage	150 V DC			100 V DC
test voltage	1000 V		500 V	1000 V
insulating body material	PPS, GF	polyacetal/ non- conductive	PPS, GF	PTFE
temperature range	-40°C +200°C/ (260°C/10 s)		-40°C +105°C/ (260°C/10 s)	-200°C +260°C
class of flammibility	UL 94 V-0	UL 94 V-0 (at thickness ≥3mm), UL 94 V-1	UL 94 V-0	
specific insulation resistance	>10¹2 Ω·m		>10 ⁸ Ω·m	>10¹4 Ω·m

C

D

Ν

Ν

F 23

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Technical data Sockets

	QS 25 GS	PF, PQ 18	LB G	СВ	
contact material	CuSn alloy		CuZn-alloy		
surface contact / contact sleeve	Ni+3µm Ag	Ni+≥0.2µm Au/ Ni+46µm Sn	Ni+≥0.2µm Au	Ni+≥0.2µm Au/ Ni+46µm Sn	
inner contact spring material		CuBe-alloy			
inner contact spring surface		Ni+0,75μm Aυ			
plugability for circuit points		0,22x0,25mm 0,4x0,55mm/ Ø0,40,56mm			
insert depth		2.53.6mm			
insertion / drawing force		4 lamellas con- tact/ 1.8 N/1.4 N			
shock resistance		50 g			
vibration resistance max.		15 g			
volume resistance	10 mΩ				
contact resistance		4 mΩ			
contact resistance after 1000 cycles	7 r	nΩ			
capacity between two adjacent contacts		0,4 pF			
nominal current	2.5 A	1.5 A			
nominal voltage	125 V DC	60 V DC			
test voltage	500 V		·		
insulating body material	PA, GF	PA 4.6. GF			
temperature range	-40°C +180°C	-40°C +163°C/ (260°C/10 s)			
class of flammibility		UL 94 V-0			
specific insulation resistance	>107	′Ω·m			

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Α

C

D

F

G

ł

K

N

N

Technical data Sockets

	LEB G	PSB 03 G	CAB 3 03 Z	LB SLY 06
contact material	CuZn-alloy	phosphor bronze	brass	CuSn alloy
surface contact / contact sleeve	Ni+0.15µm Au	Ni+≥0.2µm Au	Ni+46µm Sn	Ni+46µm Sn/ Ni+≥0.2µm Au
volume resistance		·	·	5 mΩ
nominal current	3 A 1.5 A		3 A	
nominal voltage	150 V DC	0 V DC 125 V AC 100 V DC		
test voltage	1000 V		1000 V	500 V
insulating body material	thermoplastic polyester	PA 6. GF	PPS, GF	PA 4.6. GF
temperature range	-55°C +125°C		-40°C +200°C/ (260°C/10 s)	-40°C +163°C/ (260°C/10 s)
class of flammibility	UL 94 V-0		UL 94 V-0	
specific insulation resistance		1	>10¹2 Ω·m	>10 ⁷ Ω·m

	LB SL, LB SL LP	1706 G, PEK G, TF G, WWPS 1 G	PK 1, SK 19	1831 Z, SIL 1, SK 06, SK 13 X 2 G
contact material	CuSn alloy	CuZn-alloy		
surface contact / contact sleeve	Ni+46µm Sn/ Ni+≥0.2µm Au	Ni+≥0.2µm Au	Ni+≥0.2µm Au,	/ Ni+46µm Sn
inner contact spring material		CuBe-alloy		
inner contact spring surface		Ni+0,75µm Au	Ni+0,25µm Au	Ni+0,75µm Au
insert depth		2.53.6mm		
insertion / drawing force		4 lamellas contact/ 1.8 N/1.4 N		
volume resistance	5 mΩ			
nominal current	3 A		1.5 A	
nominal voltage	250 V DC		60 V DC	
test voltage	2000 V		1000 V	
insulating body material	PA 4.6. GF			
temperature range	-40°C +163°C/ (260°C/10 s)			
class of flammibility	UL 94 V-0			
specific insulation resistance	>10 ⁷ Ω·m			

D

Ν

F 25

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Technical data Sockets

	SKB 5 Z, SKB 9 Z	PK 4 Z, SK 02, SK 03, SK 04 Z, SK 05, SK 08 G, SK 14 X 2, SK 40 G, SK 41, SK 42	SB 1	SB 2	
contact material	CuZn-alloy				
surface contact / contact sleeve	Ni+46µm Sn	Ni+≥0.2µm Au/ Ni+46µm Sn	Ni+0.25µm Au	Ni+≥0.2µm Au	
inner contact spring material	CuBe-alloy		CuBe-alloy		
inner contact spring surface	Ni+0,75µm Au		Ni+0,5µm Au	Ni+0,75μm Aυ	
plugability for circuit points		·	Ø0,350,5 mm		
insert depth	2.56mm		1.53mm	2.83.8mm	
insertion / drawing force	6 lamella con- tacts/ 1.3N/0.3N				
nominal current	3 A	1.5 A		2 A	
nominal current 70°C			1	1 A	
nominal voltage	150 V DC	60 V DC			
test voltage	1000 V				
insulating body material				PTFE (teflon)	
dielectric strength				≤500 V	

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

A

C

D

F

G

ł

K

N

N

Technical data Sockets

	SB 3	SB 4, SB 5, SB 6	SB 9	SB 12
contact material	CuZn-alloy			
surface contact / contact sleeve	Ni+0.25µm Au			
inner contact spring material				CuBe-alloy
inner contact spring surface				Ni+1µm Au
plugability for circuit points	Ø0,8mm Ø1mm			
insert depth	4mm	6mm		3.85.5mm
volume resistance				>30 Ω
nominal current		3 A		4 A
nominal current 70°C		2 A		
insulating body material		1	PA 6.6	
dielectric strength		≤50	00 V	

	SB 16	SB 13	SB 15	
contact material	CuZn-alloy			
surface contact / contact sleeve	Ni+0.25µm Au			
plugability for circuit points	Ø1mm Ø2mm			
insert depth	26mm	6mm	12mm	
nominal current		3 A		
nominal current 70°C		2 A		
insulating body material	PBT, GF	polyolefin	PA 4.6. GF	
class of flammibility	UL 94 V-0		UL 94 V-0	
dielectric strength		≤500 V		

F 27

C

D

H

G

Ν

Ν

Downloaded from Arrow.com.

own tool-making department

foresighted storekeeping

elektronik

Male and female headers in SMD version Male and female headers for solder technology (THT) Male and female header in press-in mounting **Multipoint connector**

Male and female headers in SMD version

- male header, one and two rows with pick and place pad, horizontal and vertical version
- female header, one and two rows with pick and place pad, horizontal and vertical version grid spacing: 2,54 mm, 2,00 mm and 1,27 mm optional selectable type of packaging: bar magazine
- and tape and reel

Male and female header in press-in mounting male header, one and two rows, straight version female header, one and two rows, straight version shrouded male header, two rows, straight version

Male and female headers for solder technology (THT)

- male header, one and two rows, straight and angled version with square and precision contacts
- shrouded-header with second insulating body
- female header, one and two rows, straight and angled version with stamped contacts or precision contacts
- through-hole female headers, one and two rows
- grid spacing 2,54 mm, 2,0 mm and 1,27 mm

Multipoint connector

- direct multipoint connector for additional circuit board with a thickness of 0,7 to 0,9 mm
- direct multipoint connector for a circuit board thickness of 1,6 mm

Male headers

Präzisionskontakte, solder and plug pins Ø 0.5 mm

- also available as single contact, SK ...

- version:
 - MK 05 / MK 205: contact pin on both sides
 - MK 04 / MK 204: with diagonal solder cup
 - MK 03 / MK 203: with solder head
 - MK 02 / MK 202: with solder fork

260

Jumpers Direct female connectors Female headers 2.54 press-fit Technical data $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{75} \\ \rightarrow & \mathbf{G} & \mathbf{50} - \mathbf{66} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

2.54

B

260°C

2.54

Male headers

Precision contacts, Wire Wrap pin 🗆 0.635 mm

- version:

MK 10 / MK 210: with diagonal solder bucket MK 08 / MK 208: with solder fork

Female headers 2.54 press-fit High-prec. male headers 2.54 THT Jumpers Female headers 2.54 SMD

→ G 50 - 66 → G 45 – 55 G 76 – 77 → → G 58 – 63

Female headers 2.54 THT **Direct female connectors** Female headers for PC 104 **Technical data**

G 52 → → G 75 G 55 – 56 → → G 78 – 84

Б

G

Ν

Male headers

Precision contacts, solder and plug pins, Ø 0,5 mm

- rectangular PCB connection

260

Direct female connectors G 75 Female headers 2.54 THT Female headers for PC 104 G 55 – 56 Female headers 2.54 press-fit G 76 – 77 Female headers 2.54 SMD Jumpers → High-prec. male headers 2.54 THT → G 45 – 55 **Technical data**

2.54

Male headers

Precision contacts, low profile

– also available as single contact, **SK ...**

G 5

Downloaded from Arrow.com.

Female headers 2.54 press-fit Female headers 2.54 THT Female headers for PC 104 Jumpers $\begin{array}{rrrr} \rightarrow & \mathbf{G} \ 50 - 66 \\ \rightarrow & \mathbf{G} \ 52 \\ \rightarrow & \mathbf{G} \ 55 - 56 \\ \rightarrow & \mathbf{G} \ 76 - 77 \end{array}$

High-prec. male headers 2.54 THT→G 45 - 55Direct female connectors→G 75Female headers 2.54 SMD→G 58 - 63Technical data→G 78 - 84

Ν

260°C

2.54

B

D

2

G

i.

<

Male headers

Precision contacts, low profile

Μ

Female headers 2.54 press-fit Jumpers Female headers for PC 104 Female headers 2.54 THT Female headers 2.54 SMD High-prec. male headers 2.54 THT Direct female connectors Technical data every pin length is available on request

– one row, □ 0.635 mm

G 45 – 55

G 55 – 56

→

→

Female headers for PC 104

High-prec. fem. headers 2.54 THT

Technical data

G 53 – 56

G 78 – 84

→

→

-

G

N

2.54

Z = tin-plated

Direct female connectors Female headers for PC 104 Female headers 2.54 press-fit Jumpers

<

Male headers

"Dimensions A + B" changeable

- separable! any requested number of contact can be delivered
- any pin length is available upon request
- one row, □ 0.635 mm
- the surface of dimension "C" of following articles is selective gold-plated: SLK 3 025 ... S, SL 3 025 ... S

- two rows, □ 0,635 mm

- the surface of dimension "C" of following articles is selective gold-plated: SLK 4 025 ... S, SL 4 025 ... S

D

Female headers 2.54 press-fit Female headers 2.54 THT Female headers 2.54 SMD Female headers for PC 104

 $\begin{array}{rrrr} \rightarrow & \mathbf{G} & 50 - 66 \\ \rightarrow & \mathbf{G} & 52 \\ \rightarrow & \mathbf{G} & 58 - 63 \\ \rightarrow & \mathbf{G} & 55 - 56 \end{array}$

6	Direct female connectors	→	G 75
	Jumpers	→	G 76 – 77
3	High-prec. male headers 2.54 THT	→	G 45 – 55
6	Technical data	→	G 78 – 84

2.54

260

G 9

Male headers

Insertion side "dimension C" changeable

- separable! any requested number of contact can be delivered
- any pin length is available on request
- one row, □ 0.635 mm

260

 Female headers 2.54 press-fit
 →
 G 50 - 66
 Female

 Jumpers
 →
 G 76 - 77
 Direct female

 Female headers for PC 104
 →
 G 55 - 56
 Female

 High-prec. male headers 2.54 THT
 →
 G 45 - 55
 Technicol

Female headers 2.54 SMD Direct female connectors Female headers 2.54 THT Technical data

 $\begin{array}{rrr} \rightarrow & \mathbf{G} \ 58 - 63 \\ \rightarrow & \mathbf{G} \ 75 \\ \rightarrow & \mathbf{G} \ 52 \\ \rightarrow & \mathbf{G} \ 78 - 84 \end{array}$

G 10

Downloaded from Arrow.com.

R

D

C

Male headers

Low profile, straight

any pin length is available on request

– one row, □ 0.635 mm

.

D

Ν

Female headers 2.54 press-fit Jumpers Female headers for PC 104 High-prec. male headers 2.54 THT $\begin{array}{rrrr} \rightarrow & \mathbf{G} \ 50 - 66 & \mathbf{Fe} \\ \rightarrow & \mathbf{G} \ 76 - 77 & \mathbf{D} \\ \rightarrow & \mathbf{G} \ 55 - 56 & \mathbf{Fe} \\ \rightarrow & \mathbf{G} \ 45 - 55 & \mathbf{Te} \end{array}$

Female headers 2.54 SMD Direct female connectors Female headers 2.54 THT Technical data $\begin{array}{rrr} \rightarrow & G & 58 - 63 \\ \rightarrow & G & 75 \\ \rightarrow & G & 52 \\ \rightarrow & G & 78 - 84 \end{array}$

Male headers

Low profile, angled

- any pin length is available on request
- one row, □ 0.635 mm

260

Female headers 2.54 press-fit G 50 - 66 Jumpers G 76 – 77 Female headers for PC 104 G 55 – 56 → High-prec. male headers 2.54 THT → G 45 – 55

Female headers 2.54 SMD **Direct female connectors** Female headers 2.54 THT **Technical data**

G 58 - 63 → → G 75 G 52 → → G 78 – 84

B

D

킈

G

2.54

260°C

2.54

Male headers

Sandwich-design

- "S" selective gold-plated up to 33 mm pin length
- for interconnections of stacked PCBs
- within the total length of the pin the insulator position can be changed as required ... Design specification-sheet
- **separable!** any requested number of contact can be delivered
- one row, □ 0.635 mm

dım.	[mm]	art. no.	dım.	[mm]	art. no.	dım.	[mm]
A	L		A	L		A	L
7.1	16.4	SL 5 172	17.2	26.5	SL 5 315	31.5	40.8
9.7	19.0	SL 5 197	19.7	29.0	SL 5 360	36.0	45.3
12.1	21.4	SL 5 223	22.3	31.6	SL 5 415	41.5	50.8
14.7	24.0	SL 5 237	23.7	33.0	SL 5 525	52.2	61.5
15.6	24.9	SL 5 285	28.5	37.8			
please indicate: no. of contacts surface of contact							
one	row 1-		-	-	l		
	A 7.1 9.7 12.1 14.7 15.6 no. 6	7.1 16.4 9.7 19.0 12.1 21.4 14.7 24.0 15.6 24.9 no. of contage	A L 7.1 16.4 SL 5 172 9.7 19.0 SL 5 197 12.1 21.4 SL 5 223 14.7 24.0 SL 5 285 15.6 24.9 SL 5 285 surface of s = select	A L A 7.1 16.4 SL 5 172 17.2 9.7 19.0 SL 5 197 19.7 12.1 21.4 SL 5 223 22.3 14.7 24.0 SL 5 237 23.7 15.6 24.9 SL 5 285 28.5 surface of contacts one row 1 - 36	A L A L 7.1 16.4 SL 5 172 17.2 26.5 9.7 19.0 SL 5 197 19.7 29.0 12.1 21.4 SL 5 223 22.3 31.6 14.7 24.0 SL 5 285 23.7 33.0 15.6 24.9 SL 5 285 28.5 37.8 surface of contact	A L A L 7.1 16.4 SL 5 172 17.2 26.5 SL 5 315 9.7 19.0 SL 5 197 19.7 29.0 SL 5 360 12.1 21.4 SL 5 223 22.3 31.6 SL 5 415 14.7 24.0 SL 5 237 23.7 33.0 SL 5 525 15.6 24.9 SL 5 285 28.5 37.8	A L A L A 7.1 16.4 SL 5 172 17.2 26.5 SL 5 315 31.5 9.7 19.0 SL 5 197 19.7 29.0 SL 5 360 36.0 12.1 21.4 SL 5 223 22.3 31.6 SL 5 415 41.5 14.7 24.0 SL 5 237 23.7 33.0 SL 5 525 52.2 15.6 24.9 SL 5 285 28.5 37.8 surface of contact s = selective gold-plated

G = gold-plated Z = tin-plated

– two rows, □ 0,635 mm

art. no.	dim.	[mm]	art. no.	dim. [mm]		art. no.	dim.	[mm]
	A	L		A	L		A	L
SL 6 071	7.1	16.4	SL 6 172	17.2	26.5	SL 6 315	31.5	40.8
SL 6 097	9.7	19.0	SL 6 197	19.7	29.0	SL 6 360	36.0	45.3
SL 6 121	12.1	21.4	SL 6 223	22.3	31.6	SL 6 415	41.5	50.8
SL 6 147	14.7	24.0	SL 6 237	23.7	33.0	SL 6 525	52.2	61.5
SL 6 156	15.6	24.9	SL 6 285	28.5	37.8			
please indicate:		of conta rows 2		tive gol plated	-	1		

D

G

Female headers 2.54 THT High-prec. male headers 2.54 THT Female headers for PC 104 Direct female connectors

- $\begin{array}{r} \rightarrow \quad \mathbf{G} \ 52 \\ \rightarrow \quad \mathbf{G} \ 45 55 \\ \rightarrow \quad \mathbf{G} \ 55 56 \\ \rightarrow \quad \mathbf{G} \ 75 \end{array}$
- Jumpers Female headers 2.54 SMD Female headers 2.54 press-fit Technical data
- $\begin{array}{r} \rightarrow \quad \mathbf{G} \ \mathbf{76} \mathbf{77} \\ \rightarrow \quad \mathbf{G} \ \mathbf{58} \mathbf{63} \\ \rightarrow \quad \mathbf{G} \ \mathbf{50} \mathbf{66} \\ \rightarrow \quad \mathbf{G} \ \mathbf{78} \mathbf{84} \end{array}$

Sandwich-design

- "S" selective gold-plated up to 33 mm pin length
- for interconnections of stacked PCBs
- for plugging the the female headers BL 11 (SL 13 ...) and BL 12 (SL 14 ...).
- suitable for PCB thicknesses between 1.5 mm and 33 mm
- separable! any requested number of contact can be delivered
- one row □ 0.635 mm

260

– two rows, □ 0.635 mm

art. no.	aim. [r	mmj	nj art. no.		[mm]
	A	L		A	L
SL 14 071	7.1	21.4	SL 14 235	23.5	37.8
SL 14 097	9.7	24.0	SL 14 265	26.5	40.8
SL 14 122	12.2	26.5	SL 14 310	31.0	45.3
SL 14 147	14.7	29.0	SL 14 365	36.5	50.8
SL 14 187	18.7	33.0			
please indicate:	no. of contacts two rows 2-72	2 S = s G = g	ice of contact selective gold-plated gold-plated tin-plated		

Female headers 2.54 THT	→ G 52	Jumpers	→ G 76 – 77	
Direct female connectors	→ G 75	High-prec. male headers 2.54 THT	→ G 45 – 55	G 14
Female headers 2.54 SMD	→ G 58 – 63	Female headers for PC 104	→ G 55 – 56	014
Female headers 2.54 press-fit	→ G 50 – 66	Technical data	→ G 78 – 84	

B

2.54

С

D

M

Design specification for connectors, grid spacing 2.54 mm

date:		
pieces per order:		
company:		
name, dept.:		
town:		
street:		
fax:		
signature:		
□ inquiry□ order		
□ order		
surface finish	one row 1 - 36 contacts possible	
selective gold-plated	□ two rows 2 - 72 contacts possible	
□ gold-plated		
□ tin-plated		
	number of contacts	
	dimensions:	
│ │ │ │ │ │ │ │ │ │ │ │ │		
│		
│		
2,54		
	C	
L = total contact lenght		
A = distance between PCBs		
B = solder side		
C = insertion side		

G 15

Female headers 2.54 THT Direct female connectors Female headers 2.54 SMD Female headers 2.54 press-fit $\begin{array}{rrrr} \rightarrow & G & 52 \\ \rightarrow & G & 75 \\ \rightarrow & G & 58 - 63 \\ \rightarrow & G & 50 - 66 \end{array}$

Jumpers→High-prec. male headers 2.54 THT→Female headers for PC 104→Technical data→

 $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{45} - \mathbf{55} \\ \rightarrow & \mathbf{G} & \mathbf{55} - \mathbf{56} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

D

G

Downloaded from Arrow.com.

d)e

Δ

B

Male headers

Shrouded male header, with coding and bolting device

- suitable for many flat cable connectors in 2.54 mm pitch

	6,4	C C + + + + + + + + + + + + + + + + + + +	D 2,54			8,9
art. no.	no. of contacts			dim. [mm]		ı _
SLU 10 165	10	A 20.4	B 17.8	C 10.16	D 13.5	E 16.5
SLU 10 165 SLU 10 191	10	20.4	17.8	10.16	13.5	16.5
SLU 10 191 SLU 10 241	10	20.4	17.8	10.16	21.1	24.1
SLU 10 241 SLU 10 266	10	20.4	17.8	10.16	21.1	24.1
SLU 10 200 SLU 16 165	16	20.4	25.4	17.78	13.5	16.5
SLU 16 191	16	28.0	25.4	17.78	16.1	19.1
SLU 16 241	16	28.0	25.4	17.78	21.1	24.1
SLU 16 266	16	28.0	25.4	17.78	21.1	24.1
SLU 20 165	20	33.1	30.5	22.86	13.5	16.5
SLU 20 105	20	33.1	30.5	22.86	16.1	19.1
SLU 20 241	20	33.1	30.5	22.86	21.1	24.1
SLU 20 266	20	33.1	30.5	22.86	23.6	26.6
SLU 26 165	26	40.7	38.1	30.48	13.5	16.5
SLU 26 191	26	40.7	38.1	30.48	16.1	19.1
SLU 26 241	26	40.7	38.1	30.48	21.1	24.1
SLU 26 266	26	40.7	38.1	30.48	23.6	26.6
SLU 40 165	40	58.5	55.9	48.26	13.5	16.5
SLU 40 191	40	58.5	55.9	48.26	16.1	19.1
SLU 40 241	40	58.5	55.9	48.26	21.1	24.1
SLU 40 266	40	58.5	55.9	48.26	23.6	26.6
SLU 50 165	50	71.2	68.6	60.96	13.5	16.5
SLU 50 191	50	71.2	68.6	60.96	16.1	19.1
SLU 50 241	50	71.2	68.6	60.96	21.1	24.1
SLU 50 266	50	71.2	68.6	60.96	23.6	26.6
please indicate:	surface of co S = selective Z = tin-plate	e gold-plated			1	

Female headers 2.54 THT Direct female connectors Female headers 2.54 SMD Female headers 2.54 press-fit → G 52 → G 75 → G 58 – 63 → G 50 - 66

Jumpers High-prec. male headers 2.54 THT Female headers for PC 104 **Technical data**

→ G 76 – 77 → G 45 – 55 → G 55 - 56 → G 78 – 84

G 16

M

K

Male headers

de.

Three rows, \Box 0.63	35 mm		
		2,54	
art. no.		dim. [mm]	
	A	В	С
SL KG 3 113	11.3	3.3	5.5
SL KG 3 126	12.6	3.3	6.8
SL KG 3 147	14.7	3.3	8.9
art. no.	A	dim. [mm] B	С
SL KA 3 072	7.2	3.3	3.4
SL KA 3 085	8.5	3.3	4.7
SL KA 3 108	10.8	3.3	7.0
please indicate:	three rows 3-150 G	rface of contact = gold-plated = tin-plated	

C

N

G 17

Female headers 2.54 THT Direct female connectors Female headers 2.54 SMD Female headers 2.54 press-fit $\begin{array}{r} \rightarrow & \mathbf{G} & \mathbf{52} \\ \rightarrow & \mathbf{G} & \mathbf{75} \\ \rightarrow & \mathbf{G} & \mathbf{58} - \mathbf{63} \\ \rightarrow & \mathbf{G} & \mathbf{50} - \mathbf{66} \end{array}$

 Jumpers
 →

 High-prec. male headers 2.54 THT
 →

 Female headers for PC 104
 →

 Technical data
 →

 $\begin{array}{rrr} \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{45} - \mathbf{55} \\ \rightarrow & \mathbf{G} & \mathbf{55} - \mathbf{56} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

2.54

R

D

G

Male headers

Precision contacts, plug pins Ø 0.5 mm

... packing (option) - additions: MK 26 SMD ... B TR: 4-12 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

Female headers 2.54 THT Female headers 2.54 SMD Female headers 2.54 press-fit Female headers 1.27 SMD $\begin{array}{rrr} \rightarrow & \mathbf{G} & \mathbf{52} \\ \rightarrow & \mathbf{G} & \mathbf{58} - \mathbf{63} \\ \rightarrow & \mathbf{G} & \mathbf{66} \\ \rightarrow & \mathbf{G} & \mathbf{73} \end{array}$

Female headers 2.00 SMD \rightarrow High-precision female headers THT \rightarrow High-prec. male headers 2.54 THT \rightarrow Technical data \rightarrow

 $\begin{array}{rrr} \rightarrow & \mathbf{G} & \mathbf{68} \\ \rightarrow & \mathbf{G} & \mathbf{2} - \mathbf{6} \\ \rightarrow & \mathbf{G} & \mathbf{45} - \mathbf{55} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

G 18

Male headers

Precision contacts, plug pins Ø 0.5 mm

... packing (option) - additions: MK 226 SMD ... SM; ... B SM: 6-40 contacts MK 226 SMD ... B TR: 6-24 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

G 19

Female headers 2.54 THT Female headers 2.54 SMD Female headers 2.54 press-fit Female headers 1.27 SMD

 $\begin{array}{rrrr} \rightarrow & G & 52 \\ \rightarrow & G & 58 - 63 \\ \rightarrow & G & 66 \\ \rightarrow & G & 73 \end{array}$

Female headers 2.00 SMD \rightarrow G 68High-precision female headers THT \rightarrow G 2 - 6High-prec. male headers 2.54 THT \rightarrow G 45 - 55Technical data \rightarrow G 78 - 84

N

Δ

B

D

G

Male headers

Precision contacts, plug pins Ø 0.5 mm

... packing (option) - additions: MK 27 SMD ... SM: 3-20 contacts

Option, for automatic assembly

Female headers 2.54 THT Female headers 2.54 SMD Female headers 2.54 press-fit Female headers 1.27 SMD $\begin{array}{rrr} \rightarrow & \mathbf{G} & \mathbf{52} \\ \rightarrow & \mathbf{G} & \mathbf{58} - \mathbf{63} \\ \rightarrow & \mathbf{G} & \mathbf{66} \\ \rightarrow & \mathbf{G} & \mathbf{73} \end{array}$

Female headers 2.00 SMD \rightarrow High-precision female headers THT \rightarrow High-prec. male headers 2.54 THT \rightarrow Technical data \rightarrow

 $\begin{array}{rrr} \rightarrow & G & 2 - 6 \\ \rightarrow & G & 45 - 55 \\ \rightarrow & G & 78 - 84 \end{array}$

G 68

G 20

N

Male headers

□ 0.635 mm

C

C

... packing (option) - additions: SL 10 SMD 040-104 ... SM; ... B SM: 4-20 contacts SL 10 SMD 040-078 ... B TR: 4-12 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

G 21

Male headers 2.54 THT Male headers 2.00 SMD Jumpers Female headers for PC 104 → G 7
 → G 33 - 35
 → G 76 - 77
 → G 55 - 56

High-prec. fem. headers 2.54 THT Female headers 2.00 SMD Female headers 2.54 press-fit Technical data $\begin{array}{rrrr} \rightarrow & \mathbf{G} & 53 - 56 \\ \rightarrow & \mathbf{G} & 68 \\ \rightarrow & \mathbf{G} & 66 \\ \rightarrow & \mathbf{G} & 78 - 84 \end{array}$

2.54

A

R

D

킈

C

Male headers

🗆 0.635 mm

... packing (option) - additions:

SL 11 SMD 040-104 ... SM; ... B SM: 6-40 contacts

SL 11 SMD 040-078 ... B TR: 6-24 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

Technical data

→

G 78 – 84

Direct female connectors

G 75

→

Male headers

🗆 0.635 mm

... packing (option) - additions: SL 12 SMD ... B TR: 2-13 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

Μ

Female headers 2.54 press-fit Female headers 2.00 SMD Jumpers Female headers 2.54 THT

 $\begin{array}{r} \rightarrow & \mathbf{G} & \mathbf{66} \\ \rightarrow & \mathbf{G} & \mathbf{68} - \mathbf{69} \\ \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{52} \end{array}$

High-prec. fem. headers 2.54 THT→G 53 - 56Direct female connectors→G 75Male headers 2.00 SMD→G 33 - 35Technical data→G 78 - 84

Downloaded from Arrow.com.

G 23

2.54

B

D

킈

C

Male headers

□ 0.635 mm

... packing (option) - additions: SL 17 SMD ... B TR: 6-24 contacts

Option, for automatic assembly – reel diameter Ø 330 mm

Downloaded from Arrow.com.

G 53 – 56 → → G 75 G 33 – 35 → → G 78 – 84

G 24

2.54

Male headers

Low profile in SMD 🗆 0.635 mm

... packing (option) - additions: SL LP 5 SMD ... SM; ... B SM: 4-20 contacts SL LP 5 SMD ... B TR: 4-12 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

M

	Fe
G 25	Fe
GZJ	Ju
	D:

Female headers 1.27 THT Female headers 2.00 SMD Jumpers Direct female connectors → G 71
 → G 68
 → G 76 - 77
 → G 75

High-prec. fem. headers 1.27 THT \rightarrow G 72High-prec. male head. 1.27 THT \rightarrow G 42Male headers 2.00 THT \rightarrow G 30 - 31Technical data \rightarrow G 78 - 84

Downloaded from Arrow.com.

2.54

B

D

킈

C

Male headers

Low profile in SMD

0.635 mm

... packing (option) - additions: SL LP 6 SMD ... SM; ... B SM: 6-40 contacts SL LP 6 SMD ... B TR: 6-24 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

Jumpers

Female headers 1.27 THT

Female headers 2.00 SMD

Direct female connectors

High-prec. fem. headers 1.27 THT High-prec. male head. 1.27 THT Male headers 2.00 THT Technical data

→	G 72
→	G 42
→	G 30 – 31
→	G 78 – 84

□ 0.635 mm – for interconnections of stacked PCBs

- one row, 4-20 contacts

- within the total length of the pin the insulator can be changed according to customer's request

- two rows, 4-40 contacts

- within the total length the insulator can be changed according to customer's request

.

G 27	
------	--

Male headers 2.00 SMD High-prec. male headers 1.27 SMD Male headers 2.54 THT Female headers 1.27 THT → G 33 - 35
 → G 43
 → G 7
 → G 71

Jumpers High-prec. fem. headers 2.54 THT Female headers 2.00 SMD Technical data $\begin{array}{r} \rightarrow \quad \mathbf{G} \ \mathbf{76} - \mathbf{77} \\ \rightarrow \quad \mathbf{G} \ \mathbf{53} - \mathbf{56} \\ \rightarrow \quad \mathbf{G} \ \mathbf{68} \\ \rightarrow \quad \mathbf{G} \ \mathbf{78} - \mathbf{84} \end{array}$

2.54

Downloaded from Arrow.com.

Male connectors

- press-fit mounting without soldering, resilient press-fit area, easy insertion into the PCB
- separable! any requested number of contact can be delivered
- contact material: Cu Sn 6
- one row, 1-36 contacts
- for PCB thickness \geq 1.6 mm dimension B = 3.5 mm and \geq 3.0 mm dimension B = 4.5 mm

260

- two rows, 2-72 contacts

– for PCB thickness \geq 1.6 mm dimension B = 3.5 mm and \geq 3.0 mm dimension B = 4.5 mm

Hole diameter in PCB - hole structure acc. to DIN EN 60352-5

Jumpers High-prec. fem. headers 2.54 THT Female headers 2.00 SMD Technical data $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{53} - \mathbf{56} \\ \rightarrow & \mathbf{G} & \mathbf{68} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

G 28

2.54

R

D

C

N

2.54

Male headers

Male header with shroud

- suitable for lockable female multipoint connector **VFL** and can be combined with many other female multipoint connectors with grid spacing 2.54 mm (e. g.: **PV, BL**)
 - press-fit mounting without soldering, resilient press-fit area, easy insertion into PCB
- contact material: Cu Sn 6

Hole diameter in PCB - hole structure acc. to DIN EN 60352-5

Downloaded from Arrow.com.

.

Male headers

Standard, \Box 0.5 mm

Female headers 2.00 THT
Female headers 2.00 SMD
Jumpers
Connector-sleeves

G 67

Female headers 2.54 THT Male headers 2.00 THT Direct female connectors Technical data → G 52
 → G 30 - 31
 → G 75
 → G 78 - 84

G 30

2.00

B

D

C

260

Male headers

Design, matching for BLY ...

- are used for interconnections of stacked PCBs
- within the total length of the pin the insulator position can be changed as required ... Design specification-sheet
- separable! any requested number of contact can be delivered
- one row, □ 0.5 mm

L	please indicate:	no. of contacts two rows 2-100
	SLY 6 122 Z	12.2
	SLY 6 122 G	12.2
	SLY 6 081 Z	8.1
Κ	SLY 6 081 G	8.1
	SLY 6 075	7.5
	SLT 0 040	4.0

Female headers 2.00 SMD

Female headers 2.00 THT

Direct female connectors

Jumpers

G 67

G 75

→

→

surface of contact

G = gold-plated $\mathbf{Z} = tin-plated$

S = selective gold-plated

13.9 14.5 14.5 18.6 18.6

G 31

C

Design specification for connectors, grid spacing 2 mm

date: pieces per order: company: name, dept.: town: street: fax: signature:	B
□ inquiry□ order	D
surface finish selective gold-plated gold-plated tin-plated 	 one row 1 - 50 contacts possible two rows 2 - 100 contacts possible
	number of contacts
	dimensions:

L = total contact lenght

- A = distance between PCBs
- B = solder side
- C = insertion side

Female headers 2.00 SMD Female headers 2.00 THT Direct female connectors Jumpers $\begin{array}{r} \rightarrow & \mathbf{G} \ \mathbf{68} - \mathbf{70} \\ \rightarrow & \mathbf{G} \ \mathbf{67} \\ \rightarrow & \mathbf{G} \ \mathbf{75} \\ \rightarrow & \mathbf{G} \ \mathbf{76} - \mathbf{77} \end{array}$

Male headers 2.54 THT Single contacts metal strip Male headers 2.00 THT Technical data $\begin{array}{r} \rightarrow & \mathbf{G} \ \mathbf{7} \\ \rightarrow & \mathbf{G} \ \mathbf{49} \\ \rightarrow & \mathbf{G} \ \mathbf{30} - \mathbf{31} \\ \rightarrow & \mathbf{G} \ \mathbf{78} - \mathbf{84} \end{array}$

G 32

N

M

4

2.00

Male headers

🗆 0.5 mm

... packing (option) - additions: SLY 7 SMD 036-045 ... B TR: 4-15 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

G 33

Downloaded from Arrow.com.

Female headers 2.00 SMD Female headers 2.00 THT Direct female connectors Jumpers $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{68} - \mathbf{70} \\ \rightarrow & \mathbf{G} & \mathbf{67} \\ \rightarrow & \mathbf{G} & \mathbf{75} \\ \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \end{array}$

Male headers 2.54 THT Single contacts metal strip Male headers 2.00 THT Technical data $\begin{array}{rrrr} \rightarrow & \mathbf{G} \ \mathbf{7} \\ \rightarrow & \mathbf{G} \ \mathbf{49} \\ \rightarrow & \mathbf{G} \ \mathbf{30} - \mathbf{31} \\ \rightarrow & \mathbf{G} \ \mathbf{78} - \mathbf{84} \end{array}$

C

2.00

Α

B

D

Ξ

2

C

Male headers

🗆 0.5 mm

... packing (option) - additions: SLY 8 SMD ... SM; ... B SM: 6-40 contacts SLY 8 SMD 036-045 ... B TR: 6-30 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

Male headers 2.00 THT \rightarrow	G 30 – 31
High-precis.male head.in SMD mount.→	G 18
Female headers 2.54 press-fit \rightarrow	G 50 – 66
Female header grid 2.00 \rightarrow	H 7

Female headers 2.00 THT Female headers 2.00 SMD Jumpers Technical data $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{67} \\ \rightarrow & \mathbf{G} & \mathbf{68} - \mathbf{70} \\ \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

G 34

□ 0.5 mm

260°

Option, for automatic assembly

– reel diameter Ø 330 mm

Jumpers Female header grid 2.00 Female headers 2.00 THT **Direct female connectors**

G 76 – 77 → → H7 → G 67 → G 75

High-precis.male head.in SMD mount.→ G 18 Male headers 2.00 THT → G 30 – 31 Female headers 2.54 press-fit G 50 – 66 → **Technical data** → G 78 – 84

2.00

G

N

2.00

B

D

킈

2

G

i.

<

Male headers

🗆 0.5 mm

... packing (option) - additions: SLY 10 SMD 40 ... B TR: 4-16 contacts

Option, for automatic assembly

– reel diameter Ø 330 mm

Jumpers Female header grid 2.00 Female headers 2.00 THT Direct female connectors	→ G 76 – 77 → H 7 → G 67 → G 75	Female headers 2.54 press-fit \rightarrow	G 18 G 30 – 31 G 50 – 66 G 78 – 84	G 36
Direct temple connectors	→ G/5	lechnical data →	G /8 – 84	

1.27

Male headers

Contact cross section \Box 0.3 mm, straight, slim insulating body

- suitable for female header **BLM**

- one row 1-20 contacts

Contact cross section \Box 0.4 mm, straight, slim insulating body

- matching for female header **BLM**

– one row 1-20 contacts

D

G 37

Female headers 1.27 SMD Jumpers Female headers 1.27 THT High-prec. fem. headers 1.27 THT $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{73} - \mathbf{74} \\ \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{71} - \mathbf{72} \\ \rightarrow & \mathbf{G} & \mathbf{72} \end{array}$

 Female headers 2.00 SMD
 →
 G 68 - 70

 Direct female connectors
 →
 G 75

 High-prec.female headers 1.27 SMD
 →
 G 74

 Technical data
 →
 G 78 - 84

Downloaded from Arrow.com.

1.27

B

D

킈

C

Male headers

Contact cross section \Box 0.4 mm, straight, slim insulating body

suitable for female header BLM

one row 1-36 contacts

L

Μ

Female headers 1.27 SMD G 73 – 74 G 76 – 77 Jumpers → Female headers 1.27 THT G 71 – 72 **Direct female connectors** → G 75 G 38 Female headers 2.00 SMD High-prec.female headers 1.27 SMD \rightarrow → G 68 – 70 G 74 High-prec. fem. headers 1.27 THT G 72 **Technical data** → G 78 – 84 →

Ν

Male headers

Contact cross section matching for BLM ..., \Box 0.4 mm, 90° angled, expanded insulating body

– one row 1-36 contacts

- two rows 6-72 contacts

- grid spacing 1.27 x 2.54 mm

packing in a bar magazine

- **VPE =** packing unit (pieces/tube)

- preferred number of contacts, further ones can be made upon request

art. no.	no. of	pack-	dim. [mm]	art. no.	no. of	pack-	dim. [mm]
	con-	ing	С		con-	ing	С
	tacts	unit			tacts	unit	
SLV W 2 KA 030 10	10	78	3.0	SLV W 2 KA 054 10	10	78	5.4
SLV W 2 KA 030 14	14	55	3.0	SLV W 2 KA 054 14	14	55	5.4
SLV W 2 KA 030 16	16	50	3.0	SLV W 2 KA 054 16	16	50	5.4
SLV W 2 KA 030 20	20	40	3.0	SLV W 2 KA 054 20	20	40	5.4
SLV W 2 KA 030 26	26	31	3.0	SLV W 2 KA 054 26	26	31	5.4
SLV W 2 KA 030 30	30	27	3.0	SLV W 2 KA 054 30	30	27	5.4
SLV W 2 KA 030 34	34	24	3.0	SLV W 2 KA 054 34	34	24	5.4
SLV W 2 KA 030 40	40	20	3.0	SLV W 2 KA 054 40	40	20	5.4
SLV W 2 KA 030 50	50	16	3.0	SLV W 2 KA 054 50	50	16	5.4
SLV W 2 KA 030 72	72	11	3.0	SLV W 2 KA 054 72	72	11	5.4
	face of (= aold-p						

 $\mathbf{Z} = tin-plated$

G 39

Female headers 1.27 SMD Female headers 1.27 THT Female headers 2.00 SMD High-prec. fem. headers 1.27 THT

G 73 – 74 → G 71 – 72 → G 68 – 70 → G 72

Jumpers **Direct female connectors** High-prec.female headers 1.27 SMD → **Technical data**

G 76 – 77 → -> G 75 G 74 → G 78 – 84

1.27

A

B

D

C

Ľ

Male headers

Contact cross section \Box 0.4 mm, expanded insulating body

suitable for female header BLM

– one row 4-20 contacts

Z = tin-plated

Μ

Female headers 1.27 THT→G 71 - 72Jumpers→G 76 - 77High-prec. fem. headers 1.27 THT→G 72High-prec.female headers 1.27 SMD→G 74

Female headers 1.27 SMD Direct female connectors Female headers 2.00 SMD Technical data $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{73} - \mathbf{74} \\ \rightarrow & \mathbf{G} & \mathbf{75} \\ \rightarrow & \mathbf{G} & \mathbf{68} - \mathbf{70} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

G 40

Male headers

Pin cross section \Box 0.4 mm, expanded insulating body

- matching for female header BLM
- one row 2-20 contacts

... packing (option) - additions: SLV W 3 SMD ... SM: 4-20 contacts

Option, for automatic assembly

Downloaded from Arrow.com.

Female headers 1.27 THT \rightarrow G 71Jumpers \rightarrow G 76High-prec. fem. headers 1.27 THT \rightarrow G 72High-prec.female headers 1.27 SMD \rightarrow G 74

G 71 - 72Female headers 1.27 SMDG 76 - 77Direct female connectorsG 72Female headers 2.00 SMDG 74Technical data

 $\begin{array}{r} \rightarrow \quad \mathbf{G} \ 73 - 74 \\ \rightarrow \quad \mathbf{G} \ 75 \\ \rightarrow \quad \mathbf{G} \ 68 - 70 \\ \rightarrow \quad \mathbf{G} \ 78 - 84 \end{array}$

.

D

Ι

Male headers

Precision contacts, solder and plug pins, Ø 0.43 mm

- turned precision contacts, less space required on PCB

1.27

R

D

킈

Male headers

Precision contacts, solder and plug pins Ø 0.43 mm

- less space required on PCB
- other number of contacts on request

	$2,2$ $(n \times 1,27) + 0,41$ $0,43$ $0,44$ $0,$	
art. no.	no. of contacts	
SLR 5 SMD 50 G	50	
surface of contact:	gold-plated	

G 43

Jumpers Female headers 1.27 SMD Female headers 1.27 THT Female headers 2.00 SMD

High-prec. fem. headers 1.27 THT→G 72High-prec.female headers 1.27 SMD→G 74Direct female connectors→G 75Technical data→G 78 – 84

Customer specified male and female headers

We manufacture male and female headers for your specific application.

All pin lengths from 7.5 to 45.3 mm for grid 2.54 mm and 7.5 to 30 mm for grid 2.00 mm available on request.

The insulator can be mounted at any requested position on the full length of the pin.

Grid spacing insertion with selective gold-plated contacts on request.

PCB connector, extra long and additionally stabilized

4-contact male header for THR-soldering; grid 5.75 mm

8-contact male header with special insulating body including locating pin

angled male header with two insulators

male header in 5.08 mm grid and customised

angled male and female header 1.27 mm grid, with customised insulators

insulator body and precision contacts according to customer's request

male header with various pin lengths

female header in 5.08 mm grid

<

R

D

뒥

G

Jumpers Female headers 1.27 SMD Female headers 1.27 THT Female headers 2.00 SMD

Downloaded from Arrow.com.

Female headers

Precision contacts, plug pins Ø 0.5 mm

Ν

G 45

High-precision female headers THT Single precision contacts Jumpers High-prec. male headers 2.54 THT

 $\begin{array}{r} \rightarrow \quad \mathbf{G} \ \mathbf{2} - \mathbf{6} \\ \rightarrow \quad \mathbf{F} \ \mathbf{17} - \mathbf{18} \\ \rightarrow \quad \mathbf{G} \ \mathbf{76} - \mathbf{77} \\ \rightarrow \quad \mathbf{G} \ \mathbf{45} - \mathbf{55} \end{array}$

Male headers 2.54 THT Single contacts metal strip Male headers 2.54 SMD Technical data $\begin{array}{r} \rightarrow \quad \mathbf{G} \ \mathbf{7} - \mathbf{17} \\ \rightarrow \quad \mathbf{G} \ \mathbf{49} \\ \rightarrow \quad \mathbf{G} \ \mathbf{21} - \mathbf{27} \\ \rightarrow \quad \mathbf{G} \ \mathbf{78} - \mathbf{84} \end{array}$

Downloaded from Arrow.com.

260

2.54

B

D

C

Female headers

Precision contacts for pin cross section Ø 0.5 mm

Low profile, less than 2.7/3.1 mm - with contact spring for Ø 0.5 mm pins

– solder and plug pin Ø 0.76 mm

Low profile: 2.7/3.1 mm; standard profile: 4 mm

High-precision female headers THT \rightarrow G 2 – 6 Male headers 2.54 SMD G 21 – 27 High-prec. fem. headers 2.54 THT → G 53 – 56 Male headers 2.54 THT → G 7 – 17

- Jumper links 2 & 2.54 THT High-prec. male headers 2.54 THT Single precision contacts **Technical data**
- F 15 → → G 45 – 55 F 17 – 18 → → G 78 – 84

G 46

Female headers

Precision contacts in THR-soldering technology for pin cross section Ø 0.5 mm

- THR: Through-Hole-Reflow-soldering technology (connector to be soldered with modified insert technique in Reflow-soldering method)

.

G 47

Direct female connectors Single precision contacts Jumpers Single contacts metal strip $\begin{array}{r} \rightarrow \quad \mathbf{G} \ \mathbf{75} \\ \rightarrow \quad \mathbf{F} \ \mathbf{17} - \mathbf{18} \\ \rightarrow \quad \mathbf{G} \ \mathbf{76} - \mathbf{77} \\ \rightarrow \quad \mathbf{G} \ \mathbf{49} \end{array}$

High-prec.male head.soldering techn.→G 3 - 17High-precis.male head.in SMD mount.→G 18Jumper links 2 & 2.54 THT→F 15Technical data→G 78 - 84

Downloaded from Arrow.com.

Female headers

Peel-Off

- precision contacts are mounted in a temperature-resistant carrier strip which is removed after soldering - special loadings upon request

art. no. PO A G please indicate: no. of contact	Ø 1,35 Ø 0,5 Ø 0,5
from 2 pins	to endless
contact sleeve:	gold-plated
contact spring:	gold-plated
annotation:	Technical data of carrier foil: max. tensile strength: 193 N/mm ² max. thermal expansion - longitudinal direction: 1.7x10 ⁻⁵ mm/°C melting point: 250°C

High-precision female headers THT \rightarrow G 2 – 6 Single precision contacts → F 17 – 18 High-prec. male headers 2.54 THT G 45 – 55 → Male headers 2.54 THT → G 7 – 17

Jumpers Male headers 2.54 SMD Single contacts metal strip Technical data

G 76 – 77 → G 21 – 27 → G 49 → G 78 – 84

G 48

2.54

B

D

G

Ľ

Downloaded from Arrow.com.

Female headers

Precision contacts on metal strip for pin cross section Ø 0.5 mm

.

D

ľ

Ν

G 49

Female headers 2.54 press-fit \rightarrow High-precision female headers THT \rightarrow Jumper links 2 & 2.54 THT \rightarrow High-prec. male headers 2.54 THT \rightarrow

 $\begin{array}{r} \rightarrow & \mathbf{G} \ 66 \\ \rightarrow & \mathbf{G} \ 2-6 \\ \rightarrow & \mathbf{F} \ 15 \\ \rightarrow & \mathbf{G} \ 45-55 \end{array}$

Male headers 2.54 SMD Single precision contacts Single contacts metal strip Technical data $\begin{array}{rrr} \rightarrow & G & 21 - 27 \\ \rightarrow & F & 17 - 18 \\ \rightarrow & G & 49 \\ \rightarrow & G & 78 - 84 \end{array}$

Female headers

Stamped contact spring (fork contact)

- separable! any requested number of contact can be delivered

– for \Box 0.635 mm pin cross section, straight

- for □ 0.635 mm pin cross section, angled

- BL 4 ...: packing (option) bar magazine (≥6 contacts)

 $\begin{array}{rrr} \mathbf{FHT} & \rightarrow & \mathbf{G} \ 53-56 \\ & \rightarrow & \mathbf{G} \ 66 \\ & \rightarrow & \mathbf{G} \ 49 \\ & \rightarrow & \mathbf{F} \ 17-18 \end{array}$

Female headers 2.54 SMD Jumper links 2 & 2.54 THT Direct female connectors Technical data → G 58 - 64
 → F 15
 → G 75
 → G 78 - 84

2.54

B

D

G

260°C

2.54

Female headers

Low profile, fork contact spring

- separable! any requested number of contact can be delivered

– for \Box 0.635 mm pin cross section, straight

– for □ 0.635 mm pin cross section, angled

- BL LP 4 ...: packing in a bar magazine (min. 6 contacts)

C

G 51

High-prec. fem. headers 2.54 THT Female headers 2.54 press-fit Single contacts metal strip Single precision contacts

 $\begin{array}{r} \rightarrow & \mathbf{G} \ 53-56 \\ \rightarrow & \mathbf{G} \ 66 \\ \rightarrow & \mathbf{G} \ 49 \\ \rightarrow & \mathbf{F} \ 17-18 \end{array}$

Female headers 2.54 SMD Jumper links 2 & 2.54 THT Direct female connectors Technical data $\begin{array}{rrr} \rightarrow & \mathbf{G} \ 58 - 64 \\ \rightarrow & \mathbf{F} \ 15 \\ \rightarrow & \mathbf{G} \ 75 \\ \rightarrow & \mathbf{G} \ 78 - 84 \end{array}$

Female headers

For \Box 0.635 mm pin cross section, can be put through / 260 °C Reflow

- for each contact both contact springs have to be interconnected via the PCB
- packing: bar magazine

- stamped contact spring; - separable! any requested number of contact can be delivered

For \Box 0.635 mm pin cross section, can be put through

- packing: bar magazine

- stamped contact spring; - separable! any requested number of contact can be delivered

Single precision contacts	→	F 17 – 18	Jumpers	→	,
Single contacts metal strip	→	G 49	Direct female connectors	→	(
High-precision female headers THT	→	G 2 – 6	Male headers 2.54 SMD	→	(
High-prec. male headers 2.54 THT	→	G 45 – 55	Technical data	→	

G 76 - 77
 G 75
 G 21 - 27
 G 78 - 84

G 52

2.54

R

D

G

N

Female headers

Precision contacts for \Box 0.635 mm and Ø up to 0.85 mm, pin cross section

Male headers 2.00 THT

Male headers 2.54 THT

Male headers 2.54 SMD

Technical data

G 30 – 31

G 7 – 17

G 21 – 27

G 78 – 84

→

→

→

→

C

Ν

- loaded from Arrow com
- Downloaded from Arrow.com.

2.54

R

D

C

Female headers

contact spring:

Precision contacts for \Box 0.635 mm and Ø up to 0.85 mm, pin cross section

gold-plated

- packing in a bar magazine (≥ 6 contacts)
- no capilliary action when soldering due to protected inner contact
- separable! any requested number of contact can be delivered

- no capilliary action when soldering due to protected inner contact

separable! any requested number of contact can be delivered

Male headers 2.00 THT Male headers 2.54 THT Male headers 2.54 SMD Technical data $\begin{array}{rrr} \rightarrow & \mathbf{G} & \mathbf{30} - \mathbf{31} \\ \rightarrow & \mathbf{G} & \mathbf{7} - \mathbf{17} \\ \rightarrow & \mathbf{G} & \mathbf{21} - \mathbf{27} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

Female headers

Precision contacts for \Box 0.635 mm and Ø up to 0.85 mm, pin cross section

- with aligned Wire-Wrap pins
- no capilliary action when soldering due to protected inner contact
- separable! any requested number of contact can be delivered

– for PC 104 modules

- no capilliary action when soldering due to protected contact insert

- **separable!** any requested number of contact can be delivered

G 55

Male headers 2.00 THT->GHigh-precision female headers THT->GMale headers 2.54 THT->GMale headers 2.54 SMD->G

 $\begin{array}{rrr} \rightarrow & \mathbf{G} & \mathbf{30} - \mathbf{31} \\ \rightarrow & \mathbf{G} & \mathbf{2} - \mathbf{6} \\ \rightarrow & \mathbf{G} & \mathbf{7} - \mathbf{17} \\ \rightarrow & \mathbf{G} & \mathbf{21} - \mathbf{27} \end{array}$

Female headers 2.00 THT Female headers 2.00 SMD Single contacts metal strip Technical data $\begin{array}{rrrr} \rightarrow & G & 67 \\ \rightarrow & G & 68 \\ \rightarrow & G & 49 \\ \rightarrow & G & 78 - 84 \end{array}$

.

C

Female headers

- for PC 104 modules
- no capilliary action when soldering due to protected contact insert
- separable! any requested number of contact can be delivered

Male headers 2.00 THT G 30 – 31 -> **High-precision female headers THT** Male headers 2.54 THT → Male headers 2.54 SMD →

Female headers 2.00 THT Female headers 2.00 SMD Single contacts metal strip **Technical data**

G 2 – 6

G 7 – 17

G 21 – 27

G 67 → G 68 G 49 → **→** G 78 – 84 2.54

R

D

C

Female headers

Low profile, fork contact spring

- for \Box 0.635 mm plug pins
- other number of contacts on request

G 57

2.54

R

D

뒥

C

Female headers

Precision contacts for \Box 0.635 mm and Ø up to 0.85 mm, pin cross section

- no capilliary action when soldering due to protected contact insert
- separable! any requested number of contact can be delivered

... packing (option) - additions: BL 15 SMD ... B TR: 4-12 contacts

contact sleeve:	tin-plated
contact spring:	gold-plated

Option, for automatic assembly

– reel diameter Ø 330 mm

2.54

Female headers

Precision contacts for \Box 0.635 mm and Ø up to 0.85 mm, pin cross section

- no capilliary action when soldering due to protected contact insert
- **separable!** any requested number of contact can be delivered

... packing (option) - additions: BL 16 SMD ... B TR: 6-40 contacts

contact sleeve:	tin-plated
contact spring:	gold-plated

Option, for automatic assembly

– reel diameter Ø 330 mm

	Female headers 1.
G 59	Female headers 2.
6 57	Female headers 2.
	Single contacts me

aders 1.27 SMD	
aders 2.00 SMD	
aders 2.54 press-fit	
tacts metal strip	

→	G 73
→	G 68
→	G 66
→	G 49

Single precision contacts Male headers 2.54 THT Male headers 2.54 SMD Technical data

wnloaded from	Arrow.com.

2.54

R

D

킈

Female headers

Precision contacts for \Box 0.635 mm and Ø up to 0.85 mm, pin cross section

- no capilliary action when soldering due to protected inner contact
- separable! any requested number of contact can be delivered

packing (option) - additions: BL 17 SMD ... SM: 3-20 contacts BL 17 SMD ...TR: 2-13 contacts

contact sleeve:	tin-plated
contact spring:	gold-plated

Option, for automatic assembly

– reel diameter Ø 330 mm

Μ

Single contacts metal strip \rightarrow G 49Male headers 2.54 THT \rightarrow G 7 - 17Male headers 2.54 SMD \rightarrow G 21 - 27High-precision female headers THT \rightarrow G 2 - 6

Female headers 1.27 SMD Female headers 2.00 SMD Female headers 2.54 press-fit Technical data

→ G 73
 → G 68
 → G 66
 → G 78 - 84

Female headers

- no capilliary action when soldering due to protected inner contact

separable! any requested number of contact can be delivered _

packing (option) - additions: BL 20 SMD ... SM: 10-40 contacts

Downloaded from Arrow.com.

G 49 G 7 – 17 → G 21 – 27

.

Б

R

D

G

Female headers

Precision contacts for \Box 0.635 mm and Ø up to 0.85 mm, pin cross section

- no capilliary action when soldering due to protected inner contact

- separable! any requested number of contact can be delivered

G 62

Single contacts metal strip G 49 Male headers 2.54 THT G 7 – 17 Male headers 2.54 SMD → G 21 - 27 High-precision female headers THT \rightarrow G 2 – 6

Female headers 1.27 SMD Female headers 2.00 SMD Female headers 2.54 press-fit **Technical data**

G 73 G 68 G 66 → G 78 – 84 ->

Downloaded from Arrow.com.

Female headers

Precision contacts for \Box 0.635 mm and up to Ø 0.85 mm, pin cross section

- no capilliary action when soldering due to protected inner contact
- separable! any requested number of contact can be delivered

Precision contacts for pin cross section Ø 0,5 mm

- one row
- no capilliary action when soldering due to protected contact insert
- separable! any requested number of contact can be delivered

art. no.		 (n-1) x 2,54 (n-1)		
MK 25 SMD	- 6,9 -	←	→ 2,54	2,54 -
please indicate:	no. of contacts one row 2-20			
contact sleeve:	tin-plated			
contact spring:	gold-plate	ed		

Downloaded from Arrow.com.

G 63

.

D

B

D

G

2.54

Female headers

Precision contacts for pin cross section Ø 0,5 mm

- one row

- no capilliary action when soldering due to protected inner contact
- **separable!** any requested number of contact can be delivered

art. no. MK 23 SMD		Ø 1,82 2,54 4,2- Pin 1	n-1) x 2,54	2,54
please indicate:	no. of conta one row 4-		g (optional) = pick and place pad and b	ar magazine
contact sleeve:		tin-plated		
contact spring:		gold-plated		

- two rows

- no capilliary action when soldering due to protected inner contact

- separable! any requested number of contact can be delivered

Single contacts motal string

 $\begin{array}{r} \rightarrow & \mathbf{G} & \mathbf{49} \\ \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{73} \\ \rightarrow & \mathbf{G} & \mathbf{68} \end{array}$

Female headers 2.54 press-fit High-precision female headers THT Female headers 2.54 press-fit Technical data

 $\begin{array}{rrr} \rightarrow & \mathbf{G} & \mathbf{66} \\ \rightarrow & \mathbf{G} & \mathbf{2-6} \\ \rightarrow & \mathbf{G} & \mathbf{50} \\ \rightarrow & \mathbf{G} & \mathbf{78-84} \end{array}$

G 64

Female headers

Precision contacts for pin cross section Ø 0,5 mm

- no capilliary action when soldering due to protected contact insert
- separable! any requested number of contact can be delivered

MK 220 SMD Pin 1 Pin 1	MK 220 SMD		9'2'2'		
--	------------	--	--------	--	--

... packing (option) - additions: MK 220 SMD ... BTR 6-12 contacts; 800 pcs/reel MK 220 SMD ... BTR 14-40 contacts; 500 pcs/reel

Option, for automatic assembly

– reel diameter Ø 330 mm

Single contacts metal strip Jumpers Female headers 1.27 SMD Female headers 2.00 SMD

G 49 → G 76 – 77 G 73 → → G 68

G 66 Female headers 2.54 press-fit → **High-precision female headers THT** → G 2 – 6 Female headers 2.54 press-fit G 50 → **Technical data** → G 78 – 84

.

C

G 65

Female headers

Precision contacts for \Box 0.635 mm and up to Ø 0.85 mm, pin cross section

- press-fit mounting without soldering, resilient press-fit area
- no capilliary action when soldering due to protected inner contact contact
- **separable!** any requested number of contact can be delivered

260

Hole diameter in PCB - hole structure acc. to DIN EN 60352-5

Single contacts metal strip Male headers 2.54 press-fit Jumpers Female headers 2.00 THT R

D

C

2.54

2.00

Female headers

Precision contacts for \Box 0.5 mm and Ø up to 0.56 mm, pin cross section

- no capilliary action when soldering due to protected inner contact

- **separable!** any requested number of contact can be delivered

.

N

G 67

Single contacts metal strip Male headers 2.00 THT Female header grid 2.00 Female headers 2.00 SMD $\begin{array}{rrr} \rightarrow & \mathbf{G} & \mathbf{49} \\ \rightarrow & \mathbf{G} & \mathbf{30} - \mathbf{31} \\ \rightarrow & \mathbf{H} & \mathbf{7} \\ \rightarrow & \mathbf{G} & \mathbf{68} \end{array}$

Jumpers High-precision female headers THT Jumper links 2 & 2.54 THT Technical data

 $\begin{array}{rrr} \rightarrow & \mathbf{G} \ 76 - 77 \\ \rightarrow & \mathbf{G} \ 2 - 6 \\ \rightarrow & \mathbf{F} \ 15 \\ \rightarrow & \mathbf{G} \ 78 - 84 \end{array}$

Female headers

2.00

Female headers

Precision contacts for \Box 0.5 mm and Ø up to 0.56 mm, pin cross section

- no capilliary action when soldering due to protected inner contact
- **separable!** any requested number of contact can be delivered

... packing (option) - additions: BLY 8 SMD ... B TR: 6-30 contacts

contact sleeve:	tin-plated
contact spring:	gold-plated

Option, for automatic assembly

– reel diameter Ø 330 mm

.

Jumpers Single contacts metal strip Female headers 2.00 THT Female headers 2.54 SMD

 $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{76} - \mathbf{77} \\ \rightarrow & \mathbf{G} & \mathbf{49} \\ \rightarrow & \mathbf{G} & \mathbf{67} \\ \rightarrow & \mathbf{G} & \mathbf{58} - \mathbf{64} \end{array}$

Male headers 2.00 SMD Female headers 2.00 THT Male headers 2.00 THT Technical data $\begin{array}{rrrr} \rightarrow & \mathbf{G} & \mathbf{33} - \mathbf{35} \\ \rightarrow & \mathbf{G} & \mathbf{67} - \mathbf{70} \\ \rightarrow & \mathbf{G} & \mathbf{30} - \mathbf{31} \\ \rightarrow & \mathbf{G} & \mathbf{78} - \mathbf{84} \end{array}$

G 69

2.00

R

D

C

Female headers

Precision contacts for \Box 0.5 mm and Ø up to 0.56 mm, pin cross section

- no capilliary action when soldering due to protected inner contact
- separable! any requested number of contact can be delivered

... packing (option) - additions: BLY 9 SMD ... SM: 8-40 contacts BLY 9 SMD ... TR: 4-20 contacts

contact sleeve:	tin-plated]
contact spring:	gold-plated	

Option, for automatic assembly

– reel diameter Ø 330 mm

Male headers 2.00 SMD Female headers 2.00 THT Male headers 2.00 THT Technical data

Female headers

Stamped contact spring (fork contact)

- matching male header SLM and SLV

- one row 1-36 contacts

39

Downloaded from Arrow.com.

Direct female connectors	→	G 75
Shroud male head./press-fit mount.	→	G 29
Male headers 1.27 THT	→	G 37
High-prec. male headers 1.27 SMD	→	G 43

 High-prec. male head. 1.27 THT
 →
 G

 Male headers 2.54 press-fit
 →
 G

 Jumpers
 →
 G

 Technical data
 →
 G

→ G 42
 → G 28
 → G 76 - 77
 → G 78 - 84

D

C

Precision contacts for Ø 0.35...0.46 mm, pin cross section

- no capilliary action when soldering due to protected inner contact
- other number of contacts on request!

Shroud male head./press-fit mount. \rightarrow G 29 Female headers 1.27 THT G 71 – 72 High-prec. male headers 1.27 SMD G 43 → Male headers 1.27 SMD G 40 →

Male headers 2.54 press-fit **Direct female connectors** High-prec. male head. 1.27 THT **Technical data**

G 28 → G 75 → G 42 → G 78 – 84 1.27

B

260

Female headers

Fork contact for \Box 0.3 mm and \Box 0.4 mm pin cross section, wide insulating body

- suitable for male header SLM and SLV
- one row 4-20 contacts

Grid spacing 1.27 x 2.54 mm

- suitable for male header SLV
- two rows 4-40 contacts

Fork contact for \Box 0.3 mm and \Box 0.4 mm pin cross section, wide insulating body

matching for male header SLV

one row 2-20 contacts

Shroud male head./press-fit mount. \rightarrow Female headers 1.27 THT → High-prec. male headers 1.27 SMD → Male headers 1.27 SMD →

G 29 G 71 – 72 G 43 G 40

Male headers 2.54 press-fit **Direct female connectors** High-prec. male head. 1.27 THT **Technical data**

G 28 → → G 75 G 42 → → G 78 – 84

C

B

D

G

Turned precision contacts for Ø 0.35...0.46 mm

- closed precision turned part with 3-finger contact prevents rising of flux agents

– other number of contacts on request!

L

<

M

Female headers 1.27 THT High-prec. fem. headers 1.27 THT Single contacts metal strip Male headers 2.54 press-fit

Direct female connectors

Without short circuit contact for PCB thickness: 0.7...0.9 mm

- for removable connection of digital displays, coding switches, impulse counters

With short circuit contact for PCB thickness: 0.7...0.9 mm

- for removable connection of digital displays, coding switches, impulse counters

– K* = arcing contact

For PCB thickness: 1.4...1.8 mm

G 75

Male headers 1.27 THT Male headers 1.27 SMD Male headers 2.54 press-fit Male headers 2.54 SMD

 $\begin{array}{r} \rightarrow & \mathbf{G} \ 37 - 39 \\ \rightarrow & \mathbf{G} \ 40 \\ \rightarrow & \mathbf{G} \ 28 \\ \rightarrow & \mathbf{G} \ 21 - 27 \end{array}$

Female headers 2.54 press-fit Female headers 1.27 THT Design spec., grid 2.54 mm Technical data $\begin{array}{r} \rightarrow & \mathbf{G} \ 66 \\ \rightarrow & \mathbf{G} \ 71 - 53 \\ \rightarrow & \mathbf{G} \ 14 \\ \rightarrow & \mathbf{G} \ 78 - 84 \end{array}$

-

C

C

Jumpers

For 0.6...0.64 mm wire wrap pins and for Ø 0.6...0.7 mm

		-		
art. no.	no. of contacts	surface of contact	grid [mm]	version
CAB 4 G	2	0.1 <i>µ</i> m gold	2.54	closed
CAB 4 Z	2	5.0 μ m tin	2.54	closed
G		-		
art. no.	no. of contacts	surface of contact	grid [mm]	version
CAB 5 05 G	2	0.5 μ m gold	5.08	closed, hole for test probe
CAB 5 10 G	2	1.0 μ m gold	5.08	closed, hole for test probe
CAB 5 Z	2	5.0 μ m tin	5.08	closed, hole for test probe

art. no.	no. of contacts	surface of contact	grid [mm]	version
CAB 6 05 G	2	0.5 <i>µ</i> m gold	2.54	open, for miniature alligator clip
CAB 6 10 G	2	1.0 <i>µ</i> m gold	2.54	open, for miniature alligator clip
CAB 6 Z	2	5.0 μ m tin	2.54	open, for miniature alligator clip
please indicate:	colour S = blac R = red B = bluc G = gre	e		

Downloaded from Arrow.com.

→ G 33 – 35

Ν

V

4

B

D

G

E

K

Jumpers

D

Ξ

G

- the flexible contacts are short-circuiting two pins

- the jumpers can be mounted behind and next to each other

art. no.	no. of	surface of contact	grid [mm]	version
	contacts			
CAB 9 G	2	<0.1 μ m gold	2.54	tag, open
please indicate:	colour S = bla R = red			

For \Box 0.5 mm and for \emptyset 0.4...0.5 mm

A A A A A A A A A A A A A A A A A A A		-		
art. no.	no. of contacts	grid [mm]	version	colour
CAB 10 G S	2	2	open, for miniature alligator clip	black

art. no.	no. of	grid [mm]	version	colour
	contacts			
CAB 11 G S	2	2	open, for miniature alligator	black
			clip	

For 🗆 0.3...0.4 mm and Ø 0.4...0.5 mm

			→0,85 → → → +1,25 → 2,5 →	
art. no.	no. of contacts	grid [mm]	version	colour
CAB 15 G S	2	1.27	closed, tag	black

G 77

Male headers 2.54 SMD Male headers 2.54 THT Male headers 2.54 press-fit Male headers 2.00 SMD $\begin{array}{rrrr} \rightarrow & G & 21 - 27 \\ \rightarrow & G & 7 \\ \rightarrow & G & 28 \\ \rightarrow & G & 33 - 35 \end{array}$

Male headers 2.00 THT \rightarrow G 30 - 31High-precision female headers THT \rightarrow G 2 - 6High-prec. male headers 1.27 SMD \rightarrow G 43Technical data \rightarrow G 78 - 84

Technical data PCB connectors

	MK, MK LP	SL, SL THR, SLK, SL LP	SLU	SL KA 3, SL KG 3
contact material	CuZn-alloy	CuSn	alloy	CuZn-alloy
surface contact / contact sleeve	Ni+≥0.2µm Au	/ Ni+46µm Sn	Ni+0.2μm Au (selective)/ Ni+46μm Sn	Ni+≥0.2µm Au/ Ni+46µm Sn
shock resistance	50 g			
volume resistance	\leq 10 m Ω	≤5 mΩ	\leq 10 m Ω	≤20 mΩ
vibration resistance max.	15 g		·	
capacity between two adjacent contacts	≤0,4 pF			
nominal current	1.5 A		3 A	
nominal voltage	60 V DC	250 V AC	100 V DC	250 V AC
test voltage	1000 V	2000 V	100	V 0C
insulating body material		PA 4.	6. GF	
temperature range	-40°C	-40°C +163°C/ (260°C/10 s) +1		-40°C +163°C/ (260°C/5 s)
class of flammibility	UL 94 V-0			
specific insulation resistance		>107	⁷ Ω·m	

	SLP 1, SLP 2, SLUP 31	SLY	SLM N, SLV N, SLV W	SLR		
contact material	CuSn	alloy	CuZ	In-alloy		
surface contact / contact sleeve		Ni+≥0.2µm Au/ Ni+46µm Sn				
volume resistance	≤10 mΩ	≤5	mΩ	≤20 mΩ		
nominal current	3	A	1.5 A	1 A		
nominal voltage	250 V AC	100 V DC	125 V AC	100 V AC/ 150 V DC		
test voltage	1000 V	500 V	300 V	500 V		
insulating body material		PA 4.6. GF		PCT, GF		
temperature range	-40°C +163°C/ (260°C/10 s)			-40°C +105°C/ (260°C/10 s)		
class of flammibility	UL 94 V-0					
specific insulation resistance		>107 Ω·m				

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

A

C

D

G

ł.

K

N

Ν

Technical data PCB connectors

	MK 06, MK 07/207, MK 12/212, MK 13/213, MK 17/217	MK 01/201, MK 220 SMD, MK 228 THR, MK 23/223, MK 25 SMD, MK LP 18, MK LP 19, MK LP 218, MK LP 219	РО А	SIL 1, SIL 3	
contact material		CuZn	-alloy		
surface contact / contact sleeve	Ni+4	6μm Sn	Ni+≥0.2µm Au/ Ni+46µm Sn	Ni+46µm Sn	
inner contact spring material		CuBe-alloy			
inner contact spring surface	Ni+0,75µm Au	Ni+0,2	5μm Au	Ni+0,75µm Au	
type internal spring		4-fir	ngers		
plugability for circuit points	□0,22x0,25mm □0,4x		0,55mm/ Ø0,40,5	i6mm	
insert depth	2.53	3.6mm	2.53.4mm	2.53.6mm	
insertion / drawing force		1.8 N,	/1.4 N		
shock resistance	50) g		50 g	
volume resistance	≤10	mΩ		\leq 10 m Ω	
vibration resistance max.	15	5 g		15 g	
capacity between two adjacent contacts	≤0,,	4 pF		≤0,4 pF	
nominal current	1.5	5 A	3 A	1.5 A	
nominal voltage	60 V	/ DC	150 V DC	60 V DC	
test voltage	100	00 V	1000 V / 1 min.	1000 V	
insulating body material	PA 4.	6. GF			
temperature range	-40°C +163°C	C/ (260°C/10 s)	-55°C +125°C/ (260°C/10 s)		
class of flammibility		UL 94 V-0			
specific insulation resistance	>107	′Ω·m		1	

D

Ν

G 79

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Technical data PCB connectors

	SIL 2	BL 1, BL 2, BL 3, BL 4	BL 11	BL 12, BL 21
contact material	CuZn-alloy		CuSn alloy	,
surface contact / contact sleeve	Ni+46µm Sn	Ni+≥0.2µm Au/ Ni+46µm Sn	Ni+46μm Sn	
inner contact spring material	CuBe-alloy			
inner contact spring surface	Ni+0,25µm Au			
type internal spring	4-fingers	fork contact	spring	contact
plugability for circuit points	□0,22x0,25mm □0,4x0,55mm/ Ø0,40,56mm	□0,50,7mm	□0,60,65mm	
insert depth	2.53.6mm	1.55mm	≤5mm from above/ ≤8mm from below	≤6mm from above or from be- low
insertion / drawing force	1.8 N/1.4 N	1.5 N/1.3 N	1.5 N/0.5 N	1.5 N/0.2 N
shock resistance	50 g			1
volume resistance	≤10)mΩ	≤20	DmΩ
vibration resistance max.	15 g			
capacity between two adjacent contacts	≤0,4 pF		≤ 0,9 pF	
nominal current	1.5 A		3 A	
nominal voltage	60 V DC	125 V AC	250	V AC
test voltage	1000 V	1500 V	50	00 V
insulating body material		PPS	PA 4.6. GF	LCP
temperature range		-40°C +200°C/ (260°C/10 s)	-40°C +163°C/ (260°C/10 s)	-55°C +125°C
class of flammibility			UL 94 V-0	1
specific insulation resistance		>10 ¹² Ω·m	>10 ⁷ Ω·m	$> 10^{12} \Omega \cdot m$

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

A

C

D

E

G

ł.

K

M

N

Technical data PCB connectors

	BL KG 3	BL 13, BL 14, BL 18, BL 19	BL LP	BL 15 - 17 SMD, BL 20 SMD, BL 5 - 10
contact material	CuZn	i-alloy	CuSn alloy	CuZn-alloy
surface contact / contact sleeve	Ni+46µm Sn	Ni+≥0.2µm A⊍	Ni+0.2µm Au (selective)/ Ni+24µm Sn (matt finished tin)	Ni+46µm Sn
inner contact spring material	CuBe	-alloy		CuBe-alloy
inner contact spring surface	Ni+0,7	5μm Au		Ni+0,75µm Au
type internal spring	6-fir	ngers	fork contact	6-fingers
plugability for circuit points	□0,550,65mm/	′Ø0,650,85mm	□0,50,7mm	□0,550,65mm/ Ø0,650,85mm
insert depth	2.5	.6mm	24mm	2.56mm
insertion / drawing force	1.3N,	/0.3N		1.3N/0.3N
shock resistance		50 g		50 g
volume resistance			≤10 mΩ	
vibration resistance max.		15 g		15 g
capacity between two adjacent contacts		≤ 0,3 pF	≤ 0,9 pF	≤ 0,3 pF
nominal current		3	A	
nominal voltage	150	V DC	125 V AC	150 V DC
test voltage	500 V		1500 V	
insulating body material	PCT, GF	PA 4.6. GF	PPS	PA 4.6. GF
temperature range	-55°C +125°C/ (260°C/10 s)	-40°C +163°C/ (260°C/10 s)	-40°C +200°C/ (260°C/10 s)	-40°C +163°C/ (260°C/10 s)
class of flammibility		UL 9	4 V-0	
specific insulation resistance		>107 Ω·m	>10 ¹² Ω	>107 Ω·m

D

Ν

G 81

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Technical data PCB connectors

	MK 21/221, MK 22/222, MK 24 SMD	BLP 1, BLP 2	BLY	BLR					
contact material		CuZn-alloy							
surface contact / contact sleeve		Ni+4	6μm Sn						
inner contact spring material		CuBe	-alloy						
inner contact spring surface	Ni+0,7	5μm Au	Ni+0,25µm Au	Ni+0,75µm Au					
type internal spring		6-fingers	·	3-fingers					
plugability for circuit points	□0,550,65mm/	□0,550,65mm/ Ø0,650,85mm Ø0,450,5mm Ø0,40,56mm							
insert depth	2.53.6mm	2.56mm	2.53.8mm	2.53mm					
insertion / drawing force	1.3N/0.3N 1.2N								
shock resistance		50) g						
volume resistance		\leq 10 m Ω		≤20 mΩ					
vibration resistance max.		15	5 g						
capacity between two adjacent contacts	≤0,3 pF	≤ 0,3 pF	≤0,7 pF	≤1,0 pF					
nominal current	3 A	2 A	2.5 A	1 A					
nominal voltage	150	/ DC	100	V DC					
test voltage	1500 V	1000 V	50	0 V					
insulating body material		PA 4.6. GF	·	PCT, GF					
temperature range	-40°C	-40°C +105°C/ (260°C/10 s)							
class of flammibility		UL 9	4 V-0						
specific insulation resistance		>107 Ω·m							

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

A

C

D

E

G

ł.

K

N

N

Technical data PCB connectors

	BLM	DF 1, DF 2	DF OB	САВ 4
contact material				
surface contact / contact sleeve	Ni+≥0.2µm Au/ Ni+46µm Sn	Ni+46µm Sn	Ni+7µm Sn	0.1 μm Au/ 5 μm Sn
type internal spring	fork contact		spring contact	
plugability for circuit points	□0,30,4mm			
insert depth	2.56mm			46.1mm
insertion / drawing force	1.3 N/1.1 N			1
volume resistance	\leq 10 m Ω			
capacity between two adjacent contacts	≤0,4 pF			
nominal current	1.5 A	2 A	3 A	1.5 A
nominal voltage		125 V AC	1	250 V AC
test voltage	50	0 V	800 V	
insulating body material	PA 4.6. GF	polycarbonate	PA 4.6. GF	PBT
temperature range	-40°C +163°C/ (260°C/10 s)	-40°C +125°C	-40°C +125°C/ (260°C/10 s)	-40°C +105°C
class of flammibility		UL 94 V-0		
specific insulation resistance	>10 ⁷ Ω·m			
PCB thickness		0,70,9 mm	1,41,8 mm	
mounting			without mounting eyelets	

G

Ν

Ν

G 83

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

D

Technical data PCB connectors

	CAB 5	CAB 6	САВ 9	CAB 10 G S			
surface contact / contact sleeve	0.5 μm Au/ 1 μ	ım Au∕ 5 μm Sn	0.1 µ	m Au			
insert depth	45.5mm	5mmplug through	45.6mm	4mmplug through			
nominal current	3 A	1.5 A	3 A	1.5 A			
nominal voltage	250	250 V AC		150 V DC			
insulating body material	PA	4.6	PI	ЗТ			
temperature range	-40°C	+105°C	-40°C +105°C/ (resist- ance to soldering heat 235°C/30- 60s)	-40°C +105°C			

	CAB 11 G S	CAB 15 G S
surface contact / contact sleeve	0.1 <i>µ</i> m Au	<0.1 <i>µ</i> m Au
insert depth	5mmplug through	2.22.4mm
nominal current	1.5 A	1 A
nominal voltage	150 V DC	100 V AC
insulating body material	PBT	PA 66
temperature range	-40°C +105°C	-40°C +150°C

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Α

B

C

D

E

G

ł.

K

-

Ν

N

Shroud male headers Multipoint connector with and without lock Multipoint connector, one and two rows **PCB** connector

Shroud male headers

- shroud male headers for lockable multipoint connector version: 2 rows, 6 contacts up to 50 contacts,
- grid 2,54 mm
- straight, angled and for SMD technology reflow solderable insulator
- class of flammibility acc. to UL 94 VO

- Multipoint connector with and without lock
- multipoint connector for ribbon cable
- version: two rows, 6 contacts up to 50 contacts, grid 2,54mm
- version without lock
- with polarisation

Multipoint connector, one and two rows

- multipoint connector for ribbon cable
- two rows with and without pull relief, grid 2,54, 6 contacts up to 50 contacts
- two rows in grid 2,0 mm, 20 contacts up to 50 contacts
- polarisation at the two row version
- one row in grid 2,54 mm, 3 contacts up to 25 contacts

- **PCB** connector
- PCB connector for ribbon cable
- one row in grid 2,54 mm, 4 contacts up to 20 contacts
 two rows in grid 2,54 mm, 6 contacts up to 34 contacts
- two rows in DIL design, grid 2,54 mm, 4 contacts up to 40 contacts

Shroud-male header

Straight, two rows, shrouded

- suitable for female multipoint connector VFL, FLMP, PV
- in addition they can be combined with many other ribbon cable connectors in 2.54 mm pitch
- plug-in area available in gold-plated or completely tin-plated!

Angled, two rows, shrouded

- suitable for female multipoint connector VFL, FLMP, PV

- in addition they can be combined with many other ribbon cable connectors in 2.54 mm pitch

- plug-in area available in gold-plated or completely tin-plated!

R

D

2.54

C

K

Μ

N

H 2

Shroud. male header SMD
Application tools
Boltable female header
Female header grid 2.00

PC connectors Female header two rows PC connector design DIL Technical data → H 8
 → H 6
 → H 9
 → H 11 - 12

260°C

2.54

Shroud-male header

- SMD, two rows, shrouded – suitable for female multipoint connector VFL, FLMP, PV
- **VPE** = packing unit (pieces/tube)

.

D

C

- plug-in area available in gold-plated or completely tin-plated!
- in addition they can be combined with many other ribbon cable connectors in 2.54 mm pitch

Option, for automatic assembly Pick and place pad "B" and bar magazin "SM"

– position of the pick and place pad in the middle

н	3
	-

 $\begin{array}{c} \rightarrow H 3 \\ \rightarrow H 10 \\ \rightarrow H 5 \\ \rightarrow H 7 \end{array}$

PC connectors Female header two rows PC connector design DIL Technical data $\begin{array}{c} \rightarrow & H \ 8 \\ \rightarrow & H \ 6 \\ \rightarrow & H \ 9 \\ \rightarrow & H \ 11 - 12 \end{array}$

Female connector

One row

– excess length of the ribbon cable to the case at ≥ 1 mm!

TAXABLE IN CONTRACTOR		2,54 — C — 2 田田〉 潮田	0,635		3
art. no.	no. of		dim	. [mm]	
	con- tacts	A	В	С	D
FV 03	3	15.24	7.62	5.08	8.89
FV 04	4	17.78	10.16	7.62	11.43
FV 05	5	20.32	12.70	10.16	7.62
FV 06	6	22.86	15.24	5.08	16.51
FV 07	7	25.40	17.78	15.24	19.05
FV 08	8	27.94	20.32	17.78	21.59
FV 10	10	33.02	25.40	22.86	26.67
FV 12	12	38.10	30.48	27.94	31.75
FV 13	13	40.64	33.02	30.48	34.29
FV 14	14	43.18	35.66	33.02	36.83
FV 16	16	48.26	40.64	38.10	41.91
FV 17	17	50.80	43.18	40.64	44.45
FV 18	18	53.34	45.72	43.18	46.99
FV 20	20	58.42	50.80	48.26	52.07
FV 24	24	68.58	60.96	58.42	62.23
FV 25	25	71.12	63.50	60.96	64.77
blease indicate:	G = ç	ice of contact jold-plated in-plated			
annotation:		IDC-pattern 2.	54mm		
onductor cross-section	on:	AWG 2830	= 0,090,05 mm ²		
nsulation diameter:		≤1,1 mm			
uitable ribbon cable onductor flat cable:	round	AWG 28 = mc	assive or strand		

Female header grid 2.00
Application tools
PC connectors
PC connector design DIL

→ H6

→ H5

Δ

B

C

D

G

K

M

Female connector

Two rows, with polarisation

- lockable female multipoint connector, suitable for shrouded male header ASL ...

- suitable for shrouded male header ASL ...

– excess length of the ribbon cable to the case at ≥ 1 mm!

				2, 2, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A		
art. no.	no. of	dim.	[mm]	art. no.	no. of	dim.	[mm]
	con- tacts	А	В		con- tacts	А	В
FLMP 06	6	10.97	9.56	FLMP 20	20	28.75	27.34
FLMP 08	8	13.51	12.10	FLMP 26	26	36.37	34.96
FLMP 10	10	16.05	14.64	FLMP 34	34	46.53	45.12
FLMP 12	12	18.59	17.18	FLMP 40	40	54.15	52.74
FLMP 14	14	21.13	19.72	FLMP 50	50	66.85	65.44
FLMP 16	16	23.67	22.26				
please indicate:	G = g	ce of contact old-plated n-plated					
annotation:		IDC-	pattern 1.27mm				
conductor cross-secti	on:	AWG	2830 = 0,09.	0,05 mm²			
insulation diameter:		≤1,1	mm				
suitable ribbon cable conductor flat cable:	e round	AWG	28 = massive or	r strand			

.

D

Female header grid 2.00 Application tools PC connectors PC connector design DIL → H7 → H10 → H8 → H9 Female header two rows Boltable female header Shrouded male header Technical data $\begin{array}{r} \rightarrow H \ 6 \\ \rightarrow H \ 5 \\ \rightarrow H \ 2 \\ \rightarrow H \ 11 - 12 \end{array}$

Female connector

Two rows, with polarisation

- suitable for shrouded male header **ASL** ...
- excess length of the ribbon cable to the case at ≥ 1 mm!

E MERICAN L	2,54	3,81 2,54 				- 13,5 -	-		1,1	
art. no.	no. of	passende Z	u- dim.	[mm]	art. no.	no. of	passende Zu-	dim.	[mm]	
	con-	gentlastung	g A	В		con-	gentlastung	А	В	
	tacts					tacts				
PV 06 G	6	ZEPV 06	12.2	5.08	PV 26 G	26	ZEPV 26	37.6	30.48	
PV 10 G	10	ZEPV 10	17.3	10.16	PV 34 G	34	ZEPV 34	47.8	40.64	
PV 14 G	14	ZEPV 14	22.4	15.24	PV 40 G	40	ZEPV 40	55.4	48.26	
PV 16 G	16	ZEPV 16	24.9	17.78	PV 50 G	50	ZEPV 50	68.1	60.96	
PV 20 G	20	ZEPV 20	30.0	22.86						
surface of contact:		gol	d-plated				1			
annotation:		IDC	IDC-pattern 1.27mm							
conductor cross-section:			AWG 2830 = 0,090,05 mm ²							
insulation diameter:		≤1	,1 mm							
suitable ribbon cable conductor flat cable:	round	AW	′G 28 = m	assive o	r strand					

	2,54	3,81 - 3,54 - 3,54	1,27 母母 母母		2; El		
art. no.	no. of	dim.	[mm]	art. no.	no. of	dim.	[mm]
	con- tacts	А	В		con- tacts	А	В
ZEPV 06	6	12.2	5.08	ZEPV 26	26	37.6	30.48
ZEPV 10	10	17.3	10.16	ZEPV 34	34	47.8	40.64
ZEPV 14	14	22.4	15.24	ZEPV 40	40	55.4	48.26
ZEPV 16	16	24.9	17.78	ZEPV 50	50	68.1	60.96
ZEPV 20	20	30.0	22.86				

Female header two rows Boltable female header Shrouded male header Technical data → H6 → H5 → H2 → H11-12 B

D

뒥

C

<

Female connector

Two rows

– excess length of the ribbon cable to the case ≥ 1 mm!

Managana ang ang ang ang ang ang ang ang				
art. no.	no. of		dim. [mm]	
	con-	A	В	
	tacts			
PVY 20 S	20	25.1	18	
PVY 40 S	40	45.3	38	
PVY 44 S	44	49.3	42	
PVY 50 S	50	55.1	48	
surface of contact:	<u>.</u>	selective gold-plated		
annotation:		IDC-pattern, 1mm		
recommended conne	ctor pins	s: □ 0,5 mm		

D

Ν

N

Downloaded from Arrow.com.

Female header two rows Boltable female header Shrouded male header Technical data

→	H 6
→	H 5
→	H 2
→	H 11 – 12

2.00

Printed circuit connector

– excess length of the ribbon cable to the case at \geq 1 mm!

0						
Contraction of the second	-	→ 3 → → 0,35 → 1,27	$A \longrightarrow B \longrightarrow C \longrightarrow C$	7,2		
art. no.	no. of		dim. [mm]			
	con-	А	В	С		
	tacts					
SBAU 1 04 Z	4	17.78	10.16	7.62		
SBAU 1 06 Z	6	22.86	15.24	12.70		
SBAU 1 08 Z	8	27.94	20.32	17.78		
SBAU 1 10 Z	10	33.02	25.40	22.86		
SBAU 1 12 Z	12	38.10	30.48	27.94		
SBAU 1 14 Z	14	43.18	35.56	33.02		
SBAU 1 16 Z	16	48.26	40.64	38.10		
SBAU 1 17 Z	17	50.80	43.18	40.64		
SBAU 1 18 Z	18	53.34	45.72	43.18		
SBAU 1 20 Z	20	58.42	50.80	48.26		
surface of contact:		tin-plated	· · · · · · · · · · · · · · · · · · ·			
annotation:		IDC-pattern 2.54mm				
insulation diameter:		≤1,1 mm				
suitable ribbon cable roun conductor flat cable:	d	AWG 28 = massive or stran	nd			

- excess length of the ribbon cable to the case at \geq 1 mm!

- ALALALANSI.				5.4 5.4
art. no.	no. of		dim. [mm]	
	con- tacts	A	В	С
SBAU 06 S	6	12.9	7.8	5.08
SBAU 10 S	10	18.0	12.9	10.16
SBAU 14 S	14	23.0	18.0	15.24
SBAU 16 S	16	25.6	20.5	17.78
SBAU 20 S	20	30.7	25.6	22.86
SBAU 26 S	26	38.3	33.2	30.48
SBAU 34 S	34	48.5	43.4	40.64
surface of contact:		selective gold-plated: solder	area gold-plated, IDC area ni	ckel-plated
annotation:		IDC-pattern 1.27mm		
insulation diameter:		≤1,1 mm		
suitable ribbon cable round conductor flat cable:	I	AWG 28 = massive or stran	ıd	

Female header one row	→ H4	Application tools	→ H10	
D-Sub connectors /flat cable	→ 111	Flat cable	→ H10	Н 8
PC connector design DIL	→ H9	Female header grid 2.00	→ H7	ПО
Female header two rows	→ H6	Technical data	→ H 11 – 12	

2.54

Α

B

С

D

E

G

H

H

Κ

l

Μ

Ν

Printed circuit connector

Design DIL

- excess length of the ribbon cable to the case at $\geq 1 \text{ mm}!$

	3,2	E		A B 2,54 C	5,4 max	
art. no.	no. of			dim. [mm]		
	con- tacts	А	В	С	D	E
KK 04 Z	4	8.0	5.1	2.54	7.62	11.0
KK 06 Z	6	10.3	7.6	5.08	7.62	11.0
KK 08 Z	8	13.0	10.2	7.62	7.62	11.0
KK 10 Z	10	15.4	12.7	10.16	7.62	11.0
KK 12 Z	12	18.0	15.3	5.08	7.62	11.0
KK 14 Z	14	20.5	17.8	15.24	7.62	11.0
KK 16 Z	16	23.0	20.3	17.78	7.62	11.0
KK 18 Z	18	25.6	22.9	20.32	7.62	11.0
KK 20 Z	20	28.1	25.4	22.86	7.62	11.0
KK 24 Z	24	33.0	30.5	27.94	15.24	18.7
KK 28 Z	28	38.1	35.6	33.02	15.24	18.7
KK 40 Z	40	53.3	50.8	48.26	15.24	18.7
surface of contact:		tin-plated				
annotation:		IDC-pattern 1.2	27mm			
insulation diameter:		≤1,1 mm				
suitable ribbon cable round conductor flat cable:	ł	AWG 28 = ma	ssive or strand			

C

D

Ν

N

Female header one row D-Sub connectors /flat cable PC connector design DIL Female header two rows

 $\begin{array}{c} \rightarrow & H 4 \\ \rightarrow & I 11 \\ \rightarrow & H 9 \\ \rightarrow & H 6 \end{array}$

Application tools Flat cable Female header grid 2.00 Technical data $\begin{array}{l} \rightarrow & H \ 10 \\ \rightarrow & H \ 10 \\ \rightarrow & H \ 7 \\ \rightarrow & H \ 11 - 12 \end{array}$

d.

2.54

Flat ribbon cable - Spacing 2.54 mm - suitable for connectors FV, SBAU 1

Bench press

- height without handle: 28 cm, weight: 9.02 kg
- the bench press VBK 1 connects all contacts of IDC connector types KK, SB, SV, PV, VFL, FV, PVZ in one simple operation
- the contacts separate the insulation of the flat ribbon cable, whereas a gas-tight and corrosion-proof connection is effected by the construction of the contacts form

VBK 1

Accessories, suitable for ribbon cable connector

- exchangable crimping dies for any indicated types available

art. no.	suitable for male connectors and female headers
KK W	КК
SB W	SB
PV W	PV/ VFL/ FLMP
D W 9 37	D-Sub (9-37 contacts)
PVY W	PVY

Shroud. male header SMD

Female header one row	→ H4	PC connectors
PC connector design DIL	→ H9	Application tools
Female header two rows	→ H6	Technical data

H 5

→

E

C

Boltable female header

2.54

Technical data IDC-connectors

	ASL	FV	FLMP, VFL	PV		
surface contact / contact sleeve	Ni+≥0.2µm Au/ Ni+48µm Sn	Ni+≥0.2µm Au/ Ni+510µm Sn		Ni+≥5µm Sn/ Ni+≥0.2µm Au		
contact material		CuSn alloy				
creeping current resistance		KC 175 nach DIN 53480 KC 2				
creepage	≥1,1mm VDE0110	1,4mm VDE0110				
air gap	≥0,8 mm VDE0110	1mm VDE0110				
nominal current	1 A	2 A	1 A	2 A		
nominal voltage	250V AC insulation group A, according to VDE0110					
test voltage		500	V AC			
insertion / drawing force		≥0.	3N ≤0.7N per co	ntact		
cycles of operation		≥50 according	g to DIN 41640	200 to DIN41651		
insulating body material	PA 4.6. GF		PC/ colour: RAL 703	2		
temperature range	-40°C +163°C/ (260°C/10 s)	-55°C +125°C				
class of flammibility		UL 9	24 V-0			
specific insulation resistance		>10	⁷ Ω·m			
conductor cross-section		AWG	2830 = 0,090,0	05 mm²		

H 11

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

C

D

Ν

Ν

Technical data IDC-connectors

	PVY S	KK Z, SBAU 1 Z	SBAU S	BK 01 32
surface contact / contact sleeve	contact area: Ni+<0.1µm Au (flashgold)/ con- nection area: Ni+0.52.5µm Sn	Ni+510µm Sn	soldering area: Ni+>0.1µm Au (flashgold)∕ IDC area nickel-plated	
contact material		CuSn alloy		
creeping current resistance		KC 175 nac	h DIN 53480	
creepage		≥0,7mm	VDE 0110	
air gap	≥0,5 mm VDE 0110			
nominal current	1 A			2 A
nominal voltage		250V AC insulation group A, according to VDE0110		300 V _{eff} max.
test voltage	500 V AC			
insertion / drawing force	≥0.5 ≤1.8N per contact			
insulating body material	PBT/ colour: black	PC/ colour	r: RAL 7032	
temperature range	-55°C +105°C	-40°C	+125°C	-30°C +105°C
class of flammibility	UL 9	4 V-0	UL 94 V-1	
specific insulation resistance	>10 ¹⁰ Ω·m	>101	² Ω·m	
conductor				7 x Ø 0,127 mm
conductor cross-section		AWG 2830 =	0,090,05 mm²	AWG 28/~0,089 mm ²
capacity				≤ 65 pF/m sym- metrical
conductor resistance				≤230mΩ/m
characteristic impedance				170 Ω symmet- risch

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

A

C

D

E

G

i

K

N

N

D-Sub connector D-Sub special design D-Sub hoods **D-Sub accessories**

D-Sub connectors

- with Wire Wrap, solder cup and dip soldering connection
- with plastic angle and rivet, earthing plate, snap-in clip
 with metal angle and rivet

- D-Sub special design high density connector
- filter connectors
- ribbon cable connector
- mixed layout connectors
- SMD technology
- press-in connector

D-Sub hoods

- design with large cable space
 hoods with self-cutting threaded bolts
 hoods with quick fastener
- compact hoods with cable outlet on the side

- **D-Sub** accessories
- cable reels
- cut-out covers
- HF-dense seal caps
- HF seals
- Dust covers
- Threaded couplings

D-Sub standard connectors

Male and female headers

	9 - 3	7 pol.		50 pol.			
		2,84	4 6 1		Ţ Į		 Ø 0,6
art. no.	design	dim.	[mm]	art. no.	design	dim.	[mm]
		А	В			А	В
DS 09 T	male	30.8	25.0	DS 37 T	male	69.5	63.5
DS 15 T	male	39.2	33.3	DS 50 T	male	67.0	61.1
DS 25 T	male	53.1	47.0				
	9 - 32	7 pol.		50 pol.			
		,4 - V 9 - 2,84	46		Ţ Ţ	B B 	 Ø 0,6
art. no.	design	dim. A	[mm] B	art. no.	design	dim. A	[mm] B
DB 09 T	female	30.8	25.0	DB 37 T	female	69.5	63.5
DB 15 T	female	39.2	33.3	DB 50 T	female	67.0	61.1
DB 25 T	female	53.1	47.0				
please indicate:	type of m RC UN RC M3 RCS UN RCS M3	= snap-in = snap-in = snap-in	-clip with U -clip with <i>I</i> -clip and s		4-40		

type of mounting

D-Sub high density	→ 7-8	Screw fastening
D-Sub in SMD technique	→ 15	D-Sub mixed lay
D-Sub cut-out cover	→ 22	HF-seals
D-Sub connector in pressfit techn.	→ I16	Technical data

- ng Iayout a
- $\begin{array}{c} \rightarrow \ 1 \ 23 \\ \rightarrow \ 1 \ 13 \\ \rightarrow \ 1 \ 24 \\ \rightarrow \ 1 \ 26 28 \end{array}$

N

Α

B

D

2

C

Ľ

<

D-Sub standard connectors

Male and female headers

	9 - 32	7 pol.		50 pol.			
A CONTRACTOR	9°		364		V V		
art. no.	design	2,84 dim.		art. no.	design	dim.	
DS 09 L	male	A 30.8	B 25.0	DS 37 L		A	B 63.5
DS 15 L	male	30.8	33.3	DS 50 L	male male	69.5 67.0	61.1
DS 15 L DS 25 L	male	53.1	47.0		male	07.0	01.1
	9 - 3		-7.0	50 pol.			
Contraction of the second			:		Ţ Į		
art. no.	design	dim. A	[mm] B	art. no.	design	dim. A	[mm] B
DB 09 L	female	30.8	25.0	DB 37 L	female	69.5	63.5
DB 15 L	female	39.2	33.3	DB 50 L	female	67.0	61.1
DB 25 L	female	53.1	47.0				
		9 - 37 pol.	₩ ₩ ₩	5,69 5,69 50 pol.	Ţ Ţ Į Į		• 0,6
art. no.	design	dim. A	[mm] B	art. no.	design	dim. A	
DS 09 WW 3	male	30.8	25.0	DS 37 WW 3	male	69.5	63.5
DS 15 WW 3	male	39.2	33.3	DS 50 WW 3	male	67.0	61.1
DS 25 WW 3	male	53.1	47.0				
		9 - 37 pol.		50 pol.			• 0,6
art. no.	design		[mm] B	art. no.	design	dim. A	
DB 09 WW 3	female	30.8	25.0	DB 37 WW 3	female	69.5	63.5
DB 15 WW 3	female	39.2	33.3	DB 50 WW 3	female	67.0	61.1

13

Downloaded from Arrow.com.

- **D-Sub high density** D-Sub in SMD technique
 - D-Sub cut-out cover
 - **D-Sub** connector in pressfit techn.
- → I7-8 → I15 → I 22 → I16

Screw fastening D-Sub mixed layout HF-seals Technical data

→ I 23 → I13 → I 24 → I 26 – 28

C

D

Ξ

G

H

Μ

N

Λ

D-Sub standard connectors

Male and female headers

- with turned precision contacts

- with shielding springs

Installation diagram

1 = wire wrap pin; 2 = solder terminal; 3 = solder pin for PCB

D-Sub high density	→ 7-8	Screw fastening	→ 23
D-Sub in SMD technique	→ I15	D-Sub mixed layout	→ I13
D-Sub cut-out cover	→ I 22	HF-seals	→ I 24
D-Sub connector in pressfit techn.	→ 16	Technical data	→ I 26 – 28

Downloaded fron	Arrow.com.

B

D

뒥

2

C

T

D-Sub standard connectors with mounting bracket

D

C

D-Sub Screw f D-Sub

D-Sub filter adapter Screw fastening D-Sub connectors /flat cable D-Sub high density $\begin{array}{r} \rightarrow \ 1\ 9\ -\ 10 \\ \rightarrow \ 1\ 23 \\ \rightarrow \ 1\ 11\ -\ 12 \\ \rightarrow \ 1\ 7\ -\ 8 \end{array}$

HF-tight caps D-Sub hoods Application tools Technical data $\begin{array}{c} \rightarrow & | \ 24 \\ \rightarrow & | \ 18 - 21 \\ \rightarrow & H \ 10 \\ \rightarrow & | \ 26 - 28 \end{array}$

Downloaded from Arrow.com.

15

D-Sub standard connectors

		M3/UNC 4-40 M3/UNC 4-40 M3/UNC 4-40 M3/UNC 4-40 M3/UNC 4-40 M3/UNC 4-40 M3/UNC 4-40
art. no.	design	fixing part
DS WR 3	male	plastic angle with earthing plate, threaded rivet M3, snap-on clip
DS WR 4	male	plastic angle with earthing plate, threaded rivet UNC 4-40, snap-on clip
DB WR 3	female	plastic angle with earthing plate, threaded rivet M3, snap-on clip
DB WR 4	female	plastic angle with earthing plate, threaded rivet UNC 4-40, snap-on clip
please indicate		contacts 25 37

Д

B

С

D

F

G

ł

K

L

N

D-Sub filter adapter Screw fastening D-Sub connectors /flat cable **D-Sub high density**

 \rightarrow 19 – 10 → I 23 → I11 – 12 → I7-8

HF-tight caps D-Sub hoods Application tools Technical data → I 24 → I 18 – 21 → H10 → I 26 – 28

16

Ν

Downloaded from Arrow.com.

D-Sub connectors High Density

Male and female headers

– our D-Sub connectors $\ensuremath{\textbf{HD}}$ are loaded with turned precision contacts

with shielding springs

.

D-Sub filter adapter Screw fastening D-Sub high density D-Sub connectors /flat cable $\begin{array}{r} \rightarrow \quad | \ 9 - 10 \\ \rightarrow \quad | \ 23 \\ \rightarrow \quad | \ 7 - 8 \\ \rightarrow \quad | \ 11 \end{array}$

D-Sub mixed layout HF-seals Application tools Technical data $\begin{array}{r} \rightarrow & 1 \ 13 - 14 \\ \rightarrow & 1 \ 24 \\ \rightarrow & H \ 10 \\ \rightarrow & 1 \ 26 - 28 \end{array}$

D-Sub connectors High Density

Male and female headers

our D-Sub connectors **HD** are loaded with turned precision contactswith shielding springs

contacts

15

26

44

HD S 15 T

HD S 26 T

HD S 44 T

		1/98	
art. no.	no. of	design	

1 ,2	
4	
dir	n. [mm]

В

design			dim.	[mm]		
	А	В	С	D	E	F
male	30.8	25.0	12.4	7.04	7.67	2.29
male	39.2	33.3	12.4	6.87	7.00	2.29
male	53.1	47.0	12.4	6.88	7.01	2.29

art. no.	no. of	design			dim.	[mm]		
	contacts		А	В	С	D	E	F
HD B 15 T	15	female	30.8	25.0	12.4	7.67	7.04	2.29
HD B 26 T	26	female	39.2	33.3	12.4	7.00	6.87	2.29
HD B 44 T	44	female	53.1	47.0	12.4	7.01	6.88	2.29
casing frame:		steel, t	in plated					

1 = male, 15 contacts; 2 = female, 15 contacts; 3 = male, 26/44 contacts; 4 = female, 26/44 contacts

1	2	3	4
B	3 ^{40.05} 80 0.9 D B B B	B B B B B B B B B B B B B B B B B B B	3 ^{+0.05} 0,9 D B B

B

D

C

Μ

→ 24	18
→ 22	10
→ I 26 – 28	

→ 124

D-Sub filter adapter D-Sub connectors /flat cable

Application tools

Screw fastening

 $\begin{array}{l} \rightarrow \quad H \ 10 \\ \rightarrow \quad I \ 23 \\ \rightarrow \quad I \ 9 - 10 \\ \rightarrow \quad I \ 11 - 12 \end{array}$

HF-seals HF-tight caps D-Sub cut-out cover Technical data

D-Sub filter connector

Adapter, 9-37 contacts

- capacity per contact: 1000 pF
- standard installation dimensions
- stud bolt mountable on both sides - compatible with standard accessories

Male headers and female headers, straight

• capacity per contact: 1000 pF

• other capacity on request

Трицин				0,6
art. no.	no. of contacts	design		[mm]
			A	В
FD S 09 T 1000	9	male	30.8	25.0
FD S 15 T 1000	15	male	39.2	33.3
FD S 25 T 1000	25	male	53.1	47.0
FD S 37 T 1000	37	male	69.5	63.5
art. no.	A B		0,1 5,2 8 4 4 4 6 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	✓ ⁵ ⁵ ⁵ ⁶ ⁶ ⁶ [mm]
art. no.	no. of contacts	design	0,1 5,2 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	✓ ✓ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔
art. no.	no. of contacts	design female	0,1 5,2 dim. A 30.8	Ø 0,6 [mm] B 25.0

D

D-Sub hoods Screw fastening D-Sub connector in pressfit techn. **D-Sub high density**

→ I18 – 21 → I 23 l 16 – 17 → → l 7 – 8

Screw fastening, loose **Application tools** HF-seals **Technical data**

1 23 → → H 10 → I 24 → l 26 – 28

Downloaded from Arrow.com.

D-Sub filter connector

Male and female headers, with solder cup

- capacity per contact: 1000 pF
- other capacity on request
- suitable for AWG 22
- standard installation dimensions
- HF-tight, closed metal rear panel
- compatible with standard accessories

D-Sub mixed layout I 18 – 21 **HF-tight** caps Screw fastening I 16 – 17 **Technical data**

H 10

1 22

113 - 14 → → 124 → I 23 → I 26 – 28

Downloaded from Arrow.com.

B

D

킈

C

F

D-Sub connector for flat ribbon cable

Male and female headers

C

111

D-Sub hoods D-Sub filter adapter Application tools D-Sub standard connectors

→ I 18 – 21 → I 9 → H 10

→ 13-6

D-Sub high density D-Sub filter connector D-Sub mixed layout Technical data $\begin{array}{c} \rightarrow \quad | \ 7 - 8 \\ \rightarrow \quad | \ 10 \\ \rightarrow \quad | \ 13 - 14 \\ \rightarrow \quad | \ 26 - 28 \end{array}$

D-Sub connector for flat ribbon cable

Male and female headers, low profile

- useable ribbon cable: AWG 26 ... 28

A

B

D

뒥

2

C

D-Sub mixed layout connectors

Male headers - suitable for standard D-Sub accessories

- gold-plated contacts
- with high current contacts up to 20 A
- for cables up to AWG 16

3 high current contacts

2 high current contacts, 5 signal contacts

3 high current contacts, 10 signal contacts


```
D-Sub hoods
Screw fastening
HF-seals
Technical data
```

 $\begin{array}{c} \rightarrow & | 18 - 21 \\ \rightarrow & | 23 \\ \rightarrow & | 24 \\ \rightarrow & | 26 - 28 \end{array}$

Б

÷.

Ν

Downloaded from Arrow.com.

D-Sub mixed layout connectors

Female headers - suitable for standard D-Sub accessories

- gold-plated contacts
- with high current contacts up to 20 A
- for cables up to AWG 16
- 3 high current contacts

- 2 high current contacts, 5 signal contacts

- 3 high current contacts, 10 signal contacts

	$\begin{array}{c} 53 \\ \hline \\ 6 \\ \hline \\ \hline$	3,6 3,6 22,5
art. no.	design	
DBM 13K3 L20	female	

Screw fastening D-Sub cut-out cover D-Sub high density HF-tight caps	$ \begin{array}{c} \rightarrow 1 \ 23 \\ \rightarrow 1 \ 22 \\ \rightarrow 1 \ 7 - 8 \\ \rightarrow 1 \ 24 \end{array} $	D-Sub standard connectors Screw fastening, loose D-Sub hoods Technical data	$ \begin{array}{c} \rightarrow \ \ 3 - 6 \\ \rightarrow \ \ 23 \\ \rightarrow \ \ 18 - 21 \\ \rightarrow \ \ 26 - 28 \end{array} $	I 14
---	--	--	---	------

B

D

C

D-Sub in SMD-mounting

Male and female headers

- packing: tape and reel (150 pcs/reel); reel outer diameter 330 mm

	2,74				
art. no.	no. of			[mm]	
	contacts	A	В	Y	Z
DS 09 SMD TR	9	30.8	25.0	10.98	1.37
DS 15 SMD TR	15	39.2	33.3	19.20	1.37
DS 25 SMD TR	25	53.1	47.0	33.12	1.38
DS 37 SMD TR	37	69.5	63.5	49.68	1.38
		2 x UNC 4-40			6,8 6,8 10,1 10,1 10,1 10,1 10,1 10,1 10,1 10
	A			⊸ 5,4	PCB-LAYOUT
art. no.	no. of contacts	А	dım. B	[mm] Y	Z
DB 09 SMD TR	9	30.8	25.0	10.98	1.37
DB 15 SMD TR	15	39.2	33.3	19.20	1.37
DB 25 SMD TR	25	53.1	47.0	33.12	1.38
DB 37 SMD TR	37	69.5	63.5	49.68	1.38

G

Ν

I 15

C

D

Ξ

D-Sub connector in pressfit technology

Male and female headers

D-Sub mixed layout
Application tools
D-Sub filter adapter
Screw fastening

HF-seals D-Sub connectors /flat cable D-Sub hoods **Technical data**

124 → → l 11 – 12 I 18 – 21 → → l 26 – 28

I 16

K

D-Sub connector in pressfit technology

Male and female headers

.

D

C

I	1	7

D-Sub mixed layout Application tools D-Sub filter adapter Screw fastening $\begin{array}{c} \rightarrow & | 13 - 14 \\ \rightarrow & H 10 \\ \rightarrow & | 9 \\ \rightarrow & | 23 \end{array}$

HF-seals D-Sub connectors /flat cable D-Sub hoods Technical data

68

 $\begin{array}{c} \rightarrow & 1 \ 24 \\ \rightarrow & 1 \ 11 \ -12 \\ \rightarrow & 1 \ 18 \ -21 \\ \rightarrow & 1 \ 26 \ -28 \end{array}$

D-Sub hoods

- $-\mathbf{E} = \max$. diameter of the cable entry in mm
- threaded bolt UNC 4-40
- large cable space with few components
- 9-37 contacts can be mounted in series in (C = 3 HP) grid, thus especially suitable for 19" technology

		E (max.)				
art. no.	no. of contacts	A	В	dim. [mm] C	D	E
DH 09	9	31.5	25	15.2	31	8.5
		E (max.)				
art. no.	no. of contacts	•		dim. [mm]	D	E
DH 15	15	A 40.0	B 33.3	C 15.2	D 33.5	с 8.5
DH 15 DH 25	25	40.0 53.5	47.0	15.2	38.0	8.5 11.0
DH 25 DH 37	37	70.0	63.5	15.2	40.0	11.0
DH 50	50	67.5	61.1	18.2	40.0	12.0
please indicate:	surfac S = pl	e of case astic, black astic, metallized	1			

With self-cutting threaded bolt

- straight cable outlet with pre-assembled strain relief

art. no.	no. of			dim. [mm]				
	contacts	А	В	С	D	E		
DH SG 09	9	31.0	25.0	16.0	35.6	8		
DH SG 15	15	39.5	33.3	16.0	36.6	9		
DH SG 25	25	53.0	47.0	16.0	41.0	10		
DH SG 37	37	69.5	63.5	16.0	45.3	11		
DH SG 50	50	67.0	61.1	19.8	51.4	14		
please indicate: surface of case S = plastic, black M = plastic, metallized								

D-Sub filter adapter D-Sub high density

D-Sub standard connectors

- → I9
 - D-Sub mixed layout
 - → I7-8 → I3-6 **Technical data**
- D-Sub connector in pressfit techn.
 - \rightarrow 113 14 → I16-17
 - → I 26 28
- I 18

4

B

D

뒥

C

Ľ

<

D-Sub hoods

Б

C

ł

D-Sub hoods with quick-action locking system

straight and side-gated cable outlet

Accessories – locking pin for hood – hood connection

- 2 locking pins including locking plates

RS HH

Accessories – locking pin for plug connector – hood connection

- 2 latch Pins including locking ring for connectors with thread M3/UNC 4-40

C			5W 4,5 M 3 / UNC 4- 40
art. no.	type of thread	art. no.	type of thread
RS SH 3	M3	RS SH 4	UNC 4-40

I 19D-Sub filter adapter D-Sub high density→ 19 → 17-8D-Sub mixed layout D-Sub connector in pressfit techn.→ 113 - → 116 -					
D-Sub standard connectors $\rightarrow 13-6$ Technical data $\rightarrow 126-$	I 19	D-Sub filter adapter	→ I9	D-Sub mixed layout	

D-Sub hoods

Accessories - locking pin for plug connector - hood connection

- 2 locking pins including spring washer, washer and nut for exisiting connector with through hole

RS SH D

Cable sleeve - quick-release hood DH SV ...

- cable sleeves are supplied with chamfers, which are adequate to a diameter-grading of 0.5 mm; they can be cut off depending on the exisiting diameter of the cable.

- for cable diameters 3...9 mm

Technical data

R

D

C

D-Sub hoods

D-Sub-hoods-compact

9-50 contacts

- width C 3 HP
- version 9-37 pins can be mounted in series in 3 HP grid, thus especially suitable for 19" technology
- metallized version with excellent shielding against electrical and magnetic alternating fields
- integrated dust protective shroud
- captive latching screws with UNC 4-40 treads
- 2 side cable outputs:
 - 40° exit (9-50 contacts)
 - 90° exit (25-50 contacts)

– E = max. diameter of the cable bushing in mm

F

G

I 21

Downloaded from Arrow.com.

D-Sub accessoires

Suitable cable bushing

- protects the cable against damage by buckling

Cover for D-Sub cut outs in front and back panel

- suitable for EMC application, closed on one side

- blank covers for exact sealing of unused D-Sub cut outs in front- and backpanels, size and form are like D-Sub housings

				- 12,2					Ò
art. no.		dim.	[mm]		art. no.		dim.	[mm]	
	А	В	С	D		А	В	С	D
BADM 09	30.8	25.0	19.2	16.3	BADM 25	53.0	47.0	41.2	38.3
BADM 15	39.3	33.3	27.5	24.5	BADM 37	69.4	63.5	57.7	54.8
casing frame:			tin-plated						
surface of case:			metal						

- plastic cover, blank, for blind D-Sub and other connector cutouts in front and rear panels

- easy to mount with enclosed clamping springs

Downloaded from Arrow.com.

 R

D

리

C

D-Sub accessoires

Screw fastening, mounted

- 2 screw fastenings incl. spacer, washer, nut
- please add a ${f V}$ to the corresponding art. no. ...

Screw fastening, loose

- 2 separate screw fasteners, with washer and nut

Screw fastening for assembly of cases, separate

- 2 screw fastenings incl. spacer, washer, nut

.

C

I 23

D-Sub filter connector D-Sub standard connectors HF-seals Technical data

→	I 10
→	3 – 6
→	I 24
→	26 – 28

D-Sub accessoires

HF-tight caps, male and female headers

prevent HF-radiation at open interfaces

art. no.	colour	dim. [mm]	art. no.	colour	dim. [mm]
		A			A
HFK S 09	blue	32.9	HFK B 09	red	32.9
HFK S 15	blue	41.3	HFK B 15	red	41.3
HFK \$ 25	blue	55.7	HFK B 25	red	55.7
annotation:		inside nickel-plated			1

HF-seals

- as seal between plug and housing

B

D

뒥

2

C

ĩ

<

D-Sub filter connector D-Sub standard connectors HF-seals Technical data

Dust protection caps

For male headers

For female headers

		7		
art. no.	(dim. [mm]		
	А		В	
SSK B 09	22.3 17.00		17.00	
SSK B 15	30.6		25.00	
SSK B 25	44.1		38.65	
SSK B 37	60.7		55.30	
annotation:	extremely low transition resista	nce		

.

Ĵ

N

Downloaded from Arrow.com.

Technical data D-Sub connectors

	DS, DB	HD B, HD S	FD A, FD B, FD S	DS BK, DB BK
contact material	Cu-alloy			
surface contact / contact sleeve	hard gold plated over nickel			
quality class / cyces of operation	quality class 2 = 200 cycles of operation			quality class 3 = 50 cycles of oper- ation
volume resistance	≤10 mΩ before strain, ΔR 10 mΩ after strain according to DIN 41652. part 2 (MIL-C-24308)			≤10 mΩ
air gap and creep distance	contcontact <1mm/ contact- earth <1mm	contcontact <0.6mm/ con- tact-earth <0.6mm	contcontact <1mm/ contact- earth <1mm	<0.9mm accord- ing to VDE0110
nominal current	5A (20°C)	3A (20°C)	5A (20°C)	1A at AWG 28/ 1.5A at AWG 26
nominal voltage	125 V AC	60 V AC	100 V DC	
test voltage	1000 V		250 V DC	1000 V DC
insulating body material	PBT, GF PCT, GF		PCT, GF	PBTP, GF
temperature range	-55°C +125°C			
class of flammibility	UL 94 V-0			
insulation resistance	≥5 GΩ		≥1 GΩ (100V DC)	1 GΩ

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

A

B

C

D

н

G

ł

K

L

M

N

Technical data D-Sub connectors

	DS BK LP, DB BK LP	DBM, DSM	DH S, DH M, DH SG, DH SV	KT SV
contact material	Cu-	alloy		
surface contact / contact sleeve	hard gold plated over nickel	nickel-phosphor- us-gold-surface/ (≥0.1µm Au over 24µm chem. NiP)		
quality class / cyces of operation	quality class 2 = 200 cycles of op- eration	≥500 cycles of operation		
volume resistance	≤10 mΩ before strain, ΔR 10 mΩ after strain accord- ing to DIN 41652. part 2 (MIL-C-24308)			
air gap and creep distance	contcontact <1mm/ contact- earth <1mm	≥lmm		
nominal current	1A (20°C)	signal contact: ≤5 A/ power contact: ≤20 A		
nominal voltage	125 V AC	400 V/ degree of pollution 1		
test voltage	100	00 V		
insulating body material	PBT, GF	Polyester, GF	ABS	EPTR
temperature range	-55°C +125°C	-55°C +150°C		
class of flammibility		UL 94 V-0		UL 94 V-0 (at thickness ≥3mm), UL 94 V-1
insulation resistance	≥5 GΩ	$\geq 10^9 \Omega$		
surface of case			plastic, black/ plastic, metallized	

D

G

E

Ν

Ν

I 27

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Technical data D-Sub connectors

	DH K DH KM	BADM	BADP	HFK S HFK B
insulating body material	ABS		ABS	
temperature range		·		-25°C +70°C
class of flammibility	UL 94 V-0		UL 94 V-0	
surface of case	plastic, black/ plastic, metallized	metal	plastic, black	

	HFD	SSK S SSK B
insulating body material	Silicone, filled with silver-plated coper particles	Polyethylene

Α

D

C

B

G

Н

V

K

M

Ν

The information given in this catalogue were provided and examined carefully. Nevertheless mistakes or printing errors especially technical modifications due to improvements of our products cannot be excluded.

Downloaded from Arrow.com.

I 28

Brackets for PCI Brackets for AT and similar Custom-specific brackets Equipped brackets

Brackets for PCI

- with or without fixing tab
- standard cut-outs
- custom-specific cut-outs
- custom-specific printings

Brackets for AT and similar

- with or without fixing tab
- standard cut-outs
- custom-specific cut-outs
- custom-specific printings

Custom-specific brackets - double width

- special width
 with printing

Equipped brackets equipped with D-Sub equipped with LED

- equipped with custom-specific components

Index Bracket-Groups

Α

В

C

D

E

G

H

Κ

M

Ν

Brackets for PC

Brackets with fixing tap and without cutout

Bracket without fixing tab and without cutout

M

Κ

N

К3

C

Low Profile bracket for PC

Low Profile bracket with fixing tap and without cutout

- with or without fixing tap; standard cutouts

- customer-specific cutouts and printing; double width (special widths) on request

Low Profile bracket without fixing tap and without cutout

F

Κ

C

B

D

Dimensional drawing for PCBs

Dimensions to fix the PCI L ... - bracket to the PCB

Dimensions to fix the KHPC L ... - bracket to the PCB

K 5

Б

C

Κ

N

Retainers for PCI-cards

suitable for all ISA-versions

M

A

Brackets for PC

B

D

Ē

G

E

Κ

Μ

Ν

Brackets for PC

please indicate:

... fixing tab

O = bracket without fixing tab
 L = bracket with fixing tab

K 8

Ν

Brackets for PC

К9

.

D

G

H

Κ

Μ

N

Brackets for PC

please indicate:

... fixing tab

O = bracket without fixing tab
 L = bracket with fixing tab

K 10

M

Δ

B

C

D

E

G

ī.

Brackets for PC

K 11

D

Ξ

G

H

Κ

Μ

N

Brackets for PC

please indicate:

... fixing tab

O = bracket without fixing tab
 L = bracket with fixing tab

K 12

Ν

Δ

fischer elektronik 23

Brackets for PC

К 13

D

2

G

Κ

Μ

N

Brackets for PC

please indicate:

... fixing tab

O = bracket without fixing tab
 L = bracket with fixing tab

K 14

Ν

Δ

Brackets for PC

K 15

If you do not find a suitable bracket, please use the PCI / KHPC design sheet at the end of section "K".

.

D

Ξ

C

ł

Κ

Μ

N

Brackets for PC

please indicate:

... fixing tab O = bracket without fixing tab
 L = bracket with fixing tab

Ν

Δ

fischer elektronik 23

Brackets for PC

К 17

.

D

Ξ

C

ł

Κ

Μ

N

Brackets for PC

please indicate:

... fixing tab

O = bracket without fixing tab
 L = bracket with fixing tab

Downloaded from Arrow.com.

K 18

Ν

Δ

Brackets for PC

К 19

If you do not find a suitable bracket, please use the PCI / KHPC design sheet at the end of section "K".

D

÷.

G

H

Κ

Μ

N

Downloaded from Arrow.com.

Brackets for PC

please indicate:

... fixing tab

O = bracket without fixing tab
 L = bracket with fixing tab

Δ

Brackets for PC

D

Ξ

G

Κ

Μ

N

K 21

Brackets for PC

please indicate:

... fixing tab

O = bracket without fixing tab
 L = bracket with fixing tab

K 22

Ν

Brackets for PC

K 23

.

D

Ξ

G

ł

Κ

Μ

Ν

Brackets for PC

please indicate:

... fixing tab O = bracket without fixing tab L = bracket with fixing tab M

Κ

Δ

Fischer elektronik 23 User information für PCI and KHPC-DESIGN

PCI and KHPC-DESIGN

The cutouts shown on the Design sheet should be positioned on the pictured grid.

The zero point of the respective cutout is to be placed on the grid point of the PC card bracket, whereby the X/Y coordinates should be entered in the table as absolute dimensions. Positioning of the cutouts can be specified with an accuracy of max. 0,01 mm. The grid specifies the max. area of the cutout including the component. Please mark whether the version is with or without bent fixing tabs. Other contours, dimensions and cutouts are possible, to the extent that they are technically possible to produce. Please contact us with regard to this.

Example

D

C

Downloaded from Arrow.com.

efficient special machines

up-to-date injection technology

modern surface refinement

Mounting material LED fastener for horizontal PCB mounting Fibre-optics for SMD-LED components LED fastener for front panel mounting

Mounting material – spacers for standard LEDs – class of flammibility acc. to UL 94 VO

LED fastener for horizontal PCB mounting - single and double fasteners for a standard diameter of 3 and 5 mm

- equipped multi-fastener
- single fasteners and fasteners connectable in series

Fibre-optics for SMD-LED components

- horizontal, fixed fibre-optics with round or rectangular lense made of transparent plastics – also for gauge displays
- vertical, fixed fibre-optics with round or rectangular lense made of transparent plastics

LED fastener for front panel mounting - clipable fastener for 5 mm LEDs - fastener for 3 and 5 mm LED with clamping ring

Spacers for LED

– universal mount for LED Ø 3 mm and 5 mm, self retaining

		A			A	
MAH 31	1.5	3.1	MAH 71	4.7	7.1	
MAH 41	1.5	4.1 MAH 81		4.7	8.1	
MAH 51	1.5	5.1	MAH 89	4.7	8.9	
MAH 61	1.5	6.1	MAH 99	7.9	9.9	
insulating body material:		MPPS, black				
temperature range: -40°C+240°C/ (260°C/5 s)						
class of flammibility: UL 94 V-0						

		2,5 2,5 0,69 1,3	Ŏ	
art. no.	dim. [mm]		art. no.	dim. [mm]
		A		A
MAH 401		1	MAH 406	6
MAH 402		2	MAH 407	7
MAH 403		3	MAH 408	8
MAH 404		4	MAH 409	9
MAH 405	5		MAH 410	10
insulating body material: PVC Blend, black		PVC Blend, black		
temperature range:	temperature range: -40°C +85°C			
class of flammibility:				

 $\begin{array}{rcl} \mbox{Connector-sleeves} & \rightarrow & \mbox{F 19 - 20} \\ \mbox{LED-holders for front panel assembly} & \mbox{L 4} \\ \mbox{Fourfold-LED-holders} & \rightarrow & \mbox{L 7} \\ \mbox{Horizontale Lichtleiter} & \rightarrow & \mbox{L 9} \end{array}$

LED-holders for PCB assembly Sockets for LED Light pipes for SMDs, vertical $\begin{array}{r} \rightarrow \quad L 5 - 7 \\ \rightarrow \quad F 5 - 6 \\ \rightarrow \quad L 8 - 9 \end{array}$

L 2

Downloaded from Arrow.com.

A

B

D

C

ĩ

<

Spacers for LED

– for LED Ø 3 mm, thin mount

– for LED Ø 5 mm, self-retaining

art. no.	dim. [mm]	art. no.	dim. [mm]	art. no.	dim. [mm]
	A		A		A
MAH 501	1	MAH 504	4	MAH 508	8
MAH 502	2	MAH 505	5	MAH 509	9
MAH 503	3	MAH 506	6	MAH 510	10
insulating body mate	rial:	PVC Blend, black			
temperature range:		-40°C +85°C			
class of flammibility:		UL 94 V-0			

.

D

G

Downloaded from Arrow.com.

LED-holders

- suitable for 3 mm diodes with a collar height of 0.6 mm

 $-\mathbf{K} = \text{cathode}$

- suitable for 5 mm diodes with a collar height of 0.6 mm/1 mm
- $-\mathbf{K} = \text{cathode}$

- suitable for 5 mm diodes with a collar height of 0.6 mm/1 mm
- $-\mathbf{K} = \text{cathode}$

Spacers & mounting strips	
Sockets for LED	
LED-holders for PCB assembly	
Light pipes for SMDs, vertical	

Fourfold-LED-holders D-Sub cut-out cover Screw fastening

L 2 – 3

F 5 – 6

L 5 – 7 L 8 – 9

Downloaded from Arrow.com.

Α

B

D

뒥

C

<

L

LED-holders

LED-holder for LED Ø 3 mm and 5 mm

- K = cathode / * = presentation with diode

N

class of flammibility:

LED-holders for front panel assembly \rightarrow L 4 Spacers & mounting strips Connector-sleeves Sockets for LED

UL 94 V-0

→ L 2 – 3 F 19 – 20 → → F 5 – 6

Light pipes for SMDs, vertical Fourfold-LED-holders **Horizontale Lichtleiter**

→	L 8 – 9
→	L 7
→	L 9

LED-holders

LED-holder for LED Ø 3 mm

- stackable LED-holders: single holder/can be strung, left/can be strung, middle/can be strung, right

<

B

D

킈

2

C

Μ

N

Sockets for LED
Screw fastening
D-Sub cut-out cover
Fourfold-LED-holders

Light pipes for SMDs, vertical Spacers & mounting strips Connector-sleeves

Downloaded from Arrow.com.

L 6

LED-holders

LED-holder for LED Ø 5 mm

- stackable LED-holders: single holder/can be strung, left/can be strung, middle/can be strung, right

Fourfold-LED-holders

- standard case, standard colours, diffuse lens, space-saving design, round lens, rectangular lens

– typical data at T_{amb} =25°C und I_F = I_{Ftype} , 100% DC

		5			A-B-C-D 1-3-5-7 // 2-4-6-8		
art. no.	type		emission colour	Spannungen U _{ftyp} / U _{rmax} [V]	wavelength λ_{max} [nm]		
DLH 21 ASEH	with LED Ø2mm, fourfold		super red	2.0 / 2.6	635		
DLH 21 AYEH	with LED Ø2mm, fourfold		yellow	2.1 / 2.6	585		
DLH 21 AGEH	with LED Ø2mm, fourfold		green	2.2 / 2.6	565		
insulating body mate	rial:	Nylon, I	olack				
temperature range:		-20°C +85°C					
class of flammibility:		UL 94 V-0					
beam angle 2 φ: 8			80 °				
design: 2			2mm round				
for cases: in			in terms of colour diffuse				
derating: f			from T _{amb} <20°C, operating current reduced by 0.4 mA/K .				
light intensity I:		12 mcd					
flows I _{Ftyp} / I _{Fmax} :		20/30 mA					

L 7

Screw fastening D-Sub cut-out cover Spacers & mounting strips Light pipes for SMDs, vertical $\begin{array}{r} \rightarrow 1 23 \\ \rightarrow 1 22 \\ \rightarrow L 2 - 3 \\ \rightarrow L 8 - 9 \end{array}$

Sockets for LED→F 5 - 6Connector-sleeves→F 19LED-holders for front panel assembly→L 4

D

Ε

C

Light pipes for SMDs

- suitable for current SMD types
- 3 mm light pipes
- horizontal
- ESD-protection from panel to PCB

- L3D-protection from put				
art. no.	2,5 diameter of lense	20,6 21,1 19,5 20,6 21,1 19,5 20,6 21,1 21,1 20,6 21,1 21,1 20,6 21,1	5,55 5,55	 Ø 1,05 ↓ ↓ ↓
LL 30 HRS	Ø3mm		by alignment pins	
art. no.	diameter of lense	Ø 2,7 0 2,7 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	v v v v v v v v v v v v v v v v v v v	1,5 4,17 9,07
LL 30 HRP	Ø3mm		by press-in pins	
No.		-20,6 -20,6	5,5 9 9 9 2,54	1,5 → 4,17
art. no.	diameter of lense		way of fixation	
LL 35 HVS	rectangle 5.5x3mm	n by alignment pi		
F	Ø1,3 -	4,5 Ø3 ¥ ¥ ¥ 4,5 ¥ 5 ¥ 4,5 ¥ 5 ¥ 5 ¥ 5 ¥ 5 ¥ 5 ¥ 5 ¥ 5 ¥ 5 ¥ 5 ¥	5,1 B 2,5 4,3 5,3 6,4 B C 4,3 5,3 6,4	4,5 5 4,5 6 4,5 6 4,5 6 4,5 6 4,5 6 4,5 6 4,5 6 4,5 6 6 6 1,2 3,5 6 6 1,2 6 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2
art. no.	diameter of lense	way of fixation	dim A	. [mm] B
LL 30 WRFP 038	Ø3mm	by press-in pins	3.8	2.5
LL 30 WRFP 050	Ø3mm	by press-in pins	5.0	2.5
LL 30 WRFP 076	Ø3mm	by press-in pins	7.6	2.5
LL 30 WRFP 102	Ø3mm	by press-in pins	10.2	2.5
insulating body mate		blycarbonate, clear	I	
temperature range:		0°C +100°C		
class of flammibility:		L 94 V-0		

→ L 7 → I 23

Δ

B

C

D

E

G

ī.

K

L

M

Light pipes for SMDs

- panel light pipe, 6 mm lens, suitable for common SMD LEDs, white lens, large angle of radiation

- panel light pipe 3 mm, ESD protection from panel to PCB

	∞ ⊗ ► 5,4	€ A → V 1,3 - 2,4	► Ø 3,8	Ø	3-
art. no.	diameter of lense	dim. [mm]	art. no.	diameter of lense	dim. [mm]
		А			A
LL 30 PRB 032	Ø3mm	3.2	LL 30 PRB 089	Ø3mm	8.9
LL 30 PRB 064	Ø3mm	6.4			
1		Ø 2;9	Ø 3,2	Ø 2,92	_

art. no.	diameter of lense	dim. [mm]	art. no.	diameter of lense	dim. [mm]
		A			A
LL 30 PRL 032	Ø3mm	3.2	LL 30 PRL 127	Ø3mm	12.7
LL 30 PRL 064	Ø3mm	6.4	LL 30 PRL 159	Ø3mm	15.9
LL 30 PRL 089	Ø3mm	8.9			

- suitable for current SMD LEDs, vertical, rigid light pipe Ø 3 mm, ESD protection from panel to PCB

		~4,5 3,2 11 Ø 0,6 +2,7		Ø 0,6 ^{-0,02}
art. no.	diameter of lens	e way of fixa	ition	dim. [mm]
				A
LL 30 VRFS 024	Ø3mm	by alignmer	nt pins	2.4
LL 30 VRFS 050	Ø3mm	by alignmer	nt pins	5.0
LL 30 VRFS 075	Ø3mm	by alignmer	nt pins	7.5
insulating body material:		Polycarbonate, clear		
temperature range:		-30°C +100°C		
class of flammibility:		UL 94 V-0		

L 9

Spacers & mounting strips Sockets for LED LED-holders for PCB assembly Fourfold-LED-holders

L 2 – 3 F 5 – 6 L 5 – 7 → →

Screw fastening 1 23 → D-Sub cut-out cover → 1 22 LED-holders for front panel assembly \rightarrow L 4

L 7

Downloaded from Arrow.com.