

TN1605H-6G

High temperature 16 A SCRs

Datasheet - production data

Description

Designed with high immunity switching to external surges, this device offers robust switching up to its 150°C maximum T_j.

The combination of noise immunity and low gate triggering current allows to design strong and compact control circuit.

Table 1: Device summary

Order code	Package	V _{DRM} /V _{RRM}	lgт	
TN1605H-6G	D²PAK	600	6 mA	

Features

- High junction temperature: T_i = 150 °C
- Gate triggering current I_{GT} = 6 mA
- High noise immunity dV/dt = 200 V/μs up to 150 °C
- Blocking voltage V_{DRM}/V_{RRM} = 600 V
- High turn-on current rise dI/dt: 100 A/µs
- ECOPACK®2 compliant component

Applications

- Motorbikes voltage regulator circuits
- Inrush current limiting circuits
- Motor control circuits and starters
- Light dimmers
- Solid state relays

Characteristics TN1605H-6G

1 Characteristics

Table 2: Absolute maximum ratings (limiting values, $T_j = 25$ °C unless otherwise specified)

Symbol	Para	Value	Unit			
I _{T(RMS)}	RMS on-state current (180 ° conduction angle)		T _c = 133 °C	16	А	
			T _c = 133 °C	10		
IT _(AV)	Average on-state current (180° conduction angle)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T _c = 138 °C	8	Α	
	(100 conduction angle)		T _c = 142 °C	6		
l	Non repetitive surge peak	$t_p = 8.3 \text{ ms}$	Trinitial 25 °C	153	Α	
I _{TSM}	on-state current	$t_p = 10 \text{ ms}$	T_j initial = 25 °C	140		
l ² t	I ² t value for fusing	$t_p = 10 \text{ ms}$		98	A ² s	
dl/dt	Critical rate of rise of on-state $I_G = 2 \times I_{GT}$, current $tr \le 100 \text{ ns}$,		f = 60 Hz	100	A/µs	
V _{DRM} /V _{RRM}	Repetitive peak off-state voltage		T _j = 150 °C	600	V	
V _{DSM} /V _{RSM}	Non repetitive surge peak off- state voltage $t_p = 10 \text{ ms}$			700	٧	
P _G (AV)	Average gate power dissipation	1	W			
V _{RGM}	Maximum peak reverse gate voltage			5	V	
I _{GM}	Peak gate current $t_p = 20 \mu s$		T _j = 150 °C	4	Α	
T _{stg}	Storage junction temperature range			-40 to +150	°C	
Tj	Operating junction temperature range			-40 to +150	°C	

Table 3: Dynamic characteristics

Symbol	Parameter	Tj		Value	Unit
		25 °C	Min.	3.5	
lgт	V- 42 V D. = 22 O	Тур.		4.5	mA
	$V_D = 12 \text{ V}, \text{ R}_L = 33 \Omega$	Max.		6	
V _{GT}		Max.		1.3	V
V_{GD}	$V_D = 600, R_L = 3.3 \text{ k}\Omega$	150 °C	Min.	0.15	V
lι	I _G = 1.2 x I _{GT}	25 °C	Max.	40	A
Ін	I _T = 500 mA, gate open	25 C	Max.	20	mA
dV/dt	V _D = 402 V, gate open	150 °C	Min.	200	V/µs
t _{gt}	$I_{TM} = 32 \text{ A}, V_D = 402 \text{ V}, I_G = 12 \text{ mA}, (dI_G/dt)$ $max = 0.2 \text{ A/}\mu\text{s}$	25 °C	Тур.	1.9	μs
tq	$I_{TM} = 32 \text{ A}, V_D = 402 \text{ V}, (dl/dt)_{off} = 30 \text{ A/}\mu\text{s}, V_R = 25 \text{ V}, dV_D/dt = 20 \text{ V/}\mu\text{s}$	150 °C	Тур.	70	μs

TN1605H-6G Characteristics

Table 4: Static electrical characteristics

Symbol	Test conditions	Tj		Value	Unit
V _{TM}	$I_{TM} = 32 \text{ A}, t_p = 380 \ \mu s$	25 °C	Max.	1.6	V
V _{TO}	Threshold on-state voltage	150 °C	Max.	0.82	V
R _D	Dynamic resistance	150 °C	Max.	25	mΩ
		25 °C		5	μΑ
I _{DRM} /I _{RRM} V _{DRM} = V _{RRM}	V _{DRM} = V _{RRM}	125 °C	Max.	1.5	A
		150 °C		3.1	mA

Table 5: Thermal resistance

Symbol	Paramete	Value	Unit		
R _{th(j-c)}	Junction to case (DC)		Max.	1.1	°C/W
R _{th(j-a)}	Junction to ambient (DC) $S^{(1)} = 1 \text{ cm}2$		Тур.	45	C/VV

Notes:

⁽¹⁾S = copper surface under tab

TN1605H-6G **Characteristics**

 $I_{T(AV)}(A)$

10

15

150

Characteristics (curves) 1.1

8

6

0

0.0

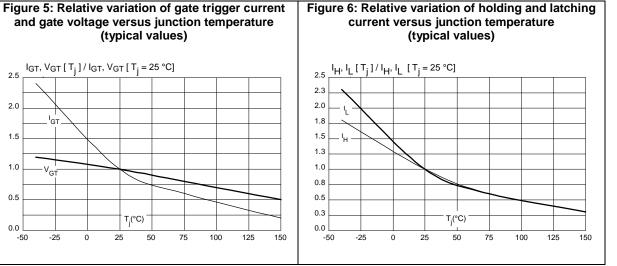
25

Figure 1: Maximum average power dissipation versus average on-state current 18 16 $\alpha = 180$ DC α = 120 ° 14 α = 90 12 α = 30 $^{\circ}$ 10

Figure 2: Average and DC on-state current versus case temperature $I_{\mathsf{T}(\mathsf{AV})}(\mathsf{A})$ DC 18 16 14 12 $\alpha = 180^{\circ}$ 10 α = 120 8 6 $\alpha = 60$ α = 30 ° 4 2 T_C(°C) 0 0 100 125 150

Figure 3: Average and DC on-state current versus ambient temperature $\mathsf{I}_{\mathsf{T}(\mathsf{AV})}(\mathsf{A})$ 3.0 1.0 0.5

T_a(°C)


50

75

100

Figure 4: Relative variation of thermal impedance versus pulse duration $K = [Z_{th}/R_{th}]$ 1.0E+00 1.0E-01

and gate voltage versus junction temperature (typical values) I_{GT} , V_{GT} [T_i] / I_{GT} , V_{GT} [T_i = 25 °C] 1.0 0.5 T_i(°C) 0.0

DocID030162 Rev 2 4/10

TN1605H-6G Characteristics

Figure 7: Relative variation of static dV/dt immunity versus junction temperature (typical values)

dV/dt [Tj] / dV/dt [Tj= 150 °C]

Above test equipment capability

Above test equipment capability

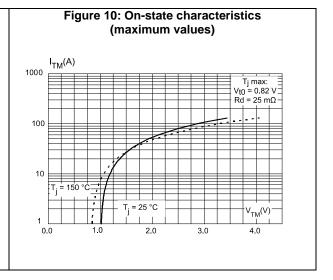
T_j (°C)

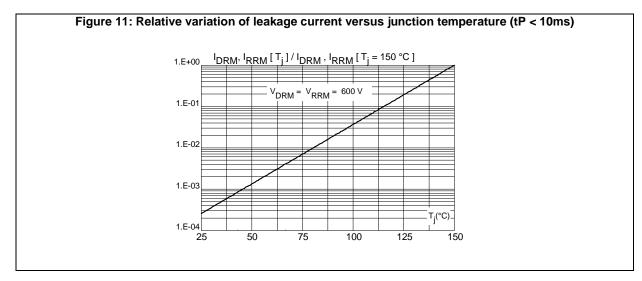
100

125

75

0 L 25


50

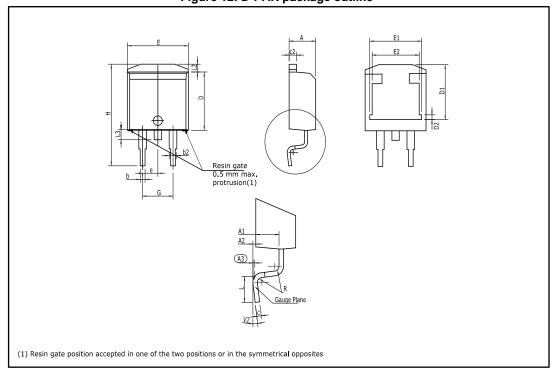

Figure 8: Surge peak on-state current versus number of cycles

150
Non repetitive T_j = 25 °C
One cycle
Number of cycles

1 10 100 1000

Figure 9: Non repetitive surge peak on-state current versus sinusoidal pulse width ($t_P < 10 \text{ ms}$). $t_{TSM}(A)$ $t_$

Package information TN1605H-6G


2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

- Epoxy meets UL 94,V0
- Lead-free package

2.1 D²PAK package information

Figure 12: D²PAK package outline

TN1605H-6G Package information

Table 6: D²PAK package mechanical data

	Dimensions					
Ref.		Millimeters				
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.30		4.60	0.1693		0.1811
A1	2.49		2.69	0.0980		0.1059
A2	0.03		0.23	0.0012		0.0091
A3		0.25			0.0098	
b	0.70		0.93	0.0276		0.0366
b2	1.25		1.7	0.0492		0.0669
С	0.45		0.60	0.0177		0.0236
c2	1.21		1.36	0.0476		0.0535
D	8.95		9.35	0.3524		0.3681
D1	7.50		8.00	0.2953		0.3150
D2	1.30		1.70	0.0512		0.0669
е	2.54			0.1		
Е	10.00		10.28	0.3937		0.4047
E1	8.30		8.70	0.3268		0.3425
E2	6.85		7.25	0.2697		0.2854
G	4.88		5.28	0.1921		0.2079
Н	15		15.85	0.5906		0.6240
L	1.78		2.28	0.0701		0.0898
L2	1.27		1.40	0.0500		0.0551
L3	1.40		1.75	0.0551		0.0689
R		0.40			0.0157	
V2	0°		8°	0°		8°

Notes:

 $^{^{(1)}\}mbox{Dimensions}$ in inches are given for reference only

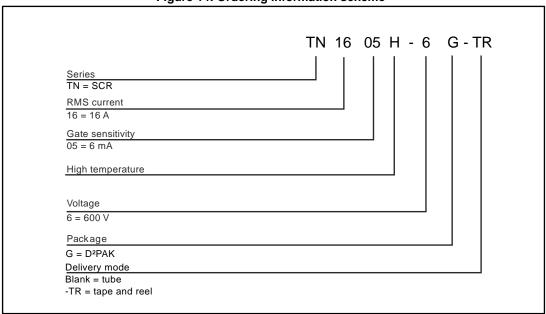

16.90 10.30 5.08 ----‡1.30 [↓] 3.70 8.90

Figure 13: D²PAK recommended footprint (dimensions are in mm)

TN1605H-6G Ordering information

3 Ordering information

Figure 14: Ordering information scheme

Table 7: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
TN1605H-6G	TN1605H6	D2D A IZ	15 ~	50	Tube
TN1605H-6G-TR	TINTOUSING	D²PAK	1.5 g	1000	Tape and reel

4 Revision history

Table 8: Document revision history

Date	Revision	Changes
18-May-2017	1	Initial release.
26-Jun-2017	2	Updated Table 5: "Thermal resistance".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

