MJB44H11 (NPN), NJVMJB44H11 (NPN), MJB45H11 (PNP), NJVMJB45H11 (PNP)

Complementary Power Transistors

D²PAK for Surface Mount

Complementary power transistors are for general purpose power amplification and switching such as output or driver stages in applications such as switching regulators, converters and power amplifiers.

Features

- Low Collector–Emitter Saturation Voltage –
 V_{CE(sat)} = 1.0 V (Max) @ 8.0 A
- Fast Switching Speeds
- Complementary Pairs Simplifies Designs
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- NJV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- Pb-Free Packages are Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	80	Vdc
Emitter-Base Voltage	V _{EB}	5	Vdc
Collector Current - Continuous - Peak	I _C	10 20	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	P _D	50 0.4	W W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	P _D	2.0 0.016	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	75	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1

ON Semiconductor®

http://onsemi.com

SILICON POWER TRANSISTORS 10 AMPERES, 80 VOLTS, 50 WATTS

MARKING DIAGRAM

D²PAK CASE 418B STYLE 1

c = 4 or 5

= Assembly Location

= Year

NW = Work Week

= Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping [†]
MJB44H11G	D ² PAK (Pb-Free)	50 Units/Rail
MJB44H11T4G	D ² PAK (Pb-Free)	800/Tape & Reel
NJVMJB44H11T4G	D ² PAK (Pb-Free)	800/Tape & Reel
MJB45H11G	D ² PAK (Pb-Free)	50 Units/Rail
MJB45H11T4G	D ² PAK (Pb-Free)	800/Tape & Reel
NJVMJB45H11T4G	D ² PAK (Pb-Free)	800/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

MJB44H11 (NPN), NJVMJB44H11 (NPN), MJB45H11 (PNP), NJVMJB45H11 (PNP)

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS						
Collector–Emitter Sustaining Voltage ($I_C = 30 \text{ mA}, I_B = 0$)	V _{CEO(sus)}	80	-	-	Vdc	
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , V _{BE} = 0)		I _{CES}	-	-	10	μΑ
Emitter Cutoff Current (V _{EB} = 5 Vdc)		I _{EBO}	-	-	50	μΑ
ON CHARACTERISTICS						
Collector–Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.4	V _{CE(sat)}	-	-	1.0	Vdc	
Base-Emitter Saturation Voltage (I _C = 8 Adc, I _B = 0.8 Adc)		V _{BE(sat)}	-	-	1.5	Vdc
DC Current Gain (V _{CE} = 1 Vdc, I _C = 2 Adc)		h _{FE}	60	-	_	-
DC Current Gain (V _{CE} = 1 Vdc, I _C = 4 Adc)		·	40	-	-	
DYNAMIC CHARACTERISTICS						
	344H11, NJVMJB44H11 345H11, NJVMJB45H11	C_cb		130 230		pF
	20 MHz) 344H11, NJVMJB44H11 345H11, NJVMJB45H11	f _T	-	50 40	-	MHz
SWITCHING TIMES						
	844H11, NJVMJB44H11 845H11, NJVMJB45H11	$t_d + t_r$	- -	300 135	- -	ns
	344H11, NJVMJB44H11 345H11, NJVMJB45H11	t _s		500 500	- -	ns
	844H11, NJVMJB44H11 845H11, NJVMJB45H11	t _f	- -	140 100	-	ns

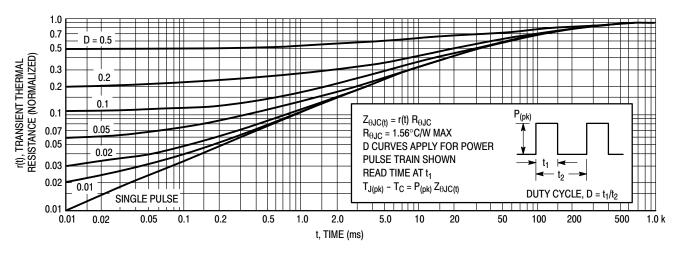


Figure 1. Thermal Response

MJB44H11 (NPN), NJVMJB44H11 (NPN), MJB45H11 (PNP), NJVMJB45H11 (PNP)

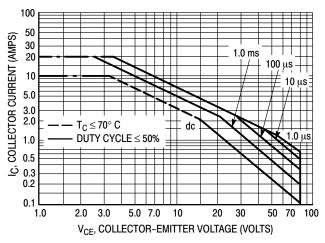


Figure 2. Maximum Rated Forward Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on $T_{J(pk)} = 150^{\circ}\text{C}$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}\text{C}$. $T_{J(pk)}$ may be calculated from the data in Figure 1. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.



Figure 3. Power Derating

MJB44H11 (NPN), NJVMJB44H11 (NPN), MJB45H11 (PNP), NJVMJB45H11 (PNP)

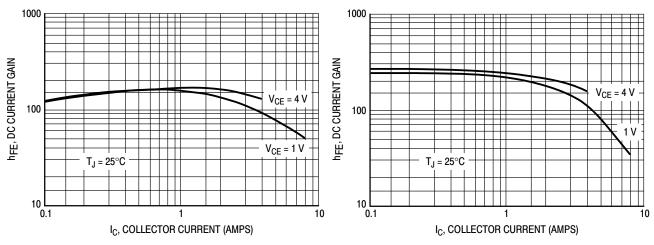


Figure 4. MJB44H11 DC Current Gain

Figure 5. MJB45H11 DC Current Gain

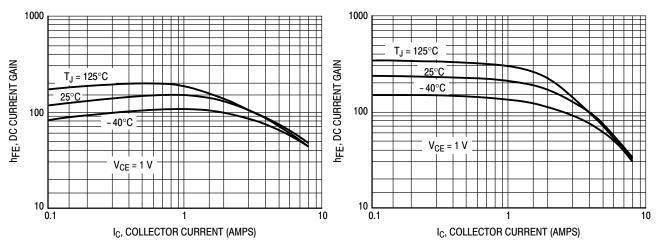


Figure 6. MJB44H11 Current Gain versus Temperature

Figure 7. MJB45H11 Current Gain versus Temperature

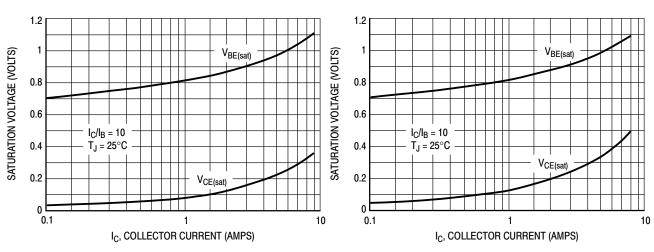
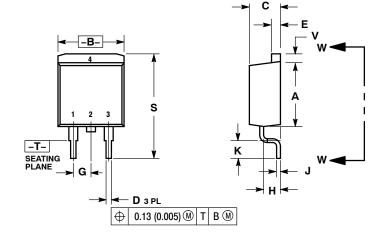


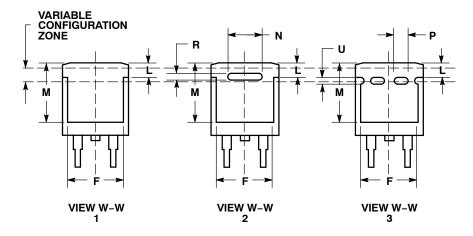
Figure 8. MJB44H11 On-Voltages

Figure 9. MJB45H11 On-Voltages

MECHANICAL CASE OUTLINE



D²PAK 3 CASE 418B-04 **ISSUE L**


DATE 17 FEB 2015

SCALE 1:1

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
- 3. 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
C	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
Е	0.045	0.055	1.14	1.40	
F	0.310	0.350	7.87	8.89	
G	0.100 BSC		2.54 BSC		
Н	0.080	0.110	2.03 2.7		
7	0.018	0.025	0.46	0.64	
K	0.090	0.110	2.29	2.79	
L	0.052	0.072	1.32	1.83	
M	0.280	0.320	7.11	8.13	
N	0.197	REF	5.00 REF		
Р	0.079 REF		2.00 REF		
R	0.039	0.039 REF 0.99		REF	
S	0.575	0.625	14.60	15.88	
٧	0.045	0.055	1.14	1.40	

STYLE 1: PIN 1. BASE 2. COLLECTOR
3. EMITTER
4. COLLECTOR STYLE 2: PIN 1. GATE 2. DRAIN

3. SOURCE 4. DRAIN

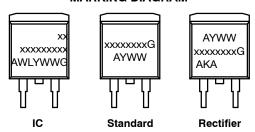
STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE 4. CATHODE

STYLE 4:

PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

STYLE 5: PIN 1. CATHODE 2. ANODE 3. CATHODE 4. ANODE

STYLE 6: PIN 1. NO CONNECT
2. CATHODE
3. ANODE
4. CATHODE


MARKING INFORMATION AND FOOTPRINT ON PAGE 2

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK 3		PAGE 1 OF 2	

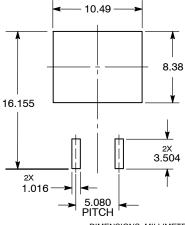
ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DATE 17 FEB 2015

GENERIC MARKING DIAGRAM*

xx = Specific Device Code A = Assembly Location

 WL
 = Wafer Lot


 Y
 = Year

 WW
 = Work Week

 G
 = Pb-Free Package

 AKA
 = Polarity Indicator

SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42761B	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	D ² PAK 3		PAGE 2 OF 2	

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

^{*}This information is generic. Please refer to device data sheet for actual part marking. Pb–Free indicator, "G" or microdot " ■", may or may not be present.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative