
Undervoltage Sensing Circuit

The MC34064 is an undervoltage sensing circuit specifically designed for use as a reset controller in microprocessor-based systems. It offers the designer an economical solution for low voltage detection with a single external resistor. The MC34064 features a trimmed-in-package bandgap reference, and a comparator with precise thresholds and built-in hysteresis to prevent erratic reset operation. The open collector reset output is capable of sinking in excess of 10 mA, and operation is guaranteed down to 1.0 V input with low standby current. The MC devices are packaged in 3-pin TO-92, micro size TSOP-5, 8-pin SOIC-8 and Micro8™ surface mount packages. The NCV device is packaged in SOIC-8 and TO-92.

Applications include direct monitoring of the 5.0 V MPU/logic power supply used in appliance, automotive, consumer and industrial equipment.

Features

- Trimmed-In-Package Temperature Compensated Reference
- Comparator Threshold of 4.6 V at 25°C
- Precise Comparator Thresholds Guaranteed Over Temperature
- Comparator Hysteresis Prevents Erratic Reset
- Reset Output Capable of Sinking in Excess of 10 mA
- Internal Clamp Diode for Discharging Delay Capacitor
- Guaranteed Reset Operation with 1.0 V Input
- Low Standby Current
- Economical TO-92, TSOP-5, SOIC-8 and Micro8 Surface Mount Packages
- NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes
- These Devices are Pb-Free and are RoHS Compliant

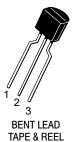
This device contains 21 active transistors.

Figure 1. Representative Block Diagram

ON Semiconductor®

www.onsemi.com

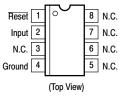
SOIC-8 D SUFFIX CASE 751


Micro8 DM SUFFIX CASE 846A

TSOP-5 SN SUFFIX CASE 483

- Pin 1. Ground
 - 2. Input
 - 3. Reset
 - 4. NC
 - 5. NC

TO-92 P SUFFIX CASE 29


Pin 1. Reset

Input

Ground

PIN CONNECTIONS

AMMO PACK

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 7 of this data sheet.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Input Supply Voltage	V _{in}	–1.0 to 10	V
Reset Output Voltage	V _O	10	V
Reset Output Sink Current (Note 2)	I _{Sink}	Internally Limited	mA
Clamp Diode Forward Current, Reset to Input Pin (Note 2)	I _F	100	mA
Power Dissipation and Thermal Characteristics P Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air D Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air DM Suffix, Plastic Package Maximum Power Dissipation @ T _A = 25°C Thermal Resistance, Junction-to-Air	P _D R _{θJA} P _D R _{θJA} P _D R _{θJA}	625 200 625 200 520 240	mW °C/W mW °C/W mW °C/W
Operating Junction Temperature	TJ	+150	°C
Operating Ambient Temperature MC34064 MC33064 NCV33064	T _A	0 to +70 -40 to +85 -40 to +125	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS (For typical values $T_A = 25^{\circ}$ C, for min/max values T_A is the operating ambient temperature range that applies [Notes 3 and 4] unless otherwise noted.)

Characteristics	Symbol	Min	Тур	Max	Unit
COMPARATOR	•	•	•	•	•
Threshold Voltage High State Output (V _{in} Increasing) Low State Output (V _{in} Decreasing) Hysteresis	V _{IH} V _{IL} V _H	4.5 4.5 0.01	4.61 4.59 0.02	4.7 4.7 0.05	V
RESET OUTPUT					
Output Sink Saturation $(V_{in} = 4.0 \text{ V, } I_{Sink} = 8.0 \text{ mA})$ $(V_{in} = 4.0 \text{ V, } I_{Sink} = 2.0 \text{ mA})$ $(V_{in} = 1.0 \text{ V, } I_{Sink} = 0.1 \text{ mA})$	V _{OL}	- - -	0.46 0.15 -	1.0 0.4 0.1	V
Output Sink Current (V _{in} , Reset = 4.0 V)	I _{Sink}	10	27	60	mA
Output Off-State Leakage (V _{in} , Reset = 5.0 V)	I _{OH}	-	0.02	0.5	μΑ
Clamp Diode Forward Voltage, Reset to Input Pin (I _F = 10 mA)	V _F	0.6	0.9	1.2	V
TOTAL DEVICE					
Operating Input Voltage Range	V _{in}	1.0 to 6.5	_	-	V
Quiescent Input Current (V _{in} = 5.0 V)	I _{in}	_	390	500	μΑ

- 2. Maximum package power dissipation limits must be observed.
- 3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
- 5. NCV prefix is for automotive and other applications requiring site and change control.

^{1.} ESD data available upon request.

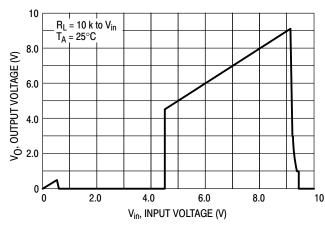


Figure 2. Reset Output Voltage versus Input Voltage

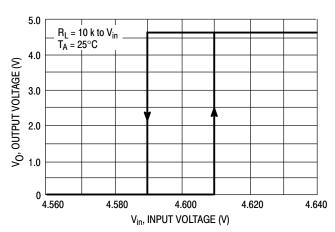


Figure 3. Reset Output Voltage versus Input Voltage

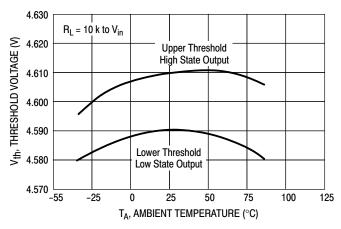


Figure 4. Comparator Threshold Voltage versus Temperature

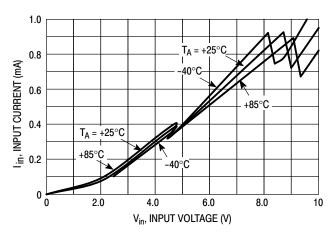


Figure 5. Input Current versus Input Voltage

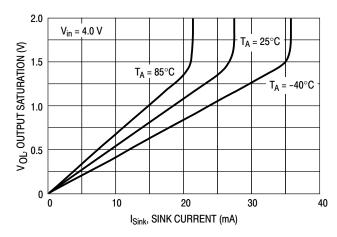


Figure 6. Reset Output Saturation versus Sink Current

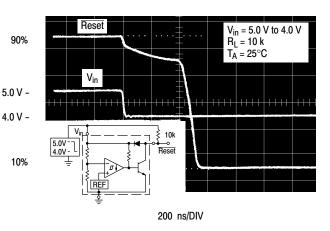


Figure 7. Reset Delay Time

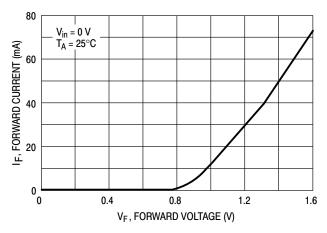


Figure 8. Clamp Diode Forward Current versus Voltage

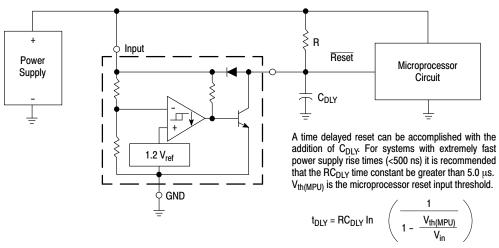
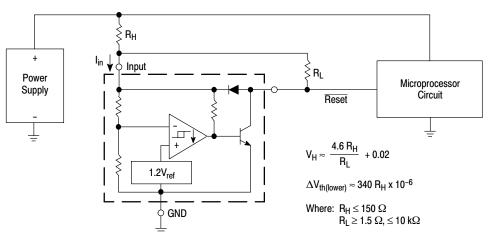
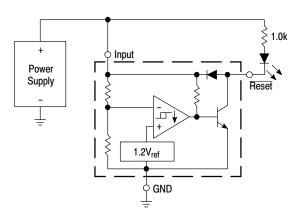



Figure 9. Low Voltage Microprocessor Reset



Comparator hysteresis can be increased with the addition of resistor $R_H.$ The hysteresis equation has been simplified and does not account for the change of input current l_{in} as V_{CC} crosses the comparator threshold (Figure 4). An increase of the lower threshold $\Delta V_{th(lower)}$ will be observed due to l_{in} which is typically 340 μA at 4.59 V. The equations are accurate to $\pm 10\%$ with R_H less than 150 Ω and R_L between 1.5 $k\Omega$ and 10 $k\Omega$.

TEST DATA

V _H (mV)	ΔV _{th} (mV)	R _H (Ω)	R _L (kΩ)
20	0	0	0
51	3.4	10	1.5
40	6.8	20	4.7
81	6.8	20	1.5
71	10	30	2.7
112	10	30	1.5
100	16	47	2.7
164	16	47	1.5
190	34	100	2.7
327	34	100	1.5
276	51	150	2.7
480	51	150	1.5

Figure 10. Low Voltage Microprocessor Reset with Additional Hysteresis

Hand Input

Reset

Solar Cells

GND

Figure 11. Voltage Monitor

Figure 12. Solar Powered Battery Charger

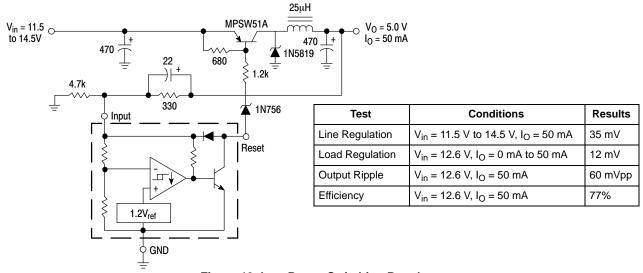
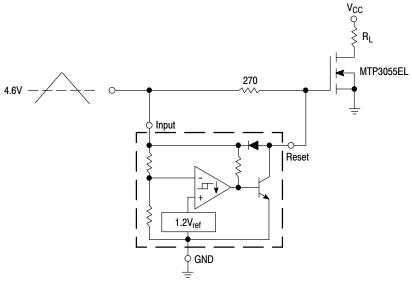
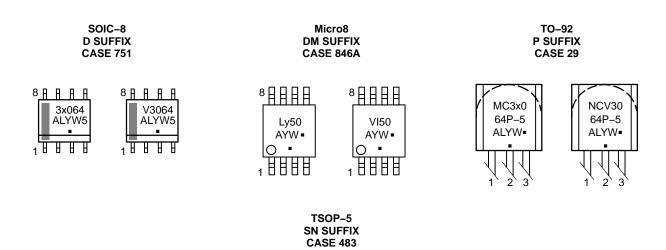



Figure 13. Low Power Switching Regulator

Overheating of the logic level power MOSFET due to insufficient gate voltage can be prevented with the above circuit. When the input signal is below the 4.6 V threshold of the MC34064, its output grounds the gate of the L^2 MOSFET.

Figure 14. MOSFET Low Voltage Gate Drive Protection


ORDERING INFORMATION

Device	Operating Temperature Range	Package	Shipping [†]
MC34064D-5G		SOIC-8 (Pb-Free)	98 Units / Rail
MC34064D-5R2G		SOIC-8 (Pb-Free)	2500 Units/ Tape & Reel
MC34064DM-5R2G		Micro8 (Pb-Free)	4000 Units / Tape & Reel
MC34064P-5G		TO-92 (Pb-Free)	2000 Units / Bag
MC34064P-5RAG	$T_A = 0$ °C to +70°C	TO-92 (Pb-Free)	2000 Units / Tape & Reel
MC34064P-5RPG		TO-92 (Pb-Free)	2000 Units / Ammo Pack
MC34064P-5RMG		TO-92 (Pb-Free)	
MC34064SN-5T1G		TSOP-5 (Pb-Free)	3000 Units / Tape & Reel
MC33064D-5G		SOIC-8 (Pb-Free)	98 Units / Rail
MC33064D-5R2G		SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
MC33064DM-5R2G		Micro8 (Pb-Free)	4000 Units / Tape & Reel
MC33064P-5G	$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$	TO-92 (Pb-Free)	2000 Units / Bag
MC33064P-5RAG		TO-92 (Pb-Free)	2000 Units / Tape & Reel
MC33064P-5RPG		TO-92 (Pb-Free)	2000 Units / Ammo Pack
MC33064SN-5T1G		TSOP-5 (Pb-Free)	3000 Units / Tape & Reel
NCV33064D-5R2G*		SOIC-8 (Pb-Free)	2500 Units / Tape & Reel
NCV33064P-5RAG*		TO-92 (Pb-Free)	2000 Units / Tape & Reel
NCV33064P-5RPG*	$T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}$	TO-92 (Pb-Free)	2000 Units / Ammo Pack
NCV33064DM-5R2G*		Micro8 (Pb-Free)	4000 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, pleaserefer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*NCV33064: Tlow = -40°C, Thigh = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and

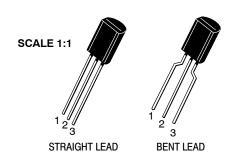
change control.

MARKING DIAGRAMS

SRB AYW I SSN AY

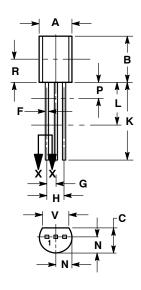
MC34064 MC33064

 $\begin{array}{rcl}
x & = 3 \text{ or } 4 \\
y & = C \text{ or } I
\end{array}$


A = Assembly Location

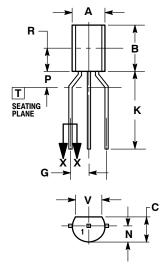
L = Wafer Lot Y = Year

W = Work Week


= Pb-Free Package

(Note: Microdot may be in either location)

TO-92 (TO-226) 1 WATT CASE 29-10 **ISSUE A**


DATE 08 MAY 2012

STRAIGHT LEAD

BENT LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED.

4.	DIMENSION F APPLIES BETWEEN DIMENSIONS P
	AND L. DIMENSIONS D AND J APPLY BETWEEN DI-
	MENSIONS L AND K MINIMUM. THE LEAD
	DIMENSIONS ARE UNCONTROLLED IN DIMENSION
	P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	N MAX MIN M		MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
C	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.135		3.43	
٧	0.135		3.43	

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME

- DIMENSIONING AND TOLERANCING PER ASME
 Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS
 UNCONTROLLED.
 DIMENSION F APPLIES BETWEEN DIMENSIONS P
 AND L. DIMENSIONS D AND J APPLY BETWEEN
 DIMENSIONS L AND K MINIMUM. THE LEAD
 DIMENSIONS ADE LINCOUTED LEED IN DIMENSIONS. DIMENSIONS ARE UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
G	0.094	0.102	2.40	2.80
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.135		3.43	
٧	0.135		3.43	

STYLES ON PAGE 2

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 2

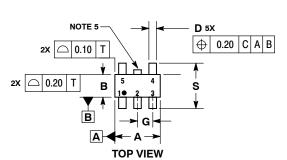
ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT CASE 29-10

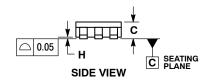
ISSUE A

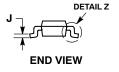
DATE 08 MAY 2012

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
STYLE 6: PIN 1. 2. 3.	GATE SOURCE & SUBSTRATE DRAIN	STYLE 7: PIN 1. 2. 3.	SOURCE DRAIN GATE	STYLE 8: PIN 1. 2. 3.	DRAIN GATE SOURCE & SUBSTRATE	STYLE 9: PIN 1. 2. 3.	BASE 1 EMITTER BASE 2	STYLE 10: PIN 1. 2. 3.	
2. 3.	CATHODE & ANODE CATHODE	2. 3.	GATE MAIN TERMINAL 2	2. 3.		2. 3.	COLLECTOR BASE	2. 3.	CATHODE ANODE 2
STYLE 16: PIN 1. 2. 3.	ANODE GATE CATHODE	STYLE 17: PIN 1. 2. 3.	COLLECTOR BASE EMITTER	STYLE 18: PIN 1. 2. 3.	ANODE CATHODE NOT CONNECTED	STYLE 19: PIN 1. 2. 3.	GATE ANODE CATHODE	STYLE 20: PIN 1. 2. 3.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER	PIN 1.		PIN 1. 2.	GATE SOURCE DRAIN	PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
3.	V _{CC} GROUND 2 OUTPUT	PIN 1. 2. 3.	MT SUBSTRATE MT	PIN 1. 2. 3.	ANODE GATE	PIN 1. 2. 3.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN
2.	GATE DRAIN SOURCE	2.	BASE COLLECTOR EMITTER	2.	RETURN INPUT OUTPUT	2.	INPUT GROUND LOGIC		GATE COLLECTOR EMITTER

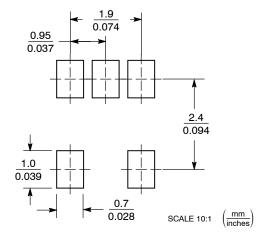

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.




TSOP-5 **CASE 483 ISSUE N**

DATE 12 AUG 2020



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE
 MINIMUM THICKNESS OF BASE MATERIAL.
- DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. OPTIONAL CONSTRUCTION: AN ADDITIONAL
- TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS			
DIM	MIN	MAX		
Α	2.85	3.15		
В	1.35	1.65		
C	0.90	1.10		
D	0.25	0.50		
G	0.95	BSC		
Н	0.01	0.10		
J	0.10	0.26		
K	0.20	0.60		
М	0 °	10 °		
S	2.50	3.00		

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code XXX = Specific Device Code

= Assembly Location = Date Code

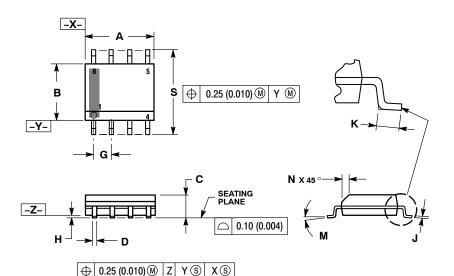
= Year = Pb-Free Package

= Work Week W

= Pb-Free Package

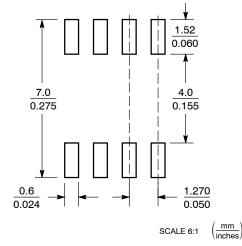
(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

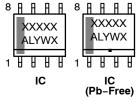

DOCUMENT NUMBER:	98ARB18753C	Electronic versions are uncontrolled except when accessed directly from the Document Report Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TSOP-5		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB CASE 751-07 **ISSUE AK**

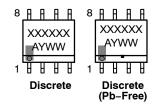

DATE 16 FEB 2011

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
- DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
- 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.


	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27 BSC		0.050 BSC	
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
М	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

= Wafer Lot = Year = Work Week

= Pb-Free Package

XXXXXX = Specific Device Code = Assembly Location Α

= Year ww = Work Week

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

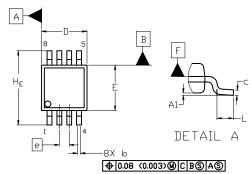
DOCUMENT NUMBER:	98ASB42564B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 1 OF 2

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

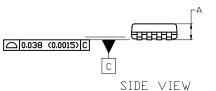
SOIC-8 NB CASE 751-07 ISSUE AK

DATE 16 FEB 2011

STYLE 4: PIN 1. ANODE 1 2. ANODE 2 3. ANODE 2 4. ANODE 5. ANODE #2 6. ANODE #2 7. ANODE #1 8. COMMON CATHODE
STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 STAGE Vd 7. EMITTER, #1 AGE Vd 8. COLLECTOR, #1
STYLE 12: 1 PIN 1. SOURCE 2 SOURCE 2 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN
STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COMMON 6. COLLECTOR, DIE #2 6. COMMON 7. COLLECTOR, DIE #1 6. COMMON 8. COLLECTOR, DIE #1
STYLE 20: 1 PIN 1. SOURCE (N) 2. GATE (N) 2 3. SOURCE (P) 4. GATE (P) 5. DRAIN 2 6. DRAIN 7. DRAIN 1 8. DRAIN
STYLE 24: PIN 1. BASE N ANODE/GND 2. EMITTER N ANODE/GND 3. COLLECTOR/ANODE UT 5. CATHODE N ANODE/GND 6. CATHODE N ANODE/GND 7. COLLECTOR/ANODE UT 8. COLLECTOR/ANODE
STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND E 5. V_MON E 6. VBULK E 7. VBULK 8. VIN

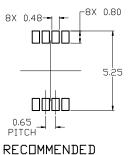

DOCUMENT NUMBER:	98ASB42564B	Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	SOIC-8 NB		PAGE 2 OF 2

ON Semiconductor and IN are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.



Micro8 CASE 846A-02 ISSUE K

DATE 16 JUL 2020



NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.10 mm IN EXCESS OF MAXIMUM MATERIAL CONDITION.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. DIMENSION E DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 mm PER SIDE. DIMENSIONS D AND E ARE DETERMINED AT DATUM F.
- DATUMS A AND B ARE TO BE DETERMINED AT DATUM F.
- A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

MOUNTING FOOTPRINT

DIM	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	-	-	1.10	
A1	0.05	0.08	0.15	
b	0.25	0.33	0.40	
c	0.13	0.18	0.23	
D	2.90	3.00	3.10	
E	2.90	3.00	3.10	
е	0.65 BSC			
HE	4.75	4.90	5.05	
L	0.40	0.55	0.70	

GENERIC MARKING DIAGRAM*

XXXX = Specific Device Code Α = Assembly Location

Υ = Year W = Work Week = Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. SOURCE	PIN 1. SOURCE 1	PIN 1. N-SOURCE
SOURCE	2. GATE 1	2. N-GATE
SOURCE	3. SOURCE 2	3. P-SOURCE
4. GATE	4. GATE 2	4. P-GATE
DRAIN	5. DRAIN 2	5. P-DRAIN
DRAIN	6. DRAIN 2	6. P-DRAIN
7. DRAIN	7. DRAIN 1	7. N-DRAIN
8. DRAIN	8. DRAIN 1	8. N-DRAIN

DOCUMENT NUMBER:	98ASB14087C	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	MICRO8		PAGE 1 OF 1	

ON Semiconductor and unare trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative