MOSFET - Power, P-Channel, Logic Level, DPAK

-25 A, -30 V

Designed for low voltage, high speed switching applications and to withstand high energy in the avalanche and commutation modes. The source-to-drain diode recovery time is comparable to a discrete fast recovery diode.

Features

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

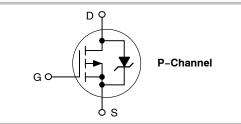
Typical Applications

- PWM Motor Controls
- Power Supplies
- Converters
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

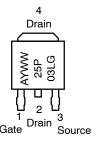
Rating	Symbol	Value	Unit
Drain-to-Source Voltage	V _{DSS}	-30	V
Gate–to–Source Voltage – Continuous – Non–Repetitive (tp ≤ 10 ms)	V _{GS} V _{GSM}	±15 ±20	V Vpk
Drain Current - Continuous @ $T_A = 25^{\circ}C$ - Single Pulse ($t_p \le 10 \mu s$)	I _D I _{DM}	-25 -75	A Apk
Total Power Dissipation @ T _A = 25°C	P _D	75	W
Operating and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C
Single Pulse Drain-to-Source Avalanche Energy – Starting T_J = 25°C (V_{DD} = 25 Vdc, V_{GS} = 5.0 Vdc, Peak I_L = 20 Apk, L = 1.0 mH, R_G = 25 Ω)	E _{AS}	200	mJ
Thermal Resistance - Junction-to-Case - Junction-to-Ambient (Note 1) - Junction-to-Ambient (Note 2)	$egin{array}{c} R_{ heta JC} \ R_{ heta JA} \ R_{ heta JA} \end{array}$	1.65 67 120	°C/W
Maximum Lead Temperature for Soldering Purposes, (1/8 in from case for 10 seconds)	TL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. When surface mounted to an FR4 board using 0.5 sq in pad size.
- When surface mounted to an FR4 board using the minimum recommended pad size.

ON Semiconductor®

http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max
-30 V	51 mΩ @ 5.0 V	-25 A

DPAK CASE 369C STYLE 2

MARKING DIAGRAM & PIN ASSIGNMENT

A = Assembly Location*

Y = Year

WW = Work Week

25P03L = Device Code

G = Pb-Free Package

* The Assembly Location code (A) is front side optional. In cases where the Assembly Location is stamped in the package, the front side assembly code may be blank.

ORDERING INFORMATION

See detailed ordering and shipping information on page 7 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_C = 25$ °C unless otherwise noted)

Zerio Gate Voltage Drain Current Viss = -30 Vdc, Viss = 0 Vdc, Tj = 25°C) Ibss	Characteristic		Symbol	Min	Тур	Max	Unit
Comparative Coefficient (Positive) Coeffi	OFF CHARACTERISTICS		•		•	•	•
Temperature Coefficient (Positive) Caste Voltage Drain Current (VnS = 30 Vdc, VaS = 0 Vdc, T _J = 125°C) (VnS = 30 Vdc, VaS = 0 Vdc, T _J = 125°C) (VnS = 30 Vdc, VaS = 0 Vdc, T _J = 125°C) Igss Ig	, , , , , , , , , , , , , , , , , , ,		V _{(BR)DSS}	00			V
Vos = -30 Vdc, Vos = 0 Vdc, T _J = 25°C)				-30	-24		mV/°C
CVGS = ±15 Vdc, VDS = 0 Vdc Clote 3	$(V_{DS} = -30 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_{J} =$		I _{DSS}				μΑ
	, ,		I _{GSS}			-100	nA
Vos = Vgs. p = -250 μAdc) mV/°C mV/	ON CHARACTERISTICS (Note 3)						
	$(V_{DS} = V_{GS}, I_{D} = -250 \mu Adc)$		V _{GS(th)}	-1.0		-2.0	V mV/°C
Turn-Off Delay Time (V _{DS} = -5.0 Vdc, I _D = -15 Vdc, I _D = -25 Adc, V _{GS} = 5.0 Vdc, I _D = -25 Vdc, V _{GS} = 5.0 Vdc, I _D = -25 Adc, V _{GS} = 5.0 Vdc, I _D = -25 Adc, V _{GS} = 0 V	$(V_{GS} = -5.0 \text{ Vdc}, I_D = -12.5 \text{ Adc})$ $(V_{GS} = -5.0 \text{ Vdc}, I_D = -25 \text{ Adc})$	sistance	R _{DS(on)}		0.056	0.080	Ω
$ \begin{array}{ c c c c }\hline \mbox{lnput Capacitance} & V_{DS} = -25 \mbox{ Vc,} & C_{ISS} & 900 & 1260 \\ \hline \mbox{Output Capacitance} & V_{DS} = -25 \mbox{ Vc,} & C_{OSS} & 290 & 410 \\ \hline \mbox{Reverse Transfer Capacitance} & 105 & 210 \\ \hline \mbox{SWITCHING CHARACTERISTICS (Notes 3 & 4)} \\ \hline \mbox{Turn-On Delay Time} & V_{DD} = -15 \mbox{Vdc,} & V_{DS} = -25 \mbox{ A,} & V_{AG} = 1.3 \mbox{ Q,} & V_{AG} & 16 & 55 \\ \hline \mbox{Turn-Off Delay Time} & V_{DS} = -24 \mbox{ Vdc,} & V_{AG} = -25 \mbox{ A}, & V_{AG} = -25 \mbox{ A},$			g _{FS}		13		Mhos
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	DYNAMIC CHARACTERISTICS		•		•	•	•
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Capacitance		C _{iss}		900	1260	pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Capacitance		C _{oss}		290	410	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reverse Transfer Capacitance	,	C _{rss}		105	210	
$ \begin{array}{c} \text{Rise Time} \\ \text{Turn-Off Delay Time} \\ \text{Fall Time} \\ \text{Gate Charge} \\ \\ \text{BODY-DRAIN DIODE RATINGS (Note 3)} \\ \\ \text{Reverse Recovery Time} \\ \\ \text{Reverse Recovery Time} \\ \\ \text{Rise Time} \\ \\ \text{($V_{DS} = -25 \text{ A}, V_{GS} = 0 \text{ V}, \\ I_{D} = -25 \text{ A}, V_{GS} = 0 \text{ V}, \\ I_{S} = -2$	SWITCHING CHARACTERISTICS (N	otes 3 & 4)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Turn-On Delay Time		t _{d(on)}		9.0	20	ns
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rise Time		t _r		37	75	
	Turn-Off Delay Time	5.5	t _{d(off)}		15	30	
	Fall Time		t _f		16	55	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gate Charge		Q _T		15	20	nC
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$(V_{DS} = -24 \text{ Vdc},$	Q ₁		3.0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Q ₂		9.0		
			Q ₃		7.0		1
	BODY-DRAIN DIODE RATINGS (Not	re 3)					
	Diode Forward On-Voltage	$(I_S = -25 \text{ Adc}, V_{GS} = 0 \text{ V})$ $(I_S = -25 \text{ Adc}, V_{GS} = 0 \text{ V}, T_J = 125^{\circ}\text{C})$	V _{SD}			-1.5	V
$dI_{S}/dt = 100 \text{ A/}\mu\text{s})$ t_{b} 14	,		t _{rr}		35		ns
t _b 14			t _a		20		
Reverse Recovery Stored Charge Q _{RR} 0.035 μC		G,,	t _b		14		1
· · · · · · · · · · · · · · · · · · ·	Reverse Recovery Stored Charge		Q_{RR}		0.035		μC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%.

^{4.} Switching characteristics are independent of operating junction temperature.

TYPICAL MOSFET ELECTRICAL CHARACTERISTICS

Figure 1. On-Region Characteristics

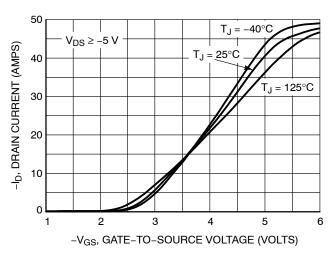


Figure 2. Transfer Characteristics

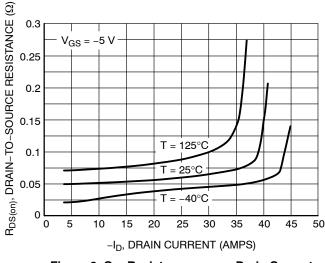


Figure 3. On-Resistance versus Drain Current and Temperature

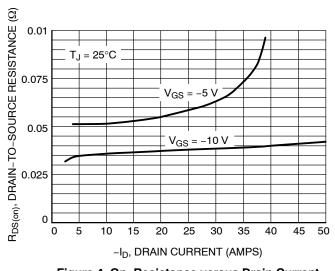


Figure 4. On-Resistance versus Drain Current and Gate Voltage

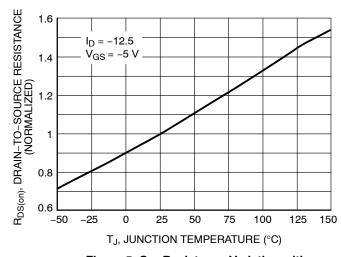


Figure 5. On–Resistance Variation with Temperature

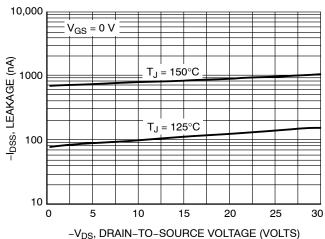


Figure 6. Drain-to-Source Leakage Current versus Voltage

POWER MOSFET SWITCHING

Switching behavior is most easily modeled and predicted by recognizing that the power MOSFET is charge controlled. The lengths of various switching intervals (Δt) are determined by how fast the FET input capacitance can be charged by current from the generator.

The published capacitance data is difficult to use for calculating rise and fall because drain–gate capacitance varies greatly with applied voltage. Accordingly, gate charge data is used. In most cases, a satisfactory estimate of average input current $(I_{G(AV)})$ can be made from a rudimentary analysis of the drive circuit so that

$$t = Q/I_{G(AV)}$$

During the rise and fall time interval when switching a resistive load, V_{GS} remains virtually constant at a level known as the plateau voltage, V_{SGP} Therefore, rise and fall times may be approximated by the following:

$$t_r = Q_2 x R_G/(V_{GG} - V_{GSP})$$

$$t_f = Q_2 x R_G/V_{GSP}$$

where

 V_{GG} = the gate drive voltage, which varies from zero to V_{GG} R_G = the gate drive resistance

and Q₂ and V_{GSP} are read from the gate charge curve.

During the turn-on and turn-off delay times, gate current is not constant. The simplest calculation uses appropriate values from the capacitance curves in a standard equation for voltage change in an RC network. The equations are:

$$t_{d(on)} = R_G C_{iss} In \left[V_{GG} / (V_{GG} - V_{GSP}) \right]$$

$$t_{d(off)} = R_G C_{iss} In \left(V_{GG} / V_{GSP} \right)$$

The capacitance (C_{iss}) is read from the capacitance curve at a voltage corresponding to the off-state condition when calculating $t_{d(on)}$ and is read at a voltage corresponding to the on-state when calculating $t_{d(off)}$.

At high switching speeds, parasitic circuit elements complicate the analysis. The inductance of the MOSFET source lead, inside the package and in the circuit wiring which is common to both the drain and gate current paths, produces a voltage at the source which reduces the gate drive current. The voltage is determined by Ldi/dt, but since di/dt is a function of drain current, the mathematical solution is complex. The MOSFET output capacitance also complicates the mathematics. And finally, MOSFETs have finite internal gate resistance which effectively adds to the resistance of the driving source, but the internal resistance is difficult to measure and, consequently, is not specified.

The resistive switching time variation versus gate resistance (Figure 9) shows how typical switching performance is affected by the parasitic circuit elements. If the parasitics were not present, the slope of the curves would maintain a value of unity regardless of the switching speed. The circuit used to obtain the data is constructed to minimize common inductance in the drain and gate circuit loops and is believed readily achievable with board mounted components. Most power electronic loads are inductive; the data in the figure is taken with a resistive load, which approximates an optimally snubbed inductive load. Power MOSFETs may be safely operated into an inductive load; however, snubbing reduces switching losses.

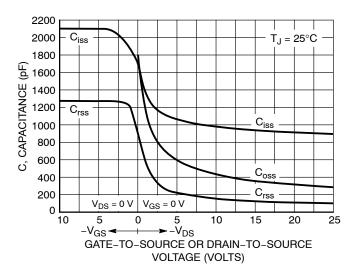


Figure 7. Capacitance Variation

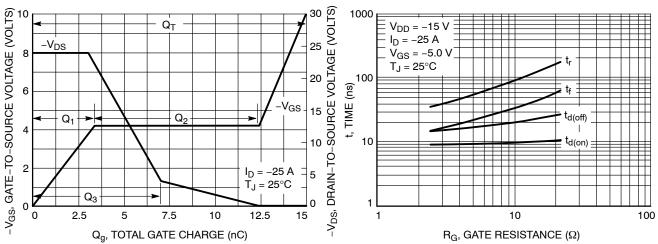


Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

Figure 9. Resistive Switching Time Variation versus Gate Resistance

DRAIN-TO-SOURCE DIODE CHARACTERISTICS

The switching characteristics of a MOSFET body diode are very important in systems using it as a freewheeling or commutating diode. Of particular interest are the reverse recovery characteristics which play a major role in determining switching losses, radiated noise, EMI and RFI.

System switching losses are largely due to the nature of the body diode itself. The body diode is a minority carrier device, therefore it has a finite reverse recovery time, $t_{\rm rr}$, due to the storage of minority carrier charge, Q_{RR} , as shown in the typical reverse recovery wave form of Figure 14. It is this stored charge that, when cleared from the diode, passes through a potential and defines an energy loss. Obviously, repeatedly forcing the diode through reverse recovery further increases switching losses. Therefore, one would like a diode with short $t_{\rm rr}$ and low Q_{RR} specifications to minimize these losses.

The abruptness of diode reverse recovery effects the amount of radiated noise, voltage spikes, and current ringing. The mechanisms at work are finite irremovable circuit parasitic inductances and capacitances acted upon by

high di/dts. The diode's negative di/dt during t_a is directly controlled by the device clearing the stored charge. However, the positive di/dt during t_b is an uncontrollable diode characteristic and is usually the culprit that induces current ringing. Therefore, when comparing diodes, the ratio of t_b/t_a serves as a good indicator of recovery abruptness and thus gives a comparative estimate of probable noise generated. A ratio of 1 is considered ideal and values less than 0.5 are considered snappy.

Compared to ON Semiconductor standard cell density low voltage MOSFETs, high cell density MOSFET diodes are faster (shorter t_{rr}), have less stored charge and a softer reverse recovery characteristic. The softness advantage of the high cell density diode means they can be forced through reverse recovery at a higher di/dt than a standard cell MOSFET diode without increasing the current ringing or the noise generated. In addition, power dissipation incurred from switching the diode will be less due to the shorter recovery time and lower switching losses.

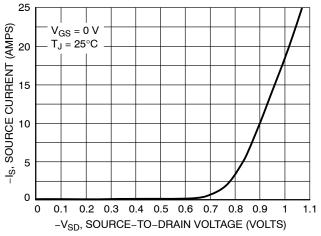


Figure 10. Diode Forward Voltage versus Current

SAFE OPERATING AREA

The Forward Biased Safe Operating Area curves define the maximum simultaneous drain-to-source voltage and drain current that a transistor can handle safely when it is forward biased. Curves are based upon maximum peak junction temperature and a case temperature (T_C) of 25°C. Peak repetitive pulsed power limits are determined by using the thermal response data in conjunction with the procedures discussed in AN569, "Transient Thermal Resistance – General Data and Its Use."

Switching between the off-state and the on-state may traverse any load line provided neither rated peak current (I_{DM}) nor rated voltage (V_{DSS}) is exceeded, and that the transition time (t_r , t_f) does not exceed 10 μs . In addition the total power averaged over a complete switching cycle must not exceed ($T_{J(MAX)} - T_C$)/($R_{\theta JC}$).

A power MOSFET designated E-FET can be safely used in switching circuits with unclamped inductive loads. For

reliable operation, the stored energy from circuit inductance dissipated in the transistor while in avalanche must be less than the rated limit and must be adjusted for operating conditions differing from those specified. Although industry practice is to rate in terms of energy, avalanche energy capability is not a constant. The energy rating decreases non–linearly with an increase of peak current in avalanche and peak junction temperature.

Although many E–FETs can withstand the stress of drain–to–source avalanche at currents up to rated pulsed current (I_{DM}), the energy rating is specified at rated continuous current (I_{D}), in accordance with industry custom. The energy rating must be derated for temperature as shown in the accompanying graph (Figure 12). Maximum energy at currents below rated continuous I_{D} can safely be assumed to equal the values indicated.

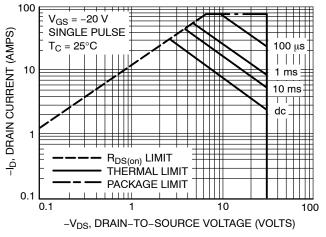


Figure 11. Maximum Rated Forward Biased Safe Operating Area

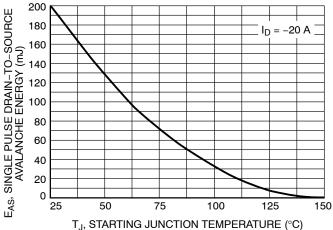


Figure 12. Maximum Avalanche Energy versus Starting Junction Temperature

TYPICAL ELECTRICAL CHARACTERISTICS

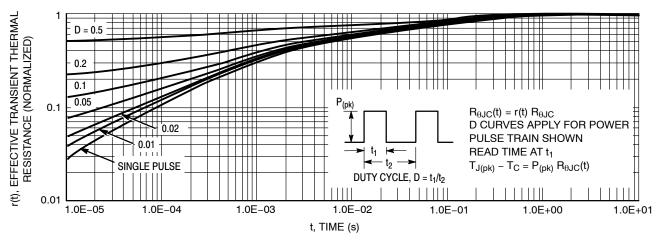


Figure 13. Thermal Response

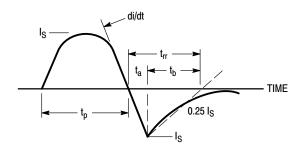
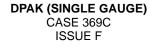


Figure 14. Diode Reverse Recovery Waveform

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD25P03LT4G	DPAK (Pb-Free)	2500 / Tape & Reel
STD25P03LT4G*	DPAK (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


^{*}S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

ROTATED 90° CW

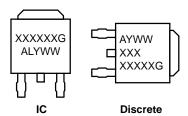
STYLE 1:

STYLE 2:

DATE 21 JUL 2015

- IOTES. 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-

- MENSIONS b3, L3 and Z.


 Jimensions b And E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 MENSIONS D AND E ARE DETERMINED AT THE
- OUTERMOST EXTREMES OF THE PLASTIC BODY.

 6. DATUMS A AND B ARE DETERMINED AT DATUM
- 7. OPTIONAL MOLD FEATURE.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.028	0.045	0.72	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.114	REF	2.90 REF	
L2	0.020	BSC	0.51 BSC	
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

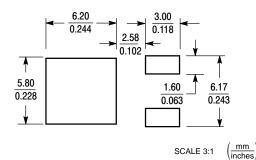
GENERIC MARKING DIAGRAM*

XXXXXX = Device Code = Assembly Location Α = Wafer Lot L

Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

В L3 Ζ Ո DETAIL A NOTE 7 **BOTTOM VIEW** Cb2 е SIDE VIEW | \oplus | 0.005 (0.13) lacktriangle C **TOP VIEW** Z Ħ L2 GAUGE C SEATING PLANE **BOTTOM VIEW** Α1 ALTERNATE CONSTRUCTIONS **DETAIL A**


3. EMITTER	3. SOURCE	 ANODE CATHODE 	3. GATE	3. CATHODE
4. COLLECTOR	4. DRAIN		4. ANODE	4. ANODE
3. GATE 3. EMI	LECTOR 2. TTER 3.	N/C PIN CATHODE ANODE	E 9: 1. ANODE 2. CATHODE 3. RESISTOR ADJUST 4. CATHODE	STYLE 10: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 4:

STYLE 5:

STYLE 3:

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DESCRIPTION:	DPAK SINGLE GAUGE SURFACE MOU	NT	PAGE 1 OF 2
NEW STANDARD:	REF TO JEDEC TO-252	"CONTROLLED COPY" in red.	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Print versions are uncontrolled except when stamped	
DOCUMENT NUMBER:	98AON10527D	Electronic versions are uncontrolle	'

DOCUMENT	NUMBER:
98AON10527	7D

PAGE 2 OF 2

	,	
ISSUE	REVISION	DATE
0	RELEASED FOR PRODUCTION. REQ. BY L. GAN	24 SEP 2001
Α	ADDED STYLE 8. REQ. BY S. ALLEN.	06 AUG 2008
В	ADDED STYLE 9. REQ. BY D. WARNER.	16 JAN 2009
С	ADDED STYLE 10. REQ. BY S. ALLEN.	09 JUN 2009
D	RELABELED DRAWING TO JEDEC STANDARDS. ADDED SIDE VIEW DETAIL A. CORRECTED MARKING INFORMATION. REQ. BY D. TRUHITTE.	29 JUN 2010
E	ADDED ALTERNATE CONSTRUCTION BOTTOM VIEW. MODIFIED DIMENSIONS b2 AND L1. CORRECTED MARKING DIAGRAM FOR DISCRETE. REQ. BY I. CAMBALIZA.	06 FEB 2014
F	ADDED SECOND ALTERNATE CONSTRUCTION BOTTOM VIEW. REQ. BY K. MUSTAFA.	21 JUL 2015

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative