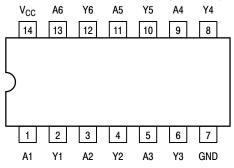

# MC74HC05A

# Hex Inverter with Open Drain Outputs

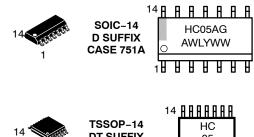

The MC74HC05A contains six inverters with open drain outputs. The MC74HC05A is identical to the MC74HC04A, except for the open drain outputs. The outputs can be connected to other open drain outputs to implement active LOW wired–OR or active High wired–AND logic functions. The open drain outputs require pull–up resistors to perform correctly.

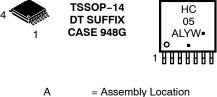
#### Features

- Output Drive Capability: 10 LSTTL Loads with Suitable Pull-up Resistor
- Outputs Directly Interface to CMOS, NMOS and TTL
- High Noise Immunity Characteristic of CMOS Devices
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1 μA
- In Compliance With the JEDEC Standard No. 7A Requirements
- Chip Complexity: 36 FETs or 9 Equivalent Gates
- These are Pb-Free Devices



#### Pinout: 14-Lead Packages (Top View)




## **ON Semiconductor®**

http://onsemi.com

MARKING DIAGRAMS





A = Assembly Location WL or L = Wafer Lot YY or Y = Year WW or W = Work Week G or • = Pb-Free Package

(Note: Microdot may be in either location)

#### **FUNCTION TABLE**

| Inputs | Outputs |
|--------|---------|
| А      | Y       |
| L      | н       |
| н      | L       |

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

### MAXIMUM RATINGS

| Symbol           | Parameter                                                                | Value                   | Unit |
|------------------|--------------------------------------------------------------------------|-------------------------|------|
| V <sub>CC</sub>  | DC Supply Voltage (Referenced to GND)                                    | - 0.5 to + 7.0          | V    |
| V <sub>in</sub>  | DC Input Voltage (Referenced to GND)                                     | $-0.5$ to V_CC + 0.5    | V    |
| V <sub>out</sub> | DC Output Voltage (Referenced to GND)                                    | $-$ 0.5 to V_{CC} + 0.5 | V    |
| l <sub>in</sub>  | DC Input Current, per Pin                                                | ± 20                    | mA   |
| I <sub>out</sub> | DC Output Current, per Pin                                               | ± 25                    | mA   |
| I <sub>CC</sub>  | DC Supply Current, V <sub>CC</sub> and GND Pins                          | $\pm50$                 | mA   |
| PD               | Power Dissipation in Still Air, SOIC Package†<br>TSSOP Package†          | 500<br>450              | mW   |
| T <sub>stg</sub> | Storage Temperature                                                      | – 65 to + 150           | °C   |
| ΤL               | Lead Temperature, 1 mm from Case for 10 Seconds<br>SOIC or TSSOP Package | 260                     | °C   |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

\*This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation,  $V_{in}$  and  $V_{out}$  should be constrained to the range GND  $\leq (V_{in} \text{ or } V_{out}) \leq V_{CC}$ . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or  $V_{CC}$ ). Unused outputs must be left open. †Derating - SOIC Package: - 7 mV/°C from 65° to 125°C

TSSOP Package: - 6.1 mW/°C from 65° to 125°C

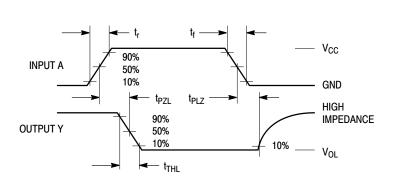
#### **RECOMMENDED OPERATING CONDITIONS**

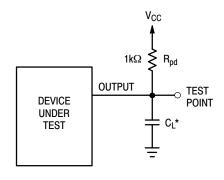
| Symbol                             | Parameter                                            |                                                                               |  |             | Max                | Unit |
|------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------|--|-------------|--------------------|------|
| V <sub>CC</sub>                    | DC Supply Voltage (Referenced to GND)                |                                                                               |  | 2.0         | 6.0                | V    |
| V <sub>in</sub> , V <sub>out</sub> | DC Input Voltage, Output Voltage (Referenced to GND) |                                                                               |  |             | V <sub>CC</sub>    | V    |
| T <sub>A</sub>                     | Operating Temperature, All Package Types             |                                                                               |  |             | + 125              | °C   |
| t <sub>r</sub> , t <sub>f</sub>    | Input Rise and Fall Time<br>(Figure 1)               | V <sub>CC</sub> = 2.0 V<br>V <sub>CC</sub> = 4.5 V<br>V <sub>CC</sub> = 6.0 V |  | 0<br>0<br>0 | 1000<br>500<br>400 | ns   |

# MC74HC05A

#### DC CHARACTERISTICS (Voltages Referenced to GND)

|                 |                                                   |                                                                                                                                             | Vcc               | Guaranteed Limit     |                      |                      |      |
|-----------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------------|----------------------|------|
| Symbol          | Parameter                                         | Condition                                                                                                                                   | v                 | –55 to 25°C          | ≤ <b>85°C</b>        | ≤125°C               | Unit |
| V <sub>IH</sub> | Minimum High-Level Input Voltage                  | $\begin{array}{l} V_{out} = 0.1V \text{ or } V_{CC} - 0.1V \\ \left  I_{out} \right  \leq 20 \mu A \end{array} \end{array}$                 | 2.0<br>4.5<br>6.0 | 1.50<br>3.15<br>4.20 | 1.50<br>3.15<br>4.20 | 1.50<br>3.15<br>4.20 | V    |
| VIL             | Maximum Low-Level Input Voltage                   | $\begin{array}{l} V_{out} = 0.1V \text{ or } V_{CC} - 0.1V \\ \left  I_{out} \right  \leq 20 \mu A \end{array} \end{array} \label{eq:Vout}$ | 2.0<br>4.5<br>6.0 | 0.50<br>1.35<br>1.80 | 0.50<br>1.35<br>1.80 | 0.50<br>1.35<br>1.80 | V    |
| V <sub>OL</sub> | Maximum Low-Level Output<br>Voltage               | $\begin{split} V_{out} &= 0.1 V \text{ or } V_{CC} - 0.1 V \\ \left  I_{out} \right  &\leq 20 \mu A \end{split}$                            | 2.0<br>4.5<br>6.0 | 0.1<br>0.1<br>0.1    | 0.1<br>0.1<br>0.1    | 0.1<br>0.1<br>0.1    | V    |
|                 |                                                   |                                                                                                                                             | 4.5<br>6.0        | 0.26<br>0.26         | 0.33<br>0.33         | 0.40<br>0.40         |      |
| l <sub>in</sub> | Maximum Input Leakage Current                     | V <sub>in</sub> = V <sub>CC</sub> or GND                                                                                                    | 6.0               | ±0.1                 | ±1.0                 | ±1.0                 | μA   |
| I <sub>CC</sub> | Maximum Quiescent Supply<br>Current (per Package) | $V_{in} = V_{CC} \text{ or } GND$<br>$I_{out} = 0\mu A$                                                                                     | 6.0               | 1.0                  | 10                   | 40                   | μΑ   |
| I <sub>OZ</sub> | Maximum Three-State Leakage<br>Current            | Output in High-Impedance State $V_{in} = V_{IL} \text{ or } V_{IH}$<br>$V_{out} = V_{CC} \text{ or } GND$                                   | 6.0               | ±0.5                 | ±5.0                 | ±10                  | μA   |

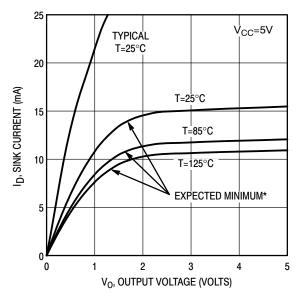

# AC CHARACTERISTICS (C\_L = 50pF, Input $t_r$ = $t_f$ = 6ns)


|                                        |                                                                            | V <sub>CC</sub> Guaranteed Limit |                | nit             |                 |      |
|----------------------------------------|----------------------------------------------------------------------------|----------------------------------|----------------|-----------------|-----------------|------|
| Symbol                                 | Parameter                                                                  | v                                | –55 to 25°C    | ≤ <b>85°C</b>   | ≤125°C          | Unit |
| t <sub>PLZ</sub> ,<br>t <sub>PZL</sub> | Maximum Propagation Delay, Input A or B to Output Y<br>(Figures 1 and 2)   | 2.0<br>4.5<br>6.0                | 90<br>18<br>15 | 115<br>23<br>20 | 135<br>27<br>23 | ns   |
| t <sub>THL</sub>                       | Maximum Output Transition Time, Any Output<br>(Figures 1 and 2)            | 2.0<br>4.5<br>6.0                | 75<br>15<br>13 | 95<br>19<br>16  | 110<br>22<br>19 | ns   |
| C <sub>in</sub>                        | Maximum Input Capacitance                                                  |                                  | 10             | 10              | 10              | pF   |
| C <sub>out</sub>                       | Maximum Three-State Output Capacitance<br>(Output in High-Impedance State) |                                  | 10             | 10              | 10              | pF   |

|                 |                                             | Typical @ 25°C, V <sub>CC</sub> = 5.0 V, V <sub>EE</sub> = 0 V |    |
|-----------------|---------------------------------------------|----------------------------------------------------------------|----|
| C <sub>PD</sub> | Power Dissipation Capacitance (Per Buffer)* | 4.0                                                            | pF |

\*Used to determine the no-load dynamic power consumption:  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ .

## **MC74HC05A**







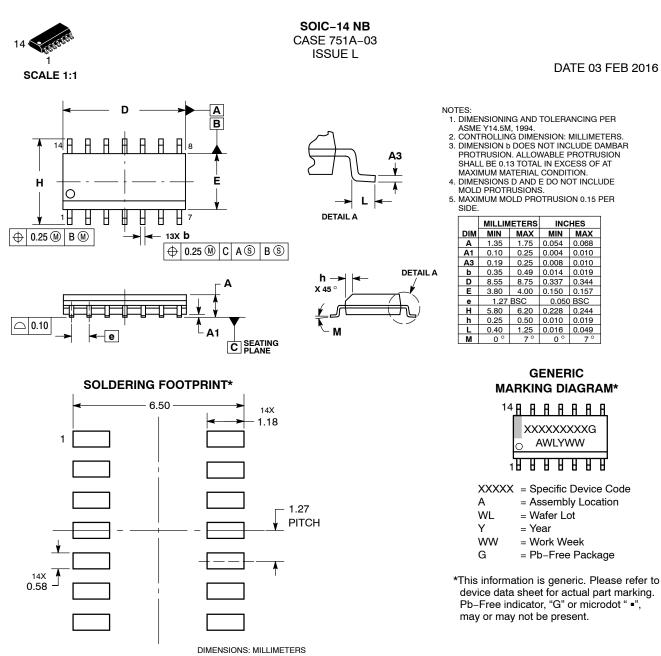
\*Includes all probe and jig capacitance

Figure 1. Switching Waveforms





\*The expected minimum curves are not guarantees, but are design aids.




#### **ORDERING INFORMATION**

| Device         | Package                | Shipping <sup>†</sup> |
|----------------|------------------------|-----------------------|
| MC74HC05ADG    | SOIC-14<br>(Pb-Free)   | 55 / Rail             |
| MC74HC05ADR2G  | SOIC-14<br>(Pb-Free)   | 2500 / Tape & Reel    |
| MC74HC05ADTR2G | TSSOP-14*              |                       |
| MC74HC05ADTG   | TSSOP-14<br>(Pb-Free)  | 96 / Tube             |
| MC74HC05AFELG  | SOEIAJ-14<br>(Pb-Free) | 2000 / Tape & Reel    |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. \*This package is inherently Pb-Free.



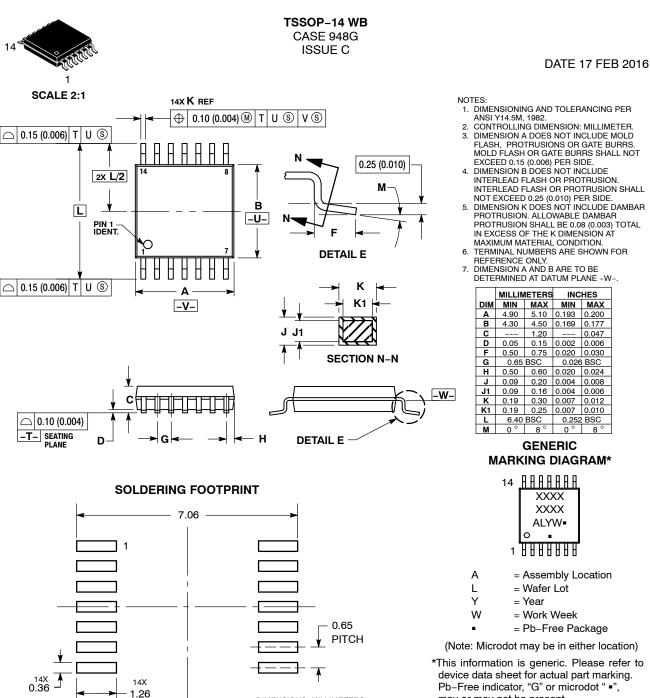


\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

### **STYLES ON PAGE 2**

| DOCUMENT NUMBER:                                                                  | 98ASB42565B                                                                                 | Electronic versions are uncontrolled except when accessed directly from the Document Reposit<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.                                                                                                                               |                                                        |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| DESCRIPTION:                                                                      | SOIC-14 NB                                                                                  |                                                                                                                                                                                                                                                                                                               | PAGE 1 OF 2                                            |  |  |
| ON Semiconductor reserves the right<br>the suitability of its products for any pa | to make changes without further notice to an<br>articular purpose, nor does ON Semiconducto | stries, LLC dba ON Semiconductor or its subsidiaries in the United States<br>y products herein. ON Semiconductor makes no warranty, representation<br>r assume any liability arising out of the application or use of any product or<br>acidental damages. ON Semiconductor does not convey any license under | or guarantee regarding<br>or circuit, and specifically |  |  |

#### SOIC-14 CASE 751A-03 ISSUE L


#### DATE 03 FEB 2016

| STYLE 1:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. NO CONNECTION<br>5. ANODE/CATHODE<br>6. NO CONNECTION<br>7. ANODE/CATHODE<br>8. ANODE/CATHODE<br>9. ANODE/CATHODE<br>10. NO CONNECTION<br>11. ANODE/CATHODE<br>12. ANODE/CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE | STYLE 2:<br>CANCELLED                                                                                                                                                                                   | STYLE 3:<br>PIN 1. NO CONNECTION<br>2. ANODE<br>3. ANODE<br>4. NO CONNECTION<br>5. ANODE<br>6. NO CONNECTION<br>7. ANODE<br>8. ANODE<br>9. ANODE<br>10. NO CONNECTION<br>11. ANODE<br>12. ANODE<br>13. NO CONNECTION<br>14. COMMON CATHODE                                            | STYLE 4:<br>PIN 1. NO CONNECTION<br>2. CATHODE<br>3. CATHODE<br>4. NO CONNECTION<br>5. CATHODE<br>6. NO CONNECTION<br>7. CATHODE<br>8. CATHODE<br>10. NO CONNECTION<br>11. CATHODE<br>12. CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STYLE 5:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. ANODE/CATHODE<br>5. ANODE/CATHODE<br>6. NO CONNECTION<br>7. COMMON ANODE<br>8. COMMON CATHODE<br>10. ANODE/CATHODE<br>11. ANODE/CATHODE<br>12. ANODE/CATHODE<br>13. NO CONNECTION<br>14. COMMON ANODE                     | STYLE 6:<br>PIN 1. CATHODE<br>2. CATHODE<br>3. CATHODE<br>4. CATHODE<br>5. CATHODE<br>6. CATHODE<br>7. CATHODE<br>8. ANODE<br>9. ANODE<br>10. ANODE<br>11. ANODE<br>12. ANODE<br>13. ANODE<br>14. ANODE | STYLE 7:<br>PIN 1. ANODE/CATHODE<br>2. COMMON ANODE<br>3. COMMON CATHODE<br>4. ANODE/CATHODE<br>5. ANODE/CATHODE<br>6. ANODE/CATHODE<br>8. ANODE/CATHODE<br>9. ANODE/CATHODE<br>10. ANODE/CATHODE<br>11. COMMON CATHODE<br>12. COMMON ANODE<br>13. ANODE/CATHODE<br>14. ANODE/CATHODE | STYLE 8:<br>PIN 1. COMMON CATHODE<br>2. ANODE/CATHODE<br>3. ANODE/CATHODE<br>4. NO CONNECTION<br>5. ANODE/CATHODE<br>6. ANODE/CATHODE<br>7. COMMON ANODE<br>9. ANODE/CATHODE<br>10. ANODE/CATHODE<br>11. NO CONNECTION<br>12. ANODE/CATHODE<br>13. ANODE/CATHODE<br>14. COMMON CATHODE |

| DOCUMENT NUMBER:                                                                                                                                                       | 98ASB42565B | Electronic versions are uncontrolled except when accessed directly from the Document Reposito<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| DESCRIPTION:                                                                                                                                                           | SOIC-14 NB  |                                                                                                                                                                                  | PAGE 2 OF 2 |  |  |  |
| ON Semiconductor and M are trademarks of Semiconductor Components Industries 11 C dba ON Semiconductor or its subsidiaries in the United States and/or other countries |             |                                                                                                                                                                                  |             |  |  |  |

ON Semiconductor and united states and/or other countries. LC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.





may or may not be present.

| DOCUMENT NUMBER:                                                                  | 98ASH70246A                                                                                 | Electronic versions are uncontrolled except when accessed directly from the Document Reposit<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.                                                                                                                               |                                                       |  |  |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|
| DESCRIPTION:                                                                      | TSSOP-14 WB                                                                                 |                                                                                                                                                                                                                                                                                                               | PAGE 1 OF 1                                           |  |  |
| ON Semiconductor reserves the right<br>the suitability of its products for any pa | to make changes without further notice to an<br>articular purpose, nor does ON Semiconducto | stries, LLC dba ON Semiconductor or its subsidiaries in the United States<br>y products herein. ON Semiconductor makes no warranty, representation<br>r assume any liability arising out of the application or use of any product or<br>icidental damages. ON Semiconductor does not convey any license under | or guarantee regarding<br>r circuit, and specifically |  |  |

DIMENSIONS: MILLIMETERS

© Semiconductor Components Industries, LLC, 2019

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

#### TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative