Precision 8-Channel / Dual 4-Channel CMOS Analog Multiplexers

DESCRIPTION

The DG508B is an 8-channel single-ended analog multiplexer designed to connect one of eight inputs to a common output as determined by a 3-bit binary address $\left(A_{0}, A_{1}, A_{2}\right)$. The DG509B is a dual 4-channel differential analog multiplexer designed to connect one of four differential inputs to a common dual output as determined by its 2-bit binary address (A_{0}, A_{1}). Break-before-make switching action protects against momentary crosstalk between adjacent channels.
An on channel conducts current equally well in both directions. In the off state each channel blocks voltages up to the power supply rails. An enable (EN) function allows the user to reset the multiplexer / demultiplexer to all switches off for stacking several devices. All control inputs, addresses $\left(\mathrm{A}_{x}\right)$ and enable (EN) are TTL compatible over the full specified operating temperature range.
The DG508B and DG509B are fabricated on an enhanced SG-II CMOS process that achieves improved performance on: reduced charge injection, lower device leakage, and minimized parasitic capacitance.
As the DG508, DG509 has a long history in the industry with many suppliers offering copies - and in some cases improved variations - with the best in class improvements, the Vishay Siliconix new version of the DG508B, DG509B are the superior alternatives to what is currently available.
Applications for the DG508B, DG509B include high speed and high precision data acquisition, audio signal switching and routing, ATE systems, and avionics. High performance and low power dissipation make them ideal for battery operated and remote instrumentation applications.
The DG508B and DG509B have the absolute maximum voltage rating extended to 44 V . Additionally, single supply operation is also allowed. An epitaxial layer prevents latch-up.
The DG508B and DG509B are both available in 16-lead SOIC, TSSOP, PDIP, and miniQFN ($1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$) package options with extended temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
For more information, refer to Vishay Siliconix DG508B, DG509B evaluation board note.

FEATURES

- Operate with single or dual power supply
- V+ to V- analog signal swing range
- 44 V power supply maximum rating
- Extended operate temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low leakage typically $<3 \mathrm{pA}$
- Low charge injection $-\mathrm{Q}_{\mathrm{INJ}}=2 \mathrm{pC}$
- Low power - Isupply: $10 \mu \mathrm{~A}$
- TTL compatible logic
- > 250 mA latch-up current per JESD78
- Available in SOIC16, TSSOP16, PDIP, and miniQFN16 packages
- Superior alternative to:
- ADG508A, DG508A, HI-508
- ADG509A, DG509A, HI-509
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- Reduced switching errors
- Reduced glitching
- Improved data throughput
- Reduced power consumption
- Increased ruggedness
- Wide supply ranges ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$)

APPLICATIONS

- Data acquisition systems
- Audio and video signal routing
- ATE systems
- Medical instrumentation

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG508B miniQFN-16L

Top View
Device Marking: 6XX
Traceability Code:
6 is DG508BEN
XX = Date/Lot
TRUTH TABLES AND ORDERING INFORMATION

TRUTH TABLE (DG508B)				
$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	EN	ON SWITCH
X	X	X	0	None
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

DG509B
Dual-In-Line SOIC and TSSOP
 miniQFN-16L

Top View
Device Marking: 7XX
Traceability Code:
7 is DG509BEN
XX = Date/Lot

TRUTH TABLE (DG509B)			
$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$	EN	ON SWITCH
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

Logic " 0 " $=\mathrm{V}_{\text {IL }} \leq 0.8 \mathrm{~V}$
Logic "1" $=\mathrm{V}_{\mathrm{IH}} \geq 2 \mathrm{~V}$
$X=$ Do not care

ORDERING INFORMATION (DG508B)		
TEMP. RANGE	PACKAGE	PART NUMBER
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ a	16 -Pin SOIC	DG508BEY-T1-E3
	$16-$ Pin TSSOP	DG508BEQ-T1-E3
	$16-P i n ~ P D I P ~$	DG508BEJ-E3
	$16-P i n ~ M i n i Q F N ~$	DG508BEN-T1-GE4

ORDERING INFORMATION (DG509B)		
TEMP. RANGE	PACKAGE	PART NUMBER
$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ a ${ }^{\text {a }}$	16 -Pin SOIC	DG509BEY-T1-E3
	$16-$ Pin TSSOP	DG509BEQ-T1-E3
	$16-P i n ~ P D I P ~$	DG509BEJ-E3
	$16-P i n ~ M i n i Q F N ~$	DG509BEN-T1-GE4

Note

a. $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ datasheet limits apply.

ABSOLUTE MAXIMUM RATINGS			
PARAMETER		LIMIT	UNIT
Voltages Referenced to V-	V+	44	V
	GND	25	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$		$(V-)-2 \text { to }(V+)+2$ or 20 mA , whichever occurs first	
Current (Any terminal)		30	mA
Peak Current, S or D (Pulsed at $1 \mathrm{~ms}, 10$ \% duty cycle max.)		100	
Storage Temperature	(EY, EQ, EJ, EN suffix)	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation (Packages) ${ }^{\text {b }}$	16-Pin Narrow SOIC ${ }^{\text {c }}$	600	mW
	16-Pin TSSOP ${ }^{\text {d }}$	450	
	16-Pin PDIP e	510	
	16-Pin miniQFN ${ }^{\dagger}$	525	
Thermal Resistance ($\theta \mathrm{JA}$) ${ }^{\text {b }}$	16-Pin Narrow SOIC ${ }^{\text {c }}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	16-Pin TSSOP ${ }^{\text {d }}$	178	
	16-Pin PDIP ${ }^{\text {e }}$	159.6	
	16-Pin miniQFN ${ }^{\dagger}$	152	

Notes

a. Signals on SX, DX or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads soldered or welded to PC board.
c. Derate $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Derate $5.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
e. Derate $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
f. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

DG508B, DG509B
Vishay Siliconix

SPECIFICATIONS											
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}(\pm 10 \%) \\ \mathrm{V}_{\mathrm{AX}}, \mathrm{~V}_{\text {EN }}=2 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$		TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT	
				MIN. ${ }^{\text {d }}$		MAX. ${ }^{\text {d }}$	MIN. ${ }^{\text {d }}$	MAX. ${ }^{\text {d }}$			
Analog Switch											
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	-	-15	15	-15	15	V
Drain-Source On-Resistance	$\mathrm{R}_{\text {DS(on) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$		Room	180	-	380	-	380	Ω	
				Full	-	-	480	-	450		
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$ Matching	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$		Room	10	-	-	-	-		
Source Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} V_{D}= \pm 10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \\ \mathrm{~V}_{\text {EN }}=0 \mathrm{~V} \end{gathered}$		Room	-	-1	1	-1	1	$n A$	
				Full	-	-50	50	-50	50		
Drain Off Leakage Current	$I_{\text {doff) }}$		DG508B	Room	-	-1	1	-1	1		
				Full	-	-100	100	-100	100		
			DG509B	Room	-	-1	1	-1	1		
				Full	-	-50	50	-50	50		
Drain On Leakage Current	$I_{\text {D(on) }}$	$V_{S}=V_{D}=\mp 10 \mathrm{~V}$ sequence each switch on	DG508B	Room	-	-1	1	-1	1		
				Full	-	-100	100	-100	100		
			DG509B	Room	-	-1	1	-1	1		
				Full	-	-50	50	-50	50		
Digital Control											
Logic High Input Voltage	$\mathrm{V}_{1 \mathrm{NH}}$			Full	-	2	-	2	-	V	
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$			Full	-	-	0.8	-	0.8		
Logic High Input Current	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\mathrm{AX}}, \mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}$		Full	-	-1	1	-1	1	$\mu \mathrm{A}$	
Logic Low Input Current	$\mathrm{I}_{\text {L }}$	$\mathrm{V}_{\text {Ax }}, \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$		Full	-	-1	1	-1	1		
Logic Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$		Room	4	-	-	-	-	pF	
Dynamic Characteristics											
Transition Time	$t_{\text {trans }}$	$\begin{gathered} \mathrm{VS}_{1}=+10 \mathrm{~V} /-10 \mathrm{~V}, \\ \mathrm{VS}_{8}=-10 \mathrm{~V} /+10 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$		Room	145	-	300	-	300	ns	
				Full	-	-	400	-	400		
Break-Before-Make Interval	topen	$\begin{gathered} \mathrm{VS}_{1}=\mathrm{VS}_{8}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{gathered}$		Room	37	15	-	15	-		
				Full	-	1	-	1	-		
Enable Turn-On Time	$\mathrm{t}_{\text {ON(EN }}$	$\begin{gathered} \mathrm{VS}_{1}=5 \mathrm{~V}, \mathrm{VS}_{2} \text { to } \mathrm{VS}_{8}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$		Room	100	-	250	-	250		
				Full	-	-	340	-	340		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF(EN) }}$			Room	90	-	240	-	240		
				Full	-	-	300	-	300		
Charge Injection ${ }^{\text {e }}$	QinJ	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \mathrm{~W}, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$		Full	2	-	-	-	-	pC	
Off Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=1 \mathrm{MHz}$		Room	-81	-	-	-	-	dB	
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$			Room	-88	-	-	-	-		
-3 dB Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50$		Room	250	-	-	-	-	MHz	
Total Harmonic Distortion e	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } \end{aligned}$		Room	0.04	-	-	-	-	\%	
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$		Room	3	-	-	-	-	pF	
Drain Off Capacitance ${ }^{\text {e }}$	$C_{D(\text { (ff) }}$		DG508B	Room	13	-	-	-	-		
			DG509B	Room	8	-	-	-	-		
Drain On Capacitance ${ }^{\text {e }}$	$C_{\text {D(on) }}$		DG508B	Room	18	-	-	-	-		
			DG509B	Room	11	-	-	-	-		
Power Supply											
Positive Supply Current	I+	$\mathrm{V}_{\mathrm{Ax}}, \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ or 2.4 V		Room	0.01	-	0.2	-	0.2	mA	
				Full	-	-	0.3	-	0.3		
Negative Supply Current	I-			Full	0.06	-10	-	-10	-	$\mu \mathrm{A}$	

SPECIFICATIONS (Single Supply 12 V)											
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}(\pm 10 \%) \\ \mathrm{V}_{\mathrm{AX}}, \mathrm{~V}_{\mathrm{EN}}=2 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$		TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT	
				MIN. ${ }^{\text {d }}$		MAX. ${ }^{\text {d }}$	MIN. ${ }^{\text {d }}$	MAX. ${ }^{\text {d }}$			
Analog Switch											
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	-	0	12	0	12	V
On-Resistance	$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	$\mathrm{V}_{\mathrm{D}}=10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}$		Room	265	-	500	-	500	Ω	
				Full	-	-	650	-	600		
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$ Matching	$\Delta \mathrm{R}_{\mathrm{DS} \text { (on) }}$			Room	10	-	-	-	-		
Switch Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V} / 10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} / 0 \mathrm{~V} \end{gathered}$		Room	-	-1	1	-1	1	nA	
				Full	-	-50	-50	-50	50		
	$I_{\text {(off) }}$		DG508B	Room	-	-1	1	-1	1		
				Full	-	-100	100	-100	100		
	$I_{\text {(off) }}$		DG509B	Room	-	-1	1	-1	1		
				Full	-	-50	50	-50	50		
Channel On Leakage Current	$I_{\text {D(on) }}$	$\begin{aligned} & V_{+}=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V} / 10 \mathrm{~V} \end{aligned}$	DG508B	Room	-	-1	1	-1	1	nA	
				Full	-	-100	100	-100	100		
			DG509B	Room	-	-1	1	-1	1		
				Full	-	-50	50	-50	50		
Digital Control											
Logic High Input Voltage	$\mathrm{V}_{\text {INH }}$			Full	-	2	-	2	-	V	
Logic Low Input Voltage	$\mathrm{V}_{\text {INL }}$			Full	-	-	0.8	-	0.8		
Logic High Input Current	I_{H}	$\mathrm{V}_{\text {AX }}, \mathrm{V}_{\text {EN }}=2 \mathrm{~V}$		Full	-	-1	1	-1	1	$\mu \mathrm{A}$	
Logic Low Input Current	$1 / \mathrm{L}$	$\mathrm{V}_{\mathrm{AX}}, \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$		Full	-	-1	1	-1	1		
Logic Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$		Room	4	-	-	-	-	pF	
Dynamic Characteristics											
Transition Time	$t_{\text {trans }}$	$\begin{gathered} \mathrm{VS}_{1}=10 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{VS}_{8}=0 \mathrm{~V} / 10 \mathrm{~V} \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$		Room	165	-	400	-	400	ns	
				Full	-	-	550	-	500		
Break-Before-Make Interval	topen	$\begin{gathered} \mathrm{VS}_{1}=\mathrm{VS}_{8}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \end{gathered}$		Room	37	15	-	15	-		
				Full	-	1	-	1	-		
Enable Turn-On Time	$\mathrm{t}_{\text {ON(EN }}$	$\begin{gathered} \mathrm{VS}_{1}=5 \mathrm{~V}, \mathrm{VS}_{2} \text { to } \mathrm{VS}_{8}=0 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{gathered}$		Room	125	-	300	-	300		
				Full	-	-	550	-	425		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF(EN) }}$			Room	75	-	250	-	250		
				Full	-	-	350	-	300		
Charge Injection ${ }^{\text {e }}$	QinJ	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega, \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V}$		Full	2.5	-	-	-	-	pC	
Off Isolation ${ }^{\text {e }}$ OIRR		$\begin{gathered} C_{L}=5 \mathrm{pF}, R_{L}=50 \Omega \\ f=1 \mathrm{MHz} \end{gathered}$		Room	-80	-	-	-	-	dB	
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$			Room	-88	-	-	-	-		
-3 dB Bandwidth ${ }^{\text {e }}$	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		Room	200	-	-	-	-	MHz	
Total Harmonic Distortion ${ }^{\text {e }}$	THD	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, 5 \mathrm{~V}_{\mathrm{RMS}}, \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$		Room	0.26	-	-	-	-	\%	
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{\|l\|} \hline \text { DG508B } \\ \hline \text { DG509B } \\ \hline \end{array}$	Room	2	-	-	-	-	pF	
Drain Off Capacitance ${ }^{\text {e }}$	$C_{D(\text { (ff) }}$				13	-	-	-	-		
					8	-	-	-	-		
Channel On Capacitance ${ }^{\text {e }}$	$C_{\text {D(on) }}$		DG508B		17	-	-	-	-		
			DG509B		12	-	-	-	-		

SPECIFICATIONS (Single Supply 12 V)									
PARAMETER	SYMBOL	TEST CONDITIONS UNLESS OTHERWISE SPECIFIED$\begin{gathered} \mathrm{V}+=12 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}(\pm 10 \%) \\ \mathrm{V}_{\mathrm{AX}}, \mathrm{~V}_{\text {EN }}=2 \mathrm{~V}, 0.8 \mathrm{~V}^{\mathrm{a}} \end{gathered}$	TEMP. ${ }^{\text {b }}$	TYP. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		UNIT
					MIN. ${ }^{\text {d }}$	MAX. ${ }^{\text {d }}$	MIN. ${ }^{\text {d }}$	MAX. ${ }^{\text {d }}$	
Power Supply									
Positive Supply Current	$1+$	$\mathrm{V}_{\mathrm{AX}}, \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$ or 2.4 V	Room	0.01	-	0.2	-	0.2	mA
			Full	-	-	0.3	-	0.3	

Notes

a. $\mathrm{V}_{\mathrm{AX}}, \mathrm{V}_{\mathrm{EN}}=$ input voltage perform proper function.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
e. Guaranteed by design, not subject to production test.
f. $\Delta R_{D S(o n)}=R_{D S(o n)} m a x .-R_{D S(o n)} \min$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SCHEMATIC DIAGRAM (Typical Channel)

Fig. 1

Vishay Siliconix
TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

On-Resistance vs. V_{D} and Single Supply Voltage

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. V_{D} and Dual Supply Voltage

On-Resistance vs. Analog Voltage and Temperature

On-Resistance vs. Analog Voltage and Temperature

Vishay Siliconix
TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

On-Resistance vs. Analog Voltage and Temperature

Switching Threshold vs. Supply Voltage

Vishay Siliconix
TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

THD vs. Frequency

Supply Current vs. $\mathbf{V}_{\mathrm{AX}}, \mathrm{V}_{\mathrm{EN}}$

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

Supply Current vs. Input Switching Frequency

Supply Current vs. $\mathbf{V}_{\mathrm{AX}}, \mathrm{V}_{\mathrm{EN}}$

Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

TYPICAL CHARACTERISTICS $\left(25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Supply Current vs. Input Switching Frequency

Leakage Current vs. Temperature

Charge Injection vs. Analog Voltage

Leakage Current vs. Analog Voltage

TEST CIRCUITS

Fig. 2 - Transition Time

Fig. 3 - Enable Switching Time

Vishay Siliconix

TEST CIRCUITS

Fig. 4 - Break-Before-Make Interval

Fig. 5 - Charge Injection

Fig. 6 - Off Isolation

Fig. 7 - Insertion Loss

TEST CIRCUITS

Fig. 8 - Crosstalk

Fig. 9 - Source Drain Capacitance

[^0]Package Information

Thin miniQFN16 Case Outline

Top view

Bottom view

DIMENSIONS	MILLIMETERS ${ }^{(1)}$			INCHES		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	0.50	0.55	0.60	0.020	0.022	0.024
A1	0	-	0.05	0	-	0.002
A3	$0.15 \text { ref. }$			$0.006 \text { ref. }$		
b	0.15	0.20	0.25	0.006	0.008	0.010
D	2.50	2.60	2.70	0.098	0.102	0.106
e	0.40 BSC			0.016 BSC		
E	1.70	1.80	1.90	0.067	0.071	0.075
L	0.35	0.40	0.45	0.014	0.016	0.018
L1	0.45	0.50	0.55	0.018	0.020	0.022
$\mathrm{N}^{(3)}$	16			16		
$\mathrm{Nd}{ }^{(3)}$	4			4		
$\mathrm{Ne}{ }^{(3)}$	4			4		

Notes

${ }^{(1)}$ Use millimeters as the primary measurement.
${ }^{(2)}$ Dimensioning and tolerances conform to ASME Y14.5M. - 1994.
${ }^{(3)} \mathrm{N}$ is the number of terminals. Nd and Ne is the number of terminals in each D and E site respectively.
(4) Dimensions b applies to plated terminal and is measured between 0.15 mm and 0.30 mm from terminal tip.
${ }^{(5)}$ The pin 1 identifier must be existed on the top surface of the package by using identification mark or other feature of package body.
${ }^{(6)}$ Package warpage max. 0.05 mm .

ECN: T16-0226-Rev. B, 09-May-16

DWG: 6023

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	1.35	1.75	0.053	0.069
$\mathbf{A}_{\mathbf{1}}$	0.10	0.20	0.004	0.008
\mathbf{B}	0.38	0.51	0.015	0.020
C	0.18	0.23	0.007	0.009
\mathbf{D}	9.80	10.00	0.385	0.393
E	3.80	4.00	0.149	0.157
\mathbf{e}	1.27 BSC	0.050 BSC		
\mathbf{H}	5.80	6.20	0.228	0.244
L	0.50	0.93	0.020	0.037
\varnothing	0°	8°	0°	8°
ECN: S-03946-Rev. F, 09-Jul-01 DWG: 5300				

Dim	MILLIMETERS		INCHES	
	Min	Max	Min	Max
\mathbf{A}	3.81	5.08	0.150	0.200
$\mathbf{A}_{\mathbf{1}}$	0.38	1.27	0.015	0.050
\mathbf{B}	0.38	0.51	0.015	0.020
$\mathbf{B}_{\mathbf{1}}$	0.89	1.65	0.035	0.065
\mathbf{C}	0.20	0.30	0.008	0.012
\mathbf{D}	18.93	21.33	0.745	0.840
\mathbf{E}	7.62	8.26	0.300	0.325
$\mathbf{E}_{\mathbf{1}}$	5.59	7.11	0.220	0.280
$\mathbf{e}_{\mathbf{1}}$	2.29	2.79	0.090	0.110
$\mathbf{e}_{\mathbf{A}}$	7.37	7.87	0.290	0.310
\mathbf{L}	2.79	3.81	0.110	0.150
$\mathbf{\mathbf { Q } _ { \mathbf { 1 } }}$	1.27	2.03	0.050	0.080
\mathbf{S}	0.38	1.52	.015	0.060
ECN: S-03946-Rev. D, 09-Jul-01				
DWG: 5482				

TSSOP: 16-LEAD

Symbols	DIMENSIONS IN MILLIMETERS		
	Min	Nom	Max
A	-	1.10	1.20
A1	0.05	0.10	0.15
A2	-	1.00	1.05
B	0.22	0.28	0.38
C	-	0.127	-
D	4.90	5.00	5.10
E	6.10	6.40	6.70
E1	4.30	4.40	4.50
e	-	0.65	-
L	0.50	0.60	0.70
L1	0.90	1.00	1.10
y	-	-	0.10
11	0°	3°	6°
ECN: S-61920-Rev. D, 23-Oct-06			
DWG: 5624			

www.vishay.com

RECOMMENDED MINIMUM PAD FOR TSSOP-16

Recommended Minimum Pads Dimensions in inches (mm)

RECOMMENDED MINIMUM PADS FOR MINI QFN 16L

Mounting Footprint
Dimensions in mm (inch)

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR SO-16

Recommended Minimum Pads
Dimensions in Inches/(mm)

Return to Index

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?64821.

