Basic Switches

SUBMINIATURE/MINIATURE BASIC SWITCHES

The U Series of subminiature basic switches are our newestline. The US is the smallest snap-action switch available. The UX and UM are versatile, low cost, full featured products with ample electrical capacity in a compact package. SM subminiature basic switches are a versatile collection of small size and ample electrical capacities, including 11 amp power load handling and $1 / 4 \mathrm{hp}$ motor load. SX subminiature basic switches are smaller than SM switches, yet are big in performance and selection. They provide up to 7 amp power load capacity. V3 miniature basic switches put a 25 amp power load capacity and a choice of 11 other electrical ratings into a relatively small package with many choices of actuators, contactmaterials, and terminal designs. V7 miniature basic switches have electrical ratings up to 15 amps . Both commercial and European versions are UL recognized and CSA certified. The latter is also designed to meet all leading European approval agency requirements. TB miniature basic small double-break units can control 2,3 or 4 isolated circuits.

STANDARD BASIC SWITCHES

Power load switching and motor handling capacity are among the attractions of thumb-size BZ/BA standard basic switches. Double-pole double-throw switching is added by DT switches. Where there's a need for reliable switching of high capacity systems involving DC motors and solenoids, MT magnetic blow-out switches do the job. The 3MN has double-break switching. 6AS assemblies have two tandem mounted standard basic switches under a common actuator.

SEALED AND HIGH TEMPERATURE BASIC SWITCHES

Specially adapted basic switches include: SE/XE environment-proof switches which protect subminiature SM/SX basic switches within a sealed housing; HM hermetically sealed switches are interchangeable in operating point with the SM switches; HS hermetically sealed switches which parallel the size and mounting scheme of the standard basic switches; and HT high temperature switches for use up to $+1000^{\circ} \mathrm{F}$.

DOOR SWITCHES

AC, WW and DM switches automatically cut power when a service door or drawer is opened.

Table of Contents

Typical Applications p. 2
Index by Product Type p. 3
Selection Guides. p. 4 to 7
Catalog Listings/Order Guides p. 8 to 93
Reference Data p. 94
Catalog Listing/Page Number Index p. 102

Basic Switches Subminiature/Miniature

ELECTRICAL DATA AND UL CODES

MINIATURE/SUBMINIATURE BASIC SWITCHES

Mostof the switches in this section are UL recognized and CSA certified. The current and voltage values shown are based on testconditions specified by these agencies. Electrical life of the switch is influenced by each application condition as well as by voltage and current.

Circuitry	Electrical Data
Single-pole double-throw	A 5 amps res., 3 amps ind., (sea level), 4 amps res., 2 amps ind., (50,000 feet), 28 vdc 5 amps res. or ind. $115 \mathrm{vac}, 60 \mathrm{~Hz}$. UL/CSA rating: $5 \mathrm{amps}, 250 \mathrm{vac}$.
Single-pole double-throw	B 7 amps res., 4 amps ind., (sea level), 7 amps res., 2.5 amps ind., (50,000 feet), 28 vdc . UL/CSA rating: $7 \mathrm{amps}, 250 \mathrm{vac}$.
Single-pole double-throw	C 3.5 amps res., 2 amps ind., (sea level), 3.5 amps res., 1.5 amps ind., (50,000 feet), 28 vdc . UL rating: $7 \mathrm{amps}, 250 \mathrm{vac}$.
Single-pole double-throw	D 1 amp res., 0.5 amp ind., (sea level and 50,000 feet), 28 vdc . UL/CSA rating: $1 \mathrm{amp}, 125 \mathrm{vac}$.
Single-pole double-throw	E 3 amps res., 2 amps ind., (sea level), 28 vdc. UL rating: 3 amps, 250 vac.
Single-pole double-throw	F 7 amps res., 4 amps ind., 2.5 amps lamp load, (sea level), 4 amps res., 2.5 amps ind., 2.5 amps lamp load, (50,000 feet), 28 vdc . 7 amps res., 7 amps ind., 2 amps lamp load, $115 \mathrm{vac}, 60 \mathrm{~Hz}$ (sea level).
Single-pole double-throw	G 2 amps res., lamp ind., (sea level) 28 vdc .
Single-pole double-throw	H . 010 amp res. and ind., (sea level). 28 vdc. UL/CSA rating: $1 \mathrm{amp}, 125 \mathrm{vac}$.
Single-pole double-throw	I 7 amps res., 4 amps ind., (sea level), 28 vdc .
Single-pole double-throw	J 5 amps res., 3 amps ind., (sea level), 5 amps res., 2.5 amps ind., (50,000 feet), 28 vdc . UL rating: 5 amps, 250 vac.
Single-pole double-throw	K UL rating: 5 amps, 125 or 250 vac .
Single-pole double-throw	L 1 amp res., $1 / 2 \mathrm{amp}$ ind., (sea level) 28 vdc .
Single-pole double-throw	M UL rating: 11 amps and $1 / 4 \mathrm{hp}$, 125 or 250 vac.
Single-pole double-throw	N 1 amp res., 0.5 amp ind., 30 vdc . UL rating: $1 \mathrm{amp}, 125 \mathrm{vac}$.
Single-pole double-throw	P 1 amp res., 30 vdc . UL rating: . $1 \mathrm{amp}, 125 \mathrm{vac}$.
Single-pole double-throw	R 5 amps res., 3 amps ind., 2.4 amps lamp load (sea level), 5 amps res., 2.5 amps ind., 2.4 amps lamp load, (50,000 feet), 28 vdc . 5 amps res., 5 amps ind., 1.5 amps lamp load, 115 vac. 60 Hz (sea level)

Circuitry	Electrical Data
Single-pole double-throw	S UL rating: $4 \mathrm{amps}, 250 \mathrm{vac}$.
Single-pole double-throw	T UL/CSA rating: 11 amps and $1 / 3 \mathrm{hp}, 125,250$, or 277 vac; 1/2 amp, $125 \mathrm{vdc} ; 1 / 4 \mathrm{amp}, 250 \mathrm{vdc}$; 4 amps, 125 vac "L" (lamp load).
	TT UL/CSA rating: 10 amps and $1 / 3 \mathrm{hp}, 125$ or 250 vac ; $1 / 2 \mathrm{amp}, 125 \mathrm{vdc} ; 1 / 4 \mathrm{amp}, 250 \mathrm{vdc} ;$ 4 amps, 125 vac " L " (lamp load).
Single-pole double-throw unless otherwise noted in order guide	UU 10 amps res., 10 amps ind., (sea level), 6 amps ind. (50,000 feet), 6 amps motor load, 30 vdc .
	U UL/CSA rating: 15.1 amps and $1 / 2 \mathrm{hp}, 125$ or 250 vac . $1 / 2 \mathrm{amp}, 125 \mathrm{vdc} ; 1 / 4 \mathrm{amp}, 250 \mathrm{vdc}$; 5 amps, 120 vac "L" (lamp load).
Single-pole double-throw	VV UL/CSA rating: 3 amps-125, 250, 277 vac; 1/10 hp-250 vac
Single-pole double-throw	v UL/CSA rating: 10 amps and $1 / 4 \mathrm{hp}, 125$ or 250 vac ; $1 / 2 \mathrm{amp}, 125 \mathrm{vdc} ; 1 / 4 \mathrm{amp}, 250 \mathrm{vdc} ;$ 3 amps, 125 vac " L " (lamp load).
Single-pole double-throw	W $10 \mathrm{amps}, 250 \mathrm{vac}$ or 28 vdc ; $1 / 2 \mathrm{amp}, 125 \mathrm{vdc} ; 1 / 4 \mathrm{amp}, 250 \mathrm{vdc}$.
Single-pole double-throw	UL rating: $1 \mathrm{amp}, 125 \mathrm{vac}$.
Single-pole double-throw	10 amps and $1 / 3 \mathrm{hp}, 125$ or 250 vac ; 4 amps, 125 vac "L" (lamp load).
Single-pole double-throw	YY UL/CSA rating: 5 amps-125, 250, 277 vac 1/10 hp-250 vac
Two-circuit double-break \qquad 7 Four-circuit \square double-break \square	Z $10 \mathrm{amps}, 125$ or 250 vac , or 30 vdc . UL/CSA rating: 10 amps, 125 or 250 vac; $1 / 2 \mathrm{hp}, 125$ vac.
Single-pole double-throw	ZZ UL rating: 5 amps and $1 / 10 \mathrm{hp}$. 125 or 250 vac .
Single-pole double-throw	AA UL rating: $20 \mathrm{amps}, 277 \mathrm{vac}$. $1 \mathrm{hp}, 125 \mathrm{vac} ; 2 \mathrm{hp}, 250 \mathrm{vac}$.
Single-pole double-throw	BB UL rating: 25 amps, 277 vac. $1 \mathrm{hp}, 125 \mathrm{vac} ; 2 \mathrm{hp}, 250 \mathrm{vac}$.

Basic Switches Standard

ELECTRICAL DATA AND UL CODES STANDARD BASIC SWITC HES

Most of the switches in this section are UL recognized and CSA certified. The current and voltage values shown are based on testconditions specified by these agencies. Electrical life ofthe switch is influenced by each application condition as well as by voltage and current. For application assistance contact the 800 number

| Circuitry |
| :--- | :--- |\(\left.\quad \begin{array}{l}Electrical Data and

UL C Codes\end{array}\right]\)

Circuitry	Electrical Data and UL Codes
Double-pole double-throw	J 10 amps, 125 or 250 vac ; $0.3 \mathrm{amp}, 125 \mathrm{vdc} ; 0.15 \mathrm{amp}$, 250 vdc. UL Code L59
Single-pole double-throw unless otherwise noted in order guide *To polarize, connect negat achieve the same effect, m non-magnetic barrier (at le mounting surface.	K Rating established with switch non-polarized 10 amps, 125 vac or vdc; $1 / 4 \mathrm{hp}, 125$ vac or vdc. UL Code L 168 Non-polarized: 10 amps res. or $1 / 4 \mathrm{hp}, 125 \mathrm{vdc}$; 3 amps max. res. 250 vdc. Polarized*: 10 amps res. or $1 / 2 \mathrm{hp}, 125 \mathrm{vdc}$; 3 amps max. res., 250 vdc . ive side of line to common terminal. To ount switch with brass screws, using a ast $1 / 4$ " thick) between the switch and
double-break	M 25 amps, 125, 250 or 480 vac; $3 / 4 \mathrm{hp}, 125 \mathrm{vac} ; 11 / 4 \mathrm{amp}, 250 \mathrm{vac}$. $1 \mathrm{amp}, 125 \mathrm{vdc} ; 1 / 2 \mathrm{amp}, 250 \mathrm{vdc}$. UL Code L58
Single-pole double-throw	P 1 amp, 125 VAC UL Code L22
Single-pole double-throw	R $10 \mathrm{amps}, 125$ or 250 vac ; $1 / 3 \mathrm{hp}, 125 \mathrm{vac} ; 3 / 4 \mathrm{hp}, 250 \mathrm{vac} ;$ $1 / 2 \mathrm{amp}, 125 \mathrm{vdc} ; 1 / 4 \mathrm{amp}$, 250 vdc . UL Code L115
Single-pole double-throw	S $10 \mathrm{amps}, 125$ or 250 vac ; $1 / 3 \mathrm{hp}, 125$ or 250 vac . UL Code L93
double-break	T 15 amps, 125, 250 or 480 vac; $1 \mathrm{amp}, 125 \mathrm{vdc} ; 1 / 2 \mathrm{amp}, 250 \mathrm{vdc}$; $1 / 4 \mathrm{hp}, 125 \mathrm{vac} ; 1 / 2 \mathrm{hp}, 250 \mathrm{vac}$ UL Code L73
Single-pole double-throw	U 5 amps, 250 vac. UL Code L4
double-break	V Motor Control 15 amps, 120, 240, 480 or 600 vac; $1 ⁄ 2 \mathrm{hp}, 120 \mathrm{vac} ; 1 \mathrm{hp}, 240 \mathrm{vac} ;$ $0.8 \mathrm{amp}, 115 \mathrm{vdc} ; 0.4 \mathrm{amp}$, 230 vdc .
Single-pole single-throw (N.C.)	W 20 amps, 125 , 250 or 277 vac ; $3 / 4 \mathrm{hp}, 125 \mathrm{vac} ; 1 / 2 \mathrm{hp}, 250$ vac UL Code L178B
double-throw	X 15 amps, 125,250 or 480 vac; 2 amps, $600 \mathrm{vac} ;$ $1 / 8 \mathrm{hp}, 125 \mathrm{vac} ; 1 / 4 \mathrm{hp}, 250 \mathrm{vac} ;$ $1 / 2 a m p, 125 \mathrm{vdc} ; 1 / 4 \mathrm{amp}$, 250 vdc . UL Code L74
Single-pole double-throw	Y 20 amps, 125, 250 or 480 vac; $3 / 4 \mathrm{hp}, 125 \mathrm{vac} ; 11 / 2 \mathrm{hp}, 250 \mathrm{vac} ;$ UL Code L17

Basic Switches
 Operating Characteristics

ELECTROMEC HANICAL SWITCHES

Definitions below explain the meaning of operating characteristics. Characteristics shown in tables throughout catalog were chosen as most significant. They are taken at normal room temperature and humidity. These may vary as temperature and humidity conditions differ. Sketches show how characteristics are measured for in-line plunger actuation.

Linear dimensions for in-line actuation are from top ofplunger to a reference line, usually the center of the mounting holes.

Differential Travel (D.T.)—Plunger or actuator travel from point where contacts "snap-over" to point where they "snapback."

Free Position (F.P.)-Position of switch plunger or actuator when no external force is applied (other than gravity).

Full Overtravel Force-Force required to attain full overtravel of actuator.

Operating Position (O.P.)-Position of switch plunger or actuator at which point contacts snap from normal to operated position. Note that in the case offlexible or adjustable actuators, the operating position is measured from the end of the lever or its maximum length. Location of operating position measurement shown on mounting dimension drawings.

IN-LINE PLUNGER ACTUATION

Operating Force (O.F.)-Amount of force applied to switch plunger or actuator to cause contact "snap-over." Note in the case of adjustable actuators, the force is measured from the maximum length position of the lever.

Overtravel (O.T.) - Plunger or actuator travel safely available beyond operating position.

Pretravel (P.T.)—Distance or angle traveled in moving plunger or actuator from free position to operating position.

Release Force (R.F.)—Amount of force still applied to switch plunger or actuator at moment contacts snap from operated position to unoperated position.

Total Travel (T.T.)—Distance from actuator free position to overtravel limit position.

Basic Switches
Operating Characteristics
FULL LOAD AND LOCKED ROTOR CURRENTS FOR SINGLE PHASE AND DC MOTORS

HP	Alternating C urrent				Direct C urrent			
	115 Volts		230 Volts		115 Volts		230 Volts	
	Full Load	Locked Rotor	Full Load	Locked Rotor	Full Load	Locked Rotor	Full Load	Locked Rotor
2	24.0	144.0	12.0	72.0	17.0	170.0	8.5	85.0
$11 / 2$	20.0	120.0	10.0	60.0	13.2	132.0	6.6	66.0
1	16.0	96.0	8.0	48.0	9.6	96.0	4.8	48.0
$3 / 4$	13.8	82.8	6.9	41.4	7.4	74.0	3.7	37.0
1/2	9.8	58.8	4.9	29.4	5.4	54.0	2.7	27.0
1/3	7.2	43.2	3.6	21.6	3.8	38.0	1.9	19.0
$1 / 4$	5.8	34.8	2.9	17.4	3.0	30.0	1.5	15.0
1/6	4.4	26.4	2.2	13.2	2.4	24.0	1.2	12.0
1/8	3.8	22.8	1.9	11.4	2.2	22.0	1.1	11.0
$1 / 10$	3.0	18.0	1.5	9.0	2.0	20.0	1.0	10.0
$1 / 20$	1.5	9.0	-	-	-	-	-	-

Basic Switches

B Type Switches Performance Information

ELECTRICAL DATA CHART

Catalog Listing (contact gap)	Voltage	Amperes									
		Current Carrying Capacity Max. ${ }^{1}$	Resistive	Inrush		Motor		Lamp		Inductive ${ }^{2}$	
				$\begin{aligned} & \text { N.C. } \\ & \text { Ckt. } \end{aligned}$	$\begin{aligned} & \text { N.O. } \\ & \text { Ckt. } \end{aligned}$	$\begin{aligned} & \text { N.C. } \\ & \text { Ckt. } \end{aligned}$	$\begin{array}{\|l} \hline \text { N.O. } \\ \text { Ckt. } \end{array}$	$\begin{aligned} & \text { N.C. } \\ & \text { Ckt. } \end{aligned}$	$\begin{aligned} & \text { N.O. } \\ & \text { Ckt. } \end{aligned}$	Sea Level	$\begin{array}{\|l\|} \hline 50,000 \\ \text { Feet } \end{array}$
BZ-3YT* .036 in. $0,91 \mathrm{~mm}$	$\begin{array}{r} \hline \text { VDC } \\ 8 \\ 14 \\ 30 \\ 125 \\ 250 \end{array}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 1 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 10 \\ & 6 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 10 \\ & 6 \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 2 \\ 1.2 \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2 \\ & 1.2 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 0.6 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1 \\ & 0.6 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \\ & 10 \\ & 0.6 \\ & 0.4 \end{aligned}$	$\begin{array}{\|l} 10 \\ 10 \\ 5 \\ 0.4 \\ 0.3 \end{array}$
BZ-3YT* .036 in. $0,91 \mathrm{~mm}$	$\begin{array}{r} \hline \text { VAC } \\ 120 \\ 240 \\ 277 \\ \hline \end{array}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \end{array}$
BM-2R .020 in . $0,50 \mathrm{~mm}$	$\begin{array}{r} \hline \text { VDC } \\ 8 \\ 14 \\ 30 \\ 125 \\ 230 \end{array}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \\ & 22 \\ & 22 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 2 \\ & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 4 \\ & 2 \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 0.8 \\ 0.4 \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 0.4 \\ 0.2 \end{array}$	$\begin{array}{\|l} 1.5 \\ 1.5 \\ 1.5 \\ 0.4 \\ 0.2 \end{array}$	$\begin{aligned} & 8 \\ & 5 \\ & 1 \\ & .03 \\ & .02 \end{aligned}$	$\begin{array}{\|l} 7 \\ 5 \\ 1 \\ .02 \\ .01 \end{array}$
BM-2R .020 in . $0,50 \mathrm{~mm}$	$\begin{gathered} \text { VAC } \\ 125 \\ 250 \\ 277 \\ 460 \end{gathered}$	$\begin{array}{\|l} 22 \\ 22 \\ 22 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l} 22 \\ 22 \\ 22 \\ 22 \\ \hline \end{array}$	$\begin{array}{\|l} 35 \\ 35 \\ 35 \\ 35 \\ \hline \end{array}$	$\begin{array}{\|l} 20 \\ 20 \\ 20 \\ 20 \\ \hline \end{array}$	$\begin{array}{\|l} 5.8 \\ 5.8 \\ 5.8 \\ 5.8 \\ \hline \end{array}$	$\begin{array}{\|l} 3.4 \\ 3.4 \\ 3.4 \\ 3.4 \\ \hline \end{array}$	$\begin{array}{\|l} 3.5 \\ 3.5 \\ 3.5 \\ 3.5 \\ \hline \end{array}$	$\begin{array}{\|l} 2.0 \\ 2.0 \\ 2.0 \\ 2.0 \\ \hline \end{array}$	$\begin{aligned} & 22 \\ & 22 \\ & 22 \\ & 22 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 22 \\ 22 \\ 22 \\ 22 \\ \hline \end{array}$
BA-2R .020 in. $0,50 \mathrm{~mm}$	$\begin{array}{r} \hline \text { VDC } \\ 8 \\ 14 \\ 30 \\ 125 \\ 230 \end{array}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & 20 \end{aligned}$	$\begin{array}{\|l} 20 \\ 20 \\ 5 \\ 0.5 \\ 0.25 \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 4 \\ & 2 \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 5 \\ 0.8 \\ 0.4 \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 0.4 \\ 0.2 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{array}{\|l} 15 \\ 10 \\ 5 \\ .05 \\ .03 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 15 \\ 8 \\ 2 \\ .03 \\ .02 \end{array}$
BA-2R .020 in . 0,50 mm	$\begin{aligned} & \hline \text { VAC } \\ & 120 \\ & 240 \\ & 277 \\ & 460 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 20 \\ 20 \\ 20 \\ 20 \\ \hline \end{array}$	$\begin{array}{\|l} 20 \\ 20 \\ 20 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 75 \\ & 75 \\ & 75 \\ & 75 \end{aligned}$	$\begin{array}{\|l} 75 \\ 75 \\ 75 \\ 75 \\ \hline \end{array}$	$\begin{aligned} & 12.5 \\ & 12.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 12.5 \\ & 12.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.5 \\ & 7.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 20 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 20 \\ 20 \\ 20 \\ 20 \\ \hline \end{array}$
BE-2R .020 in . $0,50 \mathrm{~mm}$	$\begin{array}{r} \hline \text { VDC } \\ 8 \\ 14 \\ 30 \\ 125 \\ 250 \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{array}{\|l\|} \hline 25 \\ 25 \\ 5 \\ 0.5 \\ 0.25 \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 4 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 0.8 \\ 0.4 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 0.8 \\ & 0.4 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 0.4 \\ 0.2 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & 5 \\ & .05 \\ & .03 \end{aligned}$	$\begin{array}{\|l} 15 \\ 8 \\ 2 \\ .03 \\ .02 \\ \hline \end{array}$
BE-2R .020 in . $0,50 \mathrm{~mm}$	$\begin{gathered} \hline \text { VAC } \\ 120 \\ 240 \\ 277 \\ 460 \end{gathered}$	$\begin{array}{\|l} 25 \\ 25 \\ 25 \\ 25 \\ \hline \end{array}$	$\begin{array}{\|l} 25 \\ 25 \\ 25 \\ 25 \\ \hline \end{array}$	$\begin{array}{\|l} 96 \\ 96 \\ 96 \\ 96 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 96 \\ 96 \\ 96 \\ 96 \\ \hline \end{array}$	$\begin{array}{\|l} 16 \\ 16 \\ 16 \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l} 16 \\ 16 \\ 16 \\ 16 \\ \hline \end{array}$	$\begin{array}{\|l} 10 \\ 10 \\ 10 \\ 10 \\ \hline \end{array}$	$\begin{array}{\|l} 10 \\ 10 \\ 10 \\ 10 \\ \hline \end{array}$	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \\ & \hline \end{aligned}$	
BZ-R .006 in. $0,15 \mathrm{~mm}$	$\begin{gathered} \hline \text { VAC } \\ 125 \\ 250 \\ 277 \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$
BZ-1R .010 in. $0,25 \mathrm{~mm}$	$\begin{array}{r} \hline \text { VDC } \\ 8 \\ 14 \\ 30 \\ 125 \\ 230 \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 2 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 4 \\ & 2 \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 5 \\ 0.8 \\ 0.4 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 0.8 \\ & 0.4 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 0.4 \\ 0.2 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{array}{\|l} 8 \\ 5 \\ 1 \\ 1 \\ 0.03 \\ 0.02 \end{array}$	$\begin{array}{\|l\|} \hline 7 \\ 5 \\ 1 \\ 0.01 \\ 0.01 \end{array}$
BZ-1R .010 in. $0,25 \mathrm{~mm}$	$\begin{gathered} \hline \text { VAC } \\ 125 \\ 250 \\ 277 \\ 460 \end{gathered}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l} 30 \\ 30 \\ 30 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{\|} 5 \\ 5 \\ 5 \\ 5 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$

* Ampere levels for BZ-3YT applicable only if common terminal is not used and switch is used as a shorting bar switch.

Basic Switches

B Type Switches Performance Information

ELECTRICAL DATA CHART, cont.

Catalog Listing (contact gap)	Voltage	Amperes									
		Current Carrying Capacity Max. ${ }^{1}$	Resistive	Inrush		Motor		Lamp		Inductive ${ }^{2}$	
				$\begin{aligned} & \hline \text { N.C. } \\ & \text { Ckt. } \end{aligned}$	$\begin{aligned} & \hline \text { N.O. } \\ & \text { Ckt. } \end{aligned}$	$\begin{aligned} & \text { N.C. } \\ & \text { Ckt. } \end{aligned}$	$\begin{array}{\|l} \hline \text { N.O. } \\ \text { Ckt. } \end{array}$	$\begin{aligned} & \text { N.C. } \\ & \text { Ckt. } \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { N.O. } \\ \text { Ckt. } \end{array}$	Sea Level	$\begin{array}{\|l\|} \hline 50,000 \\ \text { Feet } \end{array}$
BZ-2R .020 in. 0.50 mm	$\begin{array}{r} \hline \text { VDC } \\ 8 \\ 14 \\ 30 \\ 125 \\ 230 \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 6 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 4 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5 \\ 5 \\ 5 \\ 0.8 \\ 0.4 \\ \hline \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 0.8 \\ & 0.4 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 0.4 \\ 0.2 \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 0.4 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & 5 \\ & 0.05 \\ & 0.03 \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \\ 8 \\ 2 \\ 0.03 \\ 0.02 \end{array}$
BZ-2R .020 in. $0,50 \mathrm{~mm}$	$\begin{gathered} \hline \text { VAC } \\ 125 \\ 250 \\ 277 \\ 460 \end{gathered}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l} 30 \\ 30 \\ 30 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 5 \\ \hline \end{array}$	$\begin{array}{\|l} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$
BZ-3R .036 in. 0,91 mm	$\begin{array}{r} \hline \text { VDC } \\ 8 \\ 14 \\ 30 \\ 125 \\ 250 \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 10 \\ & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \\ & 6 \\ & 3 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 6 \\ & 3 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 1.2 \\ 0.6 \end{array}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 1.2 \\ & 0.6 \end{aligned}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 0 \\ 0.6 \\ 0.3 \\ \hline \end{array}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 0.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 10 \\ & 0.1 \\ & 0.05 \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \\ 15 \\ 5 \\ 0.05 \\ 0.03 \\ \hline \end{array}$
BZ-3R .036 in. 0,91 mm	$\begin{gathered} \hline \text { VAC } \\ 125 \\ 250 \\ 277 \\ 460 \end{gathered}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{array}{\|l} 30 \\ 30 \\ 30 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{\|l} 5 \\ 5 \\ 5 \\ 4 \\ \hline \end{array}$	$\begin{array}{\|l} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ \hline \end{array}$	$\begin{array}{\|l} 3 \\ 3 \\ 3 \\ 3 \\ \hline \end{array}$	$\begin{array}{\|l} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \\ & \hline \end{aligned}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$
BZ-7R .070 in . 1,78 mm	$\begin{array}{r} \hline \text { VDC } \\ 8 \\ 14 \\ 30 \\ 125 \\ 250 \end{array}$	$\begin{aligned} & 30 \\ & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{\|l\|} \hline 15 \\ 15 \\ 15 \\ 0.75 \\ 0.3 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 30 \\ & 30 \\ & 7.5 \\ & 3 \end{aligned}$	$\begin{aligned} & 5 \\ & 15 \\ & 15 \\ & 7.5 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5 \\ & 5 \\ & 1.5 \\ & 0.6 \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \\ & 2.5 \\ & 2.5 \\ & 1.5 \\ & 0.6 \end{aligned}$	$\begin{array}{\|l} 1.5 \\ 3 \\ 3 \\ 0.75 \\ 0.3 \end{array}$	$\begin{array}{\|l\|} 15 \\ 1.5 \\ 1.5 \\ 0.75 \\ 0.3 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 10 \\ & 0.4 \\ & 0.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{15} \\ & 7.5 \\ & 0.2 \\ & 0.1 \end{aligned}$
$\begin{aligned} & \text { BZ-7R } \\ & .070 \mathrm{in} . \\ & 1,78 \mathrm{~mm} \end{aligned}$	$\begin{gathered} \hline \text { VAC } \\ 120 \\ 240 \\ 277 \\ 460 \end{gathered}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{array}{\|l} 30 \\ 30 \\ 30 \\ 30 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{array}{\|l} 15 \\ 15 \\ 15 \\ 15 \\ \hline \end{array}$	$\begin{aligned} & 15 \\ & 15 \\ & 15 \\ & 15 \end{aligned}$

1 For a $86-F(30-C)$ max. temperature rise at terminals, not opening or closing the load (at sea level).
2 Data established with a 75% power factor on AC loads.

TEST CONDITIONS

Switch contact life is affected by electrical conditions and other factors, such as: temperature, humidity, airborne contamination, vibration, amount and rate of plunger travel, and cycling

Temperature: Room Ambient (70-F, $21-\mathrm{C}$).
Humidity:
AC Cycle Rate:
Room Ambient (50\%).
60 operations/minute.
DC Cycle Rate: 20 operations/minute.
On-off Time:
Power Factor (AC):
Inductance (DC):
Circuit Loading:
Travel Plunger:
Actuation:
Overtravel Force:
rate. OurEvaluation Laboratory tests are conducted using procedures and practices common to UL and Military Specifications. The following conditions generally apply.

MICRO SWITCH believes that with the following voltage and current values and under the test conditions set forth below switch life of 100,000 closures, 95% survival can be expected. It is a starting point for user evaluation and provides guidelines on the switches identified. Because of the numerous electrical conditions listed, not every current and voltage level has actually been tested on every switch and certain figures have
been extrapolated. For specific switch selection, customers should evaluate switches under actual application conditions or by simulating all application conditions and requirements. The information set forth cannot substitute for the customer's own product evaulation. It should never be published by a customer as a rating on their product.

Basic Switches Definitions of Terms

Actuator - Mechanism of the switch or switch enclosure which operates the contacts.
Auxiliary Actuator - A mechanism, sold separately, to provide basic switches with easier means of operation and adjustment and adapt switches to different operating motions by supplying supplemental overtravel.
Basic Switch - A self-contained switching unit. It can be used alone, gangmounted, built into assemblies or enclosed in metal housings.
Bifurcated Contacts - A movable contact, generally gold plated, which is forked to provide two contact mating surfaces in a parallel, for more reliable contact.
Break - To open an electrical circuit.
Break Distance - The minimum open gap distance between stationary and movable objects.
Characteristics - This term is used by MICRO SWITCH in a restricted sense and refers only to switch operating characteristics such as pretravel, operating force, etc.
Circuit - The contact arrangement with switch actuator and contacts in their normal position.
Dead break - Exists in all mechanical switches. Definition: When the switch plunger is being depressed, dead break is non-contact immediately before the plunger reaches the operating point. When the switch plunger is being released, dead break is non-contact immediately before the plunger reaches the release point. Dead break is expressed in distance of plunger travel during which the non-contact occurs. Manufacturing specifications for most BZ/BA basic switches allow a maximum dead break of $0.00005 \mathrm{in} .(0,001 \mathrm{~mm})$ measured at the switch plunger. Switches are evaluated while moving the plunger with the switch installed in a 10 VDC, 0.100 ampere circuit. This specifiction does not apply to switches that have been in service or have not received proper handling or storage. For applications sensitive to dead break, call Freeport for information on applicable electrical and mechanical conditions.
Dead make - When the switch plunger is being depressed, dead make is non-contact immediately after the plunger reaches the release point. Dead make is expressed as the distance of plunger travel during which the non-contact occurs. Non contact is a failure of open contacts to close (that is, the switch resistance exceeds the specified value) within the specified range of plunger positions. If a plunger position is specified with respect to time, a non-contact is a contact miss.

Double Break Contacts - (Twin break). This breaks the circuit in two places. Referred to as form Z circuitry also.

Double-Pole Double-Throw (DPDT) Switches which make and break two separate circuits. This circuit provides a normally open and normally closed contact for each pole.
Enclosed Switch - A basic switch unit (contact block) enclosed in a durable metal housing. The enclosure protects the switching unit, provides mounting means, and fitting for conduit connection.
Environment-Proof Switch - A switch which is completely sealed to ensure constant operating characteristics. Sealing normally includes an " O " ring on actuator shaft and fused glass-to-metal terminal seals or complete potting and an elastomer plunger-case seal.
Explosion-Proof Switch - A UL listed switch capable of withstanding an internal explosion of a specified gas without igniting surrounding gases.
Hermetically Sealed Switch - A switch completely sealed to provide constant operating characteristics. All junctures made with metal-to-metal or glass-tometal fusion.
Magnetic Blow-Out Switch - Contains a small permanent magnet which provides a means of switching high d-c loads. The magnet deflects arc to quench it.
Maintained C ontact Switch - Designed for applications requiring sustained contact after plunger has been released, but with provision for resetting.
Make - To close or establish an electrical circuit.
Momentary S witch - A switch with contacts that return from operated condition to normal condition when actuating force is removed. Unless otherwise stated, all switches in this catalog are momentary.
Mounting Dimensions - All dimensions on the mounting dimension drawings in this catalog are subject to change without notice. Request current drawings from the nearest MICRO SWITCH Sales Office or write to Freeport.
Normally Closed Contacts (N.C.) - Provide a normally closed circuit when actuator is in free position.

Normally Open Contacts (N.O.) - Provide a normally open circuit when actuator is in free position.
Precision Snap-Acting Switch - An electromechanical switch having predetermined and accurately controlled characteristics, and having a spring loaded quick make and break contact action.
Projection Contacts - A design in which one or more truncated projections are arranged on the stationary contacts. When closed on the smooth, spherical surface of the opposing contact this configuration tends to break thru oxides and other film contaminants to avoid the particulate contaminants. Used with silver contacts, this design can be a useful substitute for the more expensive gold or gold alloy contact material.
Pulse S witch - Provides a single pulse of current for each cycle of operation.
Quick Connect Terminal - A plug-in type terminal designed for quick switch wiring.
Repeatability - Ability of a switch to repeat its characteristics precisely from one operation to the next operation.
Single-Pole Double-Throw (SPDT) Switch which may either make or break a circuit, depending on how it is wired. Also referred to as form C circuitry.

Single-Pole Single-Throw (SPST) Switch with only one moving and one stationary contact. Available either normally open (N.O.) also referred to as form A circuitry; or normally closed (N.C.) also referred to as form B circuitry.

Terminal Enclosure - A housing that fits over switch terminals to protect against electrical shock and accidental shorting, and facilitate wiring.
Two Circuit Switch - In one position, moving contacts complete one circuit, in the other position, contacts complete another separate circuit.

PC Terminal Version

FEATURES

- MICRO SWITCH'S smallest snap-action switch
- Choice of low energy or power duty electrical ratings
- Variety of integral actuators
- Temperature Range: -25° to $+80^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$
- Weight: 0.2 grams (. 007 oz.) - PC terminal type 0.3 grams (. 011 oz .) - solder terminal type
- Form C single-pole double-throw (SPDT) circuitry

ELECTRICAL RATINGS

Voltage	Resistive Load Gold Contacts US10 Type	Silver Contacts US20 Type
30 VDC	0.1 A	0.5 A
125 VAC	0.1 A	0.1 A

ORDER GUIDE SOLDER TERMINALS

C ontact Type	Actuator	O.F. max. grams oz.	Solder	$\begin{gathered} \text { R.F. min. } \\ \mathrm{g} \\ \text { ounces } \\ \hline \end{gathered}$	$\begin{aligned} & \text { P.T. max. } \\ & \text { mm } \\ & \text { inches } \\ & \hline \end{aligned}$	O.T. min. mm inches	$\begin{aligned} & \text { D.T. max. } \\ & \text { mm } \\ & \text { inches } \\ & \hline \end{aligned}$	
Gold, 0.1 Amp	A pin plunger	$\begin{gathered} 100 \\ 3.527 \end{gathered}$	US10D10A00	$\begin{gathered} 10 \\ .353 \end{gathered}$	$\begin{gathered} 0,3 \\ .012 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 5,4 \pm 0,15 \\ .213 \pm .006 \end{gathered}$
	C flat lever	$\begin{aligned} & 25 \\ & .88 \end{aligned}$	US10D10C00	$\begin{gathered} 2,0 \\ .071 \end{gathered}$	$\begin{gathered} 2,4 \\ .094 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} 0,7 \\ .028 \end{gathered}$	$\begin{gathered} 6,4 \pm 0,6 \\ .252 \pm .024 \end{gathered}$
	E simulated roller lever	$\begin{gathered} 30 \\ \mathbf{1 . 0 5 8} \end{gathered}$	US10D10E00	$\begin{gathered} 2,0 \\ .071 \end{gathered}$	$\begin{gathered} 2,2 \\ .087 \end{gathered}$	$\begin{gathered} 0,3 \\ .012 \end{gathered}$	$\begin{gathered} 0,7 \\ .028 \end{gathered}$	$\begin{aligned} 6,7 & \pm 0,5 \\ .264 & \pm .020 \end{aligned}$
Silver, 0.5 Amp\qquad	A pin plunger	$\begin{gathered} \hline 100 \\ 3.527 \end{gathered}$	US20D10A00	$\begin{gathered} 10 \\ .353 \end{gathered}$	$\begin{gathered} 0,3 \\ .012 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 5,4 \pm 0,15 \\ .213 \pm .006 \end{gathered}$
	C flat lever	$\begin{aligned} & .25 \\ & .88 \end{aligned}$	US20D10C00	$\begin{gathered} 2,0 \\ .071 \end{gathered}$	$\begin{gathered} 2,4 \\ .094 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} 0,7 \\ .028 \end{gathered}$	$\begin{gathered} 6,4 \pm 0,6 \\ .252 \pm .024 \end{gathered}$
	E simulated roller lever	$\begin{gathered} 30 \\ \mathbf{1 . 0 5 8} \end{gathered}$	US20D10E00	$\begin{gathered} 2,0 \\ .071 \end{gathered}$	$\begin{gathered} 2,2 \\ .087 \end{gathered}$	$\begin{gathered} 0,3 \\ .012 \end{gathered}$	$\begin{gathered} 0,7 \\ .028 \end{gathered}$	$\begin{aligned} 6,7 & \pm 0,5 \\ .264 & \pm .020 \end{aligned}$

ORDER GUIDE PC STRAIG HT TERMINALS

Contact Type	Actuator	$\begin{gathered} \text { O.F. max. } \\ \text { grams } \\ \text { oz. } \end{gathered}$	PC Straight Cross-Line	R.F. min. g ounces	P.T. max. inches	O.T. min. mm inches	$\begin{gathered} \text { D.T. max. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \mathrm{O} . \mathrm{P} \\ \mathrm{~mm} \\ \text { inches } \end{gathered}$
	A pin plunger	$\begin{gathered} 100 \\ 3.527 \end{gathered}$	US10D20A00	$\begin{gathered} 10 \\ .353 \end{gathered}$	$\begin{gathered} 0,3 \\ .012 \end{gathered}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 4,8 \pm 0,15 \\ .189 \pm .006 \end{gathered}$
	C flat lever	$\begin{aligned} & \hline 25 \\ & .88 \\ & \hline \end{aligned}$	US10D20C00	$\begin{gathered} \hline 1,0 \\ .035 \end{gathered}$	$\begin{gathered} 2,4 \\ .094 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} \hline 0,7 \\ .028 \end{gathered}$	$\begin{gathered} 5,8 \pm 0,7 \\ .228 \pm .028 \end{gathered}$
	E simulated roller lever	$\begin{gathered} 30 \\ 1.058 \end{gathered}$	US10D20E00	$\begin{gathered} 1,0 \\ .035 \end{gathered}$	$\begin{gathered} \hline 2,2 \\ .087 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,3 \\ .012 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,7 \\ .028 \\ \hline \end{gathered}$	$\begin{gathered} 6,1 \pm 0,7 \\ .240 \pm .028 \end{gathered}$
Silver, 0.5 Amp	A pin plunger	$\begin{gathered} \hline 100 \\ \mathbf{3 . 5 2 7} \end{gathered}$	US20D20A00	$\begin{gathered} \hline 10 \\ .353 \end{gathered}$	$\begin{array}{r} \hline 0,3 \\ .012 \end{array}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 4,8 \pm 0,15 \\ .189 \pm .006 \end{gathered}$
	C flat lever	$\begin{array}{r} 25 \\ .88 \\ \hline \end{array}$	US20D20C00	1,0	$\begin{gathered} \hline 2,4 \\ .094 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,4 \\ .016 \\ \hline \end{gathered}$	$\begin{gathered} 0,7 \\ .028 \end{gathered}$	$\begin{gathered} 5,8 \pm 0,7 \\ .228 \pm .028 \end{gathered}$
	E simulated roller lever	$\begin{gathered} \hline 30 \\ 1.058 \end{gathered}$	US20D20E00	$\begin{gathered} 1,0 \\ .035 \end{gathered}$	$\begin{gathered} \hline 2,2 \\ .087 \end{gathered}$	$\begin{gathered} \hline 0,3 \\ .012 \end{gathered}$	$\begin{gathered} \hline 0,7 \\ .028 \end{gathered}$	$\begin{gathered} 6,1 \pm 0,7 \\ .240 \pm .028 \end{gathered}$

OTHER TERMINATION TYPES ARE AVAILABLE
For PC right angle, change 2nd set of numbers to 50 (Example: US10D50A00)
For PC left angle, change 2nd set of numbers to 60 (Example: US10D60A00)

Solder Terminal S witches (with mounting holes)

Flat lever (Type C)

Simulated roller (Type E)

PC Board Terminals S witches

Left angle terminal (Type 60)

© NOT Thru holes

Mounting screw size is $m \mathbf{1 , 4}$.
Maximum tightening torque is $\mathbf{1} \mathbf{k g}-\mathrm{cm}$.

FEATURES

- Compact size - helps minimize equipment size
- Choice of low energy or power duty electrical ratings
- Variety of integral actuators
- Temperature Range: -25° to $+85^{\circ} \mathrm{C}\left(-13\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
- Weight: 0.5 grams (. 018 oz .)
- UL/CSA marking designations
- Form C single-pole double-throw (SPDT) circuitry

ELECTRICAL RATINGS (in amps)

Voltage	Silver Contacts UX40 Type		U X (dd Contacts
UX10 Type			

ORDER GUIDE

Rating	Actuator	Terminals			$\begin{gathered} \text { R.F. min. } \\ \mathrm{g} \\ \text { ounces } \end{gathered}$	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	$\begin{gathered} \text { O.P } \\ \text { inches } \\ \text { inc } \end{gathered}$
		O.F. max. grams 02.	Term	PC Straight SelfSupporting					
Gold, 0.1 Amp 125 VAC -	A pin plunger	$\begin{gathered} \hline 75 \\ 2.65 \end{gathered}$	UX10C10A01	UX10C30A01	$\begin{gathered} 10 \\ .353 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{aligned} & 0,25 \\ & .010 \end{aligned}$	$\begin{aligned} & 0,12 \\ & .005 \end{aligned}$	$\begin{gathered} 5,5 \pm 0,2 \\ .217 \pm .008 \end{gathered}$
		150 5.3	UX10E10A01	UX10E30A01	$\begin{gathered} 20 \\ .705 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{aligned} & 0,25 \\ & .010 \end{aligned}$	$\begin{aligned} & 0,12 \\ & .005 \end{aligned}$	$\begin{gathered} 5,5 \pm 0,2 \\ .217 \pm .008 \end{gathered}$
	C flat lever	$\begin{aligned} & \hline 25 \\ & .88 \end{aligned}$	UX10C10C01	UX10C30C01	$\begin{gathered} \hline 2,5 \\ .088 \end{gathered}$	$\begin{gathered} \hline 2,1 \\ .083 \end{gathered}$	$\begin{aligned} & 0,55 \\ & .022 \end{aligned}$	$\begin{aligned} & 0,50 \\ & .020 \end{aligned}$	$\begin{gathered} 6,8 \pm 1,0 \\ .268 \pm .039 \\ \hline \end{gathered}$
ת		$\begin{gathered} \hline 50 \\ 1.76 \end{gathered}$	UX10E10C01	UX10E30C01	$\begin{gathered} 5,0 \\ .176 \end{gathered}$	$\begin{gathered} \hline 2,1 \\ .083 \end{gathered}$	$\begin{aligned} & \hline 0,55 \\ & .022 \end{aligned}$	$\begin{aligned} & 0,50 \\ & .020 \end{aligned}$	$\begin{gathered} 6,8 \pm 1,0 \\ .268 \pm .039 \\ \hline \end{gathered}$
	E roller lever simulated	$\begin{gathered} \hline 27 \\ .95 \\ 55 \\ 1.94 \\ \hline \end{gathered}$	UXIOC10E01 UXIOE10E01	UXIOC30E01 UXIOE30E01	$\begin{gathered} \hline 2,0 \\ .071 \\ 4,0 \\ .141 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2,1 \\ .083 \\ 2,1 \\ .083 \\ \hline \end{gathered}$	$\begin{aligned} & 0,50 \\ & .020 \\ & 0,50 \\ & .020 \\ & \hline \end{aligned}$	$\begin{aligned} & 0,50 \\ & .020 \\ & 0,50 \\ & .020 \\ & \hline \end{aligned}$	$\begin{array}{r} 9,5 \pm 1,0 \\ .374 \pm .039 \\ 9,5 \pm 1,0 \\ .374 \pm .039 \\ \hline \end{array}$
Silver, 1 Amp 125 VAC - 	A pin plunger	$\begin{gathered} \hline 75 \\ 2.65 \end{gathered}$	UX30C10A01	UX30C30A01	$\begin{gathered} 10 \\ .353 \end{gathered}$	$\begin{gathered} \hline 0,5 \\ .020 \end{gathered}$	$\begin{aligned} & 0,25 \\ & .010 \end{aligned}$	$\begin{aligned} & 0,12 \\ & .005 \end{aligned}$	$\begin{gathered} 5,5 \pm 0,2 \\ .217 \pm .008 \end{gathered}$
	C flat lever	$\begin{aligned} & 25 \\ & .88 \end{aligned}$	UX30C10C01	UX30C30C01	$\begin{gathered} \hline 2,5 \\ .088 \end{gathered}$	$\begin{array}{r} 2,1 \\ .083 \end{array}$	$\begin{aligned} & \hline 0,55 \\ & .022 \end{aligned}$	$\begin{aligned} & 0,50 \\ & .020 \end{aligned}$	$\begin{gathered} 6,8 \pm 1,0 \\ .268 \pm .039 \\ \hline \end{gathered}$
	E roller lever simulated	$\begin{aligned} & 27 \\ & .95 \end{aligned}$	UX30C10E01	UX30C30E01	$\begin{gathered} 2,0 \\ .071 \end{gathered}$	$\begin{gathered} 2,1 \\ .083 \end{gathered}$	$\begin{aligned} & 0,50 \\ & .020 \end{aligned}$	$\begin{aligned} & 0,50 \\ & .020 \end{aligned}$	$\begin{gathered} 9,5 \pm 1,0 \\ .374 \pm .039 \\ \hline \end{gathered}$
Silver, 3 Amp 125 VAC - R- R	A pin plunger	$\begin{gathered} 150 \\ 5.3 \end{gathered}$	UX40E10A01	UX40E30A01	$\begin{gathered} 20 \\ .705 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{array}{r} 0,25 \\ .010 \\ \hline \end{array}$	$\begin{aligned} & 0,12 \\ & .005 \end{aligned}$	$\begin{gathered} 5,5 \pm 0,2 \\ .217 \pm .008 \end{gathered}$
	C flat lever	$\begin{gathered} 50 \\ 1.76 \end{gathered}$	UX40E10C01	UX40E30C01	$\begin{aligned} & \hline 5,0 \\ & .176 \end{aligned}$	$\begin{gathered} 2,1 \\ .083 \end{gathered}$	$\begin{aligned} & 0,55 \\ & .022 \end{aligned}$	$\begin{aligned} & 0,50 \\ & .020 \end{aligned}$	$\begin{gathered} 6,8 \pm 1,0 \\ .268 \pm .039 \end{gathered}$
	E roller lever simulated	$\begin{gathered} 55 \\ \mathbf{1 . 9 4} \end{gathered}$	UX40E10E01	UX40E30E01	$\begin{gathered} 4,0 \\ .141 \end{gathered}$	$\begin{gathered} 2,1 \\ .083 \\ \hline \end{gathered}$	$\begin{array}{r} 0,50 \\ .020 \end{array}$	$\begin{array}{r} 0,50 \\ .020 \\ \hline \end{array}$	$\begin{gathered} 9,5 \pm 1,0 \\ .374 \pm .039 \end{gathered}$

OTHER TERMINATION TYPES ARE AVAILABLE
For PC right angle, change 2nd set of numbers to 50 (Example: UX10C50A01)
For PC left angle, change 2nd set of numbers to 60 (Example: UX10C60A01)

Basic Switches
Subminiature

MOUNTING DIMENSIONS (for reference only) $\frac{\mathrm{mm}}{\mathrm{in} .}$

Pin plunger (Type A)

Solder terminals - Type 10

PIN PLUNGER

LEVER ACTUATORS

UX Series switches with lever actuators can be operated by cams or slides. They require lower operating forces than pin plunger switches.

Flat levers are . 520 in . ($13,2 \mathrm{~mm}$) long and simulated roller levers are . 480 in . (12,2 mm) long.

Flat lever (Type C)

Mounting screw size is 2 mm .
Maximum tightening torque is $1 \mathrm{~kg}-\mathrm{cm}$.

Type 50

RIGHT ANGLE TERMINALS

Type 60

Simulated Roller Lever (Type E)

FEATURES

- Choice of low energy or power duty electrical ratings
- Variety of integral actuators
- Temperature Range: -25° to $+85^{\circ} \mathrm{C}\left(-13^{\circ}\right.$ to $185^{\circ} \mathrm{F}$)
- Weight: 2 grams (. 07 oz.$)$
- UL/CSA/VDE/SEMKO marking designations
- Form C single-pole double-throw (SPDT) circuitry

ELECTRICAL RATINGS (in amps)

	UM50E Silver Contacts		UM40B/D Silver Contacts Vesistive	UM10A/B/D/E Inductive	Sold Contacts Resistive
Inductive	Resistive				
125 VAC	5	3	3	2	0.1
250 VAC	5	3	3	2	0.1
30 VDC	5	3^{*}	3	2^{*}	0.1

*Time constant for DC inductive loads: less than 7 msec .
UL File No. E12252, CSA File LR23413M167

ORDER GUIDE 0.1 AMP TYPE GOLD CONTACTS

Rating	Actuator Length	O.F. max. grams	Terminals		R.F. min.gounces	P.T. max. mm inches	O.T. min. mm inches	$\begin{array}{\|c\|} \hline \text { D.T. max. } \\ \text { mm } \\ \text { inches } \end{array}$	$\begin{gathered} \hline \mathbf{O . P} \\ \mathrm{mm} \\ \text { inches } \\ \hline \end{gathered}$
		oz.	Solder	. 110 QC					
0.1 Amp 250 VAC	A pin plunger	$\begin{aligned} & \hline 25 \\ & .88 \end{aligned}$	UM10A10A01	UM10A70A01	$\begin{gathered} 2 \\ .071 \end{gathered}$	$\begin{gathered} \hline 0,6 \\ .024 \end{gathered}$	$\begin{gathered} \hline 0,4 \\ .016 \end{gathered}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
		$\begin{gathered} 50 \\ 1.76 \end{gathered}$	UM10B10A01	UM10B70A01	$\begin{gathered} 7,5 \\ .265 \end{gathered}$	$\begin{gathered} \hline 0,6 \\ .024 \end{gathered}$	$\begin{gathered} \hline 0,4 \\ .016 \end{gathered}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
		$\begin{aligned} & 100 \\ & 3.57 \end{aligned}$	UM10D10A01	UM10D70A01	$\begin{gathered} \hline 15 \\ .529 \end{gathered}$	$\begin{gathered} \hline 0,6 \\ .024 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \\ \hline \end{gathered}$
		$\begin{aligned} & \hline 150 \\ & 5.3 \end{aligned}$	UM10E10A01	UM10E70A01	$\begin{gathered} \hline 20 \\ .705 \end{gathered}$	$\begin{gathered} \hline 0,6 \\ .024 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
on	B flat lever 18 mm	$\begin{aligned} & 10 \\ & .35 \end{aligned}$	UM10A10B01	UM10A70B01	$\begin{gathered} \hline 0,4 \\ .014 \end{gathered}$	$\begin{array}{r} \hline 2,5 \\ .098 \end{array}$	$\begin{gathered} \hline 0,8 \\ .031 \end{gathered}$	$\begin{array}{r} \hline 0,5 \\ .020 \end{array}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
		20 .	UM10B10B01	UM10B70B01	$\begin{gathered} 1,7 \\ .060 \end{gathered}$	$\begin{array}{r} 2,5 \\ .098 \end{array}$	$\begin{array}{r} 0,8 \\ .031 \end{array}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{aligned} 8,8 & \pm 0,8 \\ .346 & \pm .031 \end{aligned}$
		$\begin{aligned} & \hline 40 \\ & \mathbf{1 . 4} \\ & \hline \end{aligned}$	UM10D10B01	UM10D70B01	$\begin{gathered} \hline 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} \hline 0,8 \\ .031 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,5 \\ .020 \\ \hline \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
		$\begin{array}{r} 60 \\ \mathbf{2 . 1} \\ \hline \end{array}$	UM10E10B01	UM10E70B01	$\begin{gathered} \hline 4,0 \\ .141 \\ \hline \end{gathered}$	$\begin{array}{r} 2,5 \\ .098 \end{array}$	$\begin{gathered} \hline 0,8 \\ .031 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0,5 \\ .020 \\ \hline \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
	C flat lever 20 mm	$\begin{gathered} 8 \\ .88 \end{gathered}$	UM10A10C01	UM10A70C01	$\begin{aligned} & 0,35 \\ & .012 \end{aligned}$	$\begin{gathered} \hline 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{array}{r} \hline 0,8 \\ .031 \end{array}$	$\begin{aligned} 8,8 & \pm 0,8 \\ .346 & \pm .031 \end{aligned}$
		$\begin{aligned} & 16 \\ & .56 \end{aligned}$	UM10B10C01	UM10B70C01	$\begin{array}{r} 1,5 \\ .053 \end{array}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{array}{r} \hline 1,2 \\ .047 \end{array}$	$\begin{gathered} \hline 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
		$\begin{gathered} \hline 35 \\ 1.23 \end{gathered}$	UM10D10C01	UM10D70C01	$\begin{gathered} \hline 3,0 \\ .106 \end{gathered}$	$\begin{gathered} \hline 2,8 \\ .110 \end{gathered}$	$\begin{array}{r} 1,2 \\ .047 \end{array}$	$\begin{gathered} \hline 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \\ \hline \end{gathered}$
		$\begin{gathered} 55 \\ 2 \end{gathered}$	UM10E10C01	UM10E70C01	$\begin{gathered} 3,5 \\ .123 \end{gathered}$	$\begin{gathered} \hline 2,8 \\ .110 \\ \hline \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} \hline 0,8 \\ \mathbf{0 3 1} \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
	D flat lever 26 mm	$\begin{aligned} & 12 \\ & .4 \end{aligned}$	UM10B10D01	UM10B70D01	$\begin{gathered} 1,2 \\ .042 \\ \hline \end{gathered}$	$\begin{gathered} 3,5 \\ .138 \end{gathered}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{gathered} \hline 1,0 \\ .039 \end{gathered}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$
		$\begin{aligned} & 25 \\ & .88 \\ & \hline \end{aligned}$	UM10D10D01	UM10D70D01	$\begin{gathered} 2,5 \\ .088 \end{gathered}$	$\begin{aligned} & \hline 3,5 \\ & .138 \end{aligned}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{gathered} 1,0 \\ .039 \end{gathered}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$
		$\begin{aligned} & 45 \\ & 1.6 \end{aligned}$	UM10E10D01	UM10E70D01	$\begin{aligned} & \hline 3,0 \\ & .106 \end{aligned}$	$\begin{gathered} \hline 3,5 \\ .138 \end{gathered}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{gathered} 1,0 \\ .039 \end{gathered}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$

ORDER GUIDE 0.1 AMP TYPE GOLD CONTACTS cont.

OTHER TERMINATION TYPES ARE AVAILABLE

For PC Straight cross-line, change 2nd set of numbers to 20 (Example: UM10A20A01) For PC Straight international, change 2nd set of numbers to 40 (Example: UM10A40A01) For PC Straight right angle, change 2nd set of numbers to 50 (Example: UM10A50A01) For PC Straight left angle, change 2nd set of numbers to 60 (Example: UM10A60A01)

ORDER GUIDE 3 AND 5 AMP TYPE SILVER CONTACTS

Rating	Actuator Length	O.F. max. grams	Terminals		R.F. min. g ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	$\begin{gathered} \text { O.P } \\ \mathrm{mm} \\ \text { inches } \end{gathered}$
		oz.	Solder	. 110 QC					
$\begin{aligned} & 3 \mathrm{Amp} \\ & 250 \mathrm{VAC} \end{aligned}$	A pin plunger	$\begin{gathered} 50 \\ 1.76 \end{gathered}$	UM40B10A01	UM40B70A01	$\begin{gathered} 7,5 \\ .265 \end{gathered}$	$\begin{gathered} 0,6 \\ .024 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
		$\begin{gathered} 100 \\ 3.527 \end{gathered}$	UM40D10A01	UM40D70A01	$\begin{aligned} & 15,0 \\ & .529 \end{aligned}$	$\begin{gathered} 0,6 \\ .024 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
$\begin{aligned} & 3 \mathrm{Amp} \\ & 250 \mathrm{VAC} \end{aligned}$	B flat lever 18mm	$\begin{aligned} & 20 \\ & .7 \end{aligned}$	UM40B10B01	UM40B70B01	$\begin{gathered} 1,7 \\ .060 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
		$\begin{aligned} & 40 \\ & 1.4 \end{aligned}$	UM40D10B01	UM40D70B01	$\begin{gathered} \hline 3,5 \\ .123 \end{gathered}$	$\begin{gathered} \hline 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
	C flat lever 20mm	$\begin{aligned} & 16 \\ & .56 \end{aligned}$	UM40B10C01	UM40B70C01	$\begin{gathered} 1,5 \\ .053 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
		$\begin{gathered} 35 \\ 1.23 \end{gathered}$	UM40D10C01	UM40D70C01	$\begin{gathered} 3,0 \\ .106 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
	D flat lever 26mm	$\begin{aligned} & 12 \\ & .4 \end{aligned}$	UM40B10D01	UM40B70D01	$\begin{gathered} 1,2 \\ .042 \end{gathered}$	$\begin{gathered} 3,5 \\ .138 \end{gathered}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{gathered} 1,0 \\ .039 \end{gathered}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$
		$\begin{gathered} 25 \\ .88 \end{gathered}$	UM40D10D01	UM40D70D01	$\begin{gathered} 2,5 \\ .088 \end{gathered}$	$\begin{gathered} \hline 3,5 \\ .138 \end{gathered}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{gathered} 1,0 \\ .039 \end{gathered}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$
	J flat lever 60 mm	$\begin{aligned} & 6 \\ & .2 \end{aligned}$	UM40B10J 01	UM40B70J 01	$\begin{gathered} 0,5 \\ .018 \end{gathered}$	$\begin{gathered} 8,5 \\ .335 \end{gathered}$	$\begin{gathered} 2,2 \\ .087 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 8,8 \pm 2,4 \\ .346 \pm .094 \end{gathered}$
		$\begin{array}{r} 15 \\ .52 \end{array}$	UM40D10J 01	UM40D70J 01	$\begin{gathered} 1,0 \\ .035 \end{gathered}$	$\begin{gathered} 8,5 \\ .335 \end{gathered}$	$\begin{gathered} 2,2 \\ .087 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 8,8 \pm 2,4 \\ .346 \pm .094 \end{gathered}$
3 Amp 250 VAC	```E simulated roller lever, radius 2,5mm 19mm```	$\begin{gathered} 16 \\ .56 \end{gathered}$	UM40B10E01	UM40B70E01	$\begin{gathered} 1,5 \\ .053 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{aligned} & 11,65 \pm 0,8 \\ & .459 \pm .031 \end{aligned}$
		$\begin{gathered} 35 \\ 1.23 \end{gathered}$	UM40D10E01	UM40D70E01	$\begin{gathered} 3,0 \\ .106 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{aligned} & 11,65 \pm 0,8 \\ & .459 \pm .031 \end{aligned}$
	H simulated roller lever, radius $1,3 \mathrm{~mm}$ $19,15 \mathrm{~mm}$	$\begin{aligned} & 16 \\ & .56 \end{aligned}$	UM40B10H01	UM40B70H01	$\begin{gathered} 1,5 \\ .053 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .021 \end{gathered}$	$\begin{gathered} 10,7 \pm 0,8 \\ .421 \pm .031 \end{gathered}$
		$\begin{gathered} 35 \\ 1.23 \end{gathered}$	UM40D10H01	UM40D70H01	$\begin{gathered} 3,0 \\ .106 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 10,7 \pm 0,8 \\ .421 \pm .031 \end{gathered}$
	F roller lever 18mm	$\begin{aligned} & 20 \\ & .7 \end{aligned}$	UM40B10F01	UM40B70F01	$\begin{gathered} 1,7 \\ .060 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \\ \hline \end{gathered}$	$\begin{aligned} & 14,50 \pm 0,8 \\ & .571 \pm .031 \end{aligned}$
		$\begin{aligned} & 40 \\ & 1.4 \end{aligned}$	UM40D10F01	UM40D70F01	$\begin{gathered} 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{aligned} & 14,50 \pm 0,8 \\ & .571 \pm .031 \end{aligned}$
$\begin{aligned} & 5 \text { Amp } \\ & 250 \text { VAC } \end{aligned}$	A pin plunger	$\begin{aligned} & \hline 150 \\ & 5.3 \\ & \hline \end{aligned}$	UM50E10A01	UM50E70A01	$\begin{gathered} 20 \\ .705 \end{gathered}$	$\begin{gathered} 0,6 \\ .024 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
on	B flat lever 18 mm	$\begin{aligned} & \hline 60 \\ & \mathbf{2 . 1} \end{aligned}$	UM50E10B01	UM50E70B01	$\begin{gathered} 4,0 \\ .141 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
	C flat lever 20 mm	$\begin{gathered} 55 \\ \mathbf{2} \end{gathered}$	UM50E10C01	UM50E70C01	$\begin{gathered} \hline 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
	D flat lever 26mm	$\begin{aligned} & 45 \\ & 1.6 \end{aligned}$	UM50E10D01	UM50E70D01	$\begin{gathered} 3,0 \\ .106 \end{gathered}$	$\begin{gathered} 3,5 \\ .138 \end{gathered}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{gathered} 1,0 \\ .039 \end{gathered}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$
	J flat lever 60 mm		UM50E10J 01	UM50E70J 01	$\begin{gathered} 1,0 \\ .035 \end{gathered}$	$\begin{gathered} 8,5 \\ .335 \end{gathered}$	$\begin{gathered} 2,2 \\ .087 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 8,8 \pm 2,4 \\ .346 \pm .094 \end{gathered}$
	```E simulated roller lever, radius 2,5mm 19mm```	$\begin{gathered} 55 \\ 2 \end{gathered}$	UM50E10E01	UM50E70E01	$\begin{gathered} 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{aligned} & 11,65 \pm 0,8 \\ & .459 \pm .031 \end{aligned}$
	H simulated roller lever, radius $1,3 \mathrm{~mm}$ 19 mm	$\begin{gathered} 55 \\ \mathbf{2} \end{gathered}$	UM50E10H01	UM50E70H01	$\begin{gathered} 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 10,7 \pm 0,8 \\ .421 \pm .031 \end{gathered}$
\&	F roller lever 18mm	$\begin{aligned} & \hline 60 \\ & \mathbf{2 . 1} \end{aligned}$	UM50E10F01	UM50E70F01	$\begin{gathered} 4,0 \\ .141 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{aligned} & 14,50 \pm 0,8 \\ & .571 \pm .031 \end{aligned}$

OTHER TERMINATION TYPES ARE AVAILABLE
For PC Straight cross-line, change 2nd set of numbers to 20 (Example: UM40B20A01) For PC Straight international, change 2nd set of numbers to 40 (Example: UM40B40A01) For PC Straight right angle, change 2nd set of numbers to 50 (Example: UM40B50A01) For PC Straight left angle, change 2nd set of numbers to 60 (Example: UM40B60A01)

## MOUNTING DIMENSIONS (for reference only) $\frac{\mathrm{mm}}{\mathrm{in} .}$

## Pin Plunger Type $A$

PC Straight C ross-Line - Type 20


PC Left Angle In-line - Type 60


20mm Flat Lever Type C


18mm Roller Lever Type F
5 mm (. 197 in .) dia. $\times 3,2 \mathrm{~mm}$ (. 126 in .)
thick roller Type $E$ has $\mathbf{2 , 5 m m}$ radius


## Mounting screw size is $\mathbf{m} \mathbf{2 , 3}$.

Maximum tightening torque is $\mathbf{3} \mathbf{~ k g - c m}$.


## IP50-SEALED



## FEATURES

- Silver or gold contacts
- Variety of integral actuator styles including pin plunger, flat lever, roller lever, and simulated roller lever
- IP50 or IP67 type sealing
- Choice of quick-connect, printed circuit board, solder or leadwire termination
- Form C single-pole double-throw
- Temperature range: $-40^{\circ}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ}\right.$ to $185^{\circ} \mathrm{F}$ )
- Weight, approx.: . 07 oz ( 2 g .) for IP50-sealed switches; and . 14 oz . (4g.) for IP67-sealed switches, not including leadwires
- UL, CSA, VDE, and SEMKO marking designations


## IP67-SEALED




## ELECTRICAL RATINGS (in amps)

| Voltage | Silver Contacts |  | Resistive |
| :---: | :---: | :---: | :---: |\(\left.\quad \begin{array}{c}Gold Contacts <br>


Resistive\end{array}\right]\)| 125 VAC | 2.0 | 2.0 | 0.1 A |
| :---: | :---: | :---: | :---: |
| 250 VAC | 2.0 | 2.0 | 0.1 A |
| 30 VDC | 2.0 | 2.0 | 0.1 A |
| 125 VDC | 0.4 | 0.05 | - |

UL File No. E12252, CSA File LR23413M167

IP50-sealed UM switches are the same size as non-sealed UM switches on pages 12-15. There is an elastomer seal on the switch plunger and a cover-tocase seal. They provide a degree of protection against the entry of dust.

IP67-sealed UM switches have the plunger seal and cover-to-case seal. In addition, their AWG \#20 leadwires are molded in epoxy resin. They provide a degree of protection against water entry during temporary immersion.


ORDER GUIDE IP50 SEALED 0.1-AMP G OLD CONTACTS

Actuators	$\begin{aligned} & \text { O.F. max. } \\ & \text { grams } \end{aligned}$	Termination		R.F. min. grams ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	$\begin{gathered} \text { O.P } \\ \text { mm } \\ \text { inches } \end{gathered}$
	02.	Solder	. 110 QC					
A pin plunger	$\begin{aligned} & 150 \\ & 5.3 \end{aligned}$	UM10E11AS1	UM10E71AS1	$\begin{gathered} 20 \\ .705 \end{gathered}$	$\begin{gathered} 0,6 \\ .024 \end{gathered}$	$\begin{gathered} 0,4 \\ .016 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
B flat lever	$\begin{aligned} & 60 \\ & \mathbf{2 . 1} \end{aligned}$	UM10E11BS1	UM10E71BS1	$\begin{gathered} 4,0 \\ .141 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
C flat lever	$\begin{aligned} & 55 \\ & 1.9 \end{aligned}$	UM10E11CS1	UM10E71CS1	$\begin{gathered} 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
D flat lever	$\begin{aligned} & 45 \\ & 1.6 \end{aligned}$	UM10E11DS1	UM10E71DS1	$\begin{gathered} 3,0 \\ .106 \end{gathered}$	$\begin{gathered} 3,5 \\ .138 \end{gathered}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{gathered} 1,0 \\ .039 \end{gathered}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$
E simulated roller lever	$\begin{aligned} & 55 \\ & 1.9 \end{aligned}$	UM10E11ES1	UM10E71ES1	$\begin{gathered} 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{aligned} & 11,65 \pm 0,8 \\ & .459 \pm .031 \end{aligned}$
F roller lever	$\begin{aligned} & 60 \\ & \mathbf{2 . 1} \end{aligned}$	UM10E11FS1	UM10E71FS1	$\begin{gathered} 4,0 \\ .141 \end{gathered}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 14,5 \pm 0,8 \\ .571 \pm .031 \end{gathered}$

ORDER GUIDE IP50 SEALED 2.0-AMP SILVER CONTACTS

Actuators	O.F. max. grams	Termination		R.F. min. grams ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	$\begin{aligned} & \mathbf{O . P} \\ & \mathrm{mm} \end{aligned}$   inches
	oz.	Solder	. 110 QC					
A pin plunger	$\begin{aligned} & 150 \\ & 5.3 \end{aligned}$	UM35E11AS1	UM35E71AS1	$\begin{gathered} \hline 20 \\ .705 \end{gathered}$	$\begin{gathered} 0,6 \\ .024 \end{gathered}$	$\begin{gathered} \hline 0,4 \\ .016 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
B flat lever	60 2.1	UM35E11BS1	UM35E71BS1	$\begin{aligned} & 4,0 \\ & .141 \end{aligned}$	$\begin{gathered} 2,5 \\ .098 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
C flat lever	$\begin{aligned} & 55 \\ & 1.9 \end{aligned}$	UM35E11CS1	UM35E71CS1	$\begin{gathered} 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{array}{r} 1,2 \\ .047 \end{array}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
D flat lever	$\begin{aligned} & \hline 45 \\ & 1.6 \end{aligned}$	UM35E11DS1	UM35E71DS1	$\begin{aligned} & \hline 3,0 \\ & .106 \end{aligned}$	$\begin{gathered} \hline 3,5 \\ .138 \end{gathered}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{aligned} & \hline 1,0 \\ & .039 \end{aligned}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$
E simulated roller lever	$\begin{aligned} & \hline 55 \\ & 1.9 \end{aligned}$	UM35E11ES1	UM35E71ES1	$\begin{aligned} & \hline 3,5 \\ & .123 \end{aligned}$	$\begin{gathered} 2,8 \\ .10 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} \hline 0,8 \\ .031 \end{gathered}$	$\begin{aligned} & 11,65 \pm 0,8 \\ & .459 \pm .031 \end{aligned}$
F roller lever	$\begin{aligned} & \hline 60 \\ & 2.1 \end{aligned}$	UM35E11FS1	UM35E71FS1	$\begin{aligned} & \hline 4,0 \\ & .141 \end{aligned}$	$\begin{gathered} \hline 2,5 \\ .098 \end{gathered}$	$\begin{gathered} \hline 0,8 \\ .031 \end{gathered}$	$\begin{gathered} \hline 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 14,5 \pm 0,8 \\ .571 \pm .031 \end{gathered}$

## TO SPECIFY PC TERMINALS:

In the order guides above, change the 2nd set of numbers to 21. Example: UM10E11AS1 converts to UM10E21AS1 with PC terminals


ORDER GUIDE IP67 SEALED 0.1-AMP G OLD AND 2.0-AMP SILVER CONTACTS

Actuators	0.F. max. grams 02.	Leadwire Termination		R.F. min. grams ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	$\begin{gathered} \text { O.P } \\ \text { mm } \\ \text { inch } \end{gathered}$
A pin plunger	$\begin{aligned} & 150 \\ & 5.3 \end{aligned}$	UM10E90AS1	UM35E90AS1	$\begin{gathered} \hline 20 \\ .705 \end{gathered}$	$\begin{gathered} 0,6 \\ .024 \end{gathered}$	$\begin{gathered} \hline 0,4 \\ .016 \end{gathered}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{gathered} 8,4 \pm 0,3 \\ .331 \pm .012 \end{gathered}$
B flat lever	$\begin{aligned} & \hline 60 \\ & 2.1 \end{aligned}$	UM10E90BS1	UM35E90BS1	$\begin{aligned} & 4,0 \\ & .141 \end{aligned}$	$\begin{array}{r} 2,5 \\ .098 \end{array}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
C flat lever	$\begin{aligned} & 55 \\ & 1.9 \end{aligned}$	UM10E90CS1	UM35E90CS1	$\begin{gathered} \hline 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 8,8 \pm 0,8 \\ .346 \pm .031 \end{gathered}$
D flat lever	$\begin{aligned} & 45 \\ & 1.6 \end{aligned}$	UM10E90DS1	UM35E90DS1	$\begin{gathered} 3,0 \\ .106 \end{gathered}$	$\begin{gathered} 3,5 \\ .138 \end{gathered}$	$\begin{gathered} 1,6 \\ .063 \end{gathered}$	$\begin{gathered} 1,0 \\ .039 \end{gathered}$	$\begin{gathered} 8,8 \pm 1,2 \\ .346 \pm .047 \end{gathered}$
E simulated roller lever	$\begin{aligned} & 55 \\ & 1.9 \end{aligned}$	UM10E90ES1	UM35E90ES1	$\begin{gathered} 3,5 \\ .123 \end{gathered}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{gathered} \hline 0,8 \\ .031 \end{gathered}$	$\begin{aligned} & 11,65 \pm 0,8 \\ & .459 \pm .031 \end{aligned}$
F roller lever	$\begin{aligned} & \hline 60 \\ & 2.1 \end{aligned}$	UM10E90FS1	UM35E90FS1	$\begin{aligned} & \hline 4,0 \\ & .141 \end{aligned}$	$\begin{gathered} \hline 2,5 \\ .098 \end{gathered}$	$\begin{gathered} \hline 0,8 \\ .031 \end{gathered}$	$\begin{gathered} 0,5 \\ .020 \end{gathered}$	$\begin{gathered} 14,5 \pm 0,8 \\ .571 \pm .031 \end{gathered}$

MOUNTING DIMENSIONS (For reference only)

Mounting screw size is $\mathrm{m} \mathrm{2,3}$ Maximum torque is $3 \mathrm{~kg} / \mathrm{cm}$.
mm
in.

Pin Plunger Type $A$

PC Terminals



Solder In-line Terminals


## MOUNTING DIMENSIONS

(For reference only)
mm
in.

## Pin Plunger Type A

## QC In-line Terminals



## Leadwires




19 mm Simulated Roller Lever Type E $2,5 \mathrm{~mm}$ radius



## Lever Actuators 4 mm/. 158 in. wide

## 20 mm Flat Lever Type C

26 mm Flat Lever Type D


18 mm Roller Lever Type $F$ $5 \mathrm{~mm} / .197 \mathrm{in}$. dia. x 3,2 mm/. 126 in . Thick Roller


Mounting screw size is $\mathrm{m} \mathrm{2,3}$
Maximum torque is $3 \mathrm{~kg} / \mathrm{cm}$.

## CUT-A-WAY 1SX SUBMINIATURE BASIC SWITCH



## AVAILABLE TERMINALS

SX switches are available with several types of terminations. The T and T2 terminals provide easy solder lead wire attachment. The H 58 terminal offers the simplicity of quick-connect and mate with AMP .058-inch receptacles. Pin terminals allow easy attachmentto printed circuitboards.

## GENERAL INFORMATION

SX subminiature basic switches are small size precision snap-action switches from MICRO SWITCH. These switches are ideal where savings in space and weight are important. Unless otherwise noted, all listings have silver contacts.

## FEATURES

- Low operating force to 3 oz . ( 85 grams ) maximum
- Sensitive differential travel as low as .001 inch maximum
- Power load switching capability up to 7 amperes-silver contacts
- Optional gold contacts for low energy applications
- Optional bifurcated gold contacts for maximum reliability
- Long mechanical life up to $10,000,000$ cycles-95\% survival for 11SX series 1,000,000 cycles-95\% survival for 1SX series
- Temperature tolerance $-65^{\circ}$ to $+250^{\circ} \mathrm{F}$ ( -54 to $121^{\circ} \mathrm{C}$ ) on standard construction
- High temperature designs for up to $+400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$ for 100 hours
- Variety of integral and auxiliary actuators
- Choice of several terminal styles
- MIL-S-8805 qualified products available
- UL recognized File \#E12252, CSA certified file \# LR41372


Mounting torque Round
head 2-56 UNC 438
screws-
2 inch pounds max.

H391, H392
$90^{\circ}$ FORMED PIN


Mate with Amp Inc. Part No. 640024-1 Std.

Dimensions shown are for reference only

$$
\text { Key: } \frac{0,0=\mathrm{mm}}{0.00=\text { inches }}
$$

This section covers only $\mathbf{4 0}$ of our most popular SX Series catalog listings. If you don't find what you're looking for, it's likely one of the approximately $\mathbf{2 0 0}$ other active SX listings will meet your needs. Contact the 800 number.

ORDER GUIDE by ascending electrical capability


C haracteristics: O.F. - Operating Force; R.F. - Release Force; P.T. Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position

## INTEGRAL LEVERS



ORDER GUIDE

Catalog Listing	Description	Electrical Data And UL Code Page 20	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max.   mm inches	$\underset{\substack{\text { O.P. } \\ \text { inches }}}{\substack{\text { and }}}$
311SX1-T	. 135 inch ( $3,43 \mathrm{~mm}$ ) straight lever	$5 \underset{\mathbf{A}}{\mathrm{Amps}}$	$\begin{aligned} & 0,49 \\ & 1.76 \end{aligned}$	$\begin{gathered} 0,09 \\ .32 \end{gathered}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{aligned} & 0,36 \\ & .014 \end{aligned}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & 8,43 \pm 1,14 \\ & .332 \pm .045 \end{aligned}$
313SX1-T	As above with gold contacts	$1 \text { Amp }$	$\begin{aligned} & 0,49 \\ & 1.76 \end{aligned}$	$\begin{gathered} \hline 0,09 \\ .32 \end{gathered}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{aligned} & 0,36 \\ & .014 \end{aligned}$	$\begin{aligned} & \hline 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & 8,43 \pm 1,14 \\ & .332 \pm .045 \end{aligned}$


311SX2-T	.505 inch ( $12,8 \mathrm{~mm}$ ) straight lever	$5 \underset{\mathbf{A}}{5 \mathrm{Amps}}$	$\begin{gathered} 0,31 \\ 1.1 \end{gathered}$	$\begin{gathered} 0,05 \\ .18 \end{gathered}$	$\begin{array}{r} 2,92 \\ .115 \end{array}$	$\begin{aligned} & 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 0,89 \\ & .035 \end{aligned}$	$\begin{aligned} & 8,26 \pm 1,91 \\ & .325 \pm .075 \end{aligned}$
313SX2-T	As above with gold contacts	$1 \underset{\text { D }}{ } 1 \text { Amp }$	$\begin{gathered} \hline 0,31 \\ 1.1 \end{gathered}$	$\begin{aligned} & \hline 0,05 \\ & .18 \end{aligned}$	$\begin{aligned} & \hline 2,92 \\ & .115 \end{aligned}$	$\begin{aligned} & \hline 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 0,89 \\ & .035 \end{aligned}$	$\begin{aligned} & 8,26 \pm 1,91 \\ & .325 \pm .075 \end{aligned}$



Dim. Dwg. Fig. 4
$3115 \times 3-\mathrm{T}$

.965 inch $(24,5 \mathrm{~mm})$	5 Amps	$\mathbf{0 , 2 0}$	0,03	4,70	0,61	1,52	$7,75 \pm 2,92$
straight lever	$\mathbf{A}$	$\mathbf{. 7 1}$	$\mathbf{. 1 1}$	. $\mathbf{1 8 5}$	$\mathbf{. 0 2 4}$	. $\mathbf{0 6 0}$	$. \mathbf{3 0 5} \pm . \mathbf{1 1 5}$
As above with gold	1 Amp	0,20	0,03	4,70	0,61	1,52	$7,75 \pm 2,92$
contacts	$\mathbf{D}$	$\mathbf{. 7 1}$	$\mathbf{. 1 1}$	$\mathbf{. 1 8 5}$	$\mathbf{. 0 2 4}$	$\mathbf{. 0 6 0}$	$. \mathbf{3 0 5} \pm . \mathbf{1 1 5}$


3115X4-T	.042 inch ( $1,1 \mathrm{~mm}$ ) simulated roller lever	$5 \underset{\mathbf{A}}{5 \mathrm{Amps}}$	$\begin{gathered} 0,58 \\ 2.1 \end{gathered}$	$\begin{gathered} 0,11 \\ .39 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 0,25 \\ & .010 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{gathered} 14,15 \pm 0,91 \\ .557 \pm .036 \end{gathered}$
313SX4-T	As above with gold contacts	$1 \underset{\mathbf{D}}{ }$	$\begin{gathered} 0,58 \\ 2.1 \end{gathered}$	$\begin{gathered} 0,11 \\ .39 \end{gathered}$	$\begin{array}{r} 1,27 \\ .050 \end{array}$	$\begin{aligned} & 0,25 \\ & .010 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{array}{\|c} 14,15 \pm 0,91 \\ .557 \pm .036 \end{array}$


311SX5-T	.459 inch (11,7 mm) simulated roller lever	$5 \underset{\mathbf{A}}{5 \mathrm{Amps}}$	$\begin{gathered} 0,31 \\ 1.1 \end{gathered}$	$\begin{gathered} 0,05 \\ .18 \end{gathered}$	$\begin{aligned} & 2,67 \\ & .105 \end{aligned}$	$\begin{aligned} & 0,56 \\ & .022 \end{aligned}$	$\begin{aligned} & 0,89 \\ & .035 \end{aligned}$	$\begin{gathered} 14,86 \pm 1,65 \\ .585 \pm .065 \end{gathered}$
313SX5-T	As above, with gold contacts	$1 \mathrm{Amp}$ D	$\begin{gathered} \hline 0,31 \\ 1.1 \end{gathered}$	$\begin{gathered} 0,05 \\ .18 \end{gathered}$	$\begin{aligned} & \hline 2,67 \\ & .105 \end{aligned}$	$\begin{aligned} & 0,56 \\ & .022 \end{aligned}$	$\begin{aligned} & \hline 0,89 \\ & .035 \end{aligned}$	$\begin{gathered} 14,86 \pm 1,65 \\ .585 \pm .065 \end{gathered}$

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position; F.P. - Free Position.
*All characteristics are taken with actuator assembled on Catalog Listing 1SX1-T as shown.

ORDER GUIDE

Catalog Listing	Description	Actuator Length "A" mm inches	O.F. max. newtons ounces	R.F. min. newtons ounces	$\begin{gathered} \text { P.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	D.T. max. inches	O.P. $\dagger \dagger$ mm inches	$\begin{gathered} \text { F.P. } \\ \text { mm } \\ \text { inches } \end{gathered}$
J X-20	Straight lever	$\begin{gathered} \hline 18.3 \\ .72 \end{gathered}$	$\overline{0,28}$   1 approx.	$\begin{aligned} & \hline 0,04 \\ & .14 \end{aligned}$	-	$\begin{gathered} 0,76 \\ .030 \\ \text { approx. } \end{gathered}$	$\begin{gathered} \hline 0,76 \\ .030 \\ \text { approx. } \end{gathered}$	$\begin{gathered} \hline 10,8 \\ .425 \\ \text { approx. } \end{gathered}$	$\begin{aligned} & 12,3 \\ & .485 \end{aligned}$   approx.
J X-219	Straight lever (For higher temp.)	$\begin{gathered} \hline 18,3 \\ .72 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 0,04 \\ & .14 \end{aligned}$	-	$\begin{gathered} 0,76 \\ .030 \\ \text { approx. } \end{gathered}$	$\begin{gathered} 0,76 \\ .030 \\ \text { approx. } \end{gathered}$	$\begin{gathered} \hline 10,8 \\ .425 \\ \text { approx. } \end{gathered}$	$\begin{gathered} \hline 12,3 \\ .485 \\ \text { approx. } \end{gathered}$



Dim. Dwg. Fig. 8


Dim. Dwg. Fig. 9


Dim. Dwg. Fig. 9


Dim. Dwg. Fig. 10

J X-45	Roller leaf	$\begin{gathered} 6,1 \\ .24 \dagger \end{gathered}$	$\begin{gathered} 1,95 \\ 7 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	.225 approx.	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 12,2 \\ & .480 \end{aligned}$	$\begin{aligned} & 16,5 \\ & .650 \\ & \text { ref. } \end{aligned}$
J X-96	$\begin{array}{l}\text { Roller leaf } \\ \text { (For higher temp.) }\end{array}$	$\begin{gathered} 6,1 \\ .24 \dagger \end{gathered}$	$\begin{gathered} 1,95 \\ 7 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{gathered} .225 \\ \text { approx. } \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 12,2 \\ & .480 \end{aligned}$	$\begin{aligned} & 16,5 \\ & .650 \\ & \text { ref. } \end{aligned}$
J X-51**	Reverse roller leaf	$\begin{gathered} 7,6 \\ .30 \dagger \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,56 \\ 2 \end{gathered}$	$\begin{gathered} .110 \\ \text { approx. } \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 12,8 \\ & .505 \end{aligned}$	$\begin{aligned} & 14,7 \\ & .580 \\ & \text { ref. } \end{aligned}$


J X-4	Tandem leaf	$\begin{aligned} & 7,9 \\ & .31 \end{aligned}$	$\begin{gathered} 4,17 \\ 15 \end{gathered}$	$\begin{gathered} 0,83 \\ 3 \end{gathered}$	.065 approx.	$\begin{aligned} & 0,20 \\ & .008 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 7,6 \\ .300 \end{gathered}$	$\begin{aligned} & 9,40 \\ & .370 \\ & \text { ref. } \end{aligned}$
**Switc from J' ${ }^{\prime}$ hole ne	ounted with plu ement is from ip of lever to the		NOTE: Above actuators should be used at temperatures below $+300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$; exceptlistings $\int X-95$, J X $-96, J X$ - 219 and X - 220 are for use with the 4 SX1-T to $400^{\circ} \mathrm{F}$. ( $204^{\circ} \mathrm{C}$ ).						

MOUNTING DIMENSIONS (for reference only)
INTEGRAL LEVERS

g.

Fig. 2

## INTEGRAL LEVERS

Fig. 4



Fig. 5


Fig. 3


Interchangeable with 1 XX-1T switch with J X-25 actuator.

## AUXILIARY ACTUATORS



Fig. 7
Switches are not included with actuator.

Fig. 8
Mounting holes accept pins or screws of .087 diameter ( $2,21 \mathrm{~mm}$ ).

Fig. 9


Fig. 10
Key: $\frac{0,0=m m}{0.00=\text { inches }}$

## Subminiature

## CUT-A-WAY SM SUBMINIATURE BASIC SWITCH



## AVAILABLE TERMINALS

Various terminals are available for most listings. These include: the T and T2 for wrap-around soldering of leadwires; solder terminals for solder connections; H 58 terminals and H 4 series terminals provide easy quick-connect installation; H2 type, round wire wrap orPC terminals; H 6 rectangular wire wrap terminals are also available. Other quick-connect terminals of the Series H types are available. Contact the 800 number for ordering information.


SOLDER


H58


## GENERAL INFORMATION

SM subminiature switches are slightly larger than the SX switches. These switches combine small size and light weight with ample electrical capacity, precision operation and long life. Unless otherwise noted, all listings have silver contacts.

FEATURES

- Low operating force to 2 ounces maximum
- Sensitive differential travel as low as .001 inch $(0,025 \mathrm{~mm})$ maximum
- Power load switching capability available to 11 amps (VAC) - silver contacts
- Motor load handling capacity to $1 / 4$ hp (VAC)
- Optional gold contacts for low energy applications
- Optional bifurcated gold contacts for maximum reliability
- Long mechanical life
- 11SM Series 10,000,000
operations
- 1SM/41SM Series 80,000
operations
- Bifurcated contacts $1,000,000$
operations
All at 95\% survival
- Standard temperature range $-65^{\circ}$ to $+185^{\circ} \mathrm{F}\left(-54\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
- High temperature construction available for use to $+400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$ for 100 hours
- Variety of integral and auxiliary actuators
- Choice of several terminal styles

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. Differential Travel; O.P. - Operating Position.

ORDER GUIDE by ascending electrical capability

PIN PLUNGERS	Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min.   mm inches	D.T. max. mm inches	$\begin{aligned} & \text { O.P.* } \\ & \text { mm } \end{aligned}$ inches
	11SM1077-T	Gold alloy contacts	$.1 \text { Amp }$	$\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \\ & \hline \end{aligned}$	$\begin{array}{r} 0,13 \\ .005 \\ \hline \end{array}$	$\begin{gathered} 0,1 \\ .004 \\ \hline \end{gathered}$	$\begin{array}{r} 8,38 \\ .330 \\ \hline \end{array}$
	12SM604-T	Bifurcated gold contacts, reduced rating	$\begin{gathered} .1 \text { Amp } \\ \hline \end{gathered}$	$\left.\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered} \right\rvert\,$	$\begin{gathered} \hline 0,28 \\ \mathbf{1} \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & \hline 0,076 \\ & .003 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 8,38 \\ .330 \end{array}$
	11SM23-T	Application requiring gold contacts	$\begin{gathered} 1 \mathrm{Amp} \\ \mathbf{N} \\ \hline \end{gathered}$	$\left.\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered} \right\rvert\,$	$\begin{gathered} 0,28 \\ \mathbf{1} \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{array}{r} 0,13 \\ .005 \end{array}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 8,38 \\ & .330 \end{aligned}$
	12SM4-T	Best reliability (Bifurcated gold contacts)	$\begin{aligned} & 1 \mathrm{Amp} \\ & \mathbf{N} \\ & \hline \end{aligned}$	$\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered}$	$\begin{gathered} 0,28 \\ \mathbf{1} \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \\ & \hline \end{aligned}$	$\begin{gathered} 0,076 \\ .003 \end{gathered}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 8,38 \\ .330 \\ \hline \end{array}$
	11SM701-T	Lower force	$4 \underset{\mathbf{S}}{4 \mathrm{Amps}}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{gathered} 0,14 \\ .5 \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,051 \\ .002 \end{gathered}$	$\begin{array}{r} \hline 8,38 \\ .330 \end{array}$
P-	11SM1-T	Most applications	$\begin{gathered} 5 \mathrm{Amps} \\ \mathbf{J} \end{gathered}$	$\left.\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered} \right\rvert\,$	$\begin{gathered} 0,28 \\ \mathbf{1} \end{gathered}$	$\begin{array}{r} 0,51 \\ .020 \end{array}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 8,38 \\ .330 \end{array}$
dim ${ }^{\text {a }}$	11SM3-T	Operating in temperatures to $+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$\begin{gathered} 5 \mathrm{Amps} \\ \mathbf{J} \end{gathered}$	$\left.\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered} \right\rvert\,$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 8,38 \\ .330 \end{array}$
m. Dwg. Fig. 1	11SM244-T	Operating in temperatures to $+400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right) 100 \mathrm{hrs}$.	$\underset{*}{5 \mathrm{Amps}}$	$\begin{gathered} 0,83-1,39 \\ \mathbf{3 - 5} \end{gathered}$	$\begin{gathered} 0,28 \\ \mathbf{1} \end{gathered}$	$\begin{array}{r} 0,51 \\ .020 \end{array}$	$\begin{array}{r} 0,13 \\ .005 \end{array}$	$\begin{gathered} 0,1 \\ .004 \\ \hline \end{gathered}$	$\begin{aligned} & 8,38 \\ & .330 \end{aligned}$
	11SM401-T	Less differential travel	$5 \text { Amps }$	$\begin{gathered} 0,97 \\ 3.5 \\ \text { max. } \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,025 \\ .001 \end{gathered}$	$\begin{aligned} & 8,38 \\ & .330 \end{aligned}$
	$\begin{array}{\|l\|} \hline \text { 21SM284-T2 } \\ \text { (MS25085-2) } \\ \hline \end{array}$	MIL-S-8805 application requirements	$\begin{gathered} 5 \mathrm{Amps} \\ \mathbf{R} \\ \hline \end{gathered}$	$\left.\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered} \right\rvert\,$	$\begin{gathered} 0,28 \\ \mathbf{1} \end{gathered}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{array}{r} 0,13 \\ .005 \end{array}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} \hline 8,38 \\ .330 \end{array}$
	$\begin{aligned} & \text { 21SM284 } \\ & \text { (MS25085-1) } \end{aligned}$	MIL-S-8805 application requirements, solder terminals	$\underset{\mathbf{R}}{5 \mathrm{Amps}}$	$\begin{array}{\|c} 0,83-1,39 \\ 3-5 \end{array}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{array}{r} \hline 0,13 \\ .005 \end{array}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 8,38 \\ & .330 \end{aligned}$
	22SM1-T	Best stability under varying humidity	$\begin{gathered} 5 \mathrm{Amps} \\ \mathbf{J} \end{gathered}$	$\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered}$	$\begin{gathered} \hline 0,28 \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \\ & \hline \end{aligned}$	$\begin{array}{r} 0,13 \\ .005 \\ \hline \end{array}$	$\begin{gathered} \hline 0,1 \\ .004 \\ \hline \end{gathered}$	$\begin{array}{r} 8,38 \\ .330 \\ \hline \end{array}$
	41SM1-T	Up to 11 ampere $1 / 4 \mathrm{hp}$ (AC) load handling	$\begin{gathered} 11 \text { Amps } \\ \mathbf{M} \end{gathered}$	$\begin{gathered} 0,83-1,39 \\ 3-5 \end{gathered}$	$\begin{gathered} \hline 0,28 \\ \mathbf{1} \\ \hline \end{gathered}$	$\begin{aligned} & 0,76 \\ & .030 \\ & \hline \end{aligned}$	$\begin{array}{r} 0,13 \\ .005 \\ \hline \end{array}$	$\begin{gathered} \hline 0,1 \\ .004 \\ \hline \end{gathered}$	$\begin{array}{r} 8,38 \\ .330 \\ \hline \end{array}$

*For electrical data call 1-800-537-6945

411SM1	Sealed plunger construction	$5 \mathrm{Amps}_{\mathbf{K}}$	$\left.\begin{gathered} 0,83-2,09 \\ 3-7.5 \end{gathered} \right\rvert\,$	$\begin{gathered} 0,28 \\ \mathbf{1} \end{gathered}$	$\begin{array}{r} 0,51 \\ .020 \end{array}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 8,38 \\ & .330 \end{aligned}$
411SM23	As above with gold contacts	$1 \text { Amp }$	$\begin{array}{\|c\|} \hline 0,83-2,09 \\ 3-7.5 \end{array}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	0,1 .004	$\begin{aligned} & 8,38 \\ & .330 \end{aligned}$

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.

## ORDER GUIDE

	Catalog Listing	Description	Electrical Data And UL Code Page 20	O.F. max. newtons ounces	R.F. max. newtons ounces	P.T. max.   mm inches	O.T. min. inches	D.T. max.   mm inches	$\underset{\substack{\text { O.P. } \\ \text { inches }}}{\text { Onm }}$
Dim. Dwg. Fig. 4	311SM1-T	.285 inch ( $7,24 \mathrm{~mm}$ ) straight lever	$5 \mathrm{Amps}$	$\begin{gathered} \hline 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} 0,07 \\ .25 \end{gathered}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & \hline 0,48 \\ & .019 \end{aligned}$	$\begin{array}{\|c\|} \hline 8,64 \pm 1,5 \\ .340 \pm .060 \end{array}$
	311SM23-T	As above with gold contacts	$\begin{aligned} & 1 \mathrm{Amp} \\ & \mathbf{N} \end{aligned}$	$\begin{gathered} 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} 0,07 \\ .25 \end{gathered}$	$\begin{array}{r} 2,16 \\ .085 \end{array}$	$\begin{array}{r} 0,51 \\ .020 \end{array}$	$\begin{array}{r} 0,48 \\ .019 \\ \hline \end{array}$	$\begin{gathered} 8,64 \pm 1,5 \\ .340 \pm .060 \end{gathered}$
	311SM701-T	.285 inch ( $7,24 \mathrm{~mm}$ ) straight lever. Lower force	$4 \text { Amps }$	$\begin{aligned} & 0,16 \\ & .57 \end{aligned}$	$\begin{gathered} 0,03 \\ .11 \end{gathered}$	$\begin{array}{r} 2,16 \\ .085 \end{array}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & 0,36 \\ & .014 \end{aligned}$	$\begin{gathered} 8,64 \pm 1,5 \\ .340 \pm .060 \end{gathered}$
Dim. Dwg. Fig. 5	311SM2-T	.565 inch ( $14,35 \mathrm{~mm}$ ) straight lever	$\begin{gathered} 5 \mathrm{Amps} \\ \mathbf{J} \end{gathered}$	$\begin{gathered} 0,31 \\ 1.1 \end{gathered}$	$\begin{gathered} 0,05 \\ .18 \end{gathered}$	$\begin{array}{r} 3,05 \\ .120 \\ \hline \end{array}$	$\begin{array}{r} 0,66 \\ .026 \\ \hline \end{array}$	$\begin{aligned} & 0,69 \\ & .027 \end{aligned}$	$\begin{array}{\|c\|} \hline 8,51 \pm 2 \\ .335 \pm .080 \end{array}$
	311SM43-T	As above with gold contacts	$\begin{gathered} 1 \mathrm{Amp} \\ \mathbf{N} \end{gathered}$	$\begin{gathered} 0,31 \\ 1.1 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0,05 \\ & .18 \\ & \hline \end{aligned}$	$\begin{array}{r} 3,05 \\ .120 \\ \hline \end{array}$	$\begin{aligned} & 0,66 \\ & .026 \\ & \hline \end{aligned}$	$\begin{array}{r} 0,69 \\ .027 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 8,51 \pm 2 \\ .335 \pm .080 \end{array}$
	311SM702-T	.565 inch ( $14,35 \mathrm{~mm}$ ) straight lever. Lower force	$\underset{\mathbf{S}}{4 \mathrm{Amps}}$	$\begin{gathered} 0,11 \\ .4 \end{gathered}$	$\begin{gathered} \hline 0,02 \\ .07 \end{gathered}$	$\begin{aligned} & 3,05 \\ & .120 \end{aligned}$	$\begin{aligned} & 0,66 \\ & .026 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{gathered} 8,51 \pm 2 \\ .335 \pm .080 \end{gathered}$
Dim. Dwg. Fig. 6									
	311SM3-T	1.765 inch ( $44,8 \mathrm{~mm}$ ) straight lever	$\begin{gathered} 5 \mathrm{Amps} \\ \mathbf{J} \end{gathered}$	$\begin{gathered} 0,15 \\ .53 \end{gathered}$	$\begin{gathered} 0,02 \\ .07 \end{gathered}$	$\begin{aligned} & 7,87 \\ & .310 \end{aligned}$	$\begin{aligned} & 1,45 \\ & .057 \end{aligned}$	$\begin{gathered} 2,8 \\ .110 \end{gathered}$	$\begin{array}{\|c\|} \hline 7,11 \pm 4,3 \\ .280 \pm .170 \end{array}$
	311SM17-H58	As above with gold contacts	$1 \text { Amp }$	$\begin{gathered} 0,15 \\ .53 \end{gathered}$	$\begin{gathered} \hline 0,02 \\ .07 \end{gathered}$	$\begin{aligned} & 7,87 \\ & .310 \end{aligned}$	$\begin{aligned} & 1,45 \\ & .057 \end{aligned}$	$\begin{gathered} \hline 2,8 \\ .110 \end{gathered}$	$\begin{array}{\|c\|} \hline 7,11 \pm 4,3 \\ .280 \pm .170 \end{array}$
	311SM703-T	1.765 inch ( $44,8 \mathrm{~mm}$ ) straight lever. Lower force	$4 \mathrm{Amps}_{\mathbf{S}}$	$\begin{gathered} 0,06 \\ .2 \end{gathered}$	$\begin{gathered} \hline 0,01 \\ .04 \end{gathered}$	$\begin{aligned} & 7,87 \\ & .310 \end{aligned}$	$\begin{aligned} & 1,45 \\ & .057 \end{aligned}$	$\begin{aligned} & 1,78 \\ & .070 \end{aligned}$	$\begin{aligned} & 7,11 \pm 4,3 \\ & .280 \pm 170 \end{aligned}$
Dim. Dwg. Fig. 7	311SM4-T	.251 inch ( $6,38 \mathrm{~mm}$ ) simulated roller lever	$\begin{gathered} 5 \mathrm{Amps} \\ \mathbf{J} \end{gathered}$	$\begin{gathered} 0,39 \\ 1.4 \end{gathered}$	$\begin{aligned} & 0,07 \\ & .25 \end{aligned}$	$\begin{array}{r} 2,16 \\ .085 \end{array}$	$\begin{aligned} & 0,46 \\ & .018 \end{aligned}$	$\begin{array}{r} 0,48 \\ .019 \end{array}$	$\begin{array}{\|c\|} \hline 11,7 \pm 1,5 \\ .460 \pm .060 \end{array}$
	311SM25-T	As above with gold contacts	$1 \text { Amp }$	$\begin{gathered} \hline 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} \hline 0,07 \\ .25 \end{gathered}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 0,46 \\ & .018 \end{aligned}$	$\begin{aligned} & \hline 0,48 \\ & .019 \end{aligned}$	$\begin{gathered} 11,7 \pm 1,5 \\ .460 \pm .060 \end{gathered}$
	311SM704-T	. 251 inch ( $6,38 \mathrm{~mm}$ ) simulated roller lever. Lower force	$\begin{gathered} 4 \mathrm{Amps} \\ \mathbf{S} \end{gathered}$	$\begin{gathered} \hline 0,16 \\ .57 \end{gathered}$	$\begin{gathered} 0,03 \\ .11 \end{gathered}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 0,46 \\ & .018 \end{aligned}$	$\begin{aligned} & 0,33 \\ & .013 \end{aligned}$	$\begin{array}{\|c\|} \hline 11,7 \pm 1,5 \\ .460 \pm .060 \end{array}$



Dim. Dwg. Fig. 8

311SM5-T	.535 inch ( $13,6 \mathrm{~mm}$ ) simulated roller lever	5 Amps J	$\begin{gathered} 0,31 \\ 1.1 \end{gathered}$	$\begin{gathered} 0,05 \\ .18 \end{gathered}$	$\begin{aligned} & 3,05 \\ & .120 \end{aligned}$	$\begin{aligned} & 0,66 \\ & .026 \end{aligned}$	$\begin{aligned} & 0,69 \\ & .027 \end{aligned}$	$\begin{gathered} 11,56 \pm 2 \\ .455 \pm .080 \end{gathered}$
311SM705-T	.535 inch ( $13,6 \mathrm{~mm}$ ) simulated roller lever. Lower force	$\begin{gathered} 4 \mathrm{Amps} \\ \mathbf{S} \end{gathered}$	$\begin{gathered} 0,11 \\ .4 \end{gathered}$	$\begin{gathered} \hline 0,02 \\ .07 \end{gathered}$	$\begin{aligned} & 3,05 \\ & .120 \end{aligned}$	$\begin{aligned} & 0,66 \\ & .026 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{gathered} 11,56 \pm 2 \\ .455 \pm .080 \end{gathered}$



Dim. Dwg. Fig. 9

311SM6-T	.251 inch ( $6,38 \mathrm{~mm}$ ) roller lever	$5 \mathrm{Amps}$	$\begin{gathered} 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} 0,07 \\ .25 \end{gathered}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 0,46 \\ & .018 \end{aligned}$	$\begin{aligned} & 0,48 \\ & .019 \end{aligned}$	$\begin{gathered} 14,2 \pm 1,5 \\ .560 \pm .060 \end{gathered}$
311SM68-T	As above with gold contacts	$1 \underset{\mathbf{N}}{ }$	$\begin{gathered} 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} 0,07 \\ .25 \end{gathered}$	$\begin{aligned} & \hline 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 0,46 \\ & .018 \end{aligned}$	$\begin{aligned} & 0,48 \\ & .019 \end{aligned}$	$\begin{gathered} 14,2 \pm 1,5 \\ .560 \pm .060 \end{gathered}$
311SM706-T	.251 inch ( $6,38 \mathrm{~mm}$ ) roller lever. Lower force	$4 \mathrm{Amps}$	$\begin{aligned} & \hline 0,16 \\ & \hline .57 \end{aligned}$	$\begin{gathered} 0,03 \\ .11 \end{gathered}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & \hline 0,46 \\ & .018 \end{aligned}$	$\begin{aligned} & 0,33 \\ & .013 \end{aligned}$	$\begin{aligned} & 14,2 \pm 1,5 \\ & .560 \pm .060 \end{aligned}$


311SM7-T	.535 inch $(13,6 \mathrm{~mm})$   roller lever	5 Amps   J	0,31   $\mathbf{1 . 1}$	0,05   $\mathbf{. 1 8}$	3,05   $\mathbf{. 1 2 0}$	0,66   $\mathbf{. 0 2 6}$	0,69   $\mathbf{. 0 2 7}$	$\mathbf{1 4 , 1 \pm 2}$
$\mathbf{. 5 5 5} \pm . \mathbf{0 8 0}$								

Dim. Dwg. Fig. 10

ORDER GUIDE
INTEGRAL LEAF


Dim. Dwg. Fig. 11

Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max.   mm inches	O.T. min. inches	D.T. max.   mm inches	$\begin{gathered} \text { O.P. } \\ \text { inches } \\ \text { in } \end{gathered}$
111SM1-T	Force and stability of flexible leaf actuator	$5 \mathrm{Amps}$	$\begin{gathered} 1,95 \\ 7 \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & 5,54 \\ & .218 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{array}{\|l} 8,89 \pm 0,76 \\ .350 \pm .030 \end{array}$
111SM17-T	As above with gold contacts	$1 \text { Amp }$	$\begin{gathered} 1,95 \\ 7 \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{array}{r} \hline 5,54 \\ .218 \end{array}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{array}{\|l} 8,89 \pm 0,76 \\ .350 \pm .030 \end{array}$


111SM2-T	Flexible leaf with roller	$5 \mathrm{Amps}$	$\begin{gathered} 1,95 \\ 7 \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{array}{r} 5,56 \\ .219 \end{array}$	$\begin{array}{r} 0,76 \\ .030 \end{array}$	$\begin{aligned} & 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 14,3 \pm 0,76 \\ & .562 \pm .030 \end{aligned}$
111SM23-T	As above with gold contacts	$1 \text { Amp }$	$\begin{gathered} 1,95 \\ 7 \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & \hline 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 14,3 \pm 0,76 \\ & .562 \pm .030 \end{aligned}$

Dim. Dwg. Fig. 12

## AUXILIARY

 ACTUATORSSwitches are not included with the actuators.


Dim. Dwg. Fig. 14


Dim. Dwg. Fig. 14


$J \mathbf{S - 2 2 0}$	Straight lever	$26,2 \dagger$	0,28	0,04	3,18	0,76	0,76	10,3	-
		$\mathbf{1 . 0 3}$	$\mathbf{1}$	$\mathbf{. 1 4}$	$\mathbf{. 1 2 5}$ approx.	$\mathbf{. 0 3 0}$	$\mathbf{. 0 3 0}$	$\mathbf{. 4 0 6}$ approx.	


$J \mathbf{S - 2 4 6}$	Roller lever	$25,4 \dagger$	0,28	0,04	3,18	0,76	0,76	14,3	-
	(Steel roller)	$\mathbf{1 . 0 0}$	$\mathbf{1}$	$\mathbf{. 1 4}$	$\mathbf{. 1 2 5}$ approx.	$\mathbf{0 3 0}$	$\mathbf{0 3 0}$	$\mathbf{. 5 6 2}$ approx.	


J S-221	Formed lever (Simulated roller)	$\begin{gathered} 25,4 \dagger \\ 1.00 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{gathered} 0,04 \\ .14 \end{gathered}$	$3,18$   .125 approx.	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 11,6 \\ .455 \text { approx. } \end{gathered}$	-

Dim. Dwg. Fig. 16


$\boldsymbol{J S - 3 3 * *}$	Tandem leaf	5,3	5,00	2,78	$\mathbf{2 , 3 6}$	$\mathbf{0 , 1 5}$	0,38	$\mathbf{8 , 8 9} \pm 0,38$	$\mathbf{1 0 , 5}$
		$\mathbf{2 1}$	$\mathbf{1 8}$	$\mathbf{1 0}$	$\mathbf{. 0 9 3}$	$\mathbf{. 0 0 6}$	$\mathbf{. 0 1 5}$	$\mathbf{. 3 5 0} \pm \mathbf{. 0 1 5}$	$\mathbf{. 4 1 5}$


J S-31**	Tandem roller leaf (Bronze roller)	$\begin{aligned} & 4,3 \\ & .17 \end{aligned}$	$\begin{gathered} 11,1 \\ 40 \end{gathered}$	$\begin{gathered} 4,45 \\ 16 \end{gathered}$	$\begin{array}{r} 2,36 \\ .093 \end{array}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 14,5 \pm 0,38 \\ & .570 \pm .015 \end{aligned}$	$\begin{aligned} & 16,1 \\ & .635 \end{aligned}$

**Travel characteristics on tandem actuators vary with actual basic switch characteristics.
NOTE: Above actuators should be used below $+300^{\circ} \mathrm{F}$.
See page 79 for other actuators that may be used with SM Switches at higher temperatures. $\dagger$ " $A$ " measurement is from the pivot point of lever to the point indicated on drawing.

```
PIN PLUNGER
```



Fig. 1


Fig. 2

## INTEGRAL LEVERS



Fig. 4


Fig. 8


Fig. 5


Fig. 9


Fig. 12

## INTEGRAL LEAFS



Fig. 11

## AUXILIARY ACTUATORS



Fig. 14


Fig. 16

Switches are not included with the actuators.


## GENERAL INFORMATION

SE and XE switches are the smallest envi-ronment-sealed switches offered by MICRO SWITCH. Both types enclose basic switches within a corrosion resistant aluminum housing to seal precision switch contacts from contamination. SE switches include a SM basic switch, and XE switches include the smaller SX basic switch.

Switches held depressed for extended periods of time at temperature extremes may experience retarded plunger return upon deactuation. Where such a condition exists in the application, contact the 800 number for special designs that are available.

## FEATURES

- Watertight seal per enclosure design symbol 3, MIL-S-8805
- Power load switching capability up to 7 amps
- Temperature tolerance up to $+221^{\circ} \mathrm{F}$ ( $105^{\circ} \mathrm{C}$ )
- High temperature construction for use to $+300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$
- Several auxiliary actuators
- Choice of termination
- Military standard construction with listings qualified to MIL-S-8805
- All 4SE switches are UL recognized and CSA certified
- 4XE switches are UL recognized


## ELECTRICAL RATINGS

Circuitry	Electrical Rating Code	
Single-Pole   Double-Throw	A 5 amps res., 3 amps ind., (sea level), 5 amps res.,   2.5 amps ind., (50,000 feet) 28 vdc .   5 amps res., 5 amps ind., 125 or $250 \mathrm{vac}, 60 \mathrm{~Hz}$.	D UL Rating   $7 \mathrm{amps}, 250 \mathrm{vac} 60 \mathrm{~Hz}$
	B UL and CSA Rating 5 amps, $250 \mathrm{vac}, 60 \mathrm{~Hz}$	E 7 amps res., 4 amps ind., (sea level),   7 amps res., 2.5 amps ind., ( 50,000 feet), 28 vdc .
	C 7 amps res., 4 amps ind., (sea level),   7 amps res., 2.5 amps ind., ( 50,000 feet), 28 vdc .   7 amps res., 4 amps ind., (sea level), 115 vac, 400 Hz	R 1 amp res., 0.50 amp ind., 28 vdc .

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position

## SE SWITCHES ORDER GUIDE

	Catalog Listing	$\underset{\text { For }}{\text { Recommed }}$	Electrical Rating Code	C haracteristics					
				0.F. Newtons ounces	R.F. min. Newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	$\begin{gathered} \text { O.P. } \\ \text { inchm } \\ \text { inc } \end{gathered}$
1 foot leads (other lengths available)   Fig. 1	1SE1	Most applications	A	$\begin{gathered} 1,39-4,73 \\ 5-17 \end{gathered}$	$\begin{gathered} 1,11 \\ \hline \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & \hline 0,08 \\ & .003 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	1SE2	SPST - Normallyclosed	A	$\underset{5-17}{1,39-4,73}$	$\stackrel{1}{4}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{array}{r} 0,08 \\ .003 \end{array}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 10,8 \\ .425 \end{array}$
	1SE3	$\begin{aligned} & \text { SPST - Normally- } \\ & \text { open } \end{aligned}$	A	$\underset{5-17}{1,39-4,73}$	$\stackrel{1}{4}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 0,08 \\ & .003 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	4SE1	UL and CSA listing and UL and CSA listed lead wire	B	$\underset{5-17}{1,39-4,73}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{array}{r} 0,08 \\ .003 \end{array}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 10,8 \\ .425 \end{array}$
	5SE1	Oil resistant   Fluorosilicone seal	A	$\underset{5-17}{1,39-4,73}$	$\stackrel{1,11}{4}$	$\begin{array}{r} 1,27 \\ .050 \end{array}$	$\begin{array}{r} 0,08 \\ .003 \end{array}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	7SE1	Lower force	A	$\begin{gathered} 1,11-2,22 \\ 4-8 \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{array}{r} 0,08 \\ .003 \end{array}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 10,8 \\ .425 \end{array}$
	12SE4-T	High return force	A	$\begin{gathered} 1,39-5,28 \\ 5-19 \end{gathered}$	$\begin{gathered} 1,11 \\ \hline \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 0,08 \\ & .003 \end{aligned}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	1SE1-T	For customer leading	A	$\underset{5-17}{1,39-4,73}$	$\stackrel{1,11}{4}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 0,08 \\ & .003 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
Fig. 2									

AUXILIARY ACTUATORS FOR SE SWITC HES ORDER GUIDE (S witches are not included with actuators)

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel;
O.P. - Operating Position

	Catalog Listing	Description	Actuator Length A mm inches	C haracteristics measured with actuators mounted to a 1SE1						
					R.F. min. Newtons ounces	P.T. approx. mm inches	$\begin{gathered} \hline \text { O.T. } \\ \mathrm{min} . \\ \mathrm{mm} \\ \text { inches } \end{gathered}$	D.T.   max.   mm   inches	$\underset{\substack{\text { O.P. } \\ \text { inches }}}{\text { in }}$	$\begin{gathered} \text { F.P. } \\ \text { mm } \\ \text { inches } \end{gathered}$
	J E-1	Straight leaf (mounting hardware included)	$\begin{gathered} \hline 16,8 \\ .66 \end{gathered}$	$\begin{gathered} 3,34 \\ 12 \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & 3,81 \\ & .150 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 11,2 \\ & .440 \end{aligned}$	$\begin{gathered} 15 \pm 0,76 \\ .590 \pm .030 \end{gathered}$
Fig. 4	JE-4	Roller leaf. Roller turned $90^{\circ}$ to switch axis (mounting hardware included).	$\begin{aligned} & 16,8 \\ & \mathbf{6 6} \end{aligned}$	$3,34$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & 3,81 \\ & .150 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 16,3 \\ & .640 \end{aligned}$	$\begin{gathered} 20,1 \\ .790 \\ \text { approx. } \end{gathered}$
	JE-5	Roller leaf (mounting hardware included)	$\begin{aligned} & 14,2 \\ & .560 \end{aligned}$	$3,34$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & 3,81 \\ & .150 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 16,3 \\ & .640 \end{aligned}$	$\begin{aligned} & 20,1 \pm 0,76 \\ & .790 \pm .030 \end{aligned}$
	J E-17	Roller leaf. Reversed position (mounting hardware included)	$\begin{aligned} & 14,2 \\ & .560 \end{aligned}$	$\begin{gathered} \hline 3,34 \\ 12 \end{gathered}$	$\begin{gathered} \hline 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & 3,81 \\ & .150 \end{aligned}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,64 \\ & .025 \end{aligned}$	$\begin{aligned} & 16,3 \\ & .640 \end{aligned}$	$\begin{aligned} & 20,1 \pm 0,76 \\ & .790 \pm .030 \end{aligned}$
Fig. 7	J E-21	Roller lever	$\begin{aligned} & 13,7 \\ & .540 \end{aligned}$	$\begin{gathered} 1,67 \\ \mathbf{6} \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{array}{r} 2,54 \\ .100 \end{array}$	$\begin{aligned} & 0,25 \\ & .010 \end{aligned}$	$\begin{aligned} & 0,41 \\ & .016 \end{aligned}$	$\begin{aligned} & 16,3 \\ & .640 \end{aligned}$	$\begin{aligned} & 18,8 \pm 0,76 \\ & .740 \pm .030 \end{aligned}$
Fig. 8	J E-22	Tandem Roller Lever	$\begin{aligned} & 17,8 \\ & .700 \end{aligned}$	$\begin{gathered} \hline 4,73 \\ 17 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 2,54 \\ & .100 \end{aligned}$	$\begin{aligned} & \hline 0,15 \\ & .006 \end{aligned}$	$\begin{gathered} 0,3 \\ .012 \end{gathered}$	$\begin{aligned} & 16,8 \pm 1,3 \\ & .660 \pm .050 \end{aligned}$	$\begin{gathered} 19,3 \pm 1,3 \\ .760 \pm .050 \end{gathered}$

C haracteristics: O.F. - Operating Force; R.F. - Release Force;

	Catalog Listing	Recommended For	Electrical Rating Code	Characteristics					
				O.F. max. Newtons ounces	R.F. max. Newtons ounces	P.T. max. mm inches	0.T. min. mm inches	D.T. max. mm inches	O.P. mm inches $\pm .020(0,51)$
1 foot leads (other lengths available)   Fig. 9	$\begin{aligned} & \hline \text { 1XE1 } \\ & \text { (MS27994-1) } \end{aligned}$	Most applications MIL-S-8805 requirements	C	$\begin{gathered} 1,39-4,73 \\ 5-17 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} \hline 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	$\begin{aligned} & \text { 1XE201 } \\ & \text { (MS27994-4) } \end{aligned}$	General Use   MIL-S-8805   requirements   MIL-W-22759/11   wire	C	$\begin{gathered} 1,39-4,73 \\ 5-17 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 0,13 \\ .005 \end{array}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	1XE3	SPST-Normally Open	C	$\begin{gathered} 1,39-4,73 \\ 5-17 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 0,13 \\ .005 \end{array}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	$\begin{aligned} & \text { 1XE } 301 \\ & \text { (MS27994-5) } \end{aligned}$	Gold Contacts   MIL-W-22759/11 wire	R	$\begin{gathered} 1,39-4,73 \\ 5-17 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{array}{r} 10,8 \\ .425 \end{array}$
	$\text { 4XE } 1$	UL listing and UL and CSA listed leadwire	D	$\begin{gathered} 1,39-4,73 \\ 5-17 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 0,13 \\ .005 \end{array}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	5XE1	Oil resistant   Fluorosilicone seal	C	$\begin{gathered} 1,39-4,73 \\ 5-17 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$
	14XE1	Less operating force Use to $+300^{\circ} \mathrm{F}$   ( $149^{\circ} \mathrm{C}$ )	E	$\begin{gathered} 2,50 \\ 9 \text { max. } \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 0,13 \\ .005 \end{array}$	$\begin{array}{r} 10,9 \\ .430 \end{array}$
	14XE1-T	For customer leading Use to $+300^{\circ} \mathrm{F}$ ( $149^{\circ} \mathrm{C}$ )	E	$\begin{gathered} 2,50 \\ 9 \text { max. } \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 0,1 \\ 004 \end{gathered}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & 10,9 \\ & .430 \end{aligned}$
Fig. 10	$\begin{aligned} & \text { 1XE1-T } \\ & \text { (MS27994-3) } \end{aligned}$	For customer leading	C	$\underset{\substack{1,39-4,73}}{\substack{17}}$	$\underset{4}{1,11}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,1 \\ .004 \end{gathered}$	$\begin{array}{r} 0,13 \\ .005 \end{array}$	$\begin{aligned} & 10,8 \\ & .425 \end{aligned}$

AUXILIARY ACTUATORS FOR XE SWITCHES ORDER GUIDE (S witches are not included with the actuators)

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position; F.P. - Free Position.

		Description	Characteristics measured with actuator mounted on a 1XE1						
	Catalog Listing		0.F. max. Newtons ounces	R.F. min. Newtons ounces	P.T. approx. mm inches	O.T. min. mm inches	D.T.   max.   mm   inches	O.P.   mm   inches	F.P. mm inches
	J M - 1	Straight leaf	$\begin{gathered} 5,84 \\ \mathbf{2 1} \end{gathered}$	$\begin{gathered} 0,83 \\ 3 \end{gathered}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 0,23 \\ & .009 \end{aligned}$	$\begin{gathered} 0,3 \\ .012 \end{gathered}$	$\begin{aligned} & 10,8 \pm 0,76 \\ & .425 \pm .030 \end{aligned}$	$\begin{gathered} 14 \pm 0,76 \\ .550 \pm .030 \end{gathered}$
	J M - 5	Roller leaf	$\begin{gathered} 5,84 \\ 21 \end{gathered}$	$\begin{gathered} 0,83 \\ 3 \end{gathered}$	$\begin{array}{r} 3,18 \\ .125 \end{array}$	$\begin{array}{r} 0,23 \\ .009 \end{array}$	$\begin{gathered} 0,3 \\ .012 \end{gathered}$	$\begin{aligned} & 15,9 \pm 0,89 \\ & .625 \pm .035 \end{aligned}$	$\begin{aligned} & 19,1 \pm 0,89 \\ & .750 \pm .035 \end{aligned}$

## SE MOUNTING DIMENSIONS (For reference only)

## SE switches



MOUNTING HOLES WILL ACCEPT PINS OR SCREWS OF 22,1/.087 MAX DIA

Fig. 1

## SE auxiliary actuators




Fig. 6


Fig. 7

$$
\text { Key: } \frac{0,0=\mathrm{mm}}{0.00=\text { inches }}
$$

## XE MOUNTING DIMENSIONS (For reference only)

XE switches


MOUNTING HOLES WILL ACCEPT PINS OR OR SCREWS OF 22,1/. 087 MAX DIA

Fig. 9


Fig. 10

XE auxiliary actuators


Fig. 11
Key: $\frac{0,0=\mathrm{mm}}{0.00=\text { inches }}$


Fig. 12


## GENERAL INFORMATION

HS switches are designed for applications where maximum electrical rating and maximum sealing are essential, and where size and weight requirements are less critical. These switches are side mounted through mounting holes that are outside the sealed switching chamber.


## ELECTRICAL RATINGS

Circuitry	Electrical Rating Codes
Single-Pole Double-Throw	M 25 amps res., 8 amps ind., 5 amps motor, 3 amps lamp load, 28 vdc ;   1 amp res., 1 amp ind., $115 \mathrm{vac}, 60 \mathrm{~Hz}$   UL-CSA Rating: $1 \mathrm{amp} ., 115 \mathrm{vac}, 60 \mathrm{~Hz}$.
	N 15 amps res., 8 amps ind., 28 vdc; 1 amp res., 1 amp ind., $115 \mathrm{vac}, 60 \mathrm{~Hz}$
	O 20 amps res., 8 amps ind., 28 vdc; 1 amp res., 1 amp ind., $115 \mathrm{vac}, 60 \mathrm{~Hz}$ UL-CSA Rating: $1 \mathrm{amp}, 115 \mathrm{vac}, 60 \mathrm{~Hz}$
	10 amps res., 5 amps ind., 28 vdc ; 1 amp res., 1 amp ind., $115 \mathrm{vac}, 60 \mathrm{~Hz}$ UL-CSA Rating: $1 \mathrm{amp} ., 115 \mathrm{vac}, 60 \mathrm{~Hz}$.

## FEATURES

- Hermetically sealed per MIL-S-8805, design symbol $5\left(-67^{\circ}\right.$ to $+180^{\circ} \mathrm{F}$ or $-55^{\circ}$ to $82^{\circ} \mathrm{C}$ )
- Power load switching capability up to 25 amperes, 28 VDC
- Temperature tolerance from $-67^{\circ} \mathrm{F}$ to $+250^{\circ} \mathrm{F}\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$
- High temperature construction for use to $+300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$
- Several styles of integral lever actuators
- Two styles of terminals
- Military standard construction with listings on the MIL-S-8805 qualified products list
- UL recognized File \#E12252; CSA certified LR 4442

Characteristics: O.F. - Operating Force; R.F. -
Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T.

- Differential Travel; O.P. - Operating Position.


HS MOUNTING DIMENSIONS (For reference only)
Mounting holes will accept pins or screws of $.139^{\prime \prime}(3,53 \mathrm{~mm})$ diameter.


Fig. 1


Fig. 2


Fig. 3


Fig. 4


Fig. 5

## Miniature Hermetically Sealed Switches

GENERAL INFORMATION
HM switches are not generally recommended for $115 \mathrm{VAC}, 60 \mathrm{~Hz}$. If you have a 60 Hz application in the milliamp range, contact our 800 number for special design variations that are available.


## ELECTRICAL RATINGS

Circuitry		Electrical Rating Code
Single-Pole   Double-Throw	H 1 amp res., 0.25 amp ind., 28 VDC.	

## APPLICATION NOTES

1. Honeywell does notrecommend the use of silver cadmium oxide switch con-
tacts in non-arcing loads. Non-arcing loads are generally loads less than 12 volts and/or 0.5 amp. Catalog listings in the $5,6,15$, and 16 HM Series use silver cadmium oxide contacts. If you have specific questions, contact the MICRO SWITCH Application Center at 1-800-537-6945.
2. For applications involving non-arcing loads, catalog listings in the 9, 10, 19 and 20HM Series are recommended.
3. The $1,2,5$, and 6 HM Series are recommended for use only in 3 to 4 amp range applications.

## FEATURES

- Hermetically sealed per enclosure design symbol 5, MIL-S-8805
- Power load switching capability up to 4 amperes, 28 VDC and 2 Amps 115 VAC, 400 Hz
- Temperature tolerance from $-85^{\circ} \mathrm{F}$ to $+250^{\circ} \mathrm{F}\left(-65^{\circ} \mathrm{C}\right.$ to $\left.+121^{\circ} \mathrm{C}\right)$
- High temperature construction for use from $-85^{\circ} \mathrm{F}$ to $+500^{\circ} \mathrm{F} \quad\left(-65^{\circ} \mathrm{C}\right.$ to $+260^{\circ} \mathrm{C}$ )
- Variety of auxiliary actuators
- Choice of terminal styles
- Gold contacts for special applications
- Military standard construction with listings on the MIL-S-8805 qualified products list.

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.


## HM MOUNTING

A force spreading plate is recommended to reduce the chance of product damage due to excessive mounting force.

## NOTICE



Torque on \#2 mounting screws must be restricted to 1.5 inch pounds max. to prevent switch damage. The force spreading mounting plate used as shown will allow up to 2.5 inch pounds of mounting torque.

AUXILIARY ACTUATORS FOR HM SWITCHES ORDER GUIDE (S witches are not included)

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position; F.P. - Free Position.


## MOUNTING TORQUE:

J S-254 2.5 inch pounds all others 1.5 inch pounds See optional mounting plate - previous page.

All standard JS actuators in the SM Section of Catalog 10 can be used with the HM line. However, hardware, insulator, and oil impregnated roller supplied with these actuators may not provide the required service at temperatures above $250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right.$ ).

## HM MOUNTING DIMENSIONS (For reference only)

 Pin plunger switches

Fig. 1

MOUNTING HOLES WILL ACCEPT PINS OR SCREWS OF 1,9/.08 DIA


Fig. 2


Fig. 4
Fig. 3

## Auxiliary actuators



Fig. 5


Key: $\frac{0,0=\mathrm{mm}}{0.00=\text { inches }}$
Fig. 7


## GENERAL INFORMATION

HT switches will withstand temperatures up to +1000 F . The switching element is mounted on a ceramic base within a stainless steel enclosure. HT switches are not classified as sealed switches.

FEATURES

- Temperature tolerance up to $+1000^{\circ} \mathrm{F}$ (538 ${ }^{\circ} \mathrm{C}$ )
- Designed to meet military applications
- Side and panel mount
- UL recognized


## ELECTRICAL RATINGS

Circuitry	Electrical Rating
Single-Pole	UL Ratings:
Double-Throw	3 amps, $1 / 10 \mathrm{HP}, 125 \mathrm{vac}$.
	$3 \mathrm{amps}, 1 / 6 \mathrm{HP}, 250 \mathrm{vac}$.

## HT ORDER GUIDE

Characteristics: O.F. - Operating Force; R.F. - Release Force;
P.T. - Pretravel; O.T. - Overtravel; O.P. - Operating Position

	Catalog Listing	Description	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	$\begin{gathered} \text { O.P. } \\ \mathrm{mm} \\ \text { inches } \end{gathered}$
Fig. 1	1HT1	Straight plunger panel mount	$\begin{gathered} 2,78-5,56 \\ \mathbf{1 0 - 2 0} \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{aligned} & 4,78 \\ & .188 \end{aligned}$	$\begin{gathered} \hline 23,7 \\ .935 \\ \text { approx. } \end{gathered}$
Fig. 2	3HT1	Roller plunger panel mount	$\begin{gathered} 8,34 \\ \mathbf{3 0} \text { max. } \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{aligned} & 4,78 \\ & .188 \end{aligned}$	$\begin{gathered} \hline 35,9 \\ 1.413 \\ \text { approx. } \end{gathered}$
Fig. 3	2HT1	Pin plunger side mount	$\begin{gathered} 2,78-5,56 \\ \mathbf{1 0 - 2 0} \end{gathered}$	$\begin{gathered} 1,67 \\ \mathbf{6} \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{array}{r} 0,25 \\ .010 \end{array}$	$\begin{gathered} \hline 16,8 \\ .66 \\ \text { approx. } \end{gathered}$

HT MOUNTING DIMENSIONS (For reference only)


Fig. 1 Mounting holes will accept pins or screws of . $139^{\prime \prime}(3,53 \mathrm{~mm}$ ) dia.


Fig. 2
 SCREWS OF 3,6/.14 DIA.

Fig. 3

$$
\text { Key: } \frac{0,0=\mathrm{mm}}{0.00=\text { inches }}
$$



FEATURES

- Arc resistant case
- Mechanical life of 100,000 operations - 95\% survival
- Temperature tolerance to $+180^{\circ} \mathrm{F}$ $\left(82^{\circ} \mathrm{C}\right)$
- Mounting interchangeability with Z switches
- UL recognized


## AVAILABLE TERMINALS



Solder (No listing designation)

GENERAL INFORMATION
MT (single-pole double-throw) magnetic blow-out switches are designed to switch high capacity ( 125 and 250 VDC) systems. An integral magnet around the contact gap protects the contacts by deflecting the arc. Vents between the cover and housing allow the hot gas to escape. These switches are designed for the control of DC motors, solenoids, etc.


A28
$6-32 N C \times .218^{\prime \prime}$ Screws will accept up to \#12 wire.

## ELECTRICAL RATING

Circuitry	Electrical Data and UL Codes
Single-pole double-throw unless   otherwise noted   in order guide	K Rating established with switch non-polarized $10 \mathrm{amps}, 125$ vac or vdc; $1 / 4 \mathrm{hp}, 125$ vac or vdc.   UL Code L 168   Non-polarized:   10 amps res. or $1 / 4 \mathrm{hp}, 125 \mathrm{vdc}$; 3 amps max. res. 250 vdc .   Polarized*:   10 amps res. or $1 / 2 \mathrm{hp}, 125 \mathrm{vdc}$;   3 amps max. res., 250 vdc .
*To polarize, connect negative side of line to common terminal. To achieve the same effect, mount switch with brass screws, using a non-magnetic barrier (at least $1 / 4$ " thick) between the switch and mounting surface.	

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.

ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	$\begin{aligned} & \text { O.T. min. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	```D.T. max. mm inches```	$\begin{gathered} \text { O.P. } \\ \text { mm } \\ \text { inches } \end{gathered}$
MT-4R-A28	Pin plunger SPDT	$\begin{aligned} & 10 \mathrm{Amps} \\ & \mathrm{~K} \end{aligned}$	$\begin{gathered} 3,34-5,0 \\ 12-18 \end{gathered}$	$\begin{gathered} 1,39 \\ 5 \end{gathered}$	$\begin{gathered} 1,02 \\ .04 \end{gathered}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,1-0,18 \\ .004-.007 \end{gathered}$	$\begin{aligned} & 15,9 \pm 0,38 \\ & .625 \pm .015 \end{aligned}$

Dim. Dwg. Fig. 1

ORDER GUIDE

Catalog Listing	Description	Electrical Data and UL Codes	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	$\begin{gathered} \begin{array}{c} \text { O.P.* } \\ \mathrm{mm} \\ \text { inches } \end{array} \end{gathered}$
MT-4RV-A28	Straight lever	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} 0,56 \\ 2 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	$\begin{gathered} 12,7 \\ 0.5 \end{gathered}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$


MT-4RV2-A28	1.90 inch $(48,3 \mathrm{~mm})$ lever with hardened steel roller	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & 0,76 \\ & 2.75 \end{aligned}$	$\begin{aligned} & 0,07 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 8,89 \\ & 0.35 \\ & \hline \end{aligned}$	$\begin{aligned} & 0,79 \\ & .031 \end{aligned}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{gathered} 30,2 \\ 1.188 \end{gathered}$
MT-4RV22-A28	1.03 inch $(26,2 \mathrm{~mm})$ lever with hardened steel roller	$\underset{\mathrm{K}}{10 \mathrm{Amps}}$	$\begin{gathered} 1,25 \\ 4.5 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 5,08 \\ & .200 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 0,89 \\ & .035 \end{aligned}$	$\begin{gathered} 31,3 \\ 1.234 \end{gathered}$

Dim. Dwg. Fig. 3

MT-4RL-A28	1.95 inch (49,5mm)   flexible leaf	10 Amps   K	3,34   12	0,28   1	-	1,52   .060   max.	-	19,1   .750

Dim. Dwg. Fig. 4

MT-4RL2-A28	1.82 inch ( $46,2 \mathrm{~mm}$ ) flexible leaf with hardened steel roller	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} 3,34 \\ 12 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	-	$\begin{array}{r} 1,52 \\ .060 \\ \text { max. } \end{array}$	-	$\begin{gathered} 30,2 \\ 1.188 \end{gathered}$

Dim. Dwg. Fig. 5

## Magnetic Blow-out

MOUNTING DIMENSIONS (For reference only)

PIN PLUNGER


Fig. 1
ROLLER LEVER


Fig. 3
FLEXIBLE ROLLER LEAF


Fig. 5
Mounting holes accept pins or screws of .139" (3,53 mm) diameter.

Key: $\frac{0,0=\mathrm{mm}}{0.00=\text { inches }}$

STRAIGHT LEVER


Fig. 2
FLEXIBLE LEAF


Fig. 4

## Miniature

## CUT-A-WAY V3 MINIATURE BASIC SWITCH



## GENERAL INFORMATION

V3 miniature basic switches feature high electric al capacity and long life. Their size and shape meet design requirements in all types of applications.

There is a choice of SPDT, SPNC, and SPNO circuitry. Many leverstyles, contact materials, and terminal variations can be furnished. Contact the 800 number for ordering information.

## FEATURES

- Low operating force to .53 ounce maximum
- Sensitive differential travel as low as .006 inch maximum
- Power load switching capability up to 25 amperes-silver contacts
- Gold alloy crosspoint, silver cadmium, and other contact material for special applications
- Long mechanical life of $10,000,000 \mathrm{cy}$ -cles-95\% survival for V3-100, V3-1100, V3-2100, V3-3000 Series
- Temperature tolerance up to $+180^{\circ} \mathrm{F}$ $\left(82^{\circ} \mathrm{C}\right)$ on standard construction
- High temperature construction for use up to $+600^{\circ} \mathrm{F}\left(316^{\circ} \mathrm{C}\right)$
- 3,1 mm mounting holes available
- UL recognized File \#E12252, CSA certified File \#LR41370


## AVAILABLE TERMINALS

SOLDER


D8

.188 wide $\times .020$ thick terminals

SHORT SOLDER


D9

.250 wide $\times .032$ thick terminals

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.
ORDER GUIDE by ascending electrical capability

Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	O.F. newtons ounces	R.F.   min. newtons ounces	P.T.   max.   mm inches	O.T.   $\min$.   mm inches	$\begin{gathered} \text { D.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.** } \\ \text { mm } \\ \text { inches } \end{gathered}$
V3-343-D8	General use. Gold alloy crosspoint contacts.	$1 \text { Amp }$	$\begin{gathered} 2,22 \\ \mathbf{8} \text { max. } . \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,15-0,41 \\ & .006-.016 \end{aligned}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-2451-D8	Lowest force.	3 Amps VV	$\begin{gathered} 0,15 \\ .53 \end{gathered}$	-	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,051-0,25 \\ .002-.010 \end{gathered}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-2401-D8	Lower force.	$5 \text { Amps }$	$\begin{gathered} 0,24 \\ .9 \end{gathered}$	-	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} \hline 0,051-0,25 \\ .002-.010 \end{gathered}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-70101-D8	Most 5 amp applications.	$5 \mathrm{Amps}$ ZZ	$\begin{gathered} 2,22 \\ \mathbf{8} \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & \hline 0,15-0,41 \\ & .006-.016 \end{aligned}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-1101-D8	General use.	$\begin{gathered} 10 \text { Amps } \\ \text { TT } \end{gathered}$	$\begin{gathered} 0,72 \max . \\ \mathbf{2 . 6} \end{gathered}$	$\begin{gathered} 0,10 \\ .35 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} \hline \text { 0,051-0,25 } \\ .002-.010 \end{gathered}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-2101-D8	Low force.	$10 \mathrm{Amps}$	$\begin{gathered} \hline \text { 0,50 max. } \\ \mathbf{1 . 8} \end{gathered}$	$\begin{gathered} 0,05 \\ .18 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} \hline \text { 0,051-0,25 } \\ .002-.010 \end{gathered}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-101-D8	Higher force. Most applications.	$\begin{aligned} & 11 \text { Amps } \\ & \mathbf{T} \end{aligned}$	$\begin{gathered} 2,22 \\ 8 \text { max. } \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & \hline 0,15-0,41 \\ & .006-.016 \end{aligned}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-1-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	$\begin{gathered} 1,67-3,89 \\ \mathbf{6 - 1 4} \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,21 \\ & .047 \end{aligned}$	$\begin{gathered} 1,0 \\ .040 \end{gathered}$	$\begin{gathered} 0,15-0,4 \\ .006-.016 \end{gathered}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-3001-D8	High force. Up to 15.1 amps load handling.	$\begin{gathered} \text { 15, } \mathbf{1}_{\mathbf{U}} \mathrm{Amps} \end{gathered}$	$\begin{gathered} 1,47 \text { max. } \\ 5.3 \end{gathered}$	$\begin{gathered} 0,15 \\ .53 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} \hline \text { 0,051-0,25 } \\ .002-.010 \end{gathered}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-2800-D9	Up to 20 amps load handling	$\begin{gathered} 20 \mathrm{Amps} \\ \mathbf{A A} \end{gathered}$	$\begin{array}{\|c\|} \hline 0,63-1,22 \\ \mathbf{2 . 3 - 4 . 4} \\ \hline \end{array}$	$\begin{gathered} 0,20 \\ \mathbf{0 . 7} \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,25 \\ .010 \text { max. } \end{gathered}$	$\begin{aligned} & \hline 14,7 \\ & .578 \end{aligned}$
V3-2900-D9	Up to 25 amps load handling	$\begin{gathered} 25 \text { Amps } \\ \text { BB } \end{gathered}$	$\begin{gathered} 1,22-2,20 \\ 4.4-7.9 \end{gathered}$	$\begin{gathered} \hline 0,31 \\ 1.1 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,25 \\ .010 \max \end{gathered}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$

Dim. Dwg. Fig. 2

$\begin{aligned} & \text { V3-1001 } \\ & \text { (MS25253-1) } \end{aligned}$	MIL-S-8805 application requirements (SPDT)	$\begin{aligned} & 10 \mathrm{Amps} \\ & \mathbf{U U} \end{aligned}$	$\begin{gathered} 1,67-3,89 \\ \mathbf{6 - 1 4} \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{array}{r} 1,2 \\ .047 \end{array}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,15-0,41 \\ & .006-.016 \end{aligned}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
$\begin{array}{\|l} \hline \text { V3-1002 } \\ \text { (MS25253-3) } \end{array}$	MIL-S-8805 application requirements (SPNC)	10 Amps UU	$\begin{gathered} 1,67-3,89 \\ \mathbf{6 - 1 4} \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,15-0,41 \\ & .006-.016 \end{aligned}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
$\begin{aligned} & \text { V3-1003 } \\ & \text { (MS25253-2) } \end{aligned}$	MIL-S-8805 application requirements (SPNO)	$\begin{gathered} 10 \mathrm{Amps} \\ \mathbf{U U} \end{gathered}$	$\begin{gathered} 1,67-3,89 \\ \mathbf{6 - 1 4} \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & \hline 0,15-0,41 \\ & .006-.016 \end{aligned}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-129*	Operating in temperature to $+302^{\circ} \mathrm{F}\left(150^{\circ} \mathrm{C}\right)$	$11 \mathrm{Amps}$	$\begin{gathered} 2,22 \\ \mathbf{8} \text { max. } . \end{gathered}$	$\begin{gathered} 0,56 \\ \mathbf{2} \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & \hline 0,15-0,41 \\ & .006-.016 \end{aligned}$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$
V3-245*	Operating in temperature to $+400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$	$10 \mathrm{Amps}$	$\begin{gathered} \hline 2,78-6,95 \\ \mathbf{1 0 - 2 5} \end{gathered}$	$\begin{gathered} 1,67 \\ \mathbf{6} \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$0,15-0,41$	$\begin{aligned} & 14,7 \\ & .578 \end{aligned}$

*For actuators, contact MICRO SWITCH Sales Office.
**Tolerances $\begin{aligned} \pm 0.38 \\ \pm 0.15\end{aligned}$

## ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	Length of Lever "A" mm inches	O.F.   max. newtons ounces	R.F. min. newtons ounces	P.T.   max.   mm inches	O.T.   min. mm inches	D.T.   max.   mm inches	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
V3L-1123-D8	General use.	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{TT} \end{gathered}$	$\begin{gathered} 32,6 \\ 1.285 \end{gathered}$	$\begin{gathered} 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} 0,05 \\ .18 \end{gathered}$	$\begin{aligned} & 2,54 \\ & .100 \end{aligned}$	$\begin{aligned} & \hline 2,03 \\ & .080 \end{aligned}$	$\begin{aligned} & \hline 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 18,5 \\ & .730 \end{aligned}$
V3L-2105-D8	Low force.	$10 \mathrm{Amps}$	$\begin{gathered} 32,6 \\ 1.285 \end{gathered}$	$\begin{gathered} 0,33 \\ 1.2 \end{gathered}$	$\begin{gathered} 0,02 \\ .07 \end{gathered}$	$\begin{aligned} & 2,54 \\ & .100 \end{aligned}$	$\begin{aligned} & 2,03 \\ & .080 \end{aligned}$	$\begin{aligned} & \hline 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 18,5 \\ & .730 \end{aligned}$
V3L-121-D8	High force. Most applications.	$\begin{gathered} 11 \mathrm{Amps} \\ \mathrm{~T} \end{gathered}$	$\begin{gathered} 32,6 \\ 1.285 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{gathered} 0,14 \\ .5 \end{gathered}$	$\begin{aligned} & \hline 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & \hline 1,57 \\ & .062 \end{aligned}$	$\begin{aligned} & \hline 0,81 \\ & .032 \end{aligned}$	$\begin{aligned} & \hline 18,5 \\ & .730 \end{aligned}$
V3L-5-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	$\begin{gathered} 32,6 \\ 1.285 \end{gathered}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 1,57 \\ & .062 \end{aligned}$	$\begin{aligned} & 0,81 \\ & .032 \end{aligned}$	$\begin{aligned} & 18,5 \\ & .730 \end{aligned}$
V3L-3014-D8	High force. Up to 15.1 amps load handling.	15.1 Amps   U	$\begin{gathered} 32,6 \\ 1.285 \end{gathered}$	$\begin{gathered} 0,94 \\ 3.4 \end{gathered}$	$\begin{gathered} 0,07 \\ .25 \end{gathered}$	$\begin{aligned} & 2,54 \\ & .100 \end{aligned}$	$\begin{aligned} & 1,90 \\ & .075 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 18,5 \\ & .730 \end{aligned}$

PIN PLUNGERS


ORDER GUIDE
SIMULATED ROLLER


Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.


ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	Length of Lever " A " mm inches	O.F.   max. newtons ounces	R.F.   min. newtons ounces	P.T.   max.   mm inches	O.T.   min. mm inches	D.T.   max.   mm inches	$\begin{gathered} \text { O.P. } \\ \text { mm } \\ \text { inches } \end{gathered}$
V3L-1105-D8	General use.	$10 \mathrm{Amps}$	$\begin{aligned} & \hline 21,3 \\ & .860 \end{aligned}$	$\begin{gathered} 0,72 \\ 2.6 \end{gathered}$	$\begin{gathered} 0,10 \\ .35 \end{gathered}$	$\begin{gathered} 1,5 \\ .060 \end{gathered}$	$\begin{aligned} & 1,14 \\ & .045 \end{aligned}$	$\begin{aligned} & 0,33 \\ & .013 \end{aligned}$	$\begin{aligned} & 15,2 \pm 0,51 \\ & .600 \pm .020 \end{aligned}$
V3L-2101-D8	Low force. Added overtravel.	$10 \mathrm{Amps}$ V	$\begin{aligned} & 21,3 \\ & .860 \end{aligned}$	$\begin{gathered} 0,50 \\ 1.8 \end{gathered}$	$\begin{gathered} 0,50 \\ .18 \end{gathered}$	$\begin{gathered} 1,5 \\ .060 \end{gathered}$	$\begin{aligned} & 1,14 \\ & .045 \end{aligned}$	$\begin{aligned} & 0,33 \\ & 012 \end{aligned}$	$\begin{aligned} & 15,2 \pm 0,51 \\ & .600 \pm .020 \end{aligned}$
V3L-101-D8	Higher force. Most applications.	11 Amps T	$\begin{aligned} & 21,3 \\ & .860 \end{aligned}$	$\begin{gathered} 2,50 \\ 9 \end{gathered}$	$\begin{gathered} 0,56 \\ 2 \end{gathered}$	$\begin{gathered} 1,5 \\ .060 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,41 \\ & .016 \end{aligned}$	$\begin{aligned} & 15,2 \pm 0,51 \\ & .600 \pm .020 \end{aligned}$
V3L-1-D8	Highest force. Up to 15.1 amps load handling with reduced life.	$\begin{gathered} \text { 15.1 Amps } \\ U \end{gathered}$	$\begin{aligned} & \hline 21,3 \\ & .860 \end{aligned}$	$\begin{gathered} 3,89 \\ 14 \end{gathered}$	$\begin{gathered} 0,83 \\ 3 \end{gathered}$	$\begin{gathered} 1,5 \\ .060 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,41 \\ & .016 \end{aligned}$	$\begin{aligned} & 15,2 \pm 0,51 \\ & .600 \pm .020 \end{aligned}$
V3L-3001-D8	High force. Up to 15.1 amps load handling.	$\begin{gathered} \text { 15.1 Amps } \\ U \end{gathered}$	$\begin{aligned} & \hline 21,3 \\ & .860 \end{aligned}$	$\begin{gathered} 1,47 \\ 5.3 \end{gathered}$	$\begin{gathered} 0,15 \\ .53 \end{gathered}$	$\begin{gathered} 1,5 \\ .060 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & \hline 0,28 \\ & .011 \end{aligned}$	$\begin{aligned} & 15,2 \pm 0,51 \\ & .600 \pm .020 \end{aligned}$



V3L-1108-D8	General use.	$10 \mathrm{Amps}$	$\begin{aligned} & 35,6 \\ & 1.40 \end{aligned}$	$\begin{gathered} 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} 0,04 \\ .14 \end{gathered}$	$\begin{aligned} & 2,79 \\ & .110 \end{aligned}$	$\begin{aligned} & 2,29 \\ & .090 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 15,2 \pm 1,5 \\ .600 \pm .060 \end{gathered}$
V3L-2102-D8	Low force.	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{~V} \end{gathered}$	$\begin{aligned} & 35,6 \\ & 1.40 \end{aligned}$	$\begin{gathered} 0,31 \\ 1.1 \end{gathered}$	$\begin{gathered} 0,02 \\ .07 \end{gathered}$	$\begin{aligned} & 2,79 \\ & .110 \end{aligned}$	$\begin{aligned} & 2,29 \\ & .090 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 15,2 \pm 1,5 \\ .600 \pm .060 \end{gathered}$
V3L-104-D8	Higher force. Most applications.	$11 \mathrm{~T}_{\mathrm{T}}$	$\begin{aligned} & 35,6 \\ & 1.40 \end{aligned}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{gathered} 0,14 \\ .5 \end{gathered}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 2,29 \\ & .090 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 15,2 \pm 1,5 \\ .600 \pm .060 \end{gathered}$
V3L-2-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	$\begin{aligned} & \hline 35,6 \\ & 1.40 \end{aligned}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & \hline 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & \hline 2,29 \\ & .090 \end{aligned}$	$\begin{aligned} & \hline 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 15,2 \pm 1,5 \\ .600 \pm .060 \end{gathered}$
V3L-3005-D8	High force. Up to 15.1 amps load handling.	15.1 Amps U	$\begin{aligned} & 35,6 \\ & 1.40 \end{aligned}$	$\begin{aligned} & \hline .86 \\ & 3.1 \end{aligned}$	$\begin{gathered} 0,06 \\ .21 \end{gathered}$	$\begin{aligned} & \hline 3,05 \\ & .120 \end{aligned}$	$\begin{aligned} & \hline 2,29 \\ & .090 \end{aligned}$	$\begin{aligned} & 0,81 \\ & .032 \end{aligned}$	$\begin{gathered} 15,2 \pm 1,5 \\ .600 \pm .060 \end{gathered}$



Dim. Dwg. Fig. 4

V3L-2425-D8	Lower force.	5 Amps YY	$\begin{aligned} & 59,4 \\ & 2.34 \end{aligned}$	$\begin{gathered} 0,07 \\ .25 \end{gathered}$	-	$\begin{aligned} & 5,08 \\ & .200 \end{aligned}$	$\begin{aligned} & 4,06 \\ & .160 \end{aligned}$	$\begin{gathered} 1,4 \\ .055 \end{gathered}$	$\begin{gathered} 15,2 \pm 2 \\ .600 \pm .080 \end{gathered}$
V3L-1122-D8	General use.	$\begin{aligned} & 10 \mathrm{Amps} \\ & \text { TT } \end{aligned}$	$\begin{aligned} & 59,4 \\ & 2.34 \end{aligned}$	$\begin{gathered} 0,22 \\ .81 \end{gathered}$	$\begin{gathered} \hline 0,02 \\ .07 \end{gathered}$	$\begin{aligned} & \hline 5,08 \\ & .200 \end{aligned}$	$\begin{aligned} & 4,06 \\ & .160 \end{aligned}$	$\begin{gathered} 1,4 \\ .055 \end{gathered}$	$\begin{gathered} 15,2 \pm 1,8 \\ .600 \pm .070 \end{gathered}$
V3L-2106-D8	Low force.	$10 \mathrm{Amps}$ V	$\begin{aligned} & 59,4 \\ & 2.34 \end{aligned}$	$\begin{gathered} 0,16 \\ .56 \end{gathered}$	$\begin{gathered} 0,01 \\ .04 \end{gathered}$	$\begin{aligned} & 5,08 \\ & .200 \end{aligned}$	$\begin{aligned} & 4,06 \\ & .160 \end{aligned}$	$\begin{gathered} 1,4 \\ .055 \end{gathered}$	$\begin{gathered} 15,2 \pm 1,8 \\ .600 \pm .070 \end{gathered}$
V3L-131-D8	Higher force. Most applications.	$11 \text { Amps }$	$\begin{aligned} & 59,4 \\ & 2.34 \end{aligned}$	$\begin{gathered} 0,58 \\ 2.1 \end{gathered}$	$\begin{gathered} 0,12 \\ .42 \end{gathered}$	$\begin{gathered} 6,6 \\ .260 \end{gathered}$	$\begin{aligned} & 3,81 \\ & .150 \end{aligned}$	$\begin{aligned} & 2,29 \\ & .090 \end{aligned}$	$\begin{gathered} 14,7 \pm 2 \\ .580 \pm .080 \end{gathered}$
V3L-6-D8	Highest force. Up to 15.1 amps load handling with reduced life.	$\begin{gathered} \text { 15.1 Amps } \\ U \end{gathered}$	$\begin{aligned} & 59,4 \\ & 2.34 \end{aligned}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{gathered} 0,14 \\ .50 \end{gathered}$	$\begin{aligned} & \hline 6,95 \\ & 2.60 \end{aligned}$	$\begin{aligned} & \hline 3,81 \\ & .150 \end{aligned}$	$\begin{aligned} & \hline 2,29 \\ & .090 \end{aligned}$	$\begin{aligned} & 14,35 \pm 1,5 \\ & .565 \pm .060 \end{aligned}$
V3L-3013-D8	High force. Up to 15.1 amps load handling.	15.1 Amps U	$\begin{aligned} & 59,4 \\ & 2.34 \end{aligned}$	$\begin{gathered} 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} \hline 0,03 \\ .11 \end{gathered}$	$\begin{aligned} & 5,33 \\ & .210 \end{aligned}$	$\begin{aligned} & \hline 4,06 \\ & .160 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 15,2 \pm 1,9 \\ .600 \pm .075 \end{gathered}$



V3L-2472-D8	Lowest force.	3 Amps V	$\begin{gathered} 69,45 \\ 2.75 \end{gathered}$	$\begin{gathered} 0,03 \\ .11 \end{gathered}$	-	$\begin{aligned} & 5,97 \\ & .235 \end{aligned}$	$\begin{aligned} & 5,08 \\ & .200 \end{aligned}$	$\begin{aligned} & 1,60 \\ & .063 \end{aligned}$	$\begin{aligned} & 15,2 \pm 2,54 \\ & .600 \pm .100 \end{aligned}$
V3L-1124-D8	General use.	$\begin{aligned} & 10 \mathrm{Amps} \\ & \mathrm{TT} \end{aligned}$	$\begin{gathered} 69,45 \\ 2.75 \end{gathered}$	$\begin{gathered} 0,19 \\ .70 \end{gathered}$	$\begin{gathered} 0,01 \\ .04 \end{gathered}$	$\begin{aligned} & 7,74 \\ & .305 \end{aligned}$	$\begin{aligned} & 3,68 \\ & .145 \end{aligned}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{aligned} & 15,31 \pm 2,54 \\ & .603 \pm .100 \end{aligned}$
V3L-145-D8	Most applications.	11 Amps T	$\begin{gathered} 69,45 \\ 2.75 \end{gathered}$	$\begin{aligned} & 0,54 \\ & 1.93 \end{aligned}$	$\begin{gathered} 0,10 \\ .36 \end{gathered}$	$\begin{aligned} & 0,76 \\ & .300 \end{aligned}$	$\begin{aligned} & 4,57 \\ & .180 \end{aligned}$	$\begin{aligned} & 2,54 \\ & .100 \end{aligned}$	$\begin{array}{\|c} 14,48 \pm 2,03 \\ .570 \pm .080 \end{array}$
V3L-14-D8	Highest force. Up to 15.1 amps load handling with reduced life.	$\begin{gathered} \text { 15.1 Amps } \\ U \end{gathered}$	$\begin{gathered} 69,45 \\ 2.75 \end{gathered}$	$\begin{gathered} 0,83 \\ 3 \end{gathered}$	$\begin{gathered} 0,14 \\ .50 \end{gathered}$	$\begin{aligned} & \hline 8,38 \\ & .330 \end{aligned}$	$\begin{aligned} & 4,32 \\ & .170 \end{aligned}$	$\begin{aligned} & \hline 2,54 \\ & .100 \end{aligned}$	$\begin{array}{r} 13,72 \pm 2,03 \\ 540+080 \end{array}$

## ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data And UL Codes Page 20	Length of Lever " $A$ " mm inches	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	$\begin{aligned} & \text { O.T. min. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{aligned} & \text { D.T. max. } \\ & \quad \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { O.P. } \\ \text { mm } \\ \text { inches } \end{gathered}$
V3L-1117-D8	General use.	$\begin{aligned} & 10 \mathrm{Amps} \\ & \mathrm{TT} \end{aligned}$	$\begin{gathered} 20,6 \\ .81 \end{gathered}$	$\begin{gathered} 0,89 \\ 3.2 \end{gathered}$	$\begin{gathered} 0,10 \\ .35 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,14 \\ & .045 \end{aligned}$	$\begin{aligned} & 0,33 \\ & .013 \end{aligned}$	$\begin{aligned} & 20,6 \pm 0,76 \\ & .810 \pm .030 \end{aligned}$
V3L-2103-D8	Low force.	$10 \mathrm{Amps}$ V	$\begin{gathered} 20,6 \\ .81 \end{gathered}$	$\begin{gathered} \hline 0,58 \\ 2.1 \end{gathered}$	$\begin{gathered} \hline 0,03 \\ .11 \end{gathered}$	$\begin{aligned} & 1,42 \\ & .056 \end{aligned}$	$\begin{aligned} & 0,86 \\ & .034 \end{aligned}$	$\begin{aligned} & 0,33 \\ & .013 \end{aligned}$	$\begin{aligned} & 20,6 \pm 0,76 \\ & .810 \pm .030 \end{aligned}$
V3L-139-D8	Higher force. Most applications.	11 Amps T	$\begin{gathered} 20,6 \\ .81 \end{gathered}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,56 \\ 2 \end{gathered}$	$\begin{gathered} 1,5 \\ .060 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,41 \\ & .016 \end{aligned}$	$\begin{aligned} & 20,6 \pm 0,76 \\ & .810 \pm .030 \end{aligned}$
V3L-3-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	$\begin{gathered} 20,6 \\ .81 \end{gathered}$	$\begin{gathered} 3,89 \\ 14 \end{gathered}$	$\begin{gathered} 0,83 \\ 3 \end{gathered}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,41 \\ & .016 \end{aligned}$	$\begin{aligned} & 20,6 \pm 0,76 \\ & .810 \pm .030 \end{aligned}$
V3L-3003-D8	High force. Up to 15.1 amps load handling.	15.1 Amps U	$\begin{gathered} 20,6 \\ .81 \end{gathered}$	$\begin{gathered} 1,89 \\ 6.8 \end{gathered}$	$\begin{gathered} 0,15 \\ .53 \end{gathered}$	$\begin{gathered} 1,2 \\ .047 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,05-0,25 \\ & .002-.010 \end{aligned}$	$\begin{aligned} & 20,6 \pm 0,76 \\ & .810 \pm .030 \end{aligned}$


V3L-1101-D8	General use.	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{TT} \end{gathered}$	$\begin{gathered} 34 \\ 1.34 \end{gathered}$	$\begin{gathered} 0,44 \\ 1.6 \end{gathered}$	$\begin{gathered} 0,04 \\ .14 \end{gathered}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 20,6 \pm 1,5 \\ .810 \pm .060 \end{gathered}$
V3L-2104-D8	Low force.	$10 \mathrm{Amps}$ $\mathrm{V}$	$\begin{gathered} \hline 34 \\ 1.34 \end{gathered}$	$\begin{gathered} \hline 0,31 \\ 1.1 \end{gathered}$	$\begin{gathered} \hline 0,02 \\ .07 \end{gathered}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & \hline 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & \hline 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 20,6 \pm 1,5 \\ .810 \pm .060 \end{gathered}$
V3L-111-D8	Higher force. Most applications.	$\begin{gathered} 11 \text { Amps } \\ \mathrm{T} \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ 1.34 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{gathered} \hline 0,14 \\ .5 \end{gathered}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 20,6 \pm 1,5 \\ .810 \pm .060 \end{gathered}$
V3L-4-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	$\begin{gathered} 34 \\ 1.34 \end{gathered}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 20,6 \pm 1,5 \\ .810 \pm .060 \end{gathered}$
V3L-3004-D8	Higher force. Up to 15.1 amps load handling.	15.1 Amps U	$\begin{gathered} 34 \\ 1.34 \end{gathered}$	$\begin{gathered} 0,89 \\ 3.2 \end{gathered}$	$\begin{gathered} 0,14 \\ .5 \end{gathered}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 20,6 \pm 1,5 \\ .810 \pm .060 \end{gathered}$

C haracteristics: O.F. - Operating Force; O.T. - Overtravel; D.T. - Differential Travel; R.F. - Release Force; P.T. - Pretravel; O.P. - Operating Position; F.P. - Free Position.

* Characteristics taken with actuator assembled on Catalog Listing V3-1 switch as shown.

ORDER GUIDE - SWITCHES ARE NOT INCLUDED WITH ACTUATORS

Catalog Listing	Description	Actuator   Length " $\mathrm{A} "$   mm   inches	O.F. max newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	$\begin{aligned} & \text { D.T. max. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { O.P. } \\ \text { mm } \\ \text { inches } \end{gathered}$	F.P. max. mm inches
J V-1	Leaf type	$\begin{gathered} 21,3 \\ .84 \end{gathered}$	$\begin{gathered} \hline 3,34 \\ 12 \end{gathered}$	$\begin{gathered} \hline 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 0,79 \\ & .031 \end{aligned}$	$\begin{aligned} & 0,41 \\ & .016 \end{aligned}$	$\begin{gathered} 15 \pm 0,38 \\ .590 \pm .015 \end{gathered}$	$\begin{aligned} & 16,4 \\ & .645 \end{aligned}$

Dim. Dwg. Fig. 11

AUXILIARY ACTUATORS


## ROLLER LEVERS



Dim. Dwg. Fig. 7


Dim. Dwg. Fig. 11

J V-7	Long leaf	32,3	2,50	1,11	1,57	1,27	0,64	14,5 $\pm 0,76$	17,4
		1.27	9	4	. 062	. 050	. 025	. $570 \pm .030$	. 685



$J$ V-5	Roller leaf	20,6   .81	3,34   12	1,11	1,52	0,79	0,41	$20,3 \pm 0,64$	22,1
			.060	.031	.016	$.800 \pm .025$	.870		

Dim. Dwg. Fig. 11
NOTE: Contact a MICRO SWITCH Sales Office for application assistance when actuators will be used at temperatures above $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$.

Switches are not included with actuators


Dim. Dwg. Fig. 14


Dim. Dwg. Fig. 14


J V-220	Roller lever	$17,7 \dagger$	0,83	0,14	4,78	1,57	1,98	$19,5 \pm 1,1$	23,8
		.695	3	.5	.188	.062	.078	$.766 \pm .045$	.936


$J$ V-30	One-way roller   lever	20,6	3,34	1,11	2,03	0,51	0,38	$25,7 \pm 0,76$	27,7
	.81	12	4	.080	.020	.015	$1.010 \pm .030$	1.09	

Dim. Dwg. Fig. 11


J V-91**	Tandem leaf	20,6	5,00	1,67	1,57	0,89	-	$14,9 \pm 0,76$	16,5
		.81	18	6	.062	.035		$.588 \pm .030$	.650

Dim. Dwg. Fig. 17


J V-82**	Tandem roller   leaf	20,6	5,00	1,67	1,57	0,89	-	$20,5 \pm 0,76$	21,8
	.81	18	6	.062	.035		$.806 \pm .030$	.860	

NOTE: Contact the 800 number for application assistance when actuators will be used at temperatures above $300^{\circ} \mathrm{F}\left(149^{\circ} \mathrm{C}\right)$. ** Travel characteristics on tandem actuators vary with actual basic switch characteristics. These shown are typical for the assembly.
$\dagger$ " $A$ " measurement is from the pivot point of lever to the point indicated on drawing.

ORDER GUIDE - SWITCHES ARE NOT INCLUDED WITH ACTUATORS

Catalog   Listing	Description	$\begin{array}{\|c\|} \text { Actuator } \\ \text { Length "A" } \\ \text { mm } \\ \text { inches } \end{array}$	O.F. max. newtons ounces	R.F. min. newtons ounces	```P.T. max. mm inches```	```O.T. min. mm inches```	```D.T. max. mm inches```	$\begin{gathered} \text { O.P. } \\ \mathrm{mm} \\ \text { inches } \end{gathered}$	```F.P. max. mm inches```
J V-26	Long lever	$\begin{gathered} 44,5 \dagger \\ 1.75 \end{gathered}$	$\begin{gathered} 0,39 \\ 1.4 \end{gathered}$	$\begin{gathered} 0,06 \\ .21 \end{gathered}$	$\begin{aligned} & 8,33 \\ & .328 \end{aligned}$	$\begin{aligned} & 3,58 \\ & .141 \end{aligned}$	$\begin{aligned} & 4,75 \\ & .187 \end{aligned}$	$\begin{aligned} & 12,7 \pm 3,18 \\ & .500 \pm .125 \end{aligned}$	-


$\mathrm{J}-20$	Roller lever	$19,1 \dagger$   .750	0,83	0,14	4,78	1,57	1,98	$19,5 \pm 1,4$	23,8
		3	.5	.188	.062	.078	$.766 \pm .055$	.936	

Characteristics: O.F. - Operating Force;
R.F. - Release Force; P.T. - Pretravel;
O.T. - Overtravel; D.T. - Differential Travel;
O.P. - Operating Positon; F.P. - Free Position

* Characteristics taken with actuator assembled on Catalog Listing V3100 switch as shown.

Dim. Dwg. Fig. 17

## PIN PLUNGERS



Fig. 1


Fig. 2

## ROLLER LEVER



Fig. 7

## AUXILIARY ACTUATORS



Fig. 11


Fig. 14


NOTE: Operate point dimensions taken at top of lever/roller.

$$
\text { Key: } \frac{0,0=\mathrm{mm}}{0.00=\text { inches }}
$$

## V5 Series <br> Miniature Basic Switches

V5 Series Basic Switches are used for simple or precision on/off, end of limit, presence/absence, pressure, temperature and manual operator interface application needs.

Voltage:   Operating temperature:		
Standard		$-55^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$
High temperature $\quad-55$		$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
		$-67^{\circ} \mathrm{F}$ to $302{ }^{\circ} \mathrm{F}$
Termination: 6,3	6,3 mm x 0,8 mm Q	m Quick connect
		(QC)
Contact type: Electrical rating:	Silver/silver ca	cadmium oxide
		5A 20 A
	V5B/P/R	/R 16A
	V5C/D	/D 10 A
		5 S 22A
Switching options:		SPDT
	Single Pole D	le Double Throw

## OPTIONS

Top pin plunger


Lever stor position 2 - Lever slot position 1


APPROVALS		REFERENCE
CE, ENEC		V5A010CB
CE, CSA, ENEC, UL		V5B010CB3
CE, CSA, UL	$4,8 \mathrm{~mm} \times 0.5 \mathrm{~mm}$ QC	V5B010FB3
CE, ENEC	Solder terminals	V5B010TB
CE, ENEC	High temperature	V5B210CB
CE, ENEC		$V 5 C 010 B B$
CE, CSA, ENEC, UL	$4,8 \mathrm{~mm} \times 0,5 \mathrm{~mm}$ QC	V5C010EB3
CE, CSA, ENEC, UL	Solder terminals	V5C010TB3
CE, ENEC		V5P010CB
APPROVALS	SWITCHING OPTIONS	REFERENCE
CE, ENEC	SPNO	V5D030BB
CE, ENEC	SPNO	V5R030CB
CE, BEAB	SPNC	V5S020CB
CE, BEAB	SPNO	V5S030CB

## Straight lever

Type B


APPROVALS	REFERENCE
CE, CSA, ENEC, UL	V5C010BB3B

Type C


APPROVALS		
CE, ENEC	High temperature	REFERENCE

## Type G



Roller lever
Type D


APPROVALS		REFERENCE
CE, CSA, ENEC, UL	High temperature	V5B210CB3D
CE, CSA, ENEC, UL		V5C010BB3D

Type E


APPROVALS		REFERENCE
CE, CSA, ENEC, UL	Lever position 2	V5A010CB4E
CE, ENEC	High temperature	V5B210CB1E



## FEATURES

- Quick-connect and printed wiring board termination
- Proven V3 switching mechanism
- Physically interchangeable with existing V3 switches
- All existing V3 lever options available
- UL recognized File \# E12252; CSA certified File \# LR41370
- International listings carry VDE approval
- Power load switching capability up to 21 amps
- Temperature tolerance $-40^{\circ}$ to $185^{\circ} \mathrm{F}$ $\left(-40^{\circ}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
- High temperature construction available- $350^{\circ} \mathrm{F}$


## APPLICABLE EUROPEAN SYMBOLS

$\mu=$ microgap construction. (The measurement between open contacts is less than 3 mm ).**
$\sim$ = alternating current (used with value of voltage source: 250V ~).
$\mathrm{T}=$ maximum rated use temperature; followed by the temperature value in ${ }^{\circ} \mathrm{C}$ (example T 85).
$+++=$ switch is rated for at least 50,000 cycles at its rated current. (Sometimes referred to as "frequent" operation.)
10(3) = first number represents resistive rating. Second number represents inductive (motor) rating.

C UTAWAY V7 MINIATURE BASIC SWITCH


## GENERAL INFORMATION

The V7 Series is available in two versions, the Timesaverseries and the International series. The Timesaver series is UL recognized and CSA certified. Timesaver series switches use readily available high-volume components to provide especially responsive delivery performance. The International V7 provides VDE approval in addition to UL recognition and CSA certification.

The V7 offers a choice of four quick-connect and two printed wiring board terminal types. Three quick-connect types are offset to meet international 3mm spacing requirements and one is designed for use with molded connectors. Contact material choice includes gold alloy, silver alloy or silver for handling various electrical loads. There are two mounting hole sizes available. Standard . 114 " or 3 mm to meet European design requirements.

Terminal variations and switch dimensions of the European designed version conform to applicable DIN standards. These V7s mate with both standard domestic and international industry stan-
dard receptacles and connectors. The plastic enclosure meets VDE KC250 arc tracking requirement and is approvable under the Refrigeration Industry Taste and Odor test.

## OPERATING FORCES

175 grams (V rating only)
150 grams (Not applicable to Electrical Rating V)
75 grams (Not applicable to Electrical Rating C or V)
50 grams (Not applicable to Electrical Rating B, C, V)
25 grams (Not applicable to Electrical Rating B, C, E, V)
15 grams (Notapplicable to Electrical Rating A, B, C, E, S, V)

Mounting Torque:
2 inch pounds min.
5 inch pounds max.

## ELECTRICAL RATINGS

A	B	C*	D	E	F	S	V
$\begin{aligned} & 5 \text { amps, } 125, \\ & 250 \text { or } 277 \\ & \text { VAC; } 1 / 10 \mathrm{hp}, \\ & 250 \text { VAC } \end{aligned}$	11 amps and $1 / 3$ hp, 125, 250 or 277 VAC; $1 / 2$ amp, 125 VDC; $1 / 4$ amp, 250 VDC; 4 amps, 125 VAC "L"	15.1 amps and $1 / 2 h p, 125,250$ or 277 VAC; $1 / 2$ amp, 125 VDC; $1 / 4$ amp, 250 VDC; 5 amps, 120 VAC "L"	$\begin{aligned} & \hline 1 \mathrm{amp}, 125 \\ & \text { VAC } \end{aligned}$	10 amps and $1 / 3$ hp 125 or 250 VAC; $1 / 2 \mathrm{amp}$, 125 VDC; $1 / 4$ amp, 250 VDC; 4 amps, 125 VAC "L"	$\begin{aligned} & 3 \mathrm{amps}, 125, \\ & 250 \text { or } 277 \\ & \text { VAC; } 1 / 10 \mathrm{hp}, \\ & 250 \mathrm{VAC} \end{aligned}$	. 1 amp, 125 VAC	$\begin{aligned} & 21 \text { amps } 125, \\ & 250 \text { or } 277 \\ & \text { VAC, } 1 \mathrm{HP} 125, \\ & 250,277 \text { VAC; } \\ & 2 \mathrm{HP}, 250,277 \\ & \text { VAC } \end{aligned}$
W	X						
$\begin{aligned} & 15.1 \text { amps, } \\ & 125,250 \text { or } 277 \\ & \text { VAC } \end{aligned}$	$\begin{aligned} & 6 \mathrm{amps} ; 1 / 8 \mathrm{HP} \\ & 125,250 \text { or } 277 \\ & \text { VAC } \end{aligned}$						
International Series Only							
	$\begin{aligned} & 10(3)+++ \\ & 250 \mathrm{~V} \sim \\ & \text { T } 85 \end{aligned}$			$\begin{aligned} & 5(2)+++ \\ & 250 \mathrm{~V} \sim \\ & \text { T85 } \quad \mu \end{aligned}$		+++	$\begin{aligned} & 16 \text { (4) } \\ & 250 \mathrm{~V} \sim \\ & \text { T } 85 \\ & 50 \mathrm{E} 3 \text { SPNO only } \end{aligned}$

[^0]
## Miniature

## AVAILABLE TERMINALS

## Quick-connect



* International approving agencies will require that switches with these terminals have insulated receptacles or connector.

NOTE: D8 and E8 terminals are European approved when used with electrical ratings B, D, or E. E9 terminals are European approved when used with electrical ratings $\mathrm{B}, \mathrm{C}, \mathrm{D}$, or E .

## Printed Wiring Board

Printed wiring board terminals interface with snap-on receptacles and other components from AMPMODU interconnection system.

Dimensions shown are for reference only.

$$
\text { Key: } \frac{0,0=\mathrm{mm}}{0.00=\text { inches }}
$$



P01



P07


This section covers only 48 ofour mostpopular V7 Series catalog listings. Ifyou don't find what you're looking for, it's likely one of the approximately $\mathbf{3 0 0}$ other active V7 listings will meet your needs. Contact the 800 number.

## STRAIGHT LEVERS



Dim. Dwg. Fig. 2

ORDER GUIDE SPDT* $\quad$ haracteristics: O.F. - Operating Force; R.F. - Release Force; P.T. Pretravel; O.T. - Overtravel; D.T. - Differential Travel.

Catalog Listing	Elect. Rating P. 38	O.F. max. grams ounces	R.F. min. grams ounces	$\begin{aligned} & \text { P.T. max. } \\ & \text { mm } \\ & \text { inches } \\ & \hline \end{aligned}$	O.T. min. mm inches	
V7-1S17D8	$1 \text { Amp }$	$\begin{gathered} 150 \\ 5.3 \end{gathered}$	$\begin{aligned} & 25 \\ & .88 \end{aligned}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 0,05-0,25 \\ & .002-.010 \end{aligned}$
V7-3S17E9	$\begin{aligned} & 1 \text { Amp } \\ & \mathbf{S} \end{aligned}$	$\begin{gathered} 50 \\ 1.75 \end{gathered}$	$\begin{gathered} 5 \\ .175 \end{gathered}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & \text { 0,05-0,25 } \\ & .002-.010 \end{aligned}$
V7-3A17E9	$\underset{\mathbf{A}}{5 \mathrm{Amps}}$	$\begin{gathered} 50 \\ 1.75 \end{gathered}$	$\begin{gathered} 5 \\ .175 \end{gathered}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 0,05-0,25 \\ & .002-.010 \end{aligned}$
V7-2B17D8	$11 \underset{\mathbf{B}}{11}$	$\begin{gathered} 75 \\ 2.63 \end{gathered}$	$\begin{aligned} & 10 \\ & .35 \end{aligned}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 0,05-0,25 \\ & .002-.010 \end{aligned}$
V7-2B17E9	11 Amps B	$\begin{gathered} 75 \\ \mathbf{2 . 6 3} \end{gathered}$	$\begin{aligned} & 10 \\ & .35 \end{aligned}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{array}{r} 0,05-0,25 \\ .002-.010 \end{array}$
V7-1C17D8	15.1 Amps C	$\begin{aligned} & 150 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 25 \\ & .88 \end{aligned}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 0,05-0,25 \\ & .002-.010 \end{aligned}$
V7-9W1AE9	15.1 Amps W (350 ${ }^{\circ}$ )	$\begin{aligned} & 300 \\ & 10.6 \end{aligned}$	$\begin{aligned} & 25 \\ & .88 \end{aligned}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 0,25 \\ .010 \text { max. } \end{gathered}$
V7-1V19E9	21 Amps V	$\begin{aligned} & 175 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 20 \\ & .70 \end{aligned}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{array}{r} 0,05-0,25 \\ .002-.010 \end{array}$

ORDER GUIDE - SPDT* .87" LEVER TIMESAVER SERIES

V7-3S17D8-002	$\begin{aligned} & 1 \text { Amp } \\ & \mathbf{S} \end{aligned}$	$\begin{aligned} & 54 \\ & 1.9 \end{aligned}$	$\begin{gathered} 3 \\ .11 \end{gathered}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 0,89 \\ & .035 \end{aligned}$	$\begin{aligned} & 0,33 \\ & .013 \end{aligned}$
V7-1A17D8-002	5 Amps A	$\begin{aligned} & 160 \\ & \mathbf{5 . 6} \end{aligned}$	$\begin{gathered} 7 \\ .25 \end{gathered}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 0.89 \\ & .035 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$
V7-2B17D8-002	$11 \text { Amps }$	$\begin{aligned} & 80 \\ & 2.8 \end{aligned}$	$\begin{gathered} 5 \\ 1.76 \end{gathered}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 0,89 \\ & .035 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$
V7-1C17E9-002	15.1 Amps C	$\begin{aligned} & 160 \\ & \mathbf{5 . 6} \end{aligned}$	$\begin{gathered} 17 \\ .60 \end{gathered}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 0,89 \\ .35 \end{gathered}$	$\begin{aligned} & 0,36 \\ & .014 \end{aligned}$
V7-1V19E9-002	21 Amps V	$\begin{aligned} & 185 \\ & 6.5 \end{aligned}$	$\begin{gathered} 13 \\ .5 \end{gathered}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{aligned} & 0,89 \\ & .035 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$

1.40" LEVER TIMESAVER SERIES

V7-3S17D8-022	$1 \text { Amp }$	$\begin{gathered} 30 \\ 1.05 \end{gathered}$	$\begin{gathered} 1 \\ 0.035 \end{gathered}$	$\begin{array}{r} 3,04 \\ .120 \end{array}$	$\begin{array}{r} 2,16 \\ .085 \end{array}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$
V7-1A17E9-022	$5 \underset{\mathbf{A}}{5 \mathrm{Amps}}$	$\begin{gathered} 85 \\ 3 \end{gathered}$	$\begin{gathered} \hline 8 \\ .28 \end{gathered}$	$\begin{aligned} & 3,04 \\ & .120 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$
V7-1X2AD8-022	$\begin{gathered} 6 \mathrm{Amps} \\ \mathbf{X}\left(\mathbf{3 5 0}{ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & 185 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 15 \\ & .53 \end{aligned}$	$\begin{aligned} & 1,40 \\ & .055 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$
V7-1B17D8-022	$11 \text { Amps }$	$\begin{aligned} & 82 \\ & 2.9 \end{aligned}$	$\begin{gathered} \hline 8 \\ .28 \end{gathered}$	$\begin{aligned} & 3,04 \\ & .120 \end{aligned}$	$\begin{gathered} 1,7 \\ .067 \end{gathered}$	$\begin{aligned} & 0,68 \\ & .027 \end{aligned}$
V7-1C17E9-022	$\begin{gathered} \text { 15.1 Amps } \end{gathered}$	$\begin{aligned} & 82 \\ & 2.9 \end{aligned}$	$\begin{gathered} \hline 8 \\ .28 \end{gathered}$	$\begin{array}{r} 3,04 \\ .120 \end{array}$	$\begin{gathered} 1,7 \\ .067 \end{gathered}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$
V7-1V19E9-022	$21 \mathrm{Amps}$	$\begin{aligned} & 95 \\ & 3.3 \end{aligned}$	$\begin{gathered} 5 \\ .18 \end{gathered}$	$\begin{gathered} 3,3 \\ .130 \end{gathered}$	$\begin{aligned} & 1,78 \\ & .070 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$

2.34" LEVER TIMESAVER SERIES

V7-3S17D8-048	$\begin{gathered} 1 \mathrm{Amp} \\ \mathbf{S} \\ \hline \end{gathered}$	$\begin{aligned} & 16 \\ & .56 \end{aligned}$	$\begin{gathered} .5 \\ .018 \end{gathered}$	$\begin{aligned} & 5,97 \\ & .235 \end{aligned}$	$\begin{gathered} 3,0 \\ .118 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$
V7-2B17D8-048	$11 \text { Amps }$	$\begin{aligned} & 20 \\ & .7 \end{aligned}$	$\begin{gathered} 1 \\ .035 \end{gathered}$	$\begin{aligned} & 5,97 \\ & .235 \end{aligned}$	$\begin{aligned} & \hline 2.92 \\ & .115 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$
V7-1C17E9-048	$\begin{gathered} \text { 15.1 } \mathrm{Amps} \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ 3 \end{gathered}$	$\begin{gathered} 4 \\ .14 \end{gathered}$	$\begin{aligned} & 5,97 \\ & .235 \end{aligned}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{aligned} & 1,29 \\ & .051 \end{aligned}$
V7-9W1AE9-048	$\begin{aligned} & \text { 15.1 Amps } \\ & \mathbf{W}\left(\mathbf{3 5 0} 0^{\circ} \mathbf{F}\right) \end{aligned}$	$\begin{aligned} & \hline 90 \\ & 3.2 \end{aligned}$	$\begin{gathered} 4 \\ .14 \end{gathered}$	$\begin{aligned} & 6,35 \\ & .250 \end{aligned}$	$\begin{aligned} & 3,15 \\ & .124 \end{aligned}$	$\begin{aligned} & 1,37 \\ & .054 \end{aligned}$

* For SPST (N.O. \& N.C.) circuitry, contact the 800 number.

NOTE: Catalog listings in V7 Order Guides have standard . $114^{\prime \prime}$ mounting holes. For 3 mm size holes, contact the 800 number.

SIMULATED ROLLER LEVERS

ORDER GUIDE -SPDT*
1.29" LEVER TIMESAVER SERIES

Catalog   Cisting	Elect.   Rating   P. 38	O.F. max.   grams   ounces	R.F. min.   grams   ounces	P.T. max.   mm   inches	O.T. min.   inches	D.T. max.   inm   inches

1.29" LEVER TIMESAVER SERIES

V7-1S17D8-263	$1 \underset{\mathbf{S}}{ }$	$\begin{gathered} 90 \\ 3.15 \end{gathered}$	$\begin{gathered} 9 \\ .32 \end{gathered}$	$\begin{aligned} & 2,79 \\ & .110 \end{aligned}$	$\begin{gathered} 1,9 \\ .075 \end{gathered}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$
V7-1B17D8-263	$11 \text { Amps }$	$\begin{gathered} 90 \\ 3.15 \end{gathered}$	$\begin{gathered} 9 \\ .32 \end{gathered}$	$\begin{aligned} & 2,79 \\ & .110 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$
V7-1C17D8-263	$\begin{gathered} \text { 15.1 Amps } \\ \text { C } \end{gathered}$	$\begin{gathered} \hline 91 \\ 3.19 \end{gathered}$	$\begin{gathered} 9 \\ .32 \end{gathered}$	$\begin{aligned} & \hline 2,79 \\ & .110 \end{aligned}$	$\begin{aligned} & 1,54 \\ & .061 \end{aligned}$	$\begin{aligned} & \hline 0,61 \\ & .024 \end{aligned}$

.81" ROLLER LEVER TIMERSAVER SERIES

V7-2S17D8-201	1 Amp	$\mathbf{9 0}$	7	1,19	1,02	0,38
	$\mathbf{S}$	$\mathbf{3 . 1 5}$	$\mathbf{. 2 5}$	$\mathbf{. 0 4 7}$	$\mathbf{. 0 4 0}$	$\mathbf{. 0 1 5}$
V7-2B17D8-201	11 Amps	88	7	1,3	1,04	0,3
	$\mathbf{B}$	$\mathbf{3 . 1}$	$\mathbf{. 2 5}$	$\mathbf{. 0 5 2}$	$\mathbf{. 0 4 1}$	$\mathbf{. 0 1 2}$
V7-1C17E9-201	15.1 Amps	176	19	1,3	0,81	0,3
	$\mathbf{C}$	$\mathbf{6 . 1 6}$	$\mathbf{. 6 7}$	$\mathbf{. 0 5 2}$	$\mathbf{. 0 3 2}$	.012
V7-1V19E9-201	21 Amps	205	15	1,42	0,81	0,33
	$\mathbf{V}$	$\mathbf{7 . 2}$	$\mathbf{. 5}$	$\mathbf{. 0 5 6}$	$\mathbf{. 0 3 2}$	.013

### 1.34" ROLLER LEVER TIMESAVER SERIES

$2 \longrightarrow$	V7-3S17D8-207	$1 \mathrm{Amp}$	$\begin{gathered} 35 \\ 1.23 \end{gathered}$	$\begin{gathered} 2 \\ .07 \end{gathered}$	$\begin{aligned} & 2,79 \\ & .110 \end{aligned}$	$\begin{array}{r} 2,03 \\ .080 \end{array}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$
Dim. Dwg. Fig. 7	V7-2A17D8-207	$5 \underset{\mathbf{A}}{5 \mathrm{Amps}}$	$\begin{gathered} \hline 43 \\ 1.51 \end{gathered}$	$\begin{gathered} 3 \\ .105 \end{gathered}$	$\begin{aligned} & 2,92 \\ & .115 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 0,64 \\ & .025 \end{aligned}$
	V7-1C17E9-207	$\begin{gathered} \text { 15.1 Amps } \\ \text { C } \end{gathered}$	$\begin{gathered} 86 \\ 3 \end{gathered}$	$\begin{gathered} 9 \\ .32 \end{gathered}$	$\begin{aligned} & \hline 2,84 \\ & .112 \end{aligned}$	$\begin{aligned} & 1,63 \\ & .064 \end{aligned}$	$\begin{aligned} & 0,64 \\ & .025 \end{aligned}$
	V7-1V19E9-207	$21 \underset{\mathbf{V}}{ }$	$\begin{aligned} & 100 \\ & 3.5 \end{aligned}$	$\begin{gathered} 7 \\ .25 \end{gathered}$	$\begin{aligned} & 3,07 \\ & .121 \end{aligned}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$

* For SPST (N.O. \& N.C.) circuitry, contact the 800 number.

NOTE: Catalog listing in V7 Order Guides have standard . 114" mounting holes. For 3mm size holes, contact the 800 number.

ORDER GUIDE - ACCESSORIES

$$
\text { Key: } \frac{0,0=\mathrm{mm}}{0.00=\text { inches }}
$$

Catalog Listing	Description	Catalog Listing	Description
15PA176-V7	Connector/Receptacle packet-Includes 25 connectors and 75 receptacles with 18 ", blue 16 gauge PVC insulated, stranded wire. (To be used with D8 terminals only).	15PA177-V7	Insulator packet (500 pcs.) .018" thick varnished fiberglass.
15PA260	Plunger boot seal. Elastomer dust and splash resistant plunger seal.		

Dimensions shown are for reference only.

## INTERNATIONAL SERIES

PIN PLUNGER


Dim. Dwg. Fig. 1

ORDER GUIDE - SPDT*
INTERNATIONAL SERIES

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel.

Catalog Listing	Elect. Rating P. 38	O.F. max. grams ounces	R.F. min. grams ounces	P.T. max. mm inches	0.T. min. inches	$\begin{aligned} & \text { D.T. } \\ & \mathrm{mm} \end{aligned}$
V7-1B11E9	$\begin{gathered} 11 \mathrm{Amps} \\ \text { B } \end{gathered}$	$\begin{aligned} & \hline 150 \\ & 5.3 \end{aligned}$	$\begin{gathered} 25 \\ .88 \end{gathered}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & \hline 0,05-0,25 \\ & .002-.010 \end{aligned}$
V7-2B11D8	$11 \text { Amps }$	$\begin{gathered} \hline 75 \\ 2.63 \end{gathered}$	$\begin{aligned} & 10 \\ & .35 \end{aligned}$	$\begin{aligned} & \hline 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & \hline 0,05-0,25 \\ & .002-.010 \end{aligned}$
V7-2B11PO2	$\begin{gathered} 11 \mathrm{Amps} \\ \text { B } \end{gathered}$	$\begin{gathered} \hline 75 \\ 2.63 \end{gathered}$	$\begin{aligned} & 10 \\ & .35 \end{aligned}$	$\begin{array}{r} 1,19 \\ .047 \\ \hline \end{array}$	$\begin{aligned} & 1,27 \\ & .050 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0,05-0,25 \\ & .002-.010 \end{aligned}$
V7-3E11D8	$10 \mathrm{Amps}$	$\begin{gathered} \hline 50 \\ 1.75 \end{gathered}$	$\begin{gathered} \hline 5 \\ .175 \end{gathered}$	$\begin{aligned} & 1,19 \\ & .047 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0,05-0,25 \\ & .002-.010 \end{aligned}$
V7-3E11E9	$10 \mathrm{Amps}$	$\begin{gathered} \hline 50 \\ 1.75 \end{gathered}$	$\begin{gathered} 5 \\ .175 \end{gathered}$	$\begin{array}{r} 1,19 \\ .047 \\ \hline \end{array}$	$\begin{aligned} & 1,27 \\ & .050 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0,05-0,25 \\ & .002-.010 \end{aligned}$

## STRAIGHT LEVERS



SIMULATED ROLLER LEVERS


ROLLER LEVERS

1.40" LEVER INTER NATIONAL SERIES

V7-1B11E9-022	11 Amps	80	8	2,79	2,28	0,76
	$\mathbf{B}$	$\mathbf{2 . 8}$	$\mathbf{. 2 8}$	$\mathbf{. 1 1 0}$	$\mathbf{. 0 9 0}$	$\mathbf{. 0 3 0}$
V7-2B11E9-022	11 Amps	45	4	2,79	2,28	0,76
	$\mathbf{B}$	$\mathbf{1 . 5 8}$	$\mathbf{. 1 4}$	$\mathbf{. 1 1 0}$	$\mathbf{. 0 9 0}$	$\mathbf{. 0 3 0}$
V7-3E11D8-022	10 Amps	30	2	2,79	2,28	0,76
	$\mathbf{E}$	$\mathbf{1 . 0 5}$	$\mathbf{. 0 7 0}$	$\mathbf{. 1 1 0}$	$\mathbf{. 0 9 0}$	$\mathbf{. 0 3 0}$

1.29" LEVER INTERNATIONAL SERIES

V7-2B11D8-263	11 Amps	50	5	2,54	1,9	0,76
	$\mathbf{B}$	$\mathbf{1 . 7 5}$	$\mathbf{. 1 7 5}$	$\mathbf{. 1 0 0}$	. $\mathbf{0 7 5}$	.030
V7-3E11E9-263	10 Amps	33	2	2,54	1,9	0,76
	$\mathbf{E}$	$\mathbf{1 . 1 6}$	$\mathbf{. 0 7 0}$	$\mathbf{. 1 0 0}$	$\mathbf{. 0 7 5}$	$\mathbf{. 0 3 0}$

ORDER GUIDE - SPDT* .81" LEVER INTERNATIONAL SERIE S

V7-2B11D8-201	11 Amps	$\mathbf{9 0}$	10	$\mathbf{1 , 1 9}$	$\mathbf{1 , 0 2}$	0,38
	$\mathbf{B}$	$\mathbf{3 . 1 5}$	$\mathbf{. 3 5}$	$\mathbf{. 0 4 7}$	$\mathbf{. 0 4 0}$	$\mathbf{. 0 1 5}$
V7-3E11D8-201	10 Amps	62	5	1,19	1,02	0,38
	$\mathbf{E}$	$\mathbf{2 . 1 7}$	$\mathbf{. 1 7 5}$	$\mathbf{. 0 4 7}$	$\mathbf{. 0 4 0}$	$\mathbf{. 0 1 5}$

1.34" LEVER INTE R NATIONAL SE RIE S

V7-2B11E9-207	11 Amps	45	5	2,54	2,16	0,76
	$\mathbf{B}$	$\mathbf{1 . 5 8}$	$\mathbf{. 1 7 5}$	$\mathbf{. 1 0 0}$	.085	$\mathbf{0 3 0}$

NOTE: Catalog listings in V7 Order Guides have standard .114" mounting holes. For 3 mm size holes, contact the 800 number.

Dim. Dwg. Fig. 7

## Miniature

MOUNTING DIME NSIONS (for reference only)
Key: $\frac{0,0=\mathrm{mm}}{0.00=\text { inches }}$

## PIN PLUNGER

Fig. 1


Fig. 2

Straight Lever (Style-002)


Fig. 3
Simulated Roller (Style-263)


Fig. 6
Straight Lever (Style-048)


Fig. 4 Roller Lever (Style-201)


Fig. 7 Roller Lever (Style-207)


NOTE: All levers are $0.17^{\prime \prime}(4,31 \mathrm{~mm})$ wide. Rollers are $0.19^{\prime \prime}(4,82 \mathrm{~mm})$ wide.

NOTE: Operate point dimensions taken at top of lever/roller.

## ZM, ZX, ZV and ZW Series Subminiature Basic Switches

ZM, ZX, ZV and ZW Series Subminiature Basic Switches are costeffective devices used for simple on/off applications. These switches combine small size and light weight with ample electrical capability and long life. Plastic lever capability is available on the ZV Series.

## Electrical rating:

## Voltage:

Operating temperature:
Termination:
Contact type:
Switching options:

## ZM Series

Approvals:
Electrical rating:

## OPTIONS

## Top pin plunger


$0.1 \mathrm{~A}, 5 \mathrm{~A}$ or 10.1 A

## $25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left[-13{ }^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right]$ Quick connect, solder, PCB <br> Gold or silver SPDT

termination	electrical rating	CONTACTTYPE	REFERENCE
Quick connect	5 A	silver	ZM50E7000
Solder	5 A	silver	ZM50E10001

## Simulated roller lever



TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE
Quick connect	5 A	silver	ZM50E70A01
Solder	5 A	silver	ZM50E10A01
PCB	10.1 A	silver	ZM90G20A01
Solder	0.1 A	gold	ZM10B10A01

## ZX Series

Approvals:
Electrical rating:

## OPTIONS

Top pin plunger


Straight lever

Simulated roller lever

UL/CSA
0.1 A or 3 A


## ZV Series

Approvals:
Electrical rating:
UL/ENEC
$0.1 \mathrm{~A}, 5 \mathrm{~A}$ or 10.1 A

OPTIONS
Top pin plunger

TEBMINATION	ELECTRICAL RATING	CONTACTTYPE	REFERENCE
PC8	3 A	silver	ZX40E30C01
SOOder	3 A	silver	ZX40E10C01


TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE
PCB	5 A	silver	ZV50E20A01
Solder	5 A	silver	ZV50E10A01
Quick connect	0.1 A	gold	ZV10B70A01

## BASIC SWITCHES

## Straight lever



TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE
Solder	5 A	silver	ZV50E10BO1
Quick connect	5 A	silver	ZV50E70C01

Roller lever


TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE
PCB	5 A	silver	ZV50E20F01
Quick connect	5 A	silver	ZV50E70F01

## ZW Sealed Series

Approvals:
Electrical rating:

## OPTIONS

## Top pin plunger



TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE   Solder

Straight lever


TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE   gold
Solder	0.1 A	ZW10E15CD1	



TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE   Wire leads

## Honeywell

## FEATURES

- Power load switching capability up to 10 amperes
- Motor handling capacity of $1 / 2$ horsepower, 125 VAC
- Two- and four-circuit double-break
- Several auxiliary actuators
- Choice of terminal styles
- UL recognized, CSA certified
- Momentary action


## GENERAL INFORMATION

TB miniature switches are basic doublebreak units which offer a means of controlling isolated circuits. Each circuit can be driven by independent voltage sources. These switches find many uses in modern control systems because of their circuitry.

The terminals oftwo- and four-circuitdouble break switches must be wired to identical voltage sources and the same polarity so that a voltage potential is not set up between adjacent terminals. A voltage potential between adjacent terminals could promote dielectric breakdown at high energy levels. The loads should be on the same sides of the line.

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P.

ORDER GUIDE - Operating Position.

| Catalog |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Listing |$\quad$| Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Dim. Dwg. Fig. 1


Dim. Dwg. Fig. 2

$\left.\begin{array}{|l|l|c|c|c|c|c|c|c|}\hline \text { 1TB1-3 } & \begin{array}{l}\text { Two-circuit, double- } \\ \text { break front solder } \\ \text { terminals }\end{array} & \mathbf{1 0 ~ A m p s ~} & \mathbf{Z}\end{array} \begin{array}{c}1,95-3,61 \\ 7-13\end{array} \quad \begin{array}{c}1,11 \\ 4\end{array}\right)$

Dim. Dwg. Fig. 3


41TB5-3	Four-circuit, doublebreak front solder terminals	$10 \mathrm{Amps}$	$\begin{gathered} 5,56-10,0 \\ 20-36 \end{gathered}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{aligned} & 1,78 \\ & .070 \end{aligned}$	$\begin{aligned} & 0,25 \\ & .010 \end{aligned}$	$\begin{aligned} & 0,64-1,14 \\ & .025-.045 \end{aligned}$	$\begin{aligned} & 4,70 \\ & .185 \end{aligned}$



J T-1


J T-5
ORDER GUIDE

Catalog Listing	
J T-1	Leaf actuator
J T-5	Roller leaf actuator

Switches are not included with the actuators.

MOUNTING DIMENSIONS (For reference only)


Fig. 1


Fig. 2


Fig. 3


Fig. 4

Key: $\frac{0,0=\mathrm{mm}}{0.00=\text { inches }}$

## Basic Switches Standard

## STANDARD BASIC SWITCH CUT-A-WAY

The cut-a-way shown is representative ofthe standard basic switches described in this catalog.


## GENERAL INFORMATION

MICRO SWITCH standard basic switches are precision snap-action mechanisms enclosed in accurately molded plastic cases. These switches are carefully manufactured and thoroughly inspected. They are industry known for their compactness, light weight, accurate repeatability and long life.

## MOUNTING DIMENSIONS

Mounting dimensions are included at the end of each product section. They are shown in English and metric equivalents. These dimensions are for reference only. For exacting layoutwork, request an engineering layout work, requestan engineering drawing from the 800 number.

Mounting holes for Types $B Z, B M, B A, B E$, DT, MT, and 6AS switches accept pins or screws of .139 inch ( $3,53 \mathrm{~mm}$ ) diameter.

## REC OMMENDED TORQUE (max.)

Mounting screws $\qquad$ 3 in./lbs.*
Terminal screws $\qquad$ .4 in./lbs.
Panel mount bushing . ....... 4-6 in./lbs.

* Note: Tightening mounting screws above 3 in./lbs. changes operat-

The type BZ switch design meets most applications needs. Modifications of the standard silver contact design and material, spring configuration, and plunger locations give the type BM, BA and BE switches greater electrical load handling capacity. Other changes in materials and switch design provide operating characteristics, temperature tolerances, and sealing to cover a wide range of special requirements.

## GENERAL SWITCH IDENTIFICATION

First letter in catalog listing designates:
B = Single-pole double-throw
W = Single-pole single-throw (normally closed)
$\mathrm{Y}=$ Single-pole single-throw (normally open)
Second letter in catalog listing designates:
$Z=$ Standard 15-amp version
$\mathrm{M}=22$-amp version
$A=$ Standard 20 -amp version
$E=25-a m p$ version

This section covers only over 100 of our most popular BZ/BA type Series catalog listings. If you don't find what you're looking for, it's likely one of the approximately 1800 other active listings will meet your needs. Contact the 800 number. ing characteristics and increases the possibility of cracking the case.

## UL/C SA

Our basic switches are Component Recognized by Underwriters' Laboratories, Inc. and certified by Canadian Standards Association. The BA, BZ, and BM line is covered as Special Use Switches to UL Standard 1054; the BE line is covered as an Industrial Motor Controller to UL Standard 508.

Agency File References are:

BA	UL File E12252, issued 12-09-88
BM	UL File E12252, issued 12-08-88
BZ	UL File E12252, issued 6-29-89
BE-1,2,5	UL File E22779, Vol. 4, Sec. 1
BE-R	UL File E22779, Vol. 4, Sec. 2

## AVAILABLE TERMINALS

Most of the BZ/BA catalog listings have A2 type terminals. Several other terminal styles are shown and others are available. Specific information should be requested from the 800 number or local Authorized Distributor


## ACTUATORS

$B A, B E, B M$ and $B Z$ standard basic switches use the actuators described


Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. Operating Position.
ORDER GUIDE by ascending electrical capability
PIN PLUNGER
BZ/BA TYPE
MICRO SWITCH
Dim. Dwg. Fig. 1


BA/BE TYPE


Dim. Dwg. Fig. 3

Catalog Listing	Recommended For	Electrical Data And UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	$\begin{gathered} \text { D.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.** } \\ \text { mm } \\ \text { inches } \end{gathered}$
B Z-2R 72-A2	Applications requiring gold alloy contacts	$1 \mathrm{Amp}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004-.0020 \end{gathered}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
BZ-2R725551-A2	Gold alloy contacts Dustproof and splash resistant seal	$1 \mathrm{Pmp}$	$\begin{gathered} 2,22-4,17 \\ 8-15 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$-$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,06 \\ .0004-.0025 \end{gathered}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
B Z-2R 244-A2	Operating in temp. to $+400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$ for 100 hours	$\begin{gathered} 5 \mathrm{Amps} \\ \text { B } \end{gathered}$	$\begin{gathered} \hline 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004-.0020 \end{gathered}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
BZ-R21-A2	Lower force	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{C} \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,7 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 0,30 \\ & .012 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & \hline 0,005-0,013 \\ & .0002-.0005 \end{aligned}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
BZ-2R-A2	Most applications SPDT	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004-.0020 \end{gathered}$	$\begin{gathered} 15,88 \\ .625 \end{gathered}$
WZ-2R-A2	SPST (normally closed)	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \\ \hline \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 0,01-0,05 \\ .0004-.0020 \\ \hline \end{array}$	$\begin{aligned} & 15,88 \\ & .625 \\ & \hline \end{aligned}$
YZ-2R-A2	SPST (normally open)	$\begin{gathered} 15 \mathrm{Amps} \\ \hline \end{gathered}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004-.0020 \end{gathered}$	$\begin{gathered} 15,88 \\ .625 \end{gathered}$
BZ-R-A2	Less differential travel	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{D} \end{gathered}$	$\begin{gathered} 1,95-2,5 \\ 7-9 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,30 \\ & .012 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & 0,005-0,008 \\ & .0002-.0003 \end{aligned}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
BZ-R 19-A2	Best repeatability	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{D} \end{gathered}$	$\begin{gathered} 1,95-3,34 \\ 7-12 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,30 \\ & .012 \end{aligned}$	$\begin{gathered} .0,13-0,2 \\ .005-.008 \end{gathered}$	$\begin{gathered} 0,005-0,02 \\ .0002-.0008 \end{gathered}$	$\begin{gathered} 16,26 \\ .640 \end{gathered}$
BZ-2R 24-A2	Operating in temp. to $+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \\ \hline \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{array}{\|c\|} \hline 0,01-0,05 \\ .0004-.0020 \\ \hline \end{array}$	$\begin{gathered} 15,88 \\ .625 \\ \hline \end{gathered}$
$\begin{aligned} & \text { BZ-2RT04 } \\ & \text { (8805/1-004) } \end{aligned}$	MIL-S-8805 application requirements	15 Amps A	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004-.0020 \end{gathered}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
B Z-2R 05-A2	Best stability under varying humidity	$15 \mathrm{Amps}$ A	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004-.0020 \end{gathered}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
BZ-2R 5551-A2	Dustproof and splash resistant seal	$\begin{gathered} 15 \mathrm{Amp} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 2,5-4,17 \\ 9-15 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$-$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,06 \\ .0004-.0025 \end{gathered}$	$\begin{gathered} 15,88 \\ .625 \end{gathered}$
BZ-2R55-A2-S	Best service for sealed construction. Stainless steel internal snap spring.	$15 \mathrm{Amps}$	$\begin{gathered} 2,5-4,17 \\ 9-15 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	-	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,01-0,06 \\ .0004-.0025 \end{gathered}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
BA-2R-A2	Up to 20 ampere load handling	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 3,89-6,12 \\ 14-22 \end{gathered}$	$\begin{gathered} 2,78 \\ 10 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & \hline 0,25 \\ & .010 \end{aligned}$	$\begin{gathered} 0,05-0,19 \\ .0020-.0075 \end{gathered}$	$\begin{aligned} & \hline 16,26 \\ & .640 \end{aligned}$
B A-2R 24-A2	Operating in temperature to $+250^{\circ} \mathrm{F}$ $\left(121^{\circ} \mathrm{C}\right)$	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} \hline 3,89-6,12 \\ 14-22 \end{gathered}$	$\begin{gathered} 2,78 \\ 10 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & \hline 0,25 \\ & .010 \end{aligned}$	$\begin{gathered} 0,05-0,19 \\ .0020-.0075 \end{gathered}$	$\begin{gathered} \hline 16,26 \\ .640 \end{gathered}$
B M-1R-A2	Up to 22 ampere load handling	$22 \mathrm{Amps}$	$\begin{gathered} 1,95-2,78 \\ 7-10 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & \hline 0,13 \\ & .005 \end{aligned}$	$\begin{array}{\|c\|} \hline 0,013-0,025 \\ .0005-.0010 \end{array}$	$\begin{gathered} \hline 15,88 \\ .625 \end{gathered}$
BE-2R-A4	Up to 25 ampere load handling	$\begin{gathered} 25 \mathrm{Amps} \\ \mathrm{H} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 3,89-6,12 \\ 14-22 \\ \hline \end{array}$	$\begin{gathered} 2,78 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & \hline 0,25 \\ & .010 \end{aligned}$	$\begin{gathered} 0,05-0,19 \\ .0020-.0075 \end{gathered}$	$\begin{gathered} \hline 16,26 \\ .640 \end{gathered}$


BZ-RX	Manual reset (maintained contact) applications, solder terminals	$15 \mathrm{Amps}$	$\begin{gathered} 1,95-2,5 \\ 7-9 \\ 0,56-2,78^{*} \\ 2-10 \end{gathered}$	- - -	$\begin{gathered} 0,30 \\ .012 \\ - \\ - \end{gathered}$	$\begin{aligned} & 0,13 \\ & .005 \\ & 0,38^{*} \\ & .015 \end{aligned}$	-	$\begin{aligned} & 15,88 \\ & .625 \end{aligned}$
WA-1RX-A4	Manual reset SPSTNC, A4 terminals	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{~W} \end{gathered}$	$\begin{gathered} 5,56 \\ 20 \\ 6,95^{*} \\ 25 \end{gathered}$	- - -	-	0,25 .010 - -	$\begin{gathered} \hline 0,20 \\ .008 \\ - \\ - \end{gathered}$	$\begin{gathered} 16,26 \\ .64 \\ 27,9^{*} \\ 1.10 \end{gathered}$

All catalog listings shown are not necessarily stock items. Stocking depends on sales experience.

Auxiliary actuators see p. 62-63.

## OVERTRAVEL

## PLUNGER



Dim. Dwg. Fig. 11
ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	$\begin{aligned} & \text { O.T. min. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { D.T. } \\ \mathrm{mm} \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
BZ-2RD72-A2	Applications requiring gold alloy contacts	$\begin{gathered} 1 \text { Amp } \\ \text { P } \end{gathered}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	0,01-0,05 00040020	$\begin{gathered} 21,21 \\ .835 \end{gathered}$
BZ-2RD-A2	Added overtravel. For manual operation and slow $20^{\circ}$ (max) cam rise	$\underset{\text { A }}{15 \mathrm{Amps}}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	0,01-0,05 00040020	$\begin{gathered} 21,21 \\ .835 \end{gathered}$
BZ-2RD24-A2	Operating in temperature to $+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	0,01-0,05 00040020	$\begin{gathered} 21,21 \\ .835 \end{gathered}$
BM-1RD-A2	Up to 22 ampere load handling	$22 \mathrm{Amps}$	$\begin{gathered} 1,95-2,78 \\ 7-10 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 0,013-0,025 \\ .0005- \\ .0010 \end{gathered}$	$\begin{gathered} 21,21 \\ .835 \end{gathered}$


BZ-2RDS725551-A2	Applications requiring gold   alloy contacts plus   dustproof and splash   resistant seal	1 Amp   P	$3,61-5,28$   $13-19$	1,11   4	-	1,52   .060	$0,01-0,063$   $.0004-$   .0025	28,20   1.110
BZ-2RDS5551-A2	Dustproof and splash   resistant seal	15 Amps   A	$3,61-5,28$   $13-19$	1,11   4	-	1,52   .060	$0,01-0,063$   $.0004-$   .0025	28,20   1.110



BA-2RB-A2	Up to 20 ampere load   handling	20 Amps   G	$3,89-6,12$   $14-22$	2,78   10	1,27   .050	2,39   .094	$0,05-0,19$   $.0020-$   .0075	26,20   1.03
BE-2RB-A4	Up to 25 ampere load   handling	25 Amps   H	$3,89-6,12$   $14-22$	2,78   10	1,27   .050	2,39   .094	$0,05-0,19$   $.0020-$   .0075	26,20   1.03

Dim. Dwg. Fig. 13

	BZ-2RS72-A2	Applications requiring gold alloy contacts	$1 \text { Amp }$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$	$\begin{aligned} & 28,20 \\ & 1.110 \end{aligned}$
micio 5WITCH   Dim. Dwg. Fig. 14	BZ-2RS-A2	Added overtravel. For in-line operation and with J R auxiliary actuators	$15 \mathrm{Amps}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 0,01-0,063 \\ .0004- \\ .0025 \end{gathered}$	$\begin{aligned} & 28,20 \\ & 1.110 \end{aligned}$
	BZ-2RS24-A2	Operating in temperature $\text { to }+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$15 \mathrm{Amps}$ A	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$	$\begin{aligned} & 28,20 \\ & 1.110 \end{aligned}$
	$\begin{aligned} & \hline \text { BZ-2RST04 } \\ & \text { M8805/1-012) } \end{aligned}$	MIL-S-8805 application requirements	$15 \mathrm{Amps}$ A	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$	$\begin{aligned} & 28,20 \\ & 1.110 \end{aligned}$
	BZ-RSX	Manual reset solder terminals	$\underset{\mathrm{E}}{15 \mathrm{Amps}}$	$\begin{gathered} 1,95-2,64 \\ 7-9 \end{gathered}$	-	$\begin{aligned} & 0,30 \\ & .012 \end{aligned}$	$\begin{aligned} & 0,64 \\ & .025 \end{aligned}$	-	$\begin{aligned} & 2,79 \\ & 1.11 \end{aligned}$
	BM-1RS-A2	Up to 22 ampere load handling	$\begin{gathered} 22 \mathrm{Amps} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} 1,95-2,78 \\ 7-10 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 0,013-0,025 \\ .0005- \\ .0010 \end{gathered}$	$\begin{aligned} & 28,20 \\ & 1.110 \end{aligned}$



## OVERTRAVEL

 PLUNGER

Dim. Dwg. Fig. 16


Dim. Dwg. Fig. 17

Dim. Dwg. Fig. 18


[^1]| BZ-2RQ1872-A2 | Applications requiring gold alloy contacts | $1 \text { Amp }$ | $\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$ | $\begin{gathered} 1,11 \\ 4 \end{gathered}$ | $\begin{aligned} & 0,38 \\ & .015 \end{aligned}$ | $\begin{aligned} & 3,56 \\ & .140 \end{aligned}$ | $\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$ | $\begin{aligned} & 33,32 \pm 1,14 \\ & 1.312 \pm .045 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BZ-2RQ18-A2 | Added overtravel. Roller plunger for rapid cam ( $30^{\circ}$ max) rise and slide operation. Panel mount | $\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$ | $\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$ | $\begin{gathered} 1,11 \\ 4 \end{gathered}$ | $\begin{aligned} & 0,38 \\ & .015 \end{aligned}$ | $\begin{aligned} & 3,56 \\ & .140 \end{aligned}$ | $\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$ | $\begin{aligned} & 33,32 \pm 1,14 \\ & 1.312 \pm .045 \end{aligned}$ |
| BZ-2RQ1824-A2 | Operating in temperature to $\left.\pm 250^{\circ} \mathrm{F}\right)\left(121^{\circ} \mathrm{C}\right)$ | $\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$ | $\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$ | $\begin{gathered} 1,11 \\ 4 \end{gathered}$ | $\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$ | $\begin{aligned} & 3,56 \\ & .140 \end{aligned}$ | $\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$ | $\begin{aligned} & 33,32 \pm 1,14 \\ & 1.312 \pm .045 \end{aligned}$ |
| BZ-2AQ18T1 | Double-break circuitry | $\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~T} \end{gathered}$ | $\begin{gathered} 3,89-6,68 \\ 14-24 \end{gathered}$ | $\begin{gathered} 1,11 \\ 4 \end{gathered}$ | $\begin{aligned} & 0,51 \\ & .020 \end{aligned}$ | $\begin{aligned} & 3,58 \\ & .141 \end{aligned}$ | $\begin{aligned} & \text { 0,03-0,10 } \\ & .001-.004 \end{aligned}$ | $\begin{aligned} & 33,35 \pm 1,19 \\ & 1.313 \pm .047 \end{aligned}$ |
| BM-1RQ18-A2 | Up to 22 ampere load handling | $\begin{gathered} 22 \mathrm{Amps} \\ \mathrm{~F} \end{gathered}$ | $\begin{gathered} 1,95-2,78 \\ 7-10 \end{gathered}$ | $\begin{gathered} 1,11 \\ 4 \end{gathered}$ | $\begin{aligned} & 0,38 \\ & .015 \end{aligned}$ | $\begin{aligned} & 3,56 \\ & .140 \end{aligned}$ | $\begin{aligned} & 0,013- \\ & 0,025 \\ & .0005- \\ & .0010 \end{aligned}$ | $\begin{aligned} & 33,32 \pm 1,14 \\ & 1.312 \pm .045 \end{aligned}$ |


Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	$\begin{gathered} \text { D.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.** } \\ \text { mm } \\ \text { inches } \end{gathered}$
BZ-2RQ-A2	Added overtravel. For manual in-line operation and for slow $30^{\circ}$ (max) rise cams	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	0,01-0,05 00040020	$\begin{aligned} & 38,10 \pm 0,51 \\ & 1.500 \pm .020 \end{aligned}$
BZ-2RQ24-A2	Operating in temperature to $\pm 250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	0,01-0,05 .00040020	$\begin{aligned} & 38,10 \pm 0,51 \\ & 1.500 \pm .020 \end{aligned}$


BZ-2RQ172-A2	Applications requiring gold alloy contacts	$\begin{gathered} 1 \text { Amp } \\ \text { P } \end{gathered}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$	$\begin{gathered} 21,82 \\ .859 \end{gathered}$
BZ-2RQ1-A2	BZ-2RQ-A2 type applications with panel mount	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$	$\begin{gathered} 21,82 \\ .859 \end{gathered}$
BZ-2RQ1T04 M8805/1-020)	MIL-S-8805 application requirements	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$	$\begin{gathered} 21,82 \\ .859 \end{gathered}$
BZ-2RQ124-A2	Operating in temperature to $\pm 250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{gathered} \hline 0,01-0,05 \\ .0004- \\ .0020 \end{gathered}$	$\begin{gathered} 21,82 \\ .859 \end{gathered}$
BZ-2RN702	Furnished with unassembled seal boot.	$\begin{gathered} 15 \text { Amps } \\ \mathrm{X} \end{gathered}$	$\begin{gathered} \hline 2,5-3,61 \\ 9-13 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 0,38 \\ & 0.15 \end{aligned}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{gathered} 0,01-0,05 \\ .0004- \\ .0020 \\ \hline \end{gathered}$	$\begin{gathered} 48,4 \pm 0,50 \\ 1.906 \pm .020 \end{gathered}$
BZ-RQ1X	Manual reset.   Solder terminals	$\underset{\mathrm{E}}{15 \mathrm{Amps}}$	$\begin{gathered} 1,67-2,64 \\ 6-9.5 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0,30 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	-	$\begin{gathered} 23,42 \pm 1,14 \\ .922 \pm .045 \\ 7,14^{*} \\ .281^{*} \end{gathered}$
BA-2RQ1-A2	Up to 20 ampere load handling	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 3,89-6,12 \\ 14-22 \end{gathered}$	$\begin{gathered} 2,78 \\ 10 \end{gathered}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{gathered} 0,05-0,19 \\ .0020- \\ .0075 \end{gathered}$	$\begin{gathered} 21,82 \\ .859 \end{gathered}$
BM-1RQ1-A2	Up to 22 ampere load handling	$\begin{gathered} 22 \mathrm{Amps} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} 1,95-2,78 \\ 7-10 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,013- \\ & 0,025 \\ & .0005- \\ & .0010 \end{aligned}$	$\begin{gathered} 21,82 \\ .859 \end{gathered}$

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.

STRAIGHT LEVER


Dim. Dwg. Fig. 21

Dim. Dwg. Fg. 23

## ADJ USTABLE



Dim. Dwg. Fg. 22


## ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. max. newtons ounces	R.F. min. newtons ounces	$\begin{array}{\|l} \text { P.T. max. } \\ \text { mm } \\ \text { inches } \\ \hline \end{array}$	$\begin{aligned} & \text { O.T. min. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { D.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.** } \\ \text { mm } \\ \text { inches } \end{gathered}$
BZ-2RW8072-A2	Applications requiring gold alloy contacts	$\begin{gathered} 1 \text { Amp } \\ \hline \end{gathered}$	$\begin{aligned} & 0,7 \\ & 2.5 \end{aligned}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,18-1,27 \\ & .007-.050 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-2RW80722555105-A2	Best stability under varying humidity. Gold alloy contacts with seal	$1 \text { Amp }$	$\begin{aligned} & \hline 0,7 \\ & 2.5 \end{aligned}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & \hline 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & \text { 0,18-1,27 } \\ & .007-.050 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-2RW8244-A2	Operating in temp. to $+400^{\circ} \mathrm{F}\left(204^{\circ} \mathrm{C}\right)$ for 100 hours	$\begin{gathered} 5 \text { Amps } \\ \text { B } \end{gathered}$	$\begin{aligned} & 0,7 \\ & 2.5 \end{aligned}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,18-1,27 \\ & .007-.050 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-RW8435-A2	Lowest operating force (without external return spring)	$10 \mathrm{Amps}$	$\begin{gathered} 0,07 \\ .25 \end{gathered}$	-	$\begin{aligned} & 6,76 \\ & .266 \end{aligned}$	$\begin{aligned} & \hline 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,08-0,38 \\ & .003-.015 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-2RW876T	1.25 inch lever requirements	$15 \mathrm{Amps}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} \hline 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 0,42 \\ & .141 \end{aligned}$	$\begin{aligned} & 0,10-0,63 \\ & .004-.025 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-2RW80-A2	2.5 inch lever requirements	$15 \mathrm{Amps}$	$\begin{aligned} & 0,7 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & \hline 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,18-1,27 \\ & .007-.050 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-2RW84-A2	Lower force (without external return spring)	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$0,28$	$\begin{gathered} 0,03 \\ 0.125 \end{gathered}$	$\begin{aligned} & 8,33 \\ & .328 \end{aligned}$	$\begin{aligned} & \hline 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,18-1,27 \\ & .007-.050 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-2RW805551-A2	Dustproof and splash resistant seal	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & 0,7 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 0,14 \\ 0.5 \end{gathered}$	-	$\begin{array}{r} 5,56 \\ .219 \end{array}$	$\begin{aligned} & 0,18-1,27 \\ & .007-.050 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
$\begin{aligned} & \hline \text { BZ-2RWT04 } \\ & \text { M8805/1-044) } \end{aligned}$	MIL-S-8805 application requirements	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{array}{\|c} \hline 0,28-0,90 \\ 1-3.25 \end{array}$	$\begin{aligned} & 0,21 \\ & 0.75 \end{aligned}$	$\begin{aligned} & \hline 7,52 \\ & .296 \end{aligned}$	$\begin{aligned} & 4,37 \\ & .172 \end{aligned}$	$\begin{aligned} & 2,36 \\ & .093 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-2RW824-A2	Operating in temperature to $+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & \hline 0,7 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & \hline 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,18-1,27 \\ & .007-.050 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BZ-RW80X	Manual reset solder terminals	$\begin{gathered} \text { 15 Amps } \\ \hline \end{gathered}$	$\begin{aligned} & 0,63 \\ & 2.25 \end{aligned}$	$-$	-	$\begin{gathered} 5,56 \\ .219 \\ 0,38^{*} \\ .015 \end{gathered}$	- - -	$\begin{gathered} 19,05 \\ .750 \\ 7,14^{*} \\ .281 \end{gathered}$
BZ-2RW863-A2	6 inch lever requirements	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$0,28$	-	-	$\begin{aligned} & 12,7 \\ & .500 \end{aligned}$	$\begin{aligned} & 0,46-3,68 \\ & .018-.145 \end{aligned}$	$\begin{aligned} & 19,1 \pm 1,52 \\ & .750 \pm .060 \end{aligned}$
BA-2RV-A2	Up to 20 ampere load handling	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{aligned} & 0,7 \\ & 2.5 \end{aligned}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	$\begin{gathered} 15,88 \\ .625 \end{gathered}$	$\begin{aligned} & 1,98 \\ & .078 \end{aligned}$	$\begin{aligned} & 2,77 \\ & .109 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BM-1RW84-A2	Up to 22 ampere load handling	$22 \mathrm{Amps}$ F	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{gathered} 0,03 \\ 0.125 \end{gathered}$	$\begin{aligned} & 7,54 \\ & .297 \end{aligned}$	$\begin{array}{r} 5,56 \\ .219 \end{array}$	$\begin{aligned} & 0,13-0,84 \\ & 005-.033 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$
BE-2RV-A4	Up to 25 ampere load handling	$25 \text { Amps }$ H	$\begin{aligned} & 0,7 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 0,14 \\ 0.5 \end{gathered}$	$\begin{gathered} 15,88 \\ .625 \end{gathered}$	$\begin{aligned} & 1,98 \\ & .078 \end{aligned}$	$\begin{gathered} 2,77 \\ .109 \text { max. } \end{gathered}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$

* Reset characteristics.

BZ-2RW899-A2	Adjustable operating point (17 mm to 22 mm ) $670^{\prime \prime}$ to $880^{\prime \prime}$	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{aligned} & 0.7 \\ & 2.5 \end{aligned}$	$\begin{gathered} 0.14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 3,54 \dagger \\ & .125 \end{aligned}$	$\begin{aligned} & 0,18-1,27 \\ & .007-.050 \end{aligned}$	$\begin{array}{\|c\|} \hline 17,02-22,35 \\ .670-.880 \end{array}$
BZ-2RM-A2	Reverse acting actuator (switch plunger depressed in free position	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,10-0,89 \\ & .004-035 \end{aligned}$	$\begin{aligned} & 19,1 \\ & .750 \end{aligned}$

[^2]
## SIMULATED ROLLER



Dim. Dwg. Fig. 27

## ROLLER LEVER



Dim. Dwg. Fig. 25


Dim. Dwg. Fig. 28

BA/BE TYPE


BZ-2RW82299-A2	Adjustable operating point. Roller lever 1.05 inch ( $26,7 \mathrm{~mm}$ )	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 29,77-30,56 \\ & 1.172-1.203 \end{aligned}$
BZ-2RW8299-A2	Adjustable operating point. Roller lever 1.90 inch ( $48,3 \mathrm{~mm}$ )	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{aligned} & 0,21 \\ & 0.75 \end{aligned}$	-	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$	$\begin{gathered} 0,10-1,0 \\ .004-.040 \end{gathered}$	$\begin{gathered} \hline 29,2-31,5 \\ 1.150-1.24 \end{gathered}$

Dim. Dwg. Fig. 26

Catalog Listing	Recommended For	Electrical Data And Page 46			P.T. max.   mm inches	$\begin{gathered} \text { O.T. } \\ \text { min. } \\ \mathrm{mm} \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { D.T. } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.** } \\ \text { mm } \\ \text { inches } \end{gathered}$
BZ-2RW80147-A2	1.05 inch ( $26,7 \mathrm{~mm}$ ) (simulated roller) lever applications	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{aligned} & 0,42 \\ & 1.5 \end{aligned}$	-	$\begin{aligned} & 2,39 \\ & .04 \end{aligned}$	$\begin{aligned} & \text { 0,08-0,51 } \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 30,17 \\ & 1.188 \end{aligned}$
BZ-2RW80196-A2	1.90 inch ( $48,3 \mathrm{~mm}$ ) (simulated roller) lever applications	$15 \mathrm{Amps}$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{aligned} & 0,21 \\ & 0.75 \end{aligned}$	-	$\begin{aligned} & 3,96 \\ & .156 \end{aligned}$	$\begin{aligned} & \hline 0,10-1,0 \\ & .004-040 \end{aligned}$	$\begin{array}{\|l\|} \hline 30,17 \pm 0,76 \\ 1.188 \pm .030 \end{array}$


BZ-2RW82272-A2	Applications requiring gold alloy contacts	$\underset{\mathrm{P}}{1 \mathrm{Amp}}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 2,39 \\ & .094 \end{aligned}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 30,17 \\ & 1.188 \end{aligned}$
BZ-2RW822725551-A2	Applications requiring gold alloy contacts plus dustproof and splash resistant seal	$\begin{gathered} 1 \text { Amp } \\ \text { P } \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 2,39 \\ & .094 \end{aligned}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 30,17 \\ & 1.188 \end{aligned}$
BZ-2RW822-A2	1.05 inch ( $26,7 \mathrm{~mm}$ ) (steel roller) lever applications	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 2,39 \\ & .094 \end{aligned}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 30,17 \\ & 1.188 \end{aligned}$
BZ-2RW8222-A2	Roller turned $90^{\circ}$	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{aligned} & \hline 0,7-1,81 \\ & 2.5-6.5 \end{aligned}$	$\begin{aligned} & 0,35 \\ & 1.25 \end{aligned}$	-	$\begin{gathered} 3,58 \\ 141 \text { max. } \end{gathered}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{gathered} 30,75 \\ 1.25 \end{gathered}$
BZ-2RW82224-A2	Operating in temperature to $+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 2,39 \\ & .094 \end{aligned}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 30,17 \\ & 1.188 \end{aligned}$
BZ-2RW8225551-A2	Dustproof and splash resistant seal	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 2,39 \\ & .094 \end{aligned}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 30,17 \\ & 1.188 \end{aligned}$
BZ-2RW82255-A2-S	Best service for sealed construction. Stainless steel internal snap spring.	$15 \mathrm{Amps}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 2,39 \\ & .094 \end{aligned}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 30,17 \\ & 1.188 \end{aligned}$
BA-2RV22-A2	Up to 20 ampere load handling	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	$\begin{aligned} & 6,35 \\ & .250 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 1,14 \\ .045 \text { max. } \end{gathered}$	$\begin{aligned} & 29,77 \\ & 1.172 \end{aligned}$
BM-1RW822-A2	Up to 22 ampere load handling	$22 \mathrm{Amps}$ F	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} \hline 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 2,39 \\ & .094 \end{aligned}$	$\begin{aligned} & \hline 0,025-0,33 \\ & .001-.013 \end{aligned}$	$\begin{aligned} & 30,17 \\ & 1.188 \end{aligned}$
BE-2RV22-A4	Up to 25 ampere load handling	$\underset{\mathrm{H}}{25 \mathrm{Amps}}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	$\begin{aligned} & 6,35 \\ & .250 \end{aligned}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{gathered} 1,14 \\ .045 \text { max. } \end{gathered}$	$\begin{aligned} & 29,77 \\ & 1.172 \end{aligned}$

ORDER GUIDE

## Characteristics:

O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel;
O.P. - Operating Position.

ROLLER LEVER



ORDER GUIDE

Catalog Listing	$\underset{\text { For }}{\text { Recommended }}$	Electrical Data And UL Code Page 46	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T.   max.   mm inches	$\begin{gathered} \text { O.T. } \\ \mathrm{min} . \\ \mathrm{mm} \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { D.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
BZ-2RW82725551-A2	Applications requiring gold alloy contacts, plus dustproof, and splash resistant seal	$1 \text { Amp }$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{aligned} & 0,21 \\ & 0.75 \end{aligned}$	-	$\begin{aligned} & 3,96 \\ & .156 \end{aligned}$	$\begin{gathered} 0,10-1,0 \\ .004-.040 \end{gathered}$	$\begin{aligned} & 30,17 \pm 0,76 \\ & 1.188 \pm .030 \end{aligned}$
BZ-2RW82-A2	1.90 inch ( $48,3 \mathrm{~mm}$ ) (steel roller) lever applications	$15 \mathrm{Amps}$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{aligned} & 0,21 \\ & 0.75 \end{aligned}$	-	$\begin{aligned} & \hline 3,96 \\ & .156 \end{aligned}$	$\begin{gathered} 0,10-1,0 \\ .004-.040 \end{gathered}$	$\begin{aligned} & 30,17 \pm 0,76 \\ & 1.188 \pm .030 \end{aligned}$
BZ-2RW825551-A2	Dustproof and splash resistant seal	$15 \mathrm{Amps}$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{aligned} & 0,21 \\ & 0.75 \end{aligned}$	-	$\begin{aligned} & \hline 3,96 \\ & .156 \end{aligned}$	$\begin{gathered} 0,10-1,0 \\ .004-.040 \end{gathered}$	$\begin{aligned} & 30,17 \pm 0,76 \\ & 1.188 \pm .030 \end{aligned}$
BZ-2RW8224-A2	Operating in temperature to $+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$15 \mathrm{Amps}$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{aligned} & 0,21 \\ & 0.75 \end{aligned}$	-	$\begin{aligned} & \hline 3,96 \\ & .156 \end{aligned}$	$\begin{gathered} \hline 0,10-1,0 \\ .004-.040 \end{gathered}$	$\begin{aligned} & \hline 30,17 \pm 0,76 \\ & 1.188 \pm .030 \end{aligned}$
BA-2RV2-A2	Up to 20 ampere load handling	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	$\begin{aligned} & \hline 11,89 \\ & .468 \end{aligned}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & \hline 2,16 \\ & .085 \end{aligned}$	$\begin{aligned} & \hline 30,17 \pm 0,76 \\ & 1.188 \pm .030 \end{aligned}$
BM-1RW82-A2	Up to 22 ampere load handling	$\begin{gathered} 22 \mathrm{Amps} \\ \mathrm{~F} \end{gathered}$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{aligned} & 0,21 \\ & 0.75 \end{aligned}$	-	$\begin{aligned} & 3,96 \\ & .156 \end{aligned}$	$\begin{aligned} & 0,08-0,56 \\ & .003-.022 \end{aligned}$	$\begin{gathered} 30,17 \pm 0,76 \\ 1.188 \pm .030 \end{gathered}$
BE-2RV2-A4	Up to 25 ampere load handling	$\begin{gathered} 25 \mathrm{Amps} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} 0,97 \\ 3.5 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	$\begin{array}{r} \hline 11,89 \\ .468 \end{array}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{gathered} 2,16 \\ .085 \text { max. } \end{gathered}$	$\begin{gathered} 30,17 \pm 0,76 \\ 1.188 \pm .030 \end{gathered}$

NOTE: For adjustable operate point and simulated roller lever switches, refer to previous page.


Dim. Dwg. Fig. 31


Dim. Dwg. Fig. 32

BZ-2RW826-A2	One-way roller (9,4 $\mathrm{mm} \times 3,8 \mathrm{~mm}$ ) $.37^{\prime \prime}$ dia. $\times .15^{\prime \prime}$ wide roller	$15 \mathrm{Amps}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{array}{r} 2,39 \\ .094 \end{array}$	$\begin{aligned} & 0,08-0,51 \\ & .003-.020 \end{aligned}$	$\begin{aligned} & 41,34 \\ & 1.625 \end{aligned}$
BZ-2RW825-A2	One-way roller (4,83 $\mathrm{mm} \times 4,83 \mathrm{~mm}$ ). $19^{\prime \prime}$ dia. $\times .19^{\prime \prime}$ wide roller	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{gathered} \hline 28,96 \\ 1.14 \end{gathered}$

FLEXIBLE LEAF


Dim. Dwg. Fig. 33


ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	$\begin{aligned} & \text { O.T. min. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{aligned} & \text { D.T. max. } \\ & \quad \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{aligned} & \text { O.P.** } \\ & \text { mm } \\ & \text { inches } \end{aligned}$
BZ-2RL-A2	Force and stability of the flexible leaf actuator	$15 \mathrm{Amps}$	$\begin{gathered} 1,39 \\ 5 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 17,48 \\ .688 \end{gathered}$
BZ-2RL5551-A2	Dustproof and splash resistant seal	$15 \text { Amps }$ A	$\begin{gathered} 1,95 \\ 7 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} \hline 17,48 \\ .688 \end{gathered}$
$\begin{aligned} & \text { BZ-2RLT04 } \\ & \text { (M8805/1-001) } \end{aligned}$	MIL-S-8805 application requirements	$\begin{gathered} 15 \mathrm{Amps} \\ \hline \end{gathered}$	$\begin{gathered} 1,39 \\ 5 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 17,48 \\ .688 \end{gathered}$
BZ-2RL24-A2	Operating in temperature to $+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$	$15 \mathrm{Amps}$	$\begin{gathered} 1,39 \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} \hline 17,48 \\ .688 \end{gathered}$
BZ-RLX	Manual reset.   Solder terminals	$15 \mathrm{Amps}$	$\begin{gathered} 0,83 \\ 3 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{aligned} & 1,57 \\ & .062 \\ & 0,38^{*} \\ & .015 \end{aligned}$		$\begin{gathered} 17,48 \\ .688 \\ 7,14^{*} \\ .281 \end{gathered}$
BA-2RL-A2	Up to 20 ampere load handling	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 2,5 \\ 9 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	-	$\begin{aligned} & 1,57 \\ & .062 \end{aligned}$	$\begin{aligned} & 1,57 \\ & .062 \end{aligned}$	$\begin{gathered} \hline 17,48 \\ .688 \end{gathered}$
BE-2RL-A4	Up to 25 ampere load handling	$25 \mathrm{Amps}$	$\begin{gathered} 2,5 \\ 9 \end{gathered}$	$0,28$	-	$\begin{aligned} & 1,57 \\ & .062 \end{aligned}$	$\begin{aligned} & 1,57 \\ & .062 \end{aligned}$	$\begin{gathered} \hline 17,48 \\ .688 \end{gathered}$

ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. max. newtons ounces	R.F. min. newtons ounces	$\begin{array}{\|l} \hline \text { P.T. max. } \\ \text { mm } \\ \text { inches } \end{array}$	$\begin{array}{\|l} \text { O.T. min. } \\ \text { mm } \\ \text { inches } \end{array}$	$\begin{aligned} & \text { D.T. max. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
BZ-RL24-A2	Operating in temp. to $+250^{\circ} \mathrm{F}\left(121^{\circ} \mathrm{C}\right)$   for 100 hours	$\begin{gathered} 5 \mathrm{Amps} \\ \text { B } \end{gathered}$	$\begin{gathered} 1,39 \\ 5 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 28,6 \\ 1.125 \end{gathered}$
BZ-2RL2-A2	Force and stability of the flexible leaf with roller	$15 \mathrm{Amps}$ A	$\begin{gathered} 1,39 \\ 5 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 28,6 \\ 1.125 \end{gathered}$
BZ-2RL25551-A2	Dustproof and splash resistant seal	$15 \mathrm{Amps}$ A	$\begin{gathered} 1,95 \\ 7 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 28,6 \\ 1.125 \end{gathered}$
$\begin{aligned} & \hline \text { BZ-2RL2T04 } \\ & \text { M8805/1-036) } \end{aligned}$	MIL-S-8805 application requirements	$15 \text { Amps }$ A	$\begin{gathered} 1,04-1,39 \\ 3.75-5 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,27 \\ & .050 \end{aligned}$	$\begin{gathered} 28,6 \\ 1.125 \end{gathered}$
BA-2RL2-A2	Up to 20 ampere load handling	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 2,5 \\ 9 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{gathered} 28,6 \\ 1.125 \end{gathered}$
BE-2RL2-A4	Up to 25 ampere load handling	25 Amps H	$\begin{gathered} 2,5 \\ 9 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	-	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{gathered} 28,6 \\ 1.125 \end{gathered}$

* Reset characteristics


## FLEXIBLE

 ROLLER LEAF

Dim. Dwg. Fig. 36

## GENERAL INFORMATION

 SPECIAL CIRCUITRY SWITCHES"Special sequence" switches provide unusual circuit control. A make-beforebreak switch provides circuit continuity while switching from N.C. to N.O. In another make-before-make switch, upon actuation, one circuit is made an interval before the second circuit. Another switch
provides a single pulse or momentary closure of the contacts with each cycle of operation.

Double break versions can interruptgreater inductive loads and feature shorting bar construction. A split contact version allows control of the two isolated circuits.

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.

	ORDER GUIDE								
ancto swit\%	Catalog Listing	Recommended For	Electrical   Data and   UL Codes   Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	$\begin{aligned} & \text { O.T. min. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { D.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
Dim. Dwg. Fig 5	BZ-2G-A2	Make-before-break contact action	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{C} \\ \hline \end{gathered}$	$\begin{gathered} 5,56 \\ 20 \text { max. } \\ \hline \end{gathered}$	$\begin{gathered} 2,22 \\ 8 \\ \hline \end{gathered}$	$\begin{array}{r} 0,76 \\ .030 \\ \hline \end{array}$	$\begin{array}{r} 0,13 \\ .005 \\ \hline \end{array}$	$\begin{array}{r} 0,38 \\ .015 \\ \hline \end{array}$	$\begin{array}{r} 15,9 \\ .625 \\ \hline \end{array}$



Dim. Dwg. Fig. 6

* $\pm 0,38 \mathrm{~mm}$
$\pm .015 \mathrm{in}$


Dim. Dwg. Fig. 4-A

## PIN PLUNGER SPECIAL CIRCUITRY

## ORDER GUIDE



Dim. Dwg. Fig. 8


Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	$\begin{aligned} & \text { O.T. min. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { D.T. } \\ \mathrm{mm} \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
BZ-3AT	Double-break, low voltage DC applications	$15 \mathrm{Amps}$ $\mathrm{T}$	$\begin{array}{\|c\|} \hline 4,45-7,23 \\ 16-26 \end{array}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 0,76 \\ & .030 \end{aligned}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & \text { 0,051-0,13 } \\ & .002-.005 \end{aligned}$	$\begin{aligned} & 15,9 \\ & .625 \end{aligned}$
BZ-2AW80T	As above, with 2.5 inch lever	$15 \mathrm{Amps}$	$\begin{aligned} & 0,90 \\ & 3.25 \end{aligned}$	$\begin{gathered} 0,14 \\ .25 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 5,56 \\ & .219 \end{aligned}$	$\begin{aligned} & 0,51 \\ & 2.54 \end{aligned}$	$\begin{gathered} 19,05 \pm 0,76 \\ .750 \pm .030 \end{gathered}$
BZ-2AW82T	As above, with 1.9 inch roller lever	$\begin{gathered} 15 \mathrm{Amps} \\ \mathrm{~T} \end{gathered}$	$\begin{gathered} 1,25 \\ 4.5 \end{gathered}$	$\begin{gathered} 0,21 \\ .75 \end{gathered}$		$\begin{aligned} & 3.96 \\ & .156 \end{aligned}$	$\begin{aligned} & 0,38-1,91 \\ & .015-.075 \end{aligned}$	$\begin{gathered} 30,18 \pm 0,76 \\ 1.188 \pm .030 \end{gathered}$
BZ-2AW822T	As above, with 1.05 inch roller lever	$15 \mathrm{Amps}$	$\begin{gathered} 2,36 \\ 8.5 \end{gathered}$	$\begin{gathered} 0,42 \\ 1.5 \end{gathered}$	-	$\begin{aligned} & 2,39 \\ & .094 \end{aligned}$	$\begin{aligned} & 0,20-2,39 \\ & .008-.030 \end{aligned}$	$\begin{aligned} & 30,18 \pm 0,76 \\ & 1.188 \pm .030 \end{aligned}$



BA-3ST	Double-break, low   voltage DC applications	25 Amps   M	$7,23-10,6$   $26-38$	2,78   10	1,65   .065	0,25   .010	$0,18-0,38$   $.007-.015$	16,3   .640

Dim. Dwg. Fig. 9


Dim. Dwg. Fig. 10


BZ-3YT   (MS25383-1)	MIL-S-8805 application   requirements. (split   contact)	5 Amps   U	$4,45-7,23$   $16-26$	1,11   4	0,76   .030	0,13   .005	$0,025-0,1$   $.001-.004$	15,9   .625
BZ-3YWT80	As above, with	5 Amps	0,97	0,14	-	5,56	$0,51-2,54$	$19,05 \pm 0,76$
	2.50 inch lever	U	3.5	.5	-	.219	$.020-.100$	$.750 \pm .030$
BZ-3YWT82	As above, with	5 Amps	1,25	0,21	-	3,96	$0,38-1,91$	$30,18 \pm 0,76$
	1.9 inch roller lever	U	4.5	.75	-	.156	$.015-.075$	$1.188 \pm .030$
BZ-3YWT822	As above, with	5 Amps	1,95	0,42	-	2,39	$0,20-1,02$	30,19
	1.05 inch roller lever	U	7	1.5	-	.094	$.008-.040$	.188

Except where stated $* \pm 0,38 \mathrm{~mm}$

$$
\pm .015 \mathrm{in} \text {. }
$$

Standard

## MOUNTING DIMENSIONS (For reference only)

PIN PLUNGERS
BZ/BM


Fig. 1


Fig. 4
PIN PLUNGERS - SPECIAL

## CIRCUITRY



Fig. 5


Fig. 8
Mounting holes accept pins or screws of $.139 "(3,53 \mathrm{~mm})$ diameter.


Fig. 2


Fig. 4-A


Fig. 6


Fig. 9


Fig. 7


Fig. 10

$$
\text { Key: } \frac{0,0=\mathrm{mm}}{0.00=\text { inches }}
$$

## MOUNTING DIMENSIONS (For reference only)

## OVERTRAVEL PLUNGERS



Fig. 11
Fig. 12


Fig. 13


Fig. 14


Fig. 15

*Fig. 18

* Threaded bushings are 15/32-32ns.


Fig. 21


Fig. 24


Fig. 22


Fig. 25


Fig. 23


$$
\begin{aligned}
R= & 26,7 / 1.05 \text { FOR BZ-2RW82299-A2 } \\
& 48,3 / 1.90 \text { FOR BZ-2RW8299-A2 }
\end{aligned}
$$

Fig. 26

## FLEXIBLE LEAF ACTUATOR



Fig. 33


Fig. 34

## ROLLER LEVERS


$R=26,7 / 1.05$ FOR BZ-2RW80147-A2
48,3/1.90 FOR BZ-2RW80196-A2
$S=7,9 / .31$ FOR BZ-2RW80147-A2
4,8/.19 FOR BZ-2RW80196-A2
Fig. 27


Fig. 30

## FLEXIBLE ROLLER LEAF



Fig. 35


Fig. 28


Fig. 31


Fig. 36


Fig. 29


Fig. 32

Mounting holes accept pins or screws of $.139^{\prime \prime}(3,53 \mathrm{~mm})$ diameter.
Key: $\frac{0,0=m m}{0.00=\text { inches }}$

## Basic Switches

## Auxiliary Actuators Standard Basic



FEATURES

- Additional overtravel
- Quick, easy installation
- Corrosion resistance
- MIL-S-8805 listed units

NOTE: Switches shown are not included with the actuator. All actuators are for use with pin plunger types only except catalog listing JR.

## GENERAL INFORMATION

Auxiliary actuators adapt the plungertype standard basic switches to many application needs. Auxiliary actuators minimize the need for a large inventory of switch types. Actuators and switches are sold as separate items and must be ordered separately. Mounting hardware is furnished with the actuator.

C haracteristics:
O.T. - Overtravel;
O.P. - Operating Position;
F.P. - Free Position.

ORDER GUIDE

	Catalog				
Description	Use   Only   Listing	O.T. min.   mm   inches	O.P.*   mm   inches	F.P. max.   mm   inches	
Roller lever for "S" plunger type   BZ and DT switches only.   Permits cam operation.	JR	BZ   DT	$\mathbf{1 1 . 1}$	$\mathbf{4 4 , 4 5 \pm \mathbf { 3 , 1 8 }}$	



Adjustable roller lever. Tang on top of actuator can be bent to adjust O.P. and F.P.	$\begin{aligned} & \text { AD5721R } \\ & \text { (8805/59) } \\ & \text { AN3169-1 } \end{aligned}$	$\begin{aligned} & B Z \\ & B M \end{aligned}$	$\begin{gathered} 11,1 \\ .437 \\ \text { approx. } \end{gathered}$	$\begin{gathered} 31,75-41,15 \\ 1.25-1.62 \end{gathered}$	$\begin{aligned} & 39,6-43,7 \\ & 1.56-1.72 \end{aligned}$
	ADA3721R	$\begin{aligned} & \hline \mathrm{BA} \\ & \mathrm{BE} \end{aligned}$	$\begin{gathered} 9,53 \\ .375 \\ \text { approx. } \end{gathered}$	$\begin{gathered} 40,48 \\ 1.594 \\ \text { approx. } \end{gathered}$	$\begin{aligned} & 43,03 \\ & \mathbf{1 . 8 1 2} \end{aligned}$
	ADD3721R	$\begin{aligned} & \hline \text { DT } \\ & \text { MT } \end{aligned}$	$\begin{gathered} 9,53 \\ .375 \\ \text { approx. } \end{gathered}$	$\begin{gathered} 39,6 \\ 1.562 \\ \text { approx. } \end{gathered}$	$\begin{aligned} & 46,03 \\ & 1.812 \end{aligned}$



Straight plunger. Panel mount.	MC 2711   (8805/59)	BZ   BM	4,78   .188	27,79   $\mathbf{A N 3 1 6 8 - 2}$	29,4       MCA2711
	MCA	BA	3,96	28,17	30,18
		BE	.156	$\mathbf{1 . 1 0 9}$	$\mathbf{1 . 1 8 8}$
	MCD2711	DT	3,58	27,79	30,18
		MT	.141	$\mathbf{1 . 0 9 4}$	$\mathbf{1 . 1 8 8}$

Dimensions shown are for reference only.

Basic Switches
Auxiliary Actuators Standard Basics

Fig. 4


ORDER GUIDE

Description	Catalog Listing	Use   Only   With	O.T. min. mm Inches	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { Inches } \end{gathered}$	F.P. max. mm Inches
Sealed straight plunger. Panel mount. Elastomer seal boot keeps out liquid splash and dirt. Furnished unassembled.	MC 2711H	$\begin{aligned} & B Z \\ & B M \end{aligned}$	$\begin{aligned} & 4,78 \\ & .188 \end{aligned}$	$\begin{aligned} & 28,98 \\ & 1.141 \end{aligned}$	$\begin{gathered} 29,4 \\ 1.156 \end{gathered}$
	MCA2711H	$\begin{aligned} & B A \\ & B E \end{aligned}$	$\begin{aligned} & 4,37 \\ & .172 \end{aligned}$	$\begin{aligned} & 27,38 \pm 0,76 \\ & 1.078 \pm .030 \end{aligned}$	$\begin{aligned} & 29,56 \\ & 1.156 \end{aligned}$
	MCD2711H	$\begin{aligned} & \hline \text { DT } \\ & \text { MT } \end{aligned}$	$\begin{aligned} & 3.58 \\ & .141 \end{aligned}$	$\begin{aligned} & \hline 27,79 \\ & 1.094 \end{aligned}$	$\begin{aligned} & \hline 30,18 \\ & 1.188 \end{aligned}$


Roller plunger. Panel mount. Roller parallel to long axis of the switch.	MD3211Q	$\begin{aligned} & \mathrm{BZ} \\ & \mathrm{BM} \end{aligned}$	$\begin{gathered} \hline 3,18 \\ .125 \\ \text { approx. } \end{gathered}$	$\begin{gathered} 35,7 \\ 1.406 \end{gathered}$	$\begin{aligned} & 37,69 \\ & 1.484 \end{aligned}$
	MDA3711Q	$\begin{aligned} & \mathrm{BA} \\ & \mathrm{BE} \end{aligned}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 36,12 \\ & 1.422 \end{aligned}$	$\begin{aligned} & 37,69 \\ & 1.484 \end{aligned}$
	MD3211Q	$\begin{aligned} & \hline \text { DT } \\ & \text { MT } \end{aligned}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{gathered} 35,7 \\ 1.406 \end{gathered}$	$\begin{aligned} & 37,69 \\ & 1.484 \end{aligned}$

Fig. 6


Cross roller plunger. Panel mount. Roller perpendicular to long axis of the switch.	MD3211Q1	$\begin{aligned} & \mathrm{BZ} \\ & \mathrm{BM} \end{aligned}$	$\begin{gathered} \hline 3,18 \\ .125 \\ \text { approx. } \end{gathered}$	$\begin{gathered} 35,7 \\ 1.406 \end{gathered}$	$\begin{aligned} & 37,69 \\ & 1.484 \end{aligned}$
	MDA3711Q1	$\begin{aligned} & \mathrm{BA} \\ & \mathrm{BE} \end{aligned}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{aligned} & 36,12 \\ & 1.422 \end{aligned}$	$\begin{aligned} & 37,69 \\ & 1.484 \end{aligned}$
	MD3211Q1	$\begin{aligned} & \text { DT } \\ & \text { MT } \end{aligned}$	$\begin{aligned} & 3,18 \\ & .125 \end{aligned}$	$\begin{gathered} 35,7 \\ 1.406 \end{gathered}$	$\begin{aligned} & 37,69 \\ & 1.484 \end{aligned}$


High overtravel plunger. Panel mount.	MC7711 (8805/58) AN3167-1	$\begin{aligned} & \mathrm{BZ} \\ & \mathrm{BM} \end{aligned}$	$\begin{gathered} 20,62 \\ .812 \end{gathered}$	$\begin{array}{r} 69,1 \\ 2.719 \end{array}$	$\begin{aligned} & 70,64 \\ & \mathbf{2 . 7 8 1} \end{aligned}$
	MCA7711	$\begin{aligned} & \hline \mathrm{BA} \\ & \mathrm{BE} \end{aligned}$	$\begin{gathered} \hline 19,84 \\ .781 \end{gathered}$	$\begin{aligned} & \hline 69,44 \\ & \mathbf{2 . 7 3 4} \end{aligned}$	$\begin{aligned} & \hline 71,42 \\ & \mathbf{2 . 8 1 2} \end{aligned}$
	MCD7711	$\begin{aligned} & \text { DT } \\ & \text { MT } \end{aligned}$	$\begin{gathered} 18,26 \\ .719 \end{gathered}$	$\begin{array}{r} \hline 69,1 \\ 2.719 \end{array}$	$\begin{aligned} & \hline 71,42 \\ & \mathbf{2 . 8 1 2} \end{aligned}$

Except where stated* $\pm 1,14 \mathrm{~mm}$
$\pm .045 \mathrm{in}$.

## Basic Switches

Accessories Standard Basics

## DIE CAST ZINC ENCLOSURES

Width of opening $.74^{\prime \prime}(18,8 \mathrm{~mm})$


3PA1
*Width of base is 2.125 inches ( 54 mm ) and mounting hole centers are 1.625 inches ( $41,3 \mathrm{~mm}$ ) apart.


## FEATURES

- Protect switch from physical abuse
- Protectpersonnel from contact with exposed terminals
- Provide rugged mounting means
- 1/2-14NPT internal thread conduit hub

ORDER GUIDE

C atalog Listing	Description
3PA1	Side mount enclosure-Can be mounted from either side through   $.140^{\prime \prime}(3,55 \mathrm{~mm})$ dia. holes on $1^{\prime \prime}(25,4 \mathrm{~mm})$ centers.
3PA28	Side mount enclosure-Can be mounted from either side through   $.140^{\prime \prime}(3,55 \mathrm{~mm})$ dia. holes on $1^{\prime \prime}(25,4 \mathrm{~mm})$ centers. $1 / 2-14 \mathrm{NPSM}$   internal thread conduit hub.
3PA2	Flange mount enclosure-Switch is first secured in enclosure; two   $0.172^{\prime \prime}(4,37 \mathrm{~mm})$ dia. holes in the flange accept \#8 machine screws   for mounting on 1.625 (41,3mm) centers.
3PA6	Side mount enclosure-For use with actuator Fig. 2 page 58.

## PLASTIC TERMINAL ENCLOSURES



## FEATURES

- Easy to use
- Screw and solder terminal versions
- Protect personnel from contact with exposed terminals

ORDER GUIDE

Catalog Listing	Description
5PA1	For solder terminal switches
5PA2	For screw terminal switches
5PA3	For solder or screw terminal switches with auxiliary actuators   assembled.

Dimensions shown are for reference only.
Switches are not included with enclosures.

## Basic Switches

## Accessories Standard Basics

## ADJ USTABLE MOUNTING BRACKETS



FEATURES

- Sturdy plated steel construction
- Fast, easy screwdriver adjustment
- Can be used with all standard basic switches

GENERAL INFORMATION
The operation point of a basic switch can be regulated up to $.080^{\prime}(2 \mathrm{~mm})$ by loosening the locking screw, inserting a screwdriver in the adjusting slot, and twisting.

ORDER GUIDE

Catalog Listing	Description
	Adjustable mounting bracket, adjustment slot on the left.
8MA2	Adjustable mounting bracket, adjustment slot on the right.

## MOUNTING DIMENSIONS



## CONVERSION MOUNTING BRACKET

## FEATURES

- Converts standard basic switches from side to top mount
- Corrosion resistant
- Snaps into switch mounting holeswithout tools

ORDER GUIDE

Catalog Listing	Description
17MA1-B	Conversion mounting bracket.

17MA1-B WITH SWITCH ASSEMBLED

MOUNTING DIMENSIONS


Switches are not included with bracket.

## FEATURES



- Two independent single-pole doublethrow circuits on one housing
- Design permitting several wiring combinations
- Savings in space and weight
- Mounting interchangeability with type Z switches
- Temperature tolerance to $+180^{\circ} \mathrm{F}$ $\left(82^{\circ} \mathrm{C}\right)$
- UL recognized, CSA certified


## AVAILABLE TERMINALS

B6

B6
$6-32$ UNC $\times .188^{\prime \prime}$
(No. 5 pan head screws)


A7
4-40 UNC $\times .125^{\prime \prime}$
Screws with lockwashers.
Fiberglas insulator isolates
terminals and prevents
accidental shorting.


## ELECTRICAL RATING

Circuitry	Electrical Data and UL Codes
Double-pole double-throw	J $10 \mathrm{amps}, 125$ or 250 vac ; $0.3 \mathrm{amp}, 125 \mathrm{vdc} ; 0.15 \mathrm{amp}$, 250 vdc .   UL Code L59

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.

DOUBLE-POLE DOUBLE THROW


ORDER GUIDE

Catalog Listing	Description	Electrical Data and UL Code	O.F.   max. newtons ounces	R.F. min. newtons ounces	P.T.   max.   mm inches	$\begin{gathered} \text { O.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	D.T. max. min. mm inches	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
$\begin{aligned} & \text { DT-2R-A7 } \\ & \text { MS25008-1 } \end{aligned}$	Pin plunger	$10 \mathrm{Amps}$ J	$\begin{gathered} \hline 3,34-5,56 \\ 12-20 \end{gathered}$	$\begin{gathered} 0,56 \\ 2 \end{gathered}$	$\begin{aligned} & 1,91 \\ & .075 \end{aligned}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & 1,02-1,52 \\ & .040-.060 \end{aligned}$	$\begin{gathered} 15,6 \\ .615 \pm .015 \end{gathered}$



Dim. Dwg. Fig. 3


DT-2RV3-A7	Straight lever   Reversed lever   position	10 Amps   $J$	$1,11-1,95$   $4-7$	0,14	6,86	0,25	$2,92-4,83$	18,3
.5	.270	.010	$.115-.190$	.719				


DT-2RV-A7	Straight lever	10 Amps J	$\begin{gathered} 0,97-1,67 \\ 3.5-6 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{gathered} 25,4 \\ 1 \end{gathered}$	$\begin{aligned} & 1,57 \\ & .062 \end{aligned}$	$\begin{aligned} & 12,4-19,2 \\ & .490-.755 \end{aligned}$	$\begin{aligned} & 21,8 \\ & .859 \end{aligned}$

Dim. Dwg. Fig. 2


ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	$\begin{aligned} & \text { D.T. max. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	$\begin{gathered} \text { O.P.* } \\ \mathrm{mm} \\ \text { inches } \end{gathered}$
DT-2RV216-A7	Roller lever (centered steel roller)	10 Amps   J	$\begin{gathered} 11,1 \\ 2.5 \text { Ibs. } \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{aligned} & 0,51-0,76 \\ & .020-.030 \end{aligned}$	$\begin{gathered} 31 \\ 1.219 \end{gathered}$


DT-2RV22-A7	1.03 inch (26,2mm) roller         lever (steel roller)	10 Amps   J	$2,5-3,89$   $9-14$	0,83			0,79	$4,95-7,75$
3	-	.031	$.195-.305$	$1.188 \pm 0,015$				


DT-2RV212-A7	Roller lever   Reversed lever position	10 Amps   J	$2,5-4,17$   $9-15$	0,42   1.5	3,3   130	0,13	$1,27-2,16$	29,4
	.005	$.070-.085$	1.156					

Dim. Dwg. Fig. 7


DT-2RV23-A7	Roller lever   Reversed lever position	10 Amps   J	$1,53-2,64$   $5.5-9.5$	0,21   .75	4,45   .175	0,25   .010	$2,16-3,43$   $.085-135$	29,4   1.156



DT-2RV2-A7	$\begin{array}{l}1.90 \text { inch (48,3 mm) roller } \\ \\ \\ \text { lever (steel roller) }\end{array}$	10 Amps	$1,25-2,09$	0,42	-	1,19	$9,27-14,4$	31,8

Except where stated $* \pm 0,76 \mathrm{~mm}$

$$
\pm .030 \mathrm{in} .
$$

Auxiliary actuators see page 68-69.

PIN PLUNGER

## STRAIGHT LEVER



Fig. 1

## STRAIGHT LEVER



Fig. 3


Fig. 2

## ROLLER LEVER



Fig. 4

$$
\text { Key: } \frac{0,0=\mathrm{mm}}{0.00=\text { inches }}
$$

## MOUNTING DIMENSIONS (For reference only)

## ROLLER LEVER



Fig. 5
ROLLER LEVER


Fig. 7
STRAIGHT PLUNGER

## ROLLER LEVER



Fig. 6

## ROLLER LEVER



Fig. 8


Fig. 9


FEATURES

- Arc resistant case
- Mechanical life of 100,000 operations - 95\% survival
- Temperature tolerance to $+180^{\circ} \mathrm{F}$ $\left(82^{\circ} \mathrm{C}\right)$
- Mounting interchangeability with Z switches
- UL recognized


## AVAILABLE TERMINALS



Solder (No listing designation)

GENERAL INFORMATION
MT (single-pole double-throw) magnetic blow-out switches are designed to switch high capacity ( 125 and 250 VDC) systems. An integral magnet around the contact gap protects the contacts by deflecting the arc. Vents between the cover and housing allow the hot gas to escape. These switches are designed for the control of DC motors, solenoids, etc.


A28
$6-32 N C \times .218^{\prime \prime}$ Screws will accept up to \#12 wire.

## ELECTRICAL RATING

Circuitry	Electrical Data and UL Codes
Single-pole double-throw unless   otherwise noted   in order guide	K Rating established with switch non-polarized $10 \mathrm{amps}, 125$ vac or vdc; $1 / 4 \mathrm{hp}, 125$ vac or vdc.   UL Code L 168   Non-polarized:   10 amps res. or $1 / 4 \mathrm{hp}, 125 \mathrm{vdc}$; 3 amps max. res. 250 vdc .   Polarized*:   10 amps res. or $1 / 2 \mathrm{hp}, 125 \mathrm{vdc}$;   3 amps max. res., 250 vdc .
*To polarize, connect negative side of line to common terminal. To achieve the same effect, mount switch with brass screws, using a non-magnetic barrier (at least $1 / 4$ " thick) between the switch and mounting surface.	

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.

ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	$\begin{aligned} & \text { O.T. min. } \\ & \text { mm } \\ & \text { inches } \end{aligned}$	```D.T. max. mm inches```	$\begin{gathered} \text { O.P. } \\ \text { mm } \\ \text { inches } \end{gathered}$
MT-4R-A28	Pin plunger SPDT	$\begin{aligned} & 10 \mathrm{Amps} \\ & \mathrm{~K} \end{aligned}$	$\begin{gathered} 3,34-5,0 \\ 12-18 \end{gathered}$	$\begin{gathered} 1,39 \\ 5 \end{gathered}$	$\begin{gathered} 1,02 \\ .04 \end{gathered}$	$\begin{aligned} & 0,13 \\ & .005 \end{aligned}$	$\begin{gathered} 0,1-0,18 \\ .004-.007 \end{gathered}$	$\begin{aligned} & 15,9 \pm 0,38 \\ & .625 \pm .015 \end{aligned}$

Dim. Dwg. Fig. 1

## ORDER GUIDE



MT-4RV2-A28	1.90 inch $(48,3 \mathrm{~mm})$ lever with hardened steel roller	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & 0,76 \\ & 2.75 \end{aligned}$	$\begin{aligned} & 0,07 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 8,89 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 0,79 \\ & .031 \end{aligned}$	$\begin{aligned} & 1,65 \\ & .065 \end{aligned}$	$\begin{gathered} 30,2 \\ 1.188 \end{gathered}$
MT-4RV22-A28	1.03 inch $(26,2 \mathrm{~mm})$ lever with hardened steel roller	$\begin{gathered} 10 \mathrm{Amps} \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} 1,25 \\ 4.5 \end{gathered}$	$\begin{gathered} 0,28 \\ 1 \end{gathered}$	$\begin{aligned} & 5,08 \\ & .200 \end{aligned}$	$\begin{aligned} & 0,38 \\ & .015 \end{aligned}$	$\begin{aligned} & 0,89 \\ & .035 \end{aligned}$	$\begin{gathered} 31,3 \\ 1.234 \end{gathered}$

[^3]| MT-4RL-A28 | 1.95 inch $(49,5 \mathrm{~mm})$ <br> flexible leaf | 10 Amps <br> K | 3,34 <br> 12 | 0,28 <br> 1 | - | 1,52 <br> .060 <br> max. | - | 19,1 <br> .750 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Dim. Dwg. Fig. 4


## Magnetic Blow-out

MOUNTING DIMENSIONS (For reference only)

PIN PLUNGER


Fig. 1
ROLLER LEVER


Fig. 3
FLEXIBLE ROLLER LEAF


Fig. 5
Mounting holes accept pins or screws of .139" (3,53 mm) diameter.

Key: $\frac{0,0=\mathrm{mm}}{0.00=\text { inches }}$

STRAIGHT LEVER


Fig. 2
FLEXIBLE LEAF


Fig. 4

## FEATURES

- . 080 inch minimum overtravel
- Power load switching capability up to 15 amperes
- Motor handling capacity of 1 horsepower at 240 vac.
- Long mechanical life of $10,000,000 \mathrm{cy}$ -cles-95\% survival
- Arc resistant plastic
- More space between terminals to reduce possibility of shorting
- \#8 Terminal screws
- UL recognized, CSA certified


## GENERAL INFORMATION

3MN switches are for use with limitor control mechanisms on machine tools, presses or other industrial equipment.

These switches provide easy gang mounting.

The terminals of double-break switches must be wired to identical voltage sources and the same polarity. The loads should be on the same sides of the lines.

## ELECTRICAL RATING

Circuitry	Electrical Data and   UL Codes
Two-circuit	V Motor Control
double-break	$15 \mathrm{amps}, 120,240,480$ or $600 \mathrm{vac} ;$
	$1 / 2 \mathrm{hp}, 120 \mathrm{vac} ; 1 \mathrm{hp}, 240 \mathrm{vac} ;$
$0.8 \mathrm{amp}, 115 \mathrm{vdc} ; 0.4 \mathrm{amp}$,	
230 vdc.	

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T.
ORDER GUIDE - Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.

Catalog Listing	Description	Electrical Data and UL Codes	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	$\begin{gathered} \text { O.T. } \\ \mathrm{min} . \\ \mathrm{mm} \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { D.T. } \\ \text { mm } \\ \text { inches } \end{gathered}$	$\begin{gathered} \text { O.P.* max. } \\ \begin{array}{c} \text { mm } \\ \text { inches } \end{array} \end{gathered}$
3MN1	For most applications	$15 \mathrm{Amps}$	$\begin{gathered} \hline 3,34-5,56 \\ 12-20 \end{gathered}$	$\begin{gathered} 1,67 \\ 6 \end{gathered}$	$\begin{aligned} & 1,52 \\ & .060 \end{aligned}$	$\begin{aligned} & 2,03 \\ & .080 \end{aligned}$	$\begin{aligned} & \text { 0,38-0,63 } \\ & .015-.025 \end{aligned}$	$\begin{aligned} & 2,16 \\ & .085 \end{aligned}$
3MN6	Lower force	$15 \mathrm{Amps}$	$\begin{gathered} 1,95-3,1 \\ 7-11 \\ \hline \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \\ \hline \end{gathered}$	$\begin{aligned} & 1,52 \\ & .060 \\ & \hline \end{aligned}$	$\begin{array}{r} 2,03 \\ .080 \\ \hline \end{array}$	$\begin{array}{r} 0,38-0,63 \\ .015-.025 \\ \hline \end{array}$	$\begin{array}{r} 2,16 \\ .085 \\ \hline \end{array}$

MOUNTING DIMENSIONS (For reference only)


$$
\text { Key: } \frac{0,0=m m}{0.00=\text { inches }}
$$

FEATURES

- Variety of actuators
- Choice of circuitries and electrical ratings
- Choice of terminations
- Field adjustable operating pointon one or both basic switches


## GENERAL INFORMATION

6AS switches are two standard basic switches ganged together and actuated by a single actuator. Operating characteristics will depend on the type of individual switches and actuators.

## ELECTRICAL RATING

Circuitry	Electrical Data and   UL Codes
Single-pole	A $15 \mathrm{amps}, 125,250$ or $480 \mathrm{vac} ;$
double-throw	
unless	
otherwise noted	
in order guide	

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pre-
ORDER GUIDE travel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position.

	Catalog Listing	Description	Lever Length mm inches	Type Terminals	Electrical Data and UL Codes	O.F.   max.   newtons ounces	R.F. min. newtons ounces	O.T.   min.   mm inches	D.T.   max.   mm inches	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
	6AS32	Centered lever. Adjustment over both switches.	$\begin{aligned} & 58,72 \\ & 2.312 \end{aligned}$	Solder	$15 \text { Amps }$ A	$\begin{gathered} \hline 2,22 \\ 8 \end{gathered}$	$\begin{gathered} \hline 0,14 \\ 0.5 \end{gathered}$	$\begin{aligned} & \hline 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & \hline 2,77 \\ & .109 \end{aligned}$	$\begin{gathered} 18,29 \\ .720 \mathrm{adj} . \end{gathered}$
SY	6AS54	Short lever. Adjustment over switch D.	$\begin{gathered} 20,47 \\ .806 \end{gathered}$	Solder	$15 \mathrm{Amps}$	$\begin{gathered} 3,34 \\ 12 \end{gathered}$	$\begin{gathered} 0,83 \\ 3 \end{gathered}$	$\begin{aligned} & 0,25 \\ & .010 \end{aligned}$	$\begin{aligned} & \hline 3,96 \\ & .156 \end{aligned}$	$\begin{gathered} 18,24 \\ .718 \text { max. } \end{gathered}$
Dim. Dwg. Fig. 1	6AS25	Centered lever. Adjustment over switch D.	$\begin{aligned} & \hline 32,26 \\ & 1.270 \end{aligned}$	A2	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 3,89 \\ 14 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	-	$\begin{aligned} & \hline 18,67 \\ & .735 \end{aligned}$

Unless otherwise noted * $\pm 0,76 \mathrm{~mm}$
$\pm .030 \mathrm{in}$.

ORDER GUIDE

Catalog Listing	Description	Lever Length mm inches	Type Terminals	Electrical Data and UL Codes	O.F. max. newtons ounces	R.F. min. newtons ounces	O.T.   min.   mm inches	D.T.   max.   mm inches	$\begin{gathered} \text { O.P.* } \\ \text { mm } \\ \text { inches } \end{gathered}$
6AS13	Centered lever. Adjustment over switch D.	$\begin{aligned} & \hline 30,56 \\ & 1.203 \end{aligned}$	Solder	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & \hline 2,77 \\ & .109 \end{aligned}$	$\begin{aligned} & 29,77 \\ & 1.172 \end{aligned}$
6AS18	Centered lever. Adjustment over both switches.	$\begin{aligned} & \hline 30,56 \\ & 1.203 \end{aligned}$	Solder	$\underset{\mathrm{A}}{15 \mathrm{Amps}}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	$\begin{aligned} & \hline 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & \hline 2,77 \\ & .109 \end{aligned}$	$\begin{gathered} 29,77 \\ 1.172 \mathrm{adj} . \end{gathered}$
6AS36	Lever over switch C. Adjustment over switch D.	$\begin{aligned} & 30,56 \\ & 1.203 \end{aligned}$	A2	$\underset{\text { A }}{15 \mathrm{Amps}}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	$\begin{aligned} & 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & 2,77 \\ & .109 \end{aligned}$	$\begin{aligned} & 29,77 \\ & 1.172 \end{aligned}$
6AS35	Lever and adjustment over switch D.	$\begin{aligned} & \hline 30,56 \\ & 1.203 \end{aligned}$	A2	$15 \mathrm{Amps}$	$\begin{gathered} 2,22 \\ 8 \end{gathered}$	$\begin{gathered} 0,14 \\ 0.5 \end{gathered}$	$\begin{aligned} & \hline 0,51 \\ & .020 \end{aligned}$	$\begin{aligned} & \hline 2,77 \\ & .109 \end{aligned}$	$\begin{aligned} & \hline 29,77 \\ & 1.172 \end{aligned}$
6AS16	Centered lever. Adjustment over switch D.	$\begin{aligned} & 30,56 \\ & 1.203 \end{aligned}$	A2	$\begin{gathered} 20 \mathrm{Amps} \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 3,89 \\ 14 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 3,96 \\ & .156 \end{aligned}$	$\begin{aligned} & 30,96 \pm 1,14 \\ & 1.219 \pm .045 \end{aligned}$
6AS69	Centered lever. Adjustment over switch D.	$\begin{aligned} & \hline 27,25 \\ & 1.073 \end{aligned}$	T	$25 \mathrm{Amps}$	-	-	-	-	$\begin{aligned} & \hline 30,96 \pm 1,14 \\ & 1.219 \pm .045 \end{aligned}$
6AS112	Centered lever. Adjustment over switch D.	$\begin{aligned} & 30,56 \\ & 1.203 \end{aligned}$	A2	$\begin{gathered} 25 \mathrm{Amps} \\ \mathrm{H} \end{gathered}$	$\begin{gathered} 3,89 \\ 14 \end{gathered}$	$\begin{gathered} 1,11 \\ 4 \end{gathered}$	$\begin{aligned} & 1,02 \\ & .040 \end{aligned}$	$\begin{aligned} & 3,96 \\ & .156 \end{aligned}$	$\begin{aligned} & \hline 30,96 \pm 1,14 \\ & 1.219 \pm .045 \end{aligned}$



Dim. Dwg. Fig. 3

6AS5	Centered leaf. No   adjustment. Switches   operate within .030"   of each other.	38,35   1.51	A2	15 Amps   A	-	-	$0,76-1,52$   $.030-.060$	-	

MOUNTING DIME NSIONS (For reference only)


Fig. 1
roller lever


Fig. 2

## LEAF

Fig. 3


Mounting holes accept pins or screws of . 139 " ( $3,53 \mathrm{~mm}$ ) diameter.

$$
\text { Key: } \frac{0,0=m m}{0.00=\text { inches }}
$$


[^0]:    * Available only when specifying 150 gram operating force.

    NOTE: "L" denotes lamp load.
    ** The microgap construction (M) means contact gap is less than 3mm. Therefore, these products are suitable for secondary circuit use but not primary circuit use which requires a 3mm gap.

[^1]:    Dim. Dwg. Fig. 20

[^2]:    Dim. Dwg. Fig. 24

[^3]:    Dim. Dwg. Fig. 3

