

Selection

SUBMINIATURE/MINIATURE BASIC SWITCHES

The U Series of subminiature basic switches are our newest line. The US is the smallest snap-action switch available. The UX and UM are versatile, low cost, full featured products with ample electrical capacity in a compact package. SM subminiature basic switches are a versatile collection of small size and ample electrical capacities, including 11 amp power load handling and ¼ hp motor load. SX subminiature basic switches are smaller than SM switches, yet are big in performance and selection. They provide up to 7 amp power load capacity. V3 miniature basic switches put a 25 amp power load capacity and a choice of 11 other electrical ratings into a relatively small package with many choices of actuators, contact materials, and terminal designs. V7 miniature basic switches have electrical ratings up to 15 amps. Both commercial and European versions are UL recognized and CSA certified. The latter is also designed to meet all leading European approval agency requirements. TB miniature basic small double-break units can control 2, 3 or 4 isolated circuits.

STANDARD BASIC SWITCHES

Power load switching and motor handling capacity are among the attractions of thumb-size BZ/BA standard basic switches. Double-pole double-throw switching is added by DT switches. Where there's a need for reliable switching of high capacity systems involving DC motors and solenoids, MT magnetic blow-out switches do the job. The 3MN has double-break switching. 6AS assemblies have two tandem mounted standard basic switches under a common actuator.

SEALED AND HIGH TEMPERATURE BASIC SWITCHES

Specially adapted basic switches include: SE/XE environment-proof switches which protect subminiature SM/SX basic switches within a sealed housing; HM hermetically sealed switches are interchangeable in operating point with the SM switches; HS hermetically sealed switches which parallel the size and mounting scheme of the standard basic switches; and HT high temperature switches for use up to $\pm 1000^{\circ}$ F.

DOOR SWITCHES

AC, WW and DM switches automatically cut power when a service door or drawer is opened.

Table of Contents

Typical Applications p. 2
Index by Product Typep. 3
Selection Guides
Catalog Listings/Order Guidesp. 8 to 93
Reference Datap. 94
Catalog Listing/Page Number Index p. 102

Basic Switches Subminiature/Miniature

ELECTRICAL DATA AND UL CODES MINIATURE/SUBMINIATURE BASIC SWITCHES

Most of the switches in this section are UL recognized and CSA certified. The current and voltage values shown are based on test conditions specified by these agencies. Electrical life of the switch is influenced by each application condition as well as by voltage and current.

Circuitry	Electrical Data
Single-pole double-throw	A 5 amps res., 3 amps ind., (sea level), 4 amps res., 2 amps ind., (50,000 feet), 28 vdc 5 amps res. or ind. 115 vac, 60 Hz. UL/CSA rating: 5 amps, 250 vac.
Single-pole double-throw	B 7 amps res., 4 amps ind., (sea level), 7 amps res., 2.5 amps ind., (50,000 feet), 28 vdc. UL/CSA rating: 7 amps, 250 vac.
Single-pole double-throw	C 3.5 amps res., 2 amps ind., (sea level), 3.5 amps res., 1.5 amps ind., (50,000 feet), 28 vdc. UL rating: 7 amps, 250 vac.
Single-pole double-throw	D 1 amp res., 0.5 amp ind., (sea level and 50,000 feet), 28 vdc. UL/CSA rating: 1 amp, 125 vac.
Single-pole double-throw	E 3 amps res., 2 amps ind., (sea level), 28 vdc. UL rating: 3 amps, 250 vac.
Single-pole double-throw	 F 7 amps res., 4 amps ind., 2.5 amps lamp load, (sea level), 4 amps res., 2.5 amps ind., 2.5 amps lamp load, (50,000 feet), 28 vdc. 7 amps res., 7 amps ind., 2 amps lamp load, 115 vac, 60 Hz (sea level).
Single-pole double-throw	G 2 amps res., lamp ind., (sea level) 28 vdc.
Single-pole double-throw	 H .010 amp res. and ind., (sea level). 28 vdc. UL/CSA rating: 1 amp, 125 vac.
Single-pole double-throw	I 7 amps res., 4 amps ind., (sea level), 28 vdc.
Single-pole double-throw	J 5 amps res., 3 amps ind., (sea level), 5 amps res., 2.5 amps ind., (50,000 feet), 28 vdc. UL rating: 5 amps, 250 vac.
Single-pole double-throw	K UL rating: 5 amps, 125 or 250 vac.
Single-pole double-throw	L 1 amp res., 1/2 amp ind., (sea level) 28 vdc.
Single-pole double-throw	M UL rating: 11 amps and 1/4 hp, 125 or 250 vac.
Single-pole double-throw	N 1 amp res., 0.5 amp ind., 30 vdc. UL rating: 1 amp, 125 vac.
Single-pole double-throw	P 1 amp res., 30 vdc. UL rating: .1 amp, 125 vac.
Single-pole double-throw	 R 5 amps res., 3 amps ind., 2.4 amps lamp load (sea level), 5 amps res., 2.5 amps ind., 2.4 amps lamp load, (50,000 feet), 28 vdc. 5 amps res., 5 amps ind., 1.5 amps lamp load, 115 vac. 60 Hz (sea level)

Circuitry	Electrical Data
Single-pole double-throw	S UL rating: 4 amps, 250 vac.
Single-pole double-throw	T UL/CSA rating: 11 amps and 1/3 hp, 125, 250, or 277 vac; 1/2 amp, 125 vdc; 1/4 amp, 250 vdc;
1 -	4 amps, 125 vac "L" (lamp load). TT UL/CSA rating: 10 amps and 1/3 hp, 125 or 250 vac; 1/2 amp, 125 vdc; 1/4 amp, 250 vdc; 4 amps, 125 vac "L" (lamp load).
Single-pole double-throw unless otherwise	UU 10 amps res., 10 amps ind., (sea level), 6 amps ind. (50,000 feet), 6 amps motor load, 30 vdc.
noted in order guide	 U UL/CSA rating: 15.1 amps and 1/2 hp, 125 or 250 vac. 1/2 amp, 125 vdc; 1/4 amp, 250 vdc; 5 amps, 120 vac "L" (lamp load).
Single-pole double-throw	 VV UL/CSA rating: 3 amps-125, 250, 277 vac; 1/10 hp-250 vac
Single-pole double-throw	 V UL/CSA rating: 10 amps and 1/4 hp, 125 or 250 vac; 1/2 amp, 125 vdc; 1/4 amp, 250 vdc; 3 amps, 125 vac "L" (lamp load).
Single-pole double-throw	W 10 amps, 250 vac or 28 vdc; 1/2 amp, 125 vdc; 1/4 amp, 250 vdc.
Single-pole double-throw	X UL rating: 1 amp, 125 vac.
Single-pole double-throw	Y 10 amps and 1/3 hp, 125 or 250 vac; 4 amps, 125 vac "L" (lamp load).
Single-pole double-throw	- YY UL/CSA rating: 5 amps-125, 250, 277 vac 1/10 hp-250 vac
Two-circuit double-break	 Z 10 amps, 125 or 250 vac, or 30 vdc. UL/CSA rating: 10 amps, 125 or 250 vac; 1/2 hp, 125 vac.
Four-circuit	-
Single-pole double-throw	- ZZ UL rating: 5 amps and 1/10 hp. 125 or 250 vac.
Single-pole double-throw	AA UL rating: 20 amps, 277 vac. 1 hp, 125 vac; 2 hp, 250 vac.
Single-pole double-throw	. BB UL rating: 25 amps, 277 vac. 1 hp, 125 vac; 2 hp, 250 vac.

Standard

ELECTRICAL DATA AND UL CODES STANDARD BASIC SWITCHES

Most of the switches in this section are UL recognized and CSA certified. The current and voltage values shown are based on test conditions specified by these agencies. Electrical life of the switch is influenced by each application condition as well as by voltage and current. For application assistance contact the 800 number.

Circuitry	Electrical Data and UL Codes
Single-pole double-throw unless otherwise noted in order guide	A 15 amps, 125, 250 or 480 vac; ⅓ hp, 125 vac; ¼ hp, 250 vac; ⅓ amp, 125 vdc; ¼ amp, 250 vdc. UL Code L96
Single-pole double-throw unless otherwise noted in order guide	B 5 amps, 125, 250 or 480 vac; ¹ / ₂ amp, 125 vdc; ¹ / ₄ amp, 250 vdc. UL Code L35
Single-pole double-throw unless otherwise noted in order guide	C 10 amps, 125, 250 or 480 vac; UL Code L8
Single-pole double-throw unless otherwise noted in order guide	D 15 amps, 125, 250 or 480 vac; ½ hp, 125 vac; ¼ hp, 250 vac. UL Code L103
Single-pole double-throw unless otherwise noted in order guide	E 15 amps, 125, 250 or 480 vac; ¼ hp, 125 vac, ½ hp, 250 vac; ½ amp, 125 vdc; ¼ amp, 250 vdc. UL Code L67
Single-pole double-throw unless otherwise noted in order guide	 F 22 amps, 125, 250 or 480 vac; ½ hp, 125 vac, 1 hp, 250 vac. UL Code L161
Single-pole double-throw unless otherwise noted in order guide	 G 20 amps, 125, 250 or 480 vac; 10 amps, 125 vac "L" (tungsten lamp load); 1 hp, 125 vac; 2 hp, 250 vac; ½ amp, 125 vdc; ¼ amp, 250 vdc. UL Code L23
Single-pole double-throw unless otherwise noted in order guide	H Motor Control 25 amps, 125, 250 or 480 vac; 1 hp, 125 vac; 2 hp, 250 vac; Pilot Duty—750 VA, 125, 250, or 277 vac.
Single-pole double-throw unless otherwise noted in order guide	 I 10 amps, 125, 250 or 480 vac; ½ hp, 125 vac; ¼ hp, 250 vac; UL Code L95

Circuitry UL Codes Double-pole double-throw J 10 amps, 125 or 250 vac; 0.3 amp, 125 vdc; 0.15 amp, 250 vdc. UL Code L59 Single-pole double-throw unless otherwise noted in order guide K Rating established with switch non-polarized 10 amps, 125 vac or vdc; V, hp, 125 vac or vdc; UL Code L 168 Non-polarized: 10 amps res. or V/ hp, 125 vdc; 3 amps max. res. 250 vdc. Non-polarized: 10 amps res. or V/ hp, 125 vdc; 3 amps max. res. 250 vdc. *To polarize, connect negative side of line to common terminal. To achieve the same effect, mount switch with brass crews, using a non-magnetic barrier (at least ¼" thick) between the switch and mounting surface. M25 amps, 125, 250 or 480 vac; V, hp, 125 vac; 1V, amp, 250 vac. 1 amp, 125 vdc; V amp, 250 vac. UL Code L22 Single-pole double-throw P Single-pole double-throw R To amps, 125 or 250 vac; V, hp, 125 vac; V, hp, 250 vac; V, hp, 125 vac; V, amp, 250 vac; UL Code L13 Single-pole double-throw S T T 15 amps, 125, 250 or 480 vac; 1 amp, 125 vdc; V amp, 250 vac; UL Code L3 Two-circuit double-break V 10 amps, 125 or 250 vac; UL Code L3 Single-pole double-throw W T T 3 amps, 125, 250 or 480 vac; 1 amp, 125 vdc; V amp, 250 vac; UL Code L4 W 20 amps, 125, 250 or 277 vac; V, hp, 120 vac; Uh, p, 250 vac; UL Code L14 W 20 amps, 125, 250 or 480 vac; 2 amps, 600 vac;	1	
double-throw 0.3 amp, 125 vdc; 0.15 amp, 250 vdc; Single-pole K double-throw UL Code L59 Single-pole K in order guide K Non-polarized 10 amps, 125 vac or vdc; UL Code L 168 Non-polarized: Non-polarized: 10 amps res. or ½ hp, 125 vdc; 3 amps max, res. 250 vdc. Polarized*: Polarized: 10 amps res. or ½ hp, 125 vdc; 3 amps max, res., 250 vdc. Polarized*: non-magnetic barrier (al least ½" thick) between the switch and mounting surface. Two-circuit M25 amps, 125, 250 or 480 vac; ½ hp, 125 vac; 1½ amp, 250 vac. 1 amp, 125 vdc; ½ amp, 250 vac. 1 amp, 125 vdc; ½ amp, 250 vac;	Circuitry	Electrical Data and UL Codes
double-throw unless otherwise noted in order guide switch non-polarized 10 amps, 125 vac or vdc; W, hp, 125 vac or vdc; UL Code L 168 Non-polarized: 10 amps res. or ¼ hp, 125 vdc; 3 amps max. res. 250 vdc. Polarized*: 10 amps res. or ¼ hp, 125 vdc; 3 amps max. res. 250 vdc. *To polarize, connect negative side of line to common terminal. To achieve the same effect, mount switch with brass screws, using a non-magnetic barrier (at least ¼* thick) between the switch and mounting surface. M25 amps, 125, 250 or 480 vac; % hp, 125 vac; ½ amp, 250 vac. 1 amp, 125 vdc; ½ amp, 250 vac. 1 amp, 125 vdc; ½ amp, 250 vac. UL Code L28 Single-pole double-throw R 10 amps, 125 or 250 vac; ½ hp, 125 vac; ¾ hp, 250 vac; ½ amp, 125 vdc; ½ amp, 250 vdc. UL Code L115 Single-pole double-throw S 10 amps, 125 or 250 vac; ½ hp, 125 vac; ½ hp, 250 vac; ½ hp, 125 vac; ½ hp, 250 vac; UL Code L115 Single-pole double-throw U 5 amps, 125, 250 or 480 vac; 1 amp, 125 vdc; ½ amp, 250 vac; UL Code L73 Single-pole double-throw U 5 amps, 250 vac. UL Code L73 Single-pole double-throw U 3 amps, 125, 250 or 277 vac; ½ hp, 125 vac; ½ hp, 250 vac; UL Code L73 Single-pole double-throw W 20 amps, 125, 250 or 480 vac; 2 amp, 15 vdc; 0.4 amp, 230 vdc. Single-pole double-throw Y 15 amps, 125, 250 or 277 vac; ½ hp, 125 vac; ½ hp, 250 vac; UL Code L178B X 15 amps, 125, 250 or 480 vac; 2 amps, 600 vac; ½ amp, 125 vac; ½ hp, 250 vac; UL Code L174		0.3 amp, 125 vdc; 0.15 amp, 250 vdc.
10 amps res. or ¼ hp, 125 vdc; 3 amps max. res. 250 vdc. *To polarized, connect negative side of line to common terminal. To achieve the same effect, mount switch with brass screws, using a non-magnetic barrier (at least ¼" thick) between the switch and mounting surface. M25 amps, 125, 250 or 480 vac; % hp, 125 vac; 1¼ amp, 250 vac. 1 amp, 125 vdc; ½ amp, 250 vdc. UL Code L58 Single-pole double-throw P 1 amp, 125 VAC UL Code L22 Single-pole double-throw R 10 amps, 125 or 250 vac; ½ hp, 125 vac; ¼ hp, 250 vac; UL Code L115 Single-pole double-throw R 10 amps, 125 or 250 vac; ½ hp, 125 vac; ½ hp, 250 vac; UL Code L115 Single-pole double-throw S 10 amps, 125 or 250 vac; UL Code L115 Single-pole double-throw Y 15 amps, 125, 250 or 480 vac; 1 amp, 125 vdc; ½ amp, 250 vdc; UL Code L73 Single-pole double-throw V 5 amps, 250 vac. UL Code L73 Single-pole double-break U 5 amps, 250 vac. UL Code L73 Single-pole double-throw W Motor Control 15 amps, 120, 240, 480 or 600 vac; ½ hp, 125 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc. Single-pole double-throw W 20 amps, 125, 250 or 277 vac; ½ hp, 125 vac; ½ hp, 250 vac; UL Code L78B X 15 amps, 125, 250 or 480 vac; ½ amp, 125 vac; ½ hp, 250 vac; UL Code L74 W 20 amps, 125, 250 or 480 vac; ½ hp, 125 vac; ½ hp, 250 vac; UL Code L74	double-throw unless otherwise noted	switch non-polarized 10 amps, 125 vac or vdc; ¼ hp, 125 vac or vdc.
achieve the same effect, mount switch with brass screws, using a non-magnetic barrier (at least ¼" thick) between the switch and mounting surface. M25 amps, 125, 250 or 480 vac; ¾ hp, 125 vac; 1¼ amp, 250 vac. 1 amp, 125 vdc; ½ amp, 250 vdc. UL Code L58 Single-pole double-throw M25 amps, 125, 250 or 480 vac; ⅓ hp, 125 vac; ½ amp, 250 vdc. UL Code L22 Single-pole double-throw M25 arps, 125 or 250 vac; ⅓ hp, 125 vac; ¾ hp, 250 vac; ⅓ hp, 125 vac; ¾ hp, 250 vac; ½ amp, 125 vdc; ¼ amp, 250 vdc. UL Code L115 Single-pole double-throw M25 arps, 125, 250 or 480 vac; 1 amp, 125 vdc; ½ amp, 250 vac. UL Code L93 T 15 amps, 125, 250 or 480 vac; 1 amp, 125 vdc; ½ amp, 250 vac. UL Code L73 Single-pole double-break U 5 amps, 250 vac. UL Code L4 V Motor Control 15 amps, 120, 240, 480 or 600 vac; ⅓ hp, 125 vac; ½ hp, 250 vac UL Code L4 V Motor Control 15 amps, 120, 240, 480 or 600 vac; ⅓ hp, 125 vac; ½ hp, 250 vac; UL Code L4 V Motor Control 15 amps, 120, 240, 480 or 600 vac; ⅓ hp, 125 vac; ½ hp, 250 vac; UL Code L178 Single-pole double-break X 15 amps, 125, 250 or 277 vac; ⅔ hp, 125 vac; ½ hp, 250 vac; UL Code L178B X 15 amps, 125, 250 or 480 vac; 2 amps, 600 vac; ⅓ hp, 125 vac; ½ hp, 250 vac; UL Code L74 Y 20 amps, 125, 250 or 480 vac; ½ amp, 125 vac; ½ hp, 250 vac; UL Code L74 Y 20 amps, 125, 250 or 480 vac; ⅓ hp, 125 vac; ½ hp, 250 vac; UL Code L74 Y 20 amps, 125, 250 or 480 vac;	*To polorizo connect pogo	10 amps res. or ¼ hp, 125 vdc; 3 amps max. res. 250 vdc. Polarized*: 10 amps res. or ½ hp, 125 vdc; 3 amps max. res., 250 vdc.
Junctic3/4 hp, 125 vac; 11/4 amp, 250 vac. 1 amp, 125 vdc; 1/2 amp, 250 vdc. UL Code L58Single-pole double-throwP 1 amp, 125 VAC UL Code L22Single-pole double-throwR 10 amps, 125 or 250 vac; 1/2 hp, 125 vac; 3/4 hp, 250 vac; 1/4 hp, 125 vac; 3/4 hp, 250 vac; 1/2 hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc.Single-pole double-breakW 20 amps, 125, 250 or 277 vac; 3/4 hp, 125 vac; 3/4 hp, 250 vac; 1/2 hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc.Single-pole double-throwW 20 amps, 125, 250 or 277 vac; 3/4 hp, 125 vac; 3/4 hp, 250 vac; 1/2 hp, 250 vac; 1/2 hp, 125 vac; 3/4 hp, 250 vac; 1/2 hp	achieve the same effect, n non-magnetic barrier (at le	nount switch with brass screws, using a east ¼" thick) between the switch and
double-throwUL Code L22Single-pole double-throwR 10 amps, 125 or 250 vac; ½ amp, 125 vac; ¾ hp, 250 vac; ½ amp, 125 vac; ¼ amp, 250 vdc. UL Code L115Single-pole double-throwS 10 amps, 125 or 250 vac; ½ amp, 125 or 250 vac. UL Code L93Two-circuit double-breakT 15 amps, 125, 250 or 480 vac; ½ amp, 250 vdc; ½ hp, 125 vac; ½ amp, 250 vdc; ½ hp, 125 vac; ½ hp, 250 vac UL Code L93Two-circuit double-breakU 5 amps, 250 vac. UL Code L73Single-pole double-throwU 5 amps, 250 vac. UL Code L4Two-circuit double-breakV Motor Control 15 amps, 120, 240, 480 or 600 vac; ½ hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc.Single-pole single-throw (N.C.)W 20 amps, 125, 250 or 277 vac; ½ hp, 125 vac; ½ hp, 250 vac UL Code L178BX 15 amps, 125, 250 or 480 vac; ½ amp, 125 vac; ½ hp, 250 vac; ½ hp, 125 vac; ½ hp, 250 vac; ½ amp, 125 vac; ½ hp, 250 vac; ½ hp, 125 vac; 1½ hp, 250 vac;	Two-circuit	¾ hp, 125 vac; 1¼ amp, 250 vac. 1 amp, 125 vdc; ½ amp, 250 vdc. UL Code L58
double-throw		
double-throw 1/3 hp, 125 or 250 vac. UL Code L93 Two-circuit double-break T 15 amps, 125, 250 or 480 vac; 1 amp, 125 vac; ½ amp, 250 vdc; 1/4 hp, 125 vac; ½ amp, 250 vac UL Code L73 Single-pole double-throw U 5 amps, 250 vac. UL Code L4 Two-circuit double-break V Motor Control 15 amps, 120, 240, 480 or 600 vac; ½ hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc. Single-pole single-throw (N.C.) W 20 amps, 125, 250 or 277 vac; ¾ hp, 125 vac; ½ hp, 250 vac UL Code L178B X 15 amps, 125, 250 or 480 vac; 2 amps, 600 vac; ½ hp, 125 vac; ½ hp, 250 vac; UL Code L174 Y 20 amps, 125, 250 or 480 vac; ½ amp, 125 vdc; ¼ amp, 250 vdc. UL Code L74		⅓ hp, 125 vac; ¾ hp, 250 vac; ½ amp, 125 vdc; ¼ amp, 250 vdc.
Two-circuit double-break 1 amp, 125 vdc; ½ amp, 250 vdc; ¼ hp, 125 vac; ½ hp, 250 vac UL Code L73 Single-pole double-throw U 5 amps, 250 vac. UL Code L4 Two-circuit double-break V Motor Control 15 amps, 120, 240, 480 or 600 vac; ½ hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc. Single-pole single-throw (N.C.) W 20 amps, 125, 250 or 277 vac; ¾ hp, 125 vac; ½ hp, 250 vac UL Code L178B X 15 amps, 125, 250 or 480 vac; 2 amps, 600 vac; ⅓ hp, 125 vac; ¼ hp, 250 vac; UL Code L174 Y 20 amps, 125, 250 or 480 vac; ½ amp, 125 vdc; ¼ amp, 250 vdc. UL Code L74		⅓ hp, 125 or 250 vac.
double-throw UL Code L4 Image: Two-circuit double-break V Motor Control 15 amps, 120, 240, 480 or 600 vac; 1/2 hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc. Single-pole single-throw (N.C.) V 20 amps, 125, 250 or 277 vac; 3/4 hp, 125 vac; 1/2 hp, 250 vac UL Code L178B Image: Single-pole double-throw X 15 amps, 125, 250 or 480 vac; 2 amps, 600 vac; 1/4 hp, 250 vac; 1/4 hp, 250 vac; 1/4 hp, 125 vac; 1/4 hp, 250 vac; 1/4 amp, 250 vdc. UL Code L74 Image: Single-pole double-throw Y 20 amps, 125, 250 or 480 vac; 2/4 amp, 250 vdc. UL Code L74 Image: Single-pole double-throw Y 20 amps, 125, 250 or 480 vac; 1/4 hp, 250 v	Two-circuit	1 amp, 125 vdc; ½ amp, 250 vdc; ¼ hp, 125 vac; ½ hp, 250 vac
Two-circuit 15 amps, 120, 240, 480 or 600 Two-circuit ''_2 hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc. Single-pole W 20 amps, 125, 250 or 277 vac; single-throw '' (N.C.) W 20 amps, 125, 250 or 277 vac; X 15 amps, 125, 250 or 277 vac; Yahp, 125 vac; 1/2 hp, 250 vac UL Code L178B X 15 amps, 125, 250 or 480 vac; 2 amps, 600 vac; V/a hp, 125 vac; 1/4 hp, 250 vac; UL Code L74 Y 20 amps, 125, 250 or 480 vac; Y 10 amps, 125 vac; 11/2 hp, 250 vac; UL		
single-throw (N.C.) ¾ hp, 125 vac; ½ hp, 250 vac UL Code L178B X 15 amps, 125, 250 or 480 vac; 2 amps, 600 vac; ½ hp, 125 vac; ¼ hp, 250 vac; ½ amp, 125 vac; ¼ amp, 250 vdc. UL Code L74 Y 20 amps, 125, 250 or 480 vac; ¼ hp, 125 vac; ¼ hp, 250 or 480 vac; ¼ hp, 125 vac; ¼ hp, 250 or 480 vac; ¼ hp, 125 vac; 1½ hp, 250 vac; UL		15 amps, 120, 240, 480 or 600 vac; ½ hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp,
2 amps, 600 vac; Single-pole double-throw ½ hp, 125 vac; ¼ hp, 250 vac; ½ amp, 125 vdc; ¼ amp, 250 vdc. ½ bp, 125 vdc; ¼ amp, 250 vdc; ¥ 20 amps, 125, 250 or 480 vac; ¾ hp, 125 vac; 1½ hp, 250 vac; UL	single-throw	³ /₄ hp, 125 vac; ½ hp, 250 vac
³ / ₄ hp, 125 vac; 1½ hp, 250 vac; UL	Single-pole	2 amps, 600 vac; ¼ hp, 125 vac; ¼ hp, 250 vac; ½ amp, 125 vdc; ¼ amp, 250 vdc.
double-throw	Single-pole	

Basic Switches Operating Characteristics

ELECTROMECHANICAL SWITCHES

Definitions below explain the meaning of operating characteristics. Characteristics shown in tables throughout catalog were chosen as most significant. They are taken at normal room temperature and humidity. These may vary as temperature and humidity conditions differ. Sketches show how characteristics are measured for in-line plunger actuation.

Linear dimensions for in-line actuation are from top of plunger to a reference line, usually the center of the mounting holes.

Differential Travel (D.T.)—Plunger or actuator travel from point where contacts "snap-over" to point where they "snapback." **Free Position (F.P.)**—Position of switch plunger or actuator when no external force is applied (other than gravity).

Full Overtravel Force—Force required to attain full overtravel of actuator.

Operating Position (O.P.)—Position of switch plunger or actuator at which point contacts snap from normal to operated position. Note that in the case of flexible or adjustable actuators, the operating position is measured from the end of the lever or its maximum length. Location of operating position measurement shown on mounting dimension drawings. **Operating Force (O.F.)**—Amount of force applied to switch plunger or actuator to cause contact "snap-over." Note in the case of adjustable actuators, the force is measured from the maximum length position of the lever.

Overtravel (O.T.)—Plunger or actuator travel safely available beyond operating position.

Pretravel (P.T.)—Distance or angle traveled in moving plunger or actuator from free position to operating position.

Release Force (R.F.)—Amount of force still applied to switch plunger or actuator at moment contacts snap from operated position to unoperated position.

Total Travel (T.T.)—Distance from actuator free position to overtravel limit position.

IN-LINE PLUNGER ACTUATION

Operating Characteristics

		Alternatin	g Current		Direct Current				
	115	Volts	230	230 Volts		Volts	230	230 Volts	
HP	Full Load	Locked Rotor	Full Load	Locked Rotor	Full Load	Locked Rotor	Full Load	Locked Rotor	
2	24.0	144.0	12.0	72.0	17.0	170.0	8.5	85.0	
11/2	20.0	120.0	10.0	60.0	13.2	132.0	6.6	66.0	
1	16.0	96.0	8.0	48.0	9.6	96.0	4.8	48.0	
3/4	13.8	82.8	6.9	41.4	7.4	74.0	3.7	37.0	
1/2	9.8	58.8	4.9	29.4	5.4	54.0	2.7	27.0	
1/3	7.2	43.2	3.6	21.6	3.8	38.0	1.9	19.0	
1/4	5.8	34.8	2.9	17.4	3.0	30.0	1.5	15.0	
1/6	4.4	26.4	2.2	13.2	2.4	24.0	1.2	12.0	
1/8	3.8	22.8	1.9	11.4	2.2	22.0	1.1	11.0	
¹ / ₁₀	3.0	18.0	1.5	9.0	2.0	20.0	1.0	10.0	
1/20	1.5	9.0	_			_	_		

FULL LOAD AND LOCKED ROTOR CURRENTS FOR SINGLE PHASE AND DC MOTORS

Downloaded from Arrow.com.

B Type Switches Performance Information

ELECTRICAL DATA CHART

		Amperes										
Catalog		Current		Inrush Motor				Lamp		Inductive ²		
Listing (contact gap)	Voltage	Carrying Capacity Max. ¹	Resistive	N.C.	N.O. Ckt.	N.C. Ckt.	N.O. Ckt.	N.C. Ckt.	N.O. Ckt.	Sea Level	50,000 Feet	
BZ-3YT* .036 in. 0,91 mm	VDC 8 14 30 125 250	5 5 5 5 5 5	10 10 10 1 0.6	30 30 30 10 6	15 15 15 10 6	5 5 5 2 1.2	2.5 2.5 2.5 2 1.2	3 3 3 1 0.6	1.5 1.5 1.5 1 0.6	10 10 10 0.6 0.4	10 10 5 0.4 0.3	
BZ-3YT* .036 in. 0,91 mm	VAC 120 240 277	5 5 5	5 5 5	30 30 30	15 15 15	5 5 5	2.5 2.5 2.5	3 3 3	1.5 1.5 1.5	5 5 5	5 5 5	
BM-2R .020 in. 0,50 mm	VDC 8 14 30 125 230	22 22 22 22 22 22 22	15 15 2 0.4 0.2	30 30 30 4 2	15 15 15 4 2	5 5 5 0.8 0.4	2.5 2.5 2.5 0.4 0.2	3 3 3 0.4 0.2	1.5 1.5 1.5 0.4 0.2	8 5 1 .03 .02	7 5 1 .02 .01	
BM-2R .020 in. 0,50 mm	VAC 125 250 277 460	22 22 22 22 22	22 22 22 22 22	35 35 35 35 35	20 20 20 20 20	5.8 5.8 5.8 5.8 5.8	3.4 3.4 3.4 3.4 3.4	3.5 3.5 3.5 3.5 3.5	2.0 2.0 2.0 2.0	22 22 22 22 22	22 22 22 22 22	
BA-2R .020 in. 0,50 mm	VDC 8 14 30 125 230	20 20 20 20 20 20	20 20 5 0.5 0.25	30 30 30 4 2	15 15 15 4 2	5 5 5 0.8 0.4	2.5 2.5 2.5 0.4 0.2	3 3 3 0.4 0.2	1.5 1.5 1.5 0.4 0.2	15 10 5 .05 .03	15 8 2 .03 .02	
BA-2R .020 in. 0,50 mm	VAC 120 240 277 460	20 20 20 20 20	20 20 20 20 20	75 75 75 75 75	75 75 75 75 75	12.5 12.5 12.5 12.5 12.5	12.5 12.5 12.5 12.5 12.5	7.5 7.5 7.5 7.5 7.5	7.5 7.5 7.5 7.5 7.5	20 20 20 20 20	20 20 20 20 20	
BE-2R .020 in. 0,50 mm	VDC 8 14 30 125 250	25 25 25 25 25 25	25 25 5 0.5 0.25	30 30 30 4 2	15 15 15 4 2	5 5 5 0.8 0.4	2.5 2.5 2.5 0.8 0.4	3 3 3 0.4 0.2	1.5 1.5 1.5 0.4 0.2	15 10 5 .05 .03	15 8 2 .03 .02	
BE-2R .020 in. 0,50 mm	VAC 120 240 277 460	25 25 25 25 25	25 25 25 25 25	96 96 96 96	96 96 96 96	16 16 16 16	16 16 16 16	10 10 10 10	10 10 10 10	25 25 25 25 25		
BZ-R .006 in. 0,15 mm	VAC 125 250 277	15 15 15	15 15 15	30 30 30	15 15 15	5 5 5	2.5 2.5 2.5	3 3 3	1.5 1.5 1.5	15 15 15	15 15 15	
BZ-1R .010 in. 0,25 mm	VDC 8 14 30 125 230	15 15 15 15 15	15 15 2 0.4 0.2	30 30 30 4 2	15 15 15 4 2	5 5 5 0.8 0.4	2.5 2.5 2.5 0.8 0.4	3 3 3 0.4 0.2	1.5 1.5 1.5 0.4 0.2	8 5 1 0.03 0.02	7 5 1 0.01 0.01	
BZ-1R .010 in. 0,25 mm	VAC 125 250 277 460	15 15 15 15	15 15 15 15	30 30 30 30 30	15 15 15 15	5 5 5 5 5	2.5 2.5 2.5 2.5 2.5	3 3 3 3 3	1.5 1.5 1.5 1.5	15 15 15 15	15 15 15 15	

* Ampere levels for BZ-3YT applicable **only** if common terminal is not used and switch is used as a shorting bar switch.

B Type Switches Performance Information

ELECTRICAL DATA CHART, cont.

		Amperes									
Catalog Listing	Current Carrying			nrush			Lamp		Inductive		
(contact gap)	Voltage	Capacity Max. ¹	Resistive	N.C. Ckt.	N.O. Ckt.	N.C. Ckt.	N.O. Ckt.	N.C. Ckt.	N.O. Ckt.	Sea Level	50,000 Feet
BZ-2R .020 in. 0.50 mm	VDC 8 14 30 125 230	15 15 15 15 15 15	15 15 6 0.4 0.2	30 30 30 4 2	15 15 15 4 2	5 5 5 0.8 0.4	2.5 2.5 2.5 0.8 0.4	3 3 3 0.4 0.2	1.5 1.5 1.5 0.4 0.2	15 10 5 0.05 0.03	15 8 2 0.03 0.02
BZ-2R .020 in. 0,50 mm	VAC 125 250 277 460	15 15 15 15 15	15 15 15 15 15	30 30 30 30 30	15 15 15 15	5 5 5 5 5	2.5 2.5 2.5 2.5 2.5	3 3 3 3	1.5 1.5 1.5 1.5 1.5	15 15 15 15	15 15 15 15
BZ-3R .036 in. 0,91 mm	VDC 8 14 30 125 250	15 15 15 15 15 15	15 15 10 0.6 0.3	30 30 30 6 3	15 15 15 6 3	5 5 5 1.2 0.6	2.5 2.5 2.5 1.2 0.6	3 3 3 0.6 0.3	1.5 1.5 1.5 0.6 0.3	15 15 10 0.1 0.05	15 15 5 0.05 0.03
BZ-3R .036 in. 0,91 mm	VAC 125 250 277 460	15 15 15 15 15	15 15 15 15 15	30 30 30 30 30	15 15 15 15 15	5 5 5 4	2.5 2.5 2.5 2.5 2.5	3 3 3 3 3	1.5 1.5 1.5 1.5 1.5	15 15 15 15 15	15 15 15 15
BZ-7R .070 in. 1,78 mm	VDC 8 14 30 125 250	30 15 15 15 15 15	15 15 15 0.75 0.3	15 30 30 7.5 3	5 15 15 7.5 3	2.5 5 5 1.5 0.6	3 2.5 2.5 1.5 0.6	1.5 3 3 0.75 0.3	15 1.5 1.5 0.75 0.3	15 15 10 0.4 0.2	 15 7.5 0.2 0.1
BZ-7R .070 in. 1,78 mm	VAC 120 240 277 460	15 15 15 15	15 15 15 15	30 30 30 30 30	15 15 15 15	5 5 5 5 5	2.5 2.5 2.5 2.5 2.5	3 3 3 3	1.5 1.5 1.5 1.5	15 15 15 15	15 15 15 15

1 For a 86 - F(30 - C) max. temperature rise at terminals, not opening or closing the load (at sea level).

2 Data established with a 75% power factor on AC loads.

TEST CONDITIONS

Switch contact life is affected by electrical conditions and other factors, such as: temperature, humidity, airborne contamination, vibration, amount and rate of plunger travel, and cycling

rate. Our Evaluation Laboratory tests are conducted using procedures and practices common to UL and Military Specifications. The following conditions generally apply.

у.
•

MICRO SWITCH believes that with the following voltage and current values and under the test conditions set forth below switch life of 100,000 closures, 95% survival can be expected. It is a starting point for user evaluation and provides guidelines on the switches identified. Because of the numerous electrical conditions listed, not every current and voltage level has actually been tested on every switch and certain figures have been extrapolated. For specific switch selection, customers should evaluate switches under actual application conditions or by simulating all application conditions and requirements. The information set forth cannot substitute for the customer's own product evaluation. It should never be published by a customer as a rating on their product.

Reference/Index

Basic Switches Definitions of Terms

Actuator – Mechanism of the switch or switch enclosure which operates the contacts.

Auxiliary Actuator – A mechanism, sold separately, to provide basic switches with easier means of operation and adjustment and adapt switches to different operating motions by supplying supplemental overtravel.

Basic Switch – A self-contained switching unit. It can be used alone, gangmounted, built into assemblies or enclosed in metal housings.

Bifurcated Contacts – A movable contact, generally gold plated, which is forked to provide two contact mating surfaces in a parallel, for more reliable contact.

Break – To open an electrical circuit.

Break Distance – The minimum open gap distance between stationary and movable objects.

Characteristics – This term is used by MICRO SWITCH in a restricted sense and refers only to switch operating characteristics such as pretravel, operating force, etc.

Circuit – The contact arrangement with switch actuator and contacts in their normal position.

Dead break - Exists in all mechanical switches. Definition: When the switch plunger is being depressed, dead break is non-contact immediately before the plunger reaches the operating point. When the switch plunger is being released, dead break is non-contact immediately before the plunger reaches the release point. Dead break is expressed in distance of plunger travel during which the non-contact occurs. Manufacturing specifications for most BZ/BA basic switches allow a maximum dead break of 0.00005 in. (0,001 mm) measured at the switch plunger. Switches are evaluated while moving the plunger with the switch installed in a 10 VDC, 0.100 ampere circuit. This specifiction does not apply to switches that have been in service or have not received proper handling or storage. For applications sensitive to dead break, call Freeport for information on applicable electrical and mechanical conditions.

Dead make – When the switch plunger is being depressed, dead make is non-contact immediately after the plunger reaches the release point. Dead make is expressed as the distance of plunger travel during which the non-contact occurs. **Non contact** is a failure of open contacts to close (that is, the switch resistance exceeds the specified value) within the specified range of plunger positions. If a plunger position is specified with respect to time, a non-contact is a contact miss. **Double Break Contacts** – (Twin break). This breaks the circuit in two places. Referred to as form Z circuitry also.

Double-Pole Double-Throw (DPDT) – Switches which make and break two separate circuits. This circuit provides a normally open and normally closed contact for each pole.

Enclosed Switch – A basic switch unit (contact block) enclosed in a durable metal housing. The enclosure protects the switching unit, provides mounting means, and fitting for conduit connection.

Environment-Proof Switch – A switch which is completely sealed to ensure constant operating characteristics. Sealing normally includes an "O" ring on actuator shaft and fused glass-to-metal terminal seals or complete potting and an elastomer plunger-case seal.

Explosion-Proof Switch – A UL listed switch capable of withstanding an internal explosion of a specified gas without igniting surrounding gases.

Hermetically Sealed Switch – A switch completely sealed to provide constant operating characteristics. All junctures made with metal-to-metal or glass-to-metal fusion.

Magnetic Blow-Out Switch – Contains a small permanent magnet which provides a means of switching high d-c loads. The magnet deflects arc to quench it.

Maintained Contact Switch – Designed for applications requiring sustained contact after plunger has been released, but with provision for resetting.

Make – To close or establish an electrical circuit.

Momentary Switch – A switch with contacts that return from operated condition to normal condition when actuating force is removed. Unless otherwise stated, all switches in this catalog are momentary.

Mounting Dimensions – All dimensions on the mounting dimension drawings in this catalog are subject to change without notice. Request current drawings from the nearest MICRO SWITCH Sales Office or write to Freeport.

Normally Closed Contacts (N.C.) – Provide a normally closed circuit when actuator is in free position. **Normally Open Contacts (N.O.)** – Provide a normally open circuit when actuator is in free position.

Precision Snap-Acting Switch – An electromechanical switch having predetermined and accurately controlled characteristics, and having a spring loaded quick make and break contact action.

Projection Contacts – A design in which one or more truncated projections are arranged on the stationary contacts. When closed on the smooth, spherical surface of the opposing contact this configuration tends to break thru oxides and other film contaminants to avoid the particulate contaminants. Used with silver contacts, this design can be a useful substitute for the more expensive gold or gold alloy contact material.

Pulse Switch – Provides a single pulse of current for each cycle of operation.

Quick Connect Terminal – A plug-in type terminal designed for quick switch wiring.

Repeatability – Ability of a switch to repeat its characteristics precisely from one operation to the next operation.

Single-Pole Double-Throw (SPDT) – Switch which may either make or break a circuit, depending on how it is wired. Also referred to as form C circuitry.

Single-Pole Single-Throw (SPST) – Switch with only one moving and one stationary contact. Available either normally open (N.O.) also referred to as form A circuitry; or normally closed (N.C.) also referred to as form B circuitry.

Form A

Terminal Enclosure – A housing that fits over switch terminals to protect against electrical shock and accidental shorting, and facilitate wiring.

Two Circuit Switch – In one position, moving contacts complete one circuit, in the other position, contacts complete another separate circuit.

Subminiature

FEATURES

- MICRO SWITCH'S smallest snap-action switch
- Choice of low energy or power duty electrical ratings
 Variety of integral actuators

- Variety of integral actuators
 Temperature Range: -25° to +80°C (-13° to +176°F)
 Weight: 0.2 grams (.007 oz.) PC terminal type 0.3 grams (.011 oz.) solder terminal type
- Form C single-pole double-throw (SPDT) circuitry

ORDER GUIDE SOLDER TERMINALS

ELECTRICAL RATINGS

Voltage	Resistive Load Gold Contacts US10 Type	Silver Contacts US20 Type
30 VDC	0.1 A	0.5 A
125 VAC	0.1 A	0.1 A

Contact Type	Actuator	O.F. max. grams oz.	Solder	R.F. min. g ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P mm inches
Gold, 0.1 Amp	A pin plunger	100 3.527	US10D10A00	10 . 353	0,3 . 012	0,1 . 004	0,1 . 004	5,4 ± 0,15 . 213 ± . 006
<u>a</u>	C flat lever	25 . 88	US10D10C00	2,0 . 071	2,4 . 094	0,4 . 016	0,7 . 028	6,4 ± 0,6 .252 ± .024
	E simulated roller lever	30 1.058	US10D10E00	2,0 . 071	2,2 . 087	0,3 . 012	0,7 . 028	6,7 ± 0,5 . 264 ± . 020
Silver, 0.5 Amp	A pin plunger	100 3.527	US20D10A00	10 . 353	0,3 . 012	0,1 . 004	0,1 . 004	5,4 ± 0,15 . 213 ± . 006
<u>a</u>	C flat lever	25 . 88	US20D10C00	2,0 . 071	2,4 . 094	0,4 . 016	0,7 . 028	6,4 ± 0,6 .252 ± .024
	E simulated roller lever	30 1.058	US20D10E00	2,0 . 071	2,2 . 087	0,3 . 012	0,7 . 028	6,7 ± 0,5 .264 ± .020

ORDER GUIDE PC STRAIGHT TERMINALS

Contact Type	Actuator	O.F. max. grams oz.	PC Straight Cross-Line	R.F. min. g ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P mm inches
Gold, 0.1 Amp	A pin plunger	100 3.527	US10D20A00	10 . 353	0,3 . 012	0,1 . 004	0,1 . 004	4,8 ± 0,15 . 189 ± . 006
<u>.</u>	C flat lever	25 . 88	US10D20C00	1,0 . 035	2,4 . 094	0,4 . 016	0,7 . 028	5,8 ± 0,7 .228 ± .028
~	E simulated roller lever	30 1.058	US10D20E00	1,0 . 035	2,2 . 087	0,3 . 012	0,7 . 028	6,1 ± 0,7 .240 ± .028
Silver, 0.5 Amp	A pin plunger	100 3.527	US20D20A00	10 . 353	0,3 . 012	0,1 . 004	0,1 . 004	4,8 ± 0,15 . 189 ± . 006
<u>.</u>	C flat lever	25 . 88	US20D20C00	1,0 . 035	2,4 . 094	0,4 . 016	0,7 . 028	5,8 ± 0,7 .228 ± .028
<u> </u>	E simulated roller lever	30 1.058	US20D20E00	1,0 . 035	2,2 . 087	0,3 . 012	0,7 . 028	6,1 ± 0,7 .240 ± .028

OTHER TERMINATION TYPES ARE AVAILABLE For PC right angle, change 2nd set of numbers to 50 (Example: US10D**50**A00) For PC left angle, change 2nd set of numbers to 60 (Example: US10D**60**A00)

Subminiature

MOUNTING DIMENSIONS $\frac{mm}{in.}$ (for reference only)

Solder Terminal Switches (with mounting holes)

Pin plunger (Type A)

PC Board Terminals Switches

.10

Right angle terminal (Type 50)

0.6 02 .02 2,5 Ø 1,00 +0.08 Ø.039+.003 A NOT THRU HOLES

Left angle terminal (Type 60)

Mounting screw size is m 1,4. Maximum tightening torque is 1 kg-cm.

Flat lever (Type C)

Simulated roller (Type E)

Subminiature

FEATURES

- Compact size helps minimize equipment size
 Choice of low energy or power duty electrical ratings
- Variety of integral actuators
 Temperature Range: -25° to +85°C (-13 to 185°F)
 Weight: 0.5 grams (.018 oz.)
- UL/CSA marking designations
- Form C single-pole double-throw (SPDT) circuitry

ORDER GUIDE

ELECTRICAL RATINGS (in amps)

Voltage	Silver C	ontacts	Gold Contacts
	UX40 Type	UX30 Type	UX10 Type
125 VAC* 30 VDC 6 VDC 12 VDC 24 VDC	3 A 2 A - -	1 A 1 A - -	0.1 A 0.1 A 5 mA 2 mA 1 mA

*UL/CSA rating. UL File No. E12252. UL Standard 1054.CSA file LR23413M167

			Term	inals					
Rating	Actuator	O.F. max. grams oz.	Solder	PC Straight Self- Supporting	R.F. min. g ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P mm inches
Gold, 0.1 Amp 125 VAC	A pin plunger	75 2.65	UX10C10A01	UX10C30A01	10 . 353	0,5 . 020	0,25 . 010	0,12 . 005	5,5 ± 0,2 . 217 ± . 008
		150 5.3	UX10E10A01	UX10E30A01	20 . 705	0,5 . 020	0,25 . 010	0,12 . 005	5,5 ± 0,2 . 217 ± . 008
<u>.</u>	C flat lever	25 . 88	UX10C10C01	UX10C30C01	2,5 . 088	2,1 . 083	0,55 . 022	0,50 . 020	6,8 ± 1,0 . 268 ± . 039
		50 1.76	UX10E10C01	UX10E30C01	5,0 . 176	2,1 . 083	0,55 . 022	0,50 . 020	6,8 ± 1,0 . 268 ± . 039
a c	E roller lever simulated	27 . 95 55 1.94	UX10C10E01 UX10E10E01	UX10C30E01 UX10E30E01	2,0 . 071 4,0 . 141	2,1 . 083 2,1 . 083	0,50 . 020 0,50 . 020	0,50 . 020 0,50 . 020	9,5 ± 1,0 .374 ± .039 9,5 ± 1,0 .374 ± .039
Silver, 1 Amp 125 VAC	A pin plunger	75 2.65	UX30C10A01	UX30C30A01	10 . 353	0,5 . 020	0,25 . 010	0,12 . 005	5,5 ± 0,2 . 217 ± . 008
	C flat lever	25 . 88	UX30C10C01	UX30C30C01	2,5 . 088	2,1 . 083	0,55 . 022	0,50 . 020	6,8 ± 1,0 . 268 ± . 039
	E roller lever simulated	27 . 95	UX30C10E01	UX30C30E01	2,0 . 071	2,1 . 083	0,50 . 020	0,50 . 020	9,5 ± 1,0 . 374 ± . 039
Silver, 3 Amp 125 VAC	A pin plunger	150 5.3	UX40E10A01	UX40E30A01	20 . 705	0,5 . 020	0,25 . 010	0,12 . 005	5,5 ± 0,2 . 217 ± . 008
	C flat lever	50 1.76	UX40E10C01	UX40E30C01	5,0 . 176	2,1 . 083	0,55 . 022	0,50 . 020	6,8 ± 1,0 . 268 ± . 039
	E roller lever simulated	55 1.94	UX40E10E01	UX40E30E01	4,0 . 141	2,1 . 083	0,50 . 020	0,50 . 020	9,5 ± 1,0 . 374 ± . 039

OTHER TERMINATION TYPES ARE AVAILABLE

For PC right angle, change 2nd set of numbers to 50 (Example: UX10C**50**A01) For PC left angle, change 2nd set of numbers to 60 (Example: UX10C**60**A01)

Subminiature

MOUNTING DIMENSIONS (for reference only) $\frac{mm}{in.}$

Pin plunger (Type A)

Solder terminals – Type 10

PC board terminals – Type 30

Type 60

LEFT ANGLE TERMINALS

Miniature/ Subminiature

LEVER ACTUATORS

UX Series switches with lever actuators can be operated by cams or slides. They require lower operating forces than pin plunger switches.

Flat levers are .520 in. (13,2 mm) long and simulated roller levers are .480 in. (12,2 mm) long.

Flat lever (Type C)

Mounting screw size is 2 mm. Maximum tightening torque is 1 kg-cm.

Simulated Roller Lever (Type E)

Subminiature

FEATURES

- Choice of low energy or power duty electrical ratings
- Variety of integral actuators
 Temperature Range: -25° to +85°C (-13° to 185°F)
- Weight: 2 grams (.07 oz.)
 UL/CSA/VDE/SEMKO marking designations
- Form C single-pole double-throw (SPDT) circuitry

ELECTRICAL RATINGS (in amps)

Voltage	UM50E Silver Contacts Voltage Resistive Inductive			0B/D Contacts Inductive	UM10A/B/D/E Gold Contacts Resistive
125 VAC			3 2		0.1
250 VAC	5	3	3	2	0.1
30 VDC	5	5 3*		2*	0.1

*Time constant for DC inductive loads: less than 7 msec. UL File No. E12252, CSA File LR23413M167

Rating	Actuator Length	O.F. max. grams oz.	Term Solder	inals .110 QC	R.F. min. g ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P mm inches
	A pin plunger	25 . 88	UM10A10A01	UM10A70A01	2 . 071	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 .331 ± .012
0.1 Amp 250 VAC		50 1.76	UM10B10A01	UM10B70A01	7,5 . 265	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 .331 ± .012
		100 3.57	UM10D10A01	UM10D70A01	15 . 529	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 .331 ± .012
		150 5.3	UM10E10A01	UM10E70A01	20 . 705	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 .331 ± .012
	B flat lever 18mm	10 . 35	UM10A10B01	UM10A70B01	0,4 . 014	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 .346 ± .031
		20 . 7	UM10B10B01	UM10B70B01	1,7 . 060	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 .346 ± .031
		40 1.4	UM10D10B01	UM10D70B01	3,5 . 123	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 .346 ± .031
		60 2.1	UM10E10B01	UM10E70B01	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 . 346 ± . 031
	C flat lever 20mm	8 . 28	UM10A10C01	UM10A70C01	0,35 . 012	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 .346 ± .031
		16 . 56	UM10B10C01	UM10B70C01	1,5 . 053	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 .346 ± .031
		35 1.23	UM10D10C01	UM10D70C01	3,0 . 106	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 .346 ± .031
		55 2	UM10E10C01	UM10E70C01	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 .346 ± .031
	D flat lever 26mm	12 . 4	UM10B10D01	UM10B70D01	1,2 . 042	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 .346 ± .047
		25 . 88	UM10D10D01	UM10D70D01	2,5 . 088	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 .346 ± .047
		45 1.6	UM10E10D01	UM10E70D01	3,0 . 106	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 .346 ± .047

ORDER GUIDE 0.1 AMP TYPE GOLD CONTACTS

Subminiature

ORDER GUIDE 0.1 AMP TYPE GOLD CONTACTS cont.

	Actuator	O.F. max . grams	Term	inals	R.F. min. g	P.T. max. mm	O.T. min. mm	D.T. max. mm	O.P mm
Rating	Length	oz.	Solder	.110 QC	ounces	inches	inches	inches	inches
0.1 Amp 250 VAC	J flat lever 60mm	6 .2	UM10B10J01	UM10B70J01	0,5 . 018	8,5 . 335	2,2 . 087	2,5 . 098	8,8 ± 2,4 . 346 ± . 094
<u> </u>		15 . 52	UM10D10J01	UM10D70J01	1,0 . 035	8,5 . 335	2,2 . 087	2,5 . 098	8,8 ± 2,4 .346 ± .094
		20 . 7	UM10E10J01	UM10E70J01	1,0 . 035	8,5 . 335	2,2 . 087	2,5 . 098	8,8 ± 2,4 . 346 ± . 094
0.1 Amp 250 VAC	E simulated roller lever, radius	16 . 56	UM10B10E01	UM10B70E01	1,5 . 053	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
~	2,5mm, 19mm	35 1.23	UM10D10E01	UM10D70E01	3,0 . 106	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
		55 2	UM10E10E01	UM10E70E01	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
	H simulated roller lever, radius	16 . 56	UM10B10H01	UM10B70H01	1,5 . 053	2,8 . 110	1,2 . 047	0,8 . 031	10,7 ± 0,8 . 421 ± . 031
	1,3mm, 19mm	35 1.23	UM10D10H01	UM10D70H01	3,0 . 106	2,8 . 110	1,2 . 047	0,8 . 031	10,7 ± 0,8 . 421 ± . 031
		55 2	UM10E10H01	UM10E70H01	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	10,7 ± 0,8 . 421 ± . 031
0.1 Amp 250 VAC	F roller lever 18,00mm	20 . 7	UM10B10F01	UM10B70F01	1,7 . 060	2,5 . 098	0,8 . 031	0,5 . 020	14,50 ± 0,8 . 571 ± . 031
R		40 1.4	UM10D10F01	UM10D70F01	3,5 . 123	2,5 . 098	0,8 . 031	0,5 . 020	14,50 ± 0,8 . 571 ± . 031
		60 2.1	UM10E10F01	UM10E70F01	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	14,50 ± 0,8 . 571 ± . 031

OTHER TERMINATION TYPES ARE AVAILABLE For PC Straight cross-line, change 2nd set of numbers to 20 (Example: UM10A**20**A01) For PC Straight international, change 2nd set of numbers to 40 (Example: UM10A**40**A01) For PC Straight right angle, change 2nd set of numbers to 50 (Example: UM10A**50**A01) For PC Straight left angle, change 2nd set of numbers to 60 (Example: UM10A**60**A01)

Miniature/ Subminiature

Subminiature

UM Series

ORDER GUIDE 3 AND 5 AMP TYPE SILVER CONTACTS

	Actuator	O.F. max. grams		inals	R.F. min .	P.T. max. mm	O.T. min. mm	D.T. max. mm	O.P mm
Rating	Length	OZ.	Solder	.110 QC	ounces	inches	inches	inches	inches
3 Amp 250 VAC	A pin plunger	50 1.76	UM40B10A01	UM40B70A01	7,5 . 265	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 . 331 ± . 012
		100 3.527	UM40D10A01	UM40D70A01	15,0 . 529	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 . 331 ± . 012
3 Amp 250 VAC	B flat lever 18mm	20 . 7	UM40B10B01	UM40B70B01	1,7 . 060	2,5 .098	0,8 . 031	0,5 . 020	8,8 ± 0,8 .346 ± .031
<u>.</u>		40 1.4	UM40D10B01	UM40D70B01	3,5 . 123	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 . 346 ± . 031
	C flat lever 20mm	16 . 56	UM40B10C01	UM40B70C01	1,5 . 053	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 . 346 ± . 031
		35 1.23	UM40D10C01	UM40D70C01	3,0 . 106	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 . 346 ± . 031
	D flat lever 26mm	12 . 4	UM40B10D01	UM40B70D01	1,2 . 042	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 . 346 ± . 047
		25 . 88	UM40D10D01	UM40D70D01	2,5 . 088	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 . 346 ± . 047
	J flat lever 60mm	6 .2	UM40B10J01	UM40B70J01	0,5 . 018	8,5 . 335	2,2 . 087	2,5 . 098	8,8 ± 2,4 . 346 ± . 094
		15 . 52	UM40D10J01	UM40D70J01	1,0 . 035	8,5 . 335	2,2 . 087	2,5 . 098	8,8 ± 2,4 . 346 ± . 094
3 Amp 250 VAC	E simulated roller lever, radius	16 . 56	UM40B10E01	UM40B70E01	1,5 . 053	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
~	2,5mm 19mm	35 1.23	UM40D10E01	UM40D70E01	3,0 . 106	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
	H simulated roller lever, radius	16 . 56	UM40B10H01	UM40B70H01	1,5 . 053	2,8 . 110	1,2 . 047	0,8 . 021	10,7 ± 0,8 . 421 ± . 031
	1,3mm 19,15mm	35 1.23	UM40D10H01	UM40D70H01	3,0 . 106	2,8 . 110	1,2 . 047	0,8 . 031	10,7 ± 0,8 . 421 ± . 031
R	F roller lever 18mm	20 . 7	UM40B10F01	UM40B70F01	1,7 . 060	2,5 . 098	0,8 . 031	0,5 . 020	14,50 ± 0,8 . 571 ± . 031
		40 1.4	UM40D10F01	UM40D70F01	3,5 . 123	2,5 . 098	0,8 . 031	0,5 . 020	14,50 ± 0,8 . 571 ± . 031
5 Amp 250 VAC	A pin plunger	150 5.3	UM50E10A01	UM50E70A01	20 . 705	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 . 331 ± . 012
2	B flat lever 18mm	60 2.1	UM50E10B01	UM50E70B01	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 . 346 ± . 031
	C flat lever 20mm	55 2	UM50E10C01	UM50E70C01	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 .346 ± .031
	D flat lever 26mm	45 1.6	UM50E10D01	UM50E70D01	3,0 . 106	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 . 346 ± . 047
	J flat lever 60mm		UM50E10J01	UM50E70J01	1,0 . 035	8,5 . 335	2,2 . 087	2,5 . 098	8,8 ± 2,4 . 346 ± . 094
	E simulated roller lever, radius 2,5mm 19mm	55 2	UM50E10E01	UM50E70E01	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
	H simulated roller lever, radius 1,3mm 19mm	55 2	UM50E10H01	UM50E70H01	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	10,7 ± 0,8 . 421 ± . 031
G.	F roller lever 18mm	60 2 .1	UM50E10F01	UM50E70F01	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	14,50 ± 0,8 . 571 ± . 031

OTHER TERMINATION TYPES ARE AVAILABLE

For PC Straight cross-line, change 2nd set of numbers to 20 (Example: UM40B**20**A01) For PC Straight international, change 2nd set of numbers to 40 (Example: UM40B**40**A01) For PC Straight right angle, change 2nd set of numbers to 50 (Example: UM40B**50**A01) For PC Straight left angle, change 2nd set of numbers to 60 (Example: UM40B**60**A01)

Subminiature

MOUNTING DIMENSIONS (for reference only) mm in.

Pin Plunger Type A

Solder Cross-line Terminals – Type 10

PC Right Angle In-line - Type 50

Lever Actuators 4mm (.158) wide 18mm Flat Lever Type B

19mm Simulated Roller Type E/H Type H has 1,3mm radius Type E has 2,5mm radius

Mounting screw size is m 2,3. Maximum tightening torque is 3 kg-cm.

PC Straight Cross-Line – Type 20

PC Left Angle In-line - Type 60

20mm Flat Lever Type C

18mm Roller Lever Type F 5mm (.197 in.) dia. x 3,2mm (.126 in.) thick roller

QC Quick Connect - Type 70

26mm Flat Lever Type D 60mm Type J

Basic Switches Sealed Subminiature

IP50-SEALED

IP67-SEALED

FEATURES

- Silver or gold contacts
- Variety of integral actuator styles including pin plunger, flat lever, roller lever, and simulated roller lever
- IP50 or IP67 type sealing
- Choice of quick-connect, printed circuit board, solder or leadwire termination
- Form C single-pole double-throw
- Temperature range: -40° to 85°C (-40° to 185°F)
- Weight, approx.: .07 oz. (2g.) for IP50-sealed switches; and .14 oz. (4g.) for IP67-sealed switches, not including leadwires
- UL, CSA, VDE, and SEMKO marking designations

ELECTRICAL RATINGS (in amps)

ſ		Silver C	ontacts	Gold Contacts
	Voltage	Resistive	Inductive	Resistive
	125 VAC	2.0	2.0	0.1A
	250 VAC	2.0	2.0	0.1A
	30 VDC	2.0	2.0	0.1A
	125 VDC	0.4	0.05	—

UL File No. E12252, CSA File LR23413M167

IP50-sealed UM switches are the same size as non-sealed UM switches on pages 12-15. There is an elastomer seal on the switch plunger and a cover-to-case seal. They provide a degree of protection against the entry of dust.

IP67-sealed UM switches have the plunger seal and cover-to-case seal. In addition, their AWG #20 leadwires are molded in epoxy resin. They provide a degree of protection against water entry during temporary immersion.

Basic Switches IP50-Sealed Subminiature

UM Series

Miniature/ Subminiature

С

ORDER GUIDE IP50 SEALED 0.1-AMP GOLD CONTACTS

	O.F. max. grams	Termi	nation	R.F. min. grams	P.T. max. mm	O.T. min. mm	D.T. max. mm	O.P mm
Actuators	οz.	Solder	.110 QC	ounces	inches	inches	inches	inches
A pin plunger	150 5.3	UM10E11AS1	UM10E71AS1	20 . 705	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 .331 ± .012
B flat lever	60 2.1	UM10E11BS1	UM10E71BS1	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 .346 ± .031
C flat lever	55 1.9	UM10E11CS1	UM10E71CS1	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 .346 ± .031
D flat lever	45 1.6	UM10E11DS1	UM10E71DS1	3,0 . 106	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 .346 ± .047
E simulated roller lever	55 1.9	UM10E11ES1	UM10E71ES1	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
F roller lever	60 2.1	UM10E11FS1	UM10E71FS1	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	14,5 ± 0,8 .571 ± .031

ORDER GUIDE IP50 SEALED 2.0-AMP SILVER CONTACTS

	O.F. max. grams	Termination		R.F. min. grams	P.T. max. mm	O.T. min . mm	D.T. max. mm	O.P mm
Actuators	oz.	Solder	.110 QC	ounces	inches	inches	inches	inches
A pin plunger	150 5.3	UM35E11AS1	UM35E71AS1	20 . 705	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 .331 ± .012
B flat lever	60 2.1	UM35E11BS1	UM35E71BS1	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 .346 ± .031
C flat lever	55 1.9	UM35E11CS1	UM35E71CS1	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 .346 ± .031
D flat lever	45 1.6	UM35E11DS1	UM35E71DS1	3,0 . 106	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 .346 ± .047
E simulated roller lever	55 1.9	UM35E11ES1	UM35E71ES1	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
F roller lever	60 2.1	UM35E11FS1	UM35E71FS1	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	14,5 ± 0,8 .571 ± .031

TO SPECIFY PC TERMINALS: In the order guides above, change the 2nd set of numbers to 21. Example: UM10E11AS1 converts to UM10E21AS1 with PC terminals

UM Series

IP67-Sealed Subminiature

ORDER GUIDE IP67 SEALED 0.1-AMP GOLD AND 2.0-AMP SILVER CONTACTS

Actuators	O.F. max. grams oz.	Leadwire T Gold Contacts	ermination Silver Contacts	R.F. min. grams ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P mm inches
A pin plunger	150 5.3	UM10E90AS1	UM35E90AS1	20 . 705	0,6 . 024	0,4 . 016	0,1 . 004	8,4 ± 0,3 .331 ± .012
B flat lever	60 2.1	UM10E90BS1	UM35E90BS1	4,0 . 141	2,5 . 098	0,8 . 031	0,5 . 020	8,8 ± 0,8 .346 ± .031
C flat lever	55 1.9	UM10E90CS1	UM35E90CS1	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	8,8 ± 0,8 . 346 ± . 031
D flat lever	45 1.6	UM10E90DS1	UM35E90DS1	3,0 . 106	3,5 . 138	1,6 . 063	1,0 . 039	8,8 ± 1,2 . 346 ± . 047
E simulated roller lever	55 1.9	UM10E90ES1	UM35E90ES1	3,5 . 123	2,8 . 110	1,2 . 047	0,8 . 031	11,65 ± 0,8 . 459 ± . 031
F roller lever	60 2.1	UM10E90FS1	UM35E90FS1	4,0 .141	2,5 . 098	0,8 . 031	0,5 . 020	14,5 ± 0,8 . 571 ± . 031

MOUNTING DIMENSIONS (For reference only)

Mounting screw size is m 2,3 Maximum torque is 3 kg/cm.

Pin Plunger Type A

PC Terminals

<u>mm</u> in.

Basic Switches IP50-Sealed Subminiature

<u>mm</u> in.

MOUNTING DIMENSIONS

(For reference only)

Mounting screw size is m 2,3 Maximum torque is 3 kg/cm.

QC In-line Terminals

Pin Plunger Type A

6,4 0,5 0,2

Lever Actuators 4 mm/.158 in. wide

18 mm Flat Lever Type B

20 mm Flat Lever Type C

26 mm Flat Lever Type D

19 mm Simulated Roller Lever Type E 2,5 mm radius

18 mm Roller Lever Type F 5 mm/.197 in. dia. x 3,2 mm/.126 in. Thick Roller

Miniature/ ubminiature

Basic Switches Subminiature

CUT-A-WAY 1SX SUBMINIATURE BASIC SWITCH

AVAILABLE TERMINALS

SX switches are available with several types of terminations. The T and T2 terminals provide easy solder lead wire attachment. The H58 terminal offers the simplicity of quick-connect and mate with AMP .058-inch receptacles. Pin terminals allow easy attachment to printed circuit boards.

GENERAL INFORMATION

SX subminiature basic switches are small size precision snap-action switches from MICRO SWITCH. These switches are ideal where savings in space and weight are important. Unless otherwise noted, all listings have silver contacts.

FEATURES

- Low operating force to 3 oz. (85 grams) maximum
- Sensitive differential travel as low as .001 inch maximum
- Power load switching capability up to 7 amperes—silver contacts
- Optional gold contacts for low energy applications
- Optional bifurcated gold contacts for maximum reliability
- Long mechanical life up to 10,000,000 cycles—95% survival for 11SX series 1,000,000 cycles—95% survival for 1SX series
- Temperature tolerance -65° to +250°F (-54 to 121°C) on standard construction
- High temperature designs for up to +400°F (204°C) for 100 hours
- Variety of integral and auxiliary actuators
- Choice of several terminal styles
- MIL-S-8805 qualified products available
- UL recognized File #E12252, CSA certified file # LR41372

Miniature/ Subminiature

Mounting torque Round head 2-56 UNC 438 screws— 2 inch pounds max.

Mate with Amp Inc. Part No. 640024-1 Std.

Dimensions shown are for reference only

Key: $\frac{0.00 = \text{mm}}{0.00 = \text{inches}}$

This section covers only **40** of our most popular SX Series catalog listings. If you don't find what you're looking for, it's likely one of the approximately **200** other active SX listings will meet your needs. Contact the 800 number.

SX Series

Subminiature

Dim. Dwg. Fig. 1 (Except Fig. 2 for 91SX39-T and 93SX34-T)

ORDER GUIDE by ascending electrical capability

	, ,	ipability						
Catalog Listing	Recommended for	Electrical Data and UL Code Page 20	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P.* mm inches
11SX91-T	Logic level loads 5VDC, 2mA; SPNO	At Left	1,39 5	0,28 1	0,51 .020	0,1 .004	0,1 .004	8,13 .320
12SX2-T	Best reliability (Bifurcated gold contacts)	.010 Amp H	0,7 to 1.39 2.5 to 5	0,28 1	0,51 . 020	0,1 . 004	0,051 . 002	8,13 . 320
3SX1-T	Applications requiring gold contacts (1SX type)	1 Amp D	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
12SX1-T	Best reliability with higher current rating (Bifurcated gold contacts)	1 Amp D	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,076 . 003	8,13 . 320
12SX3-T	Lowest differential travel with bifurcated gold contacts	1 Amp H	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,025 . 001	8,13 . 320
13SX21-T	Applications requiring gold contacts. 11SX type.	1 Amp D	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,051 . 002	8,13 . 320
23SX39-T (MS24547-2)	MIL-S-8805 applications requiring gold contacts +180°F (82°C) max. use	1 Amp D	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
23SX39-T2 (MS24547-5)	As above, with T2 terminals	1 Amp D	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
93SX39-T M8805/109-03	.156" wide, with gold contacts +180°F (82°C)	1 Amp D	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
411SX21-T M8805/106-01	+400°F (204°C) for 100 hours	G	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 220
413SX21-T M8805/106-02	+400°F (204°C) for 100 hours	L	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,051 . 002	8,13 . 220
11SX1-T	Lowest differential travel	3 Amps E	0,97 3.5	0,21 0.75	0,51 . 020	0,1 . 004	0,025 . 001	8,13 . 320
11SX21-T	Most applications	5 Amps A	0,7 to 1,39 2.5 to 5	0,28 1	0,51 . 020	0,1 . 004	0,051 . 002	8,13 . 320
11SX22-T	For use in sealed enclosures.	5 Amps A	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,076 . 003	8,13 . 320
17SX21-T	Best stability under varying humidity. 11SX type.	5 Amps A	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,051 . 002	8,13 . 320
1SX1-T	Up to 7 amps load handling	7 Amps B	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
1SX12-T	Low differential travel	7 Amps C	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,051 . 002	8,13 . 320
1SX48-T	Added overtravel	7 Amps B	1,39 5	0,28 1	0,51 . 020	0,25 . 010	0,13 . 005	8,13 . 320
2SX1-T	Lower force	7 Amps B	0,83 3	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
4SX1-T	Operating in temperature to +400°F (204°C) for 100 hours	7 Amps I	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
21SX1-T	Best stability under varying humidity (1SX type)	7 Amps B	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
21SX39-T (MS24547-1)	MIL-S-8805 application requirements +180°F (82°C)	7 Amps F	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
21SX39-T2 (MS24547-4)	MIL-S-8805 application requirements +180°F (82°C)	7 Amps F	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320
91SX39-T M8805/109-01	.156" wide version of standard SX +180°F (82°C)	7 Amps F	1,39 5	0,28 1	0,51 . 020	0,1 . 004	0,13 . 005	8,13 . 320

*±0,38 mm ±.015 in.

Subminiature

Characteristics: O.F. – Operating Force; R.F. – Release Force; P.T. – Pretravel; O.T. – Overtravel; D.T. – Differential Travel; O.P. – Operating Position

ORDER GUIDE

Catalog Listing	Description	Electrical Data And UL Code Page 20		R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches
311SX1-T	.135 inch (3,43 mm) straight lever	5 Amps A	0,49 1.76	0,09 . 32	1,65 . 065	0,36 . 014	0,51 . 020	8,43±1,14 . 332 ±. 045
313SX1-T	As above with gold contacts	1 Amp D	0,49 1.76	0,09 . 32	1,65 . 065	0,36 . 014	0,51 . 020	8,43±1,14 . 332 ±. 045

311SX2-T	.505 inch (12,8 mm)	5 Amps	0,31	0,05	2,92	0,64	0,89	8,26±1,91
	straight lever	A	1.1	. 18	. 115	.025	. 035	. 325±.075
313SX2-T	As above with gold contacts	1 Amp D	0,31 1.1	0,05 . 18	2,92 . 115	0,64 . 025	0,89 . 035	8,26±1,91 . 325±.075

311SX3-T	.965 inch (24,5 mm)	5 Amps	0,20	0,03	4,70	0,61	1,52	7,75±2,92
	straight lever	A	. 71	.11	.185	. 024	. 060	.305±.115
313SX3-T	As above with gold contacts	1 Amp D	0,20 . 71	0,03 .11	4,70 . 185	0,61 . 024	1,52 . 060	7,75±2,92 . 305 ±. 115

Dim. Dwg. Fig. 4

311SX4-T	.042 inch (1,1 mm) simulated roller lever	5 Amps A	0,58 2.1	0,11 . 39	1,27 . 050	0,25 . 010	0,38 . 015	14,15±0,91 . 557 ±. 036
313SX4-T	As above with gold contacts	1 Amp D	0,58 2.1	0,11 . 39	1,27 . 050	0,25 . 010	0,38 . 015	14,15±0,91 . 557 ±. 036

311SX5-T	.459 inch (11,7 mm)	5 Amps	0,31	0,05	2,67	0,56	0,89	14,86±1,65
	simulated roller lever	A	1.1	. 18	. 105	.022	. 035	. 585 ±. 065
313SX5-T	As above, with gold contacts	1 Amp D	0,31 1.1	0,05 . 18	2,67 . 105	0,56 . 022	0,89 . 035	14,86±1,65 .585±.065

Miniature/ Subminiature

ORDER GUIDE

Subminiature

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. -Pretravel; O.T. - Overtravel; D.T. - Differential Travel; O.P. - Operating Position; F.P. - Free Position.

*All characteristics are taken with actuator assembled on Catalog Listing 1SX1-T as shown.

AUXILIARY ACTUATORS
Switches are not included with

Catalog Listing	Description	Actuator Length "A" mm inches	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. mm inches	O.T. mm inches	D.T. max. mm inches	O.P.†† mm inches	F.P. mm inches
JX-20	Straight lever	18.3 . 72	0,28 1 approx.	0,04 . 14	_	0,76 . 030 approx.	0,76 . 030 approx.	10,8 . 425 approx.	12,3 . 485 approx.
JX-219	Straight lever (For higher temp.)	18,3 . 72	0,28 1	0,04 . 14	_	0,76 . 030 approx.	0,76 . 030 approx.	10,8 . 425 approx.	12,3 . 485 approx.

JX-40	Straight leaf	9,4 . 37 †	1,95 7	0,56 2	.225 арргох.	0,38 .015	0,64 .025	7,5 . 295	12,3 .485 ref.
JX-95	Straight leaf (For higher temp.)	9,4 . 37 †	1,95 7	0,56 2	.225 арргох.	0,38 . 015	0,64 . 025	7,5 . 295	12,3 . 485 ref.
JX-41**	Reverse leaf	9,4 . 37 †	1,67 6	0,28 1	.110 арргох.	0,38 .015	0,64 .025	7,5 . 295	9,4 . 370 ref.

Dim. Dwg. Fig. 9

JX-45	Roller leaf	6,1 . 24 †	1,95 7	0,28 1	.225 арргох.	0,38 . 015	0,64 . 025	12,2 . 480	16,5 .650 ref.
JX-96	Roller leaf (For higher temp.)	6,1 . 24 †	1,95 7	0,28 1	.225 арргох.	0,38 .015	0,64 . 025	12,2 . 480	16,5 .650 ref.
JX-51**	Reverse roller leaf	7,6 . 30 †	1,67 6	0,56 2	.110 арргох.	0,38 .015	0,64 .025	12,8 . 505	14,7 .580 ref.

Dim. Dwg. Fig. 9

	JX-4	Tandem leaf	7,9 .31	4,17 15	0,83 3	.065 approx.	0,20 . 008	0,76 .030	7,6 . 300	9,40 . 370 ref.
*	**Switch is mounted with plunger end reversed			NOTE: A	pove actuato	ors should be	Except	t where stated †1	† ±0,76 mm	

Dim. Dwg. Fig. 10

from JX:40. f"A" measurement is from center of mounting hole nearest tip of lever to the point indicated on drawing.

NOTE: Above actuators should be used at tem-peratures below + 300°F (149°C); except listings JX-95, JX-96, JX-219 and JX-220 are for use with the 4SX1-T to 400°F. (204°C).

Except where stated †† ±0,76 mm ±.030 in.

Downloaded from Arrow.com.

Subminiature

MOUNTING DIMENSIONS (for reference only)

PIN PLUNGER

INTEGRAL LEVERS

Fig. 4

Fig. 5

JX-25 actuator.

AUXILIARY ACTUATORS

Switches are not included with actuator.

Mounting holes accept pins or screws of .087 diameter (2,21 mm).

Subminiature

CUT-A-WAY SM SUBMINIATURE BASIC SWITCH

AVAILABLE TERMINALS

Various terminals are available for most listings. These include: the T and T2 for wrap-around soldering of leadwires; solder terminals for solder connections; H58 terminals and H4 series terminals provide easy quick-connect installation; H2 type, round wire wrap or PC terminals; H6 rectangular wire wrap terminals are also available. Other quick-connect terminals of the Series H types are available. Contact the 800 number for ordering information.

GENERAL INFORMATION

SM subminiature switches are slightly larger than the SX switches. These switches combine small size and light weight with ample electrical capacity, precision operation and long life. Unless otherwise noted, all listings have silver contacts.

T

H4

H58

SOLDER

Mates with Amp Inc. Part No. 640024-1 Std.

Dimensions shown are for reference only

H2

Key:

0,0 = mm

0.00 = inches

T2

FEATURES

- Low operating force to 2 ounces maximum
- Sensitive differential travel as low as .001 inch (0,025 mm) maximum
- Power load switching capability available to 11 amps (VAC) – silver contacts
- Motor load handling capacity to 1/4 hp (VAC)
- Optional gold contacts for low energy applications
- Optional bifurcated gold contacts for maximum reliability
- Long mechanical life

 11SM Series
 10,000,000
 operations
 1SM/41SM Series
 80,000
 - operations
 Bifurcated contacts 1,000,000
 - operations All at 95% survival
- Standard temperature range -65° to +185°F (-54 to 85°C)
- High temperature construction available for use to +400°F (204°C) for 100 hours
- Variety of integral and auxiliary actuators
- Choice of several terminal styles
- Military Standard construction available with three listings on the MIL-S-8805 qualified products list
- UL recognized File #E12252, CSA certified File #LR41372

Mounting Torque: 2.3 inch pounds max.

This section covers only **38** of our most popular SM Series catalog listings. If you don't find what you're looking for, it's likely one of the approximately **500** other active SM listings will meet your needs. Contact the 800 number.

Downloaded from Arrow.com.

For application help: call 1-800-537-6945.

SM Series

Subminiature

SM Series

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position.

PIN	PLUNGERS	

(i)	
n. Dwg. Fig. 1	

Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P.* mm inches
11SM1077-T	Gold alloy contacts	.1 Amp P	0,83-1,39 3-5	0,28 1	0,51 . 020	0,13 . 005	0,1 . 004	8,38 . 330
12SM604-T	Bifurcated gold contacts, reduced rating	.1 Amp P	0,83-1,39 3-5	0,28 1	0,51 . 020	0,076 . 003	0,1 . 004	8,38 . 330
11SM23-T	Application requiring gold contacts	1 Amp N	0,83-1,39 3-5	0,28 1	0,51 . 020	0,13 . 005	0,1 . 004	8,38 . 330
12SM4-T	Best reliability (Bifurcated gold contacts)	1 Amp N	0,83-1,39 3-5	0,28 1	0,51 . 020	0,076 . 003	0,1 . 004	8,38 . 330
11SM701-T	Lower force	4 Amps S	0,56 2	0,14 . 5	0,51 . 020	0,13 . 005	0,051 . 002	8,38 . 330
11SM1-T	Most applications	5 Amps J	0,83-1,39 3-5	0,28 1	0,51 . 020	0,13 . 005	0,1 . 004	8,38 . 330
11SM3-T	Operating in temperatures to +250°F (121°C)	5 Amps J	0,83-1,39 3-5	0,28 1	0,51 . 020	0,13 . 005	0,1 . 004	8,38 . 330
11SM244-T	Operating in temperatures to +400°F (204°C) 100 hrs.	5 Amps	0,83-1,39 3-5	0,28 1	0,51 . 020	0,13 . 005	0,1 . 004	8,38 . 330
11SM401-T	Less differential travel	5 Amps K	0,97 3.5 max.	0,28 1	0,51 . 020	0,13 . 005	0,025 . 001	8,38 . 330
21SM284-T2 (MS25085-2)	MIL-S-8805 application requirements	5 Amps R	0,83-1,39 3-5	0,28 1	0,76 . 030	0,13 . 005	0,1 . 004	8,38 . 330
21SM284 (MS25085-1)	MIL-S-8805 application requirements, solder terminals	5 Amps R	0,83-1,39 3-5	0,28 1	0,76 . 030	0,13 . 005	0,1 . 004	8,38 . 330
22SM1-T	Best stability under varying humidity	5 Amps J	0,83-1,39 3-5	0,28 1	0,51 . 020	0,13 . 005	0,1 . 004	8,38 . 330
41SM1-T	Up to 11 ampere 1/4 hp (AC) load handling	11 Amps M	0,83-1,39 3-5	0,28 1	0,76 . 030	0,13 . 005	0,1 . 004	8,38 . 330
*For electrical dat	a call 1-800-537-6945							

ORDER GUIDE by ascending electrical capability

411SM1	Sealed plunger construction	5 Amps K	0,83-2,09 3-7.5	0,28 1	0,51 . 020	0,13 . 005	0,1 . 004	8,38 . 330
411SM23	As above with gold contacts	1 Amp N	0,83-2,09 3-7.5	0,28 1	0,51 . 020	0,13 . 005	0,1 . 004	8,38 . 330

Except where stated * ±0,38mm ±.015 in.

Subminiature

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position.

ORDER GUIDI	Ε							
Catalog Listing	Description	Electrical Data And UL Code Page 20	O.F. max. newtons ounces	R.F. max. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches
311SM1-T	.285 inch (7,24mm) straight lever	5 Amps J	0,39 1.4	0,07 . 25	2,16 . 085	0,51 . 020	0,48 . 019	8,64±1,5 . 340 ±. 060
311SM23-T	As above with gold contacts	1 Amp N	0,39 1.4	0,07 . 25	2,16 . 085	0,51 . 020	0,48 . 019	8,64±1,5 . 340 ±. 060
311SM701-T	.285 inch (7,24mm) straight lever. Lower force	4 Amps S	0,16 . 57	0,03 . 11	2,16 . 085	0,51 . 020	0,36 . 014	8,64±1,5 . 340±.060
211CM2 T	$\Gamma(\Gamma; n = h (14, 2\Gamma; n = n))$	E Amme	0.01	0.05	2.05	0.(/	0.(0	0.51 + 0
311SM2-1	straight lever	5 Amps J	0,31 1.1	0,05 . 18	3,05 . 120	0,66 . 026	0,69 . 027	8,51±2 . 335 ±. 080
311SM43-T	As above with gold contacts	1 Amp N	0,31 1.1	0,05 . 18	3,05 . 120	0,66 . 026	0,69 . 027	8,51±2 . 335 ±. 080
311SM702-T	.565 inch (14,35mm) straight lever. Lower force	4 Amps S	0,11 . 4	0,02 . 07	3,05 . 120	0,66 . 026	0,38 . 015	8,51±2 . 335 ±. 080
311SM3-T	1.765 inch (44,8mm) straight lever	5 Amps J	0,15 . 53	0,02 . 07	7,87 . 310	1,45 . 057	2,8 . 110	7,11±4,3 . 280 ±. 170
311SM17-H58	J	1 Amp N	0,15 . 53	0,02 . 07	7,87 . 310	1,45 . 057	2,8 . 110	7,11±4,3 .280±.170
311SM703-T	1.765 inch (44,8mm) straight lever. Lower force	4 Amps S	0,06 .2	0,01 . 04	7,87 . 310	1,45 . 057	1,78 . 070	7,11±4,3 . 280±170
311SM4-T	.251 inch (6,38mm) simulated roller lever	5 Amps J	0,39 1.4	0,07 . 25	2,16 . 085	0,46 . 018	0,48 . 019	11,7±1,5 . 460 ±. 060
311SM25-T	As above with gold contacts	1 Amp N	0,39 1.4	0,07 . 25	2,16 . 085	0,46 . 018	0,48 . 019	11,7±1,5 . 460 ±. 060
311SM704-T	.251 inch (6,38mm) simulated roller lever. Lower force	4 Amps S	0,16 . 57	0,03 .11	2,16 . 085	0,46 . 018	0,33 . 013	11,7±1,5 . 460 ±. 060
-		•				-	-	
311SM5-T	.535 inch (13,6mm) simulated roller lever	5 Amps J	0,31 1.1	0,05 . 18	3,05 . 120	0,66 . 026	0,69 . 027	11,56±2 . 455 ±. 080
311SM705-T	.535 inch (13,6mm) simulated roller lever. Lower force	4 Amps S	0,11 .4	0,02 . 07	3,05 . 120	0,66 . 026	0,38 . 015	11,56±2 . 455 ±. 080
311SM6-T	.251 inch (6,38mm) roller lever	5 Amps J	0,39 1.4	0,07 . 25	2,16 . 085	0,46 . 018	0,48 . 019	14,2±1,5 . 560 ±. 060
311SM68-T	As above with gold contacts	1 Amp N	0,39 1.4	0,07 . 25	2,16 . 085	0,46 . 018	0,48 . 019	14,2±1,5 . 560 ±. 060
311SM706-T	.251 inch (6,38mm) roller lever. Lower force	4 Amps S	0,16 . 57	0,03 .11	2,16 . 085	0,46 . 018	0,33 . 013	14,2±1,5 . 560±.060
				·				
311SM7-T	.535 inch (13,6mm) roller lever	5 Amps J	0,31 1.1	0,05 . 18	3,05 . 120	0,66 . 026	0,69 . 027	14,1±2 .555±.080
	Catalog Listing 311SM1-T 311SM23-T 311SM23-T 311SM701-T 311SM2-T 311SM43-T 311SM702-T 311SM702-T 311SM703-T 311SM703-T 311SM703-T 311SM703-T 311SM703-T 311SM703-T 311SM704-T 311SM705-T 311SM68-T 311SM68-T 311SM706-T	ListingDescription311SM1-T.285 inch (7,24mm) straight lever311SM23-TAs above with gold contacts311SM701-T.285 inch (7,24mm) straight lever. Lower force311SM2-T.565 inch (14,35mm) straight lever311SM43-TAs above with gold contacts311SM43-T.565 inch (14,35mm) straight lever. Lower force311SM43-T.565 inch (14,35mm) straight lever. Lower force311SM3-T1.765 inch (44,8mm) straight lever. Lower force311SM17-H58As above with gold contacts311SM703-T1.765 inch (44,8mm) straight lever. Lower force311SM703-T1.765 inch (44,8mm) straight lever. Lower force311SM703-T1.765 inch (44,8mm) straight lever. Lower force311SM703-T.251 inch (6,38mm) simulated roller lever311SM704-T.251 inch (6,38mm) simulated roller lever. Lower force311SM704-T.535 inch (13,6mm) simulated roller lever. Lower force311SM6-T.251 inch (6,38mm) roller lever. Lower force311SM6-T.251 inch (6,38mm) roller lever. Lower force311SM68-TAs above with gold contacts311SM68-T.251 inch (6,38mm) roller lever. Lower force311SM706-T.251 inch (6,38mm) roller lever. Lower force311SM7-T.535 inch (13,6mm) roller lever. Lower force	Catalog ListingDescriptionElectrical Data And UL Code Page 20311SM1-T.285 inch (7,24mm) straight lever5 Amps J311SM23-TAs above with gold contacts1 Amp N311SM701-T.285 inch (7,24mm) straight lever. Lower force4 Amps S311SM43-T.565 inch (14,35mm) straight lever5 Amps J311SM43-T.565 inch (14,35mm) straight lever1 Amp N311SM43-T.565 inch (14,35mm) straight lever4 Amps S311SM702-T.565 inch (14,35mm) straight lever4 Amps S311SM17-H58As above with gold contacts1 Amp N311SM17-H58As above with gold contacts1 Amp S311SM703-T1.765 inch (44,8mm) straight lever. Lower force4 Amps S311SM25-T.251 inch (6,38mm) simulated roller lever. Lower force5 Amps J311SM5-T.535 inch (13,6mm) simulated roller lever. Lower force4 Amps S311SM5-T.535 inch (13,6mm) simulated roller lever. Lower force4 Amps S311SM704-T.51 inch (6,38mm) simulated roller lever. Lower force5 Amps J311SM6-T.251 inch (6,38mm) simulated roller lever. Lower force5 Amps S311SM6-T.251 inch (6,38mm) roller lever. Lower force5 Amps S311SM6-T.251 inch (6,38mm) roller lever. Lower force5 Amps S311SM70-T.251 inch (6,38mm) roller lever. Lower force4 Amps S311SM6-T.251 inch (6,38mm) <b< td=""><td>Catalog ListingDescriptionElectrical Data And UL Code Page 20O.F. max. newtons ounces311SM1-T.285 inch (7,24mm) straight leverJ1.4311SM23-TAs above with gold contacts1 Amp Amp0.39 N311SM701-T.285 inch (7,24mm) straight lever. Lower force4 Amps J0.16 straight lever311SM2-T.565 inch (14,35mm) straight lever Lower force5 Amps J0.31 1.1311SM4-T.565 inch (14,35mm) straight lever. Lower force1 Amp N0.31 1.1311SM702-T.565 inch (14,35mm) straight lever. Lower force4 Amps S0.11 .53311SM3-T1.765 inch (44,8mm) straight lever. Lower force5 Amps S0.15 .53311SM17-H58 As above with gold contacts1 Amp N0.39 .53311SM4-T.251 inch (6,38mm) simulated roller lever. Lower force1 Amp S0.39 .1.4311SM4-T.251 inch (6,38mm) simulated roller lever. Lower force5 Amps .0.39 .1.40.31 .57311SM5-T.535 inch (13,6mm) simulated roller lever. Lower force5 Amps .0.39 .1.40.31 .1.1311SM6-T.251 inch (6,38mm) simulated roller lever. .1.45 Amps .0.39 .1.40.31 .31311SM6-T.251 inch (6,38mm) roller lever. Lower force5 Amps .0.39 .1.40.39 .31311SM6-T.251 inch (6,38mm) roller lever. Lower force5 Amps .0.39 .1.40.39 .39311SM6-T.251 i</td><td>Catalog Listing Description Electrical Data And UL Code Page 20 O.F. max newtons ounces 3115M1-T .285 inch (7,24mm) straight lever 5 Amps J 0.39 0.07 3115M23-T As above with gold contacts 1 Amp O.39 0.07 3115M24-T .285 inch (7,24mm) straight lever. Lower force 4 Amps J 0.16 0.03 3115M701-T .285 inch (14,35mm) straight lever. Lower force 5 Amps J 0.11 0.05 3115M43-T As above with gold contacts 1 Amp N 0.11 0.02 3115M47-T .565 inch (14,35mm) straight lever. Lower force 5 Amps J 0.11 0.02 311SM702-T .565 inch (44,8mm) straight lever. Lower force 5 Amps J 0.15 0.02 311SM703-T 1.765 inch (44,8mm) simulated roller lever. Lower force 1 Amp J 0.16 0.04 311SM703-T 1.765 inch (44,8mm) simulated roller lever. Lower force 5 Amps J 0.31 0.07 311SM25-T As above with gold contacts 1 Amp J 0.39 0.07 311SM5-T .251 inch (6,38mm) simulated roller lever. Lower force 5 Amps J</td><td>Catalog Listing Description File Data And Duble Code Simulation Jule Code Jule Code N R.F. max. newtons Jule Code Jule Code Jule Code Jule Code Simulated Contacts PT. max. mm 311SM1-T 285 inch (7,24mm) Straight lever 5 Amps Jule Contacts 0.39 Jule Code N 0.07 Jule Code Simulated Contacts 2.16 Jule Code Simulated Contacts 0.07 Jule Code Simulated Contacts 2.16 Jule Code Simulated Contacts 311SM2-T 565 inch (14,35mm) Straight lever 5 Amps Jule Contacts 0.31 Jule Code Simulated Contacts 0.05 Jule Code Simulated Contacts 3.05 Jule Code Simulated Contacts 3.00 Jule Code Simulated Contacts 3.00 Jule Code Simulated Contacts 7.87 Jule Code Simulated Contacts 3.00 Jule Code Simulated Contacts 3.00 Jule Code Simulated Contacts 3.00 Jule Code Simulated Contacts 3.07 Jule Code Simulated Contacts 3.00 Jule Code Simulated Contacts 3.00 Jule Code Simulated Contacts 3.05 Jule Code Simulated Contacts 3.05 Jule Code Simulated Code Simulated Contacts 3.05 Jule Code Simulated Contacts 3.05 Jule Code Simulated Code Simulated Code Simulated Code Simulated Co</br></br></br></br></br></br></br></br></br></br></br></br></br></br></br></td><td>Catalog Listing Description Electrical Data And UL Code Page 20 O.F. max. newtons ounces P.F. max. mewtons inches O.T. min. mm 311SM1-T .285 inch (7,24mm) 5 Amps contacts 0.39 0.07 2,16 0,51 311SM23-T As above with gold contacts 1 Amp contacts 0.39 0.07 2,16 0,51 311SM270-T 285 inch (7,24mm) straight lever 4 Amps J 0,16 0,03 2,16 0,51 311SM2-T .565 inch (14,35mm) 5 Amps Lower force 0,31 0,05 3,05 0,66 311SM43-T .565 inch (14,35mm) 5 Amps Lower force 0,11 .18 120 .026 311SM47 .565 inch (14,35mm) 5 Amps Lower force 0,15 .027 .305 0,66 311SM3-T 1.765 inch (44,8mm) 5 Amps Lower force 0,15 0.02 7,87 1,45 311SM70-T 1.765 inch (44,8mm) 5 Amps Lower force 0,05 .017 .310 .057 311SM703-T 1.765 inch (44,8mm) 5 Amps Lower force 0,06 <td< td=""><td>Catalog Usting Description Electrical Data And Page 20 F. max. ounces R.F. max. number ounces P.T. max. nuches D.T. min inches D.T. min inches 3115M1-T 285 inch (7,24mm) 5 Amps 0.39 0.07 2,16 0.51 0.48 3115M23-T As above with gold 1 Amp 0.39 0.07 2,16 0.51 0.48 3115M2-T Z85 inch (7,24mm) straight lever. 5 5.7 1.11 0.05 3.05 0.066 0.020 0.01 3115M2-T S65 inch (14,35mm) 5 Amps 0.31 0.05 3.05 0.66 0.49 311SM2-T S65 inch (14,35mm) 5 Amps 0.11 1.88 1.20 0.26 0.27 311SM2-T S65 inch (14,35mm) 5 Amps 0.11 1.88 1.20 0.26 0.27 311SM702-T 565 inch (44,8mm) 5 Amps 0.15 0.07 3.10 0.57 1.10 311SM703-T 1.765 inch (44,8mm) 5 Amps 0.39 0.07 3.310 0.57</td></td<></td></b<>	Catalog ListingDescriptionElectrical Data And UL Code Page 20O.F. max. newtons ounces311SM1-T.285 inch (7,24mm) straight leverJ1.4311SM23-TAs above with gold contacts1 Amp Amp0.39 N311SM701-T.285 inch (7,24mm) straight lever. Lower force4 Amps J0.16 straight lever311SM2-T.565 inch (14,35mm) straight lever Lower force5 Amps J0.31 1.1311SM4-T.565 inch (14,35mm) straight lever. Lower force1 Amp N0.31 1.1311SM702-T.565 inch (14,35mm) straight lever. Lower force4 Amps S0.11 .53311SM3-T1.765 inch (44,8mm) straight lever. Lower force5 Amps S0.15 .53311SM17-H58 As above with gold contacts1 Amp N0.39 .53311SM4-T.251 inch (6,38mm) simulated roller lever. Lower force1 Amp S0.39 .1.4311SM4-T.251 inch (6,38mm) simulated roller lever. Lower force5 Amps .0.39 .1.40.31 .57311SM5-T.535 inch (13,6mm) simulated roller lever. Lower force5 Amps .0.39 .1.40.31 .1.1311SM6-T.251 inch (6,38mm) simulated roller lever. .1.45 Amps .0.39 .1.40.31 .31311SM6-T.251 inch (6,38mm) roller lever. Lower force5 Amps .0.39 .1.40.39 .31311SM6-T.251 inch (6,38mm) roller lever. Lower force5 Amps .0.39 .1.40.39 .39311SM6-T.251 i	Catalog Listing Description Electrical Data And UL Code Page 20 O.F. max newtons ounces 3115M1-T .285 inch (7,24mm) straight lever 5 Amps J 0.39 0.07 3115M23-T As above with gold contacts 1 Amp O.39 0.07 3115M24-T .285 inch (7,24mm) straight lever. Lower force 4 Amps J 0.16 0.03 3115M701-T .285 inch (14,35mm) straight lever. Lower force 5 Amps J 0.11 0.05 3115M43-T As above with gold contacts 1 Amp N 0.11 0.02 3115M47-T .565 inch (14,35mm) straight lever. Lower force 5 Amps J 0.11 0.02 311SM702-T .565 inch (44,8mm) straight lever. Lower force 5 Amps J 0.15 0.02 311SM703-T 1.765 inch (44,8mm) simulated roller lever. Lower force 1 Amp J 0.16 0.04 311SM703-T 1.765 inch (44,8mm) simulated roller lever. Lower force 5 Amps J 0.31 0.07 311SM25-T As above with gold contacts 1 Amp J 0.39 0.07 311SM5-T .251 inch (6,38mm) simulated roller lever. Lower force 5 Amps J	Catalog Listing Description File Data And Duble Code Simulation Jule Code Jule Code N R.F. max. newtons Jule Code Jule Code Jule Code Jule Code Simulated Contacts PT. max. mm 311SM1-T 285 inch (7,24mm) Straight lever 5 Amps Jule Contacts 0.39 Jule Code N 0.07 Jule Code 	Catalog Listing Description Electrical Data And UL Code Page 20 O.F. max. newtons ounces P.F. max. mewtons inches O.T. min. mm 311SM1-T .285 inch (7,24mm) 5 Amps contacts 0.39 0.07 2,16 0,51 311SM23-T As above with gold contacts 1 Amp contacts 0.39 0.07 2,16 0,51 311SM270-T 285 inch (7,24mm) straight lever 4 Amps J 0,16 0,03 2,16 0,51 311SM2-T .565 inch (14,35mm) 5 Amps Lower force 0,31 0,05 3,05 0,66 311SM43-T .565 inch (14,35mm) 5 Amps Lower force 0,11 .18 120 .026 311SM47 .565 inch (14,35mm) 5 Amps Lower force 0,15 .027 .305 0,66 311SM3-T 1.765 inch (44,8mm) 5 Amps Lower force 0,15 0.02 7,87 1,45 311SM70-T 1.765 inch (44,8mm) 5 Amps Lower force 0,05 .017 .310 .057 311SM703-T 1.765 inch (44,8mm) 5 Amps Lower force 0,06 <td< td=""><td>Catalog Usting Description Electrical Data And Page 20 F. max. ounces R.F. max. number ounces P.T. max. nuches D.T. min inches D.T. min inches 3115M1-T 285 inch (7,24mm) 5 Amps 0.39 0.07 2,16 0.51 0.48 3115M23-T As above with gold 1 Amp 0.39 0.07 2,16 0.51 0.48 3115M2-T Z85 inch (7,24mm) straight lever. 5 5.7 1.11 0.05 3.05 0.066 0.020 0.01 3115M2-T S65 inch (14,35mm) 5 Amps 0.31 0.05 3.05 0.66 0.49 311SM2-T S65 inch (14,35mm) 5 Amps 0.11 1.88 1.20 0.26 0.27 311SM2-T S65 inch (14,35mm) 5 Amps 0.11 1.88 1.20 0.26 0.27 311SM702-T 565 inch (44,8mm) 5 Amps 0.15 0.07 3.10 0.57 1.10 311SM703-T 1.765 inch (44,8mm) 5 Amps 0.39 0.07 3.310 0.57</td></td<>	Catalog Usting Description Electrical Data And Page 20 F. max. ounces R.F. max. number ounces P.T. max. nuches D.T. min inches D.T. min inches 3115M1-T 285 inch (7,24mm) 5 Amps 0.39 0.07 2,16 0.51 0.48 3115M23-T As above with gold 1 Amp 0.39 0.07 2,16 0.51 0.48 3115M2-T Z85 inch (7,24mm) straight lever. 5 5.7 1.11 0.05 3.05 0.066 0.020 0.01 3115M2-T S65 inch (14,35mm) 5 Amps 0.31 0.05 3.05 0.66 0.49 311SM2-T S65 inch (14,35mm) 5 Amps 0.11 1.88 1.20 0.26 0.27 311SM2-T S65 inch (14,35mm) 5 Amps 0.11 1.88 1.20 0.26 0.27 311SM702-T 565 inch (44,8mm) 5 Amps 0.15 0.07 3.10 0.57 1.10 311SM703-T 1.765 inch (44,8mm) 5 Amps 0.39 0.07 3.310 0.57

Dim. Dwg. Fig. 10

ORDER GUIDE

Subminiature

INTEGRAL LEAF

Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches
111SM1-T	Force and stability of flexible leaf actuator	5 Amps J	1,95 7	0,56 2	5,54 . 218	0,76 . 030	0,76 . 030	8,89±0,76 . 350 ±. 030
111SM17-T	As above with gold contacts	1 Amp N	1,95 7	0,56 2	5,54 . 218	0,76 . 030	0,76 . 030	8,89±0,76 . 350 ±. 030

111SM2-T	Flexible leaf with roller	5 Amps J	1,95 7	0,56 2	5,56 . 219	0,76 . 030	0,64 . 025	14,3±0,76 . 562 ±. 030
111SM23-T	As above with gold contacts	1 Amp N	1,95 7	0,56 2	5,56 . 219	0,76 . 030	0,64 . 025	14,3±0,76 . 562±.030

Dim. Dwg. Fig. 12

Miniature/ Subminiature

ORDER GUIDE

Subminiature

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P.

— Operating Position; F.P. — Free Position
 * All characteristics are taken with actuator assembled to Catalog Listing 11SM3-T as shown.

AUXILIARY ACTUATORS

Switches are not included with the actuators.

		Actuator Length							
Catalog Listing	Description	"A" mm inches	O.F. max. newtons ounces		P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches	F.P. max. mm inches
JS-2	Straight leaf	16,8 . 66	2,78 10	0,56 2	1,98 . 078	0,38 . 015	0,38 . 015	8,89±0,38 . 350±.015	11,3 . 445

Dim. Dwg. Fig. 14

h										
	JS-5	Roller leaf (Bronze roller)	15 . 59	2,78 10	0,83 3	1,98 . 078	0,38 . 015	0,38 . 015	14,2±0,38 . 580 ±. 015	16,9 . 665

JS-7	Formed leaf (Simulated roller)	14,7 . 58	2,78 10	0,56 2	2,39 .094	0,79 . 031	0,38 . 015	9,65±0,38 . 380 ±. 015	12,1 . 475

1	JS-220	Straight lever	26,2†	0,28	0,04	3,18	0,76	0,76	10,3	—
		-	1.03	1	.14	.125 approx.	.030	.030	.406 approx.	
6					•					

JS	 Roller lever (Steel roller)	25,4† 1.00	0,28 1	0,04 . 14	3,18 . 125 approx .	0,76 . 030	0,76 . 030	14,3 . 562 approx .	—

4

n,	
	<u></u>
	<u> </u>
	Dim. Dwg. Fig. 16

	JS-221	Formed lever (Simulated roller)	25,4† 1.00	0,28 1	0,04 . 14	3,18 . 125 approx .	0,76 . 030	0,76 . 030	11,6 . 455 approx.	
-										

JS-33 ** Tan	idem leaf	5,3 . 21	5,00 18	2,78 10	2,36 . 093	0,15 . 006	0,38 . 015	8,89±0,38 . 350 ±. 015	10,5 . 415

	Tandem roller leaf (Bronze roller)	4,3 . 17	11,1 40	4,45 16	2,36 . 093	0,13 . 005	0,38 . 015	14,5±0,38 . 570 ±. 015	16,1 . 635
--	--	--------------------	-------------------	-------------------	----------------------	----------------------	----------------------	---	----------------------

**Travel characteristics on tandem actuators vary with actual basic switch characteristics. NOTE: Above actuators should be used below +300°F. See page 79 for other actuators that may be used with SM Switches at higher temperatures. †"A" measurement is from the pivot point of lever to the point indicated on drawing.

Downloaded from Arrow.com.

For application help: call 1-800-537-6945.

Subminiature

MOUNTING DIMENSIONS (for reference only)

PIN PLUNGER OPERATING POSITION 7,6 .30 2,3 .09 D 1.8 .07 DIA 7,6 30 09 O'P 2,3 .09 8 25 Fig. 1 Fig. 2

INTEGRAL LEVERS

Fig. 5

4,8/.19 D X 3,2/.13 W ROLLER-

 $\frac{6,4}{25}$

Fig. 9

0 P

LEVER

28

56

0 P

8

19

Fig. 11

CORROSION RESISTANT

STEEL LEAF

3

8.7

34

.3

.09 .4

Mounting holes accept pins or screws of .087 inch (2,21 mm) max. diameter

Fig. 10

0,0 = mmKey: 0.00 = inches

0.P.

AUXILIARY ACTUATORS

8 78

INTEGRAL LEAFS

7,6 .30

2,3 .09

<u>9,5</u> .38

.16

<u>6,4</u> .25

Switches are not included with the actuators.

<u>3,6</u> ₩

ELECTRICAL RATINGS

SE SWITCHES ORDER GUIDE

GENERAL INFORMATION

SE and XE switches are the smallest environment-sealed switches offered by MICRO SWITCH. Both types enclose basic switches within a corrosion resistant aluminum housing to seal precision switch contacts from contamination. SE switches include a SM basic switch, and XE switches include the smaller SX basic switch.

Switches held depressed for extended periods of time at temperature extremes may experience retarded plunger return upon deactuation. Where such a condition exists in the application, contact the 800 number for special designs that are available.

FEATURES

- Watertight seal per enclosure design symbol 3, MIL-S-8805
- Power load switching capability up to 7 amps
- Temperature tolerance up to +221°F (105°C)
- High temperature construction for use to +300°F (149°C)
- Several auxiliary actuators
- Choice of termination
- Military standard construction with listings qualified to MIL-S-8805
- All 4SE switches are UL recognized and CSA certified
- 4XE switches are UL recognized

Circuitry	Electrical Rating Code					
Single-Pole Double-Throw	 A 5 amps res., 3 amps ind., (sea level), 5 amps res., 2.5 amps ind., (50,000 feet) 28 vdc. 5 amps res., 5 amps ind., 125 or 250 vac, 60 Hz. 	D UL Rating 7 amps, 250 vac 60 Hz				
	B UL and CSA Rating 5 amps, 250 vac, 60 Hz	E 7 amps res., 4 amps ind., (sea level), 7 amps res., 2.5 amps ind., (50,000 feet), 28 vdc.				
	 C 7 amps res., 4 amps ind., (sea level), 7 amps res., 2.5 amps ind., (50,000 feet), 28 vdc. 7 amps res., 4 amps ind., (sea level), 115 vac, 400 Hz 	R 1 amp res., 0.50 amp ind., 28 vdc.				

Characteristics: O.F. — Operating Force; R.F. — Release Force;
P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel;
O.P. — Operating Position

Characteristics Electrical O.F. R.F. min. P.T. max. D.T. max. O.P. O.T. min. Catalog Recommended Rating Newtons Newtons mm mm mm mm Listing Code ounces ounces inches inches inches inches For 1 foot leads 1SE1 Most applications А 1,39-4,73 1,11 1,27 0,08 0,1 10,8 (other lengths 5-17 .050 .003 .004 .425 4 available) 1SE2 1,39-4,73 0,08 10,8 SPST - Normally-1,11 1,27 0,1 А 5-17 .050 .003 .004 .425 closed 4 1SE3 10.8 SPST - Normally-А 1.39-4.73 1.11 1.27 0.08 0.1 5-17 .003 .004 .425 open 4 .050 4SE1 UL and CSA listing В 1,39-4,73 1,11 1,27 0,08 0,1 10,8 and UL and CSA 5-17 .050 .003 .004 .425 4 listed lead wire 5SE1 Oil resistant 1,39-4,73 1,11 1,27 0,08 0,1 10,8 А Fluorosilicone seal .004 5-17 4 .050 .003 .425 Fig. 1 7SE1 Lower force А 1,11-2,22 0,56 1,27 0,08 0,1 10,8 4-8 .050 .003 .004 .425 2 12SE4-T High return force 1,39-5,28 1,11 1,27 0,08 0,1 10,8 А 5-19 .004 .050 4 .003 .425 1SE1-T For customer А 1,39-4,73 1,11 1,27 0,08 0,1 10,8 .004 leading 5-17 .050 .003 .425 4 Fig. 2

Position Sensors

Position Sensors Environment-Sealed Basic Switches

AUXILIARY ACTUATORS FOR SE SWITCHES ORDER GUIDE (Switches are not included with actuators)

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position

(Switches are not included with actuators)				Characteristics massured						
				Characteristics measured with actuators mounted to a 1SE1						
	Catalog Listing	Description	Actuator Length A mm inches	O.F. max. Newtons ounces	R.F. min. Newtons ounces	P.T. approx. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches	F.P. mm inches
Fig. 3	JE-1	Straight leaf (mounting hardware included)	16,8 . 66	3,34 12	0,56 2	3,81 . 150	0,38 . 015	0,64 . 025	11,2 . 440	15±0,76 . 590 ±. 030
Fig. 4	JE-4	Roller leaf. Roller turned 90° to switch axis (mounting hardware included).	16,8 . 66	3,34 12	0,56 2	3,81 . 150	0,38 . 015	0,64 . 025	16,3 . 640	20,1 . 790 approx.
Fig. 5	JE-5	Roller leaf (mounting hardware included)	14,2 .560	3,34 12	0,56 2	3,81 . 150	0,38 . 015	0,64 . 025	16,3 . 640	20,1±0,76 .790±.030
Fig. 6	JE-17	Roller leaf. Reversed position (mounting hardware included)	14,2 .560	3,34 12	0,56 2	3,81 . 150	0,38 . 015	0,64 . 025	16,3 . 640	20,1±0,76 .790±.030
Fig. 7	JE-21	Roller lever	13,7 . 540	1,67 6	0,28 1	2,54 . 100	0,25 . 010	0,41 . 016	16,3 . 640	18,8±0,76 .740±.030
Fig. 8	JE-22	Tandem Roller Lever	17,8 . 700	4,73 17	1,11 4	2,54 . 100	0,15 . 006	0,3 . 012	16,8±1,3 .660±.050	19,3±1,3 .760±.050

Environment-Sealed Basic Switches

XE SWITCHES ORDER GUIDE

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; D.T. — Differential Travel; O.P. — Operating Position.

				Characteristics					
	Catalog Listing	Recommended For	Electrical Rating Code	O.F. max. Newtons ounces	R.F. max. Newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches ±.020 (0,51)
1 foot leads (other lengths available)	1XE1 (MS27994-1)	Most applications MIL-S-8805 requirements	С	1,39-4,73 5-17	1,11 4	1,27 . 050	0,1 . 004	0,13 . 005	10,8 . 425
	1XE201 (MS27994-4)	General Use MIL-S-8805 requirements MIL-W-22759/11	С	1,39-4,73 5-17	1,11 4	1,27 . 050	0,1 . 004	0,13 . 005	10,8 . 425
		wire							
	1XE3	SPST-Normally Open	С	1,39-4,73 5-17	1,11 4	1,27 . 050	0,1 . 004	0,13 . 005	10,8 . 425
	1XE301 (MS27994-5)	Gold Contacts MIL-W-22759/11 wire	R	1,39-4,73 5-17	1,11 4	1,27 . 050	0,1 . 004	0,13 . 005	10,8 . 425
	4XE1	UL listing and UL and CSA listed leadwire	D	1,39-4,73 5-17	1,11 4	1,27 . 050	0,1 . 004	0,13 . 005	10,8 . 425
	5XE1	Oil resistant Fluorosilicone seal	С	1,39-4,73 5-17	1,11 4	1,27 . 050	0,1 . 004	0,13 . 005	10,8 . 425
Fig. 9	14XE1	Less operating force Use to +300°F (149°C)	E	2,50 9 max .	0,56 2	0,76 . 030	0,1 . 004	0,13 . 005	10,9 . 430
1	14XE1-T	For customer leading Use to +300°F (149°C)	E	2,50 9 max .	0,56 2	0,76 . 030	0,1 . 004	0,13 . 005	10,9 . 430
Fig. 10	1XE1-T (MS27994-3)	For customer leading	С	1,39-4,73 5-17	1,11 4	1,27 . 050	0,1 . 004	0,13 . 005	10,8 . 425

AUXILIARY ACTUATORS FOR XE SWITCHES ORDER GUIDE (Switches are not included with the actuators)

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position; F.P. — Free Position.

				Characteris	tics measur	ed with actu	Characteristics measured with actuator mounted on a 1XE1							
	Catalog Listing	Description	O.F. max. Newtons ounces	R.F. min. Newtons ounces	P.T. approx. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches	F.P. mm inches					
Fig. 11	JM-1	Straight leaf	5,84 21	0,83 3	3,18 . 125	0,23 . 009	0,3 . 012	10,8±0,76 . 425 ±. 030	14±0,76 .550±.030					
Fig. 12	JM-5	Roller leaf	5,84 21	0,83 3	3,18 . 125	0,23 . 009	0,3 . 012	15,9±0,89 .625±.035	19,1±0,89 . 750 ±.035					

Environment-Sealed Basic Switches

SE MOUNTING DIMENSIONS (For reference only) SE switches

SE auxiliary actuators

Fig. 2

0,8 .03

20.1

.79

4,8 /.19 DIA X 4,8 /.19 WIDE OIL BRONZE ROLLER

0,0 = mmKey: 0.00 = inches SE Series

Environment-Sealed Basic Switches

XE MOUNTING DIMENSIONS (For reference only)

STAINLESS STEEL 4,8 .19 PLUNGER 7,9 .31 O,P. 19,0 .75 2,3 .09 ΗП <u>2,3</u> .09</sub>DIA 2,5 .10DIA 4,8 <u>15,5</u> .61 .19 Fig. 10

XE auxiliary actuators

4,8/.19 D X 2,3/.09 W ROLLER

Position Sensors

Position Sensors Hermetically Sealed Switches

GENERAL INFORMATION

HS switches are designed for applications where maximum electrical rating and maximum sealing are essential, and where size and weight requirements are less critical. These switches are side mounted through mounting holes that are outside the sealed switching chamber.

ELECTRICAL RATINGS

Circuitry	Electrical Rating Codes
Single-Pole Double-Throw	 M 25 amps res., 8 amps ind., 5 amps motor, 3 amps lamp load, 28 vdc; 1 amp res., 1 amp ind., 115 vac, 60 Hz UL-CSA Rating: 1 amp., 115 vac, 60 Hz.
	N 15 amps res., 8 amps ind., 28 vdc; 1 amp res., 1 amp ind., 115 vac, 60 Hz
	O 20 amps res., 8 amps ind., 28 vdc; 1 amp res., 1 amp ind., 115 vac, 60 Hz UL-CSA Rating: 1 amp, 115 vac, 60 Hz
	 P 10 amps res., 5 amps ind., 28 vdc; 1 amp res., 1 amp ind., 115 vac, 60 Hz UL-CSA Rating: 1 amp., 115 vac, 60 Hz.

FEATURES

- Hermetically sealed per MIL-S-8805, design symbol 5 (-67° to +180°F or -55° to 82°C)
- Power load switching capability up to 25 amperes, 28 VDC
- Temperature tolerance from -67°F to +250°F (-55°C to +125°C)
- High temperature construction for use to +300°F (149°C)
- Several styles of integral lever actuators
- Two styles of terminals
- Military standard construction with listings on the MIL-S-8805 qualified products list
- UL recognized File #E12252; CSA certified LR 4442

Hermetically Sealed Switches

					C	Operating (Characteris	stics	
	Catalog Listing	Recommended For	Electrical Rating Code	O.F. max. Newtons ounces	R.F. min. Newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches
	1HS1 (MS25011-1)	Most applications MIL-S-8805 (M8805/47)	М	2,78-6,12 10-22	1,11 4	1,65 .065	0,25 .010	0,51 .020	13,5 ± 0,38 . 530 ± . 015
Trapper-	101HS1	Operating in temperatures to +250°F (121°C)	ο	2,78-6,12 10-22	1,11 4	1,65 . 065	0,25 . 010	0,51 . 020	13,5 ± 0,38 . 530 ± . 015
Fig. 1	102HS1	Operating in temperatures to +300°F (149°C)	Ρ	2,78-8,34 10-30	1,11 4	1,65 . 065	0,25 . 010	0,51 . 020	13,5 ± 0,38 . 530 ± . 015
Fig. 2	4HS4-118	Lead wire termination	N	2,78-6,12 10-22	1,11 4	1,65 . 065	0,25 . 010	0,51 . 020	15,6 . 615± .020
Fig. 3	1HS41	Applications requiring added overtravel	М	1,11-5,56 4-20	0,56 2	_	1,57 . 062 max .	2,54 . 100	13,54 . 533 approx.
Fig. 4	1HS6 (MS25011-4)	MIL-S-8805 requirements. More operating force	Μ	6,12-7,78 22-28	1,11 4	2,16 . 085	0,25 . 010	0,51 . 020	13,5 ± 0,38 .530 ± .015
Fig. 5	1HS3	Roller lever	Μ	2,78-6,12 10-22	1,11 4	1,65 . 065	0,25 . 010	0,51 . 020	18,3 ± 0,38 . 720 ± . 015

HS ORDER GUIDE

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position.

HS MOUNTING DIMENSIONS (For reference only) Mounting holes will accept pins or screws of .139" (3,53mm) diameter.

Position Sensors

Miniature Hermetically Sealed Switches

Wobblefram actuator sea Hermetically sealed switching chamber Cover weided wobblefram and Header plate header brazed Glass bead seals at terminals Epoxy potting around terminals

ELECTRICAL RATINGS

Circuitr	у	Electrical Rating Code	
Single-Pole Double-Throw	*	1 amp res., 0.25 amp ind., 28 VDC.	
Single-Pole Double-Throw	•	2 amps res., 2 amps ind., 0.5 amps lamp load, 115 400 Hz. 4 amps res., 2 amps ind., 1 amp lamp load, 28 VDC	
Single-Pole Double-Throw	*	½ amp res., ¼ amp ind. (sea level or 70,000 ft.), 28 VDC	
Single-Pole Double-Throw	*	3 amps res., 1 amp ind. (sea level or 70,000 ft.), 28 1 amp res. or ind. (sea level), 115 VAC., 400 Hz.	VDC
Single-Pole Double-Throw	•	3 amp res., 1 amp ind., 28 VDC 1 amp res., 1 amp ind., 115 VAC, 400 Hz.	

APPLICATION NOTES

- 1. Honeywell does not recommend the use of silver cadmium oxide switch contacts in non-arcing loads. Non-arcing loads are generally loads less than 12 volts and/or 0.5 amp. Catalog listings in the 5, 6, 15, and 16HM Series use silver cadmium oxide contacts. If you have specific questions, contact the MICRO SWITCH Application Center at 1-800-537-6945.
- 2. For applications involving non-arcing loads, catalog listings in the 9, 10, 19 and 20HM Series are recommended.
- 3. The 1, 2, 5, and 6HM Series are recommended for use only in 3 to 4 amp range applications.

GENERAL INFORMATION

HM switches are not generally recommended for 115 VAC, 60 Hz. If you have a 60 Hz application in the milliamp range, contact our 800 number for special design variations that are available.

- Hermetically sealed per enclosure design symbol 5, MIL-S-8805
- Power load switching capability up to 4 amperes, 28 VDC and 2 Amps 115 VAC, 400 Hz
- Temperature tolerance from -85°F to +250°F (-65°C to +121°C)
- High temperature construction for use from -85°F to +500°F (-65°C to +260°C)
- Variety of auxiliary actuators
- Choice of terminal styles
- Gold contacts for special applications
- Military standard construction with listings on the MIL-S-8805 qualified products list.

Miniature Hermetically Sealed Switches

						Operating	g Characte	ristics	
	Catalog Listing	Recommended For	Electrical Rating Code	O.F. max. Newtons ounces	R.F. min. Newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches ±.015 (0,38 mm)
vormer O	11HM1 (MS27216-5)	Most applications. Exceeds MIL-S-8805 requirements for shock and vibration.	К	1,95 7	0,28 1	0,76 . 030	0,08 . 003	0,15 . 006	8,38 .330
Fig. 1	13HM1	Applications requiring gold contacts	н	1,95 7	0,28 1	0,76 . 030	0,08 . 003	0,15 . 006	8,38 . 330
	9HM1 (MS27216-6)	Bifurcated gold contacts	J	1,95 7	0,28 1	0,76 . 030	0,08 . 003	0,15 . 006	8,38 . 330
• •	2HM19-1 (MS27216-2)	MIL-S-8805 application requirements 1 ft. (305mm) leads	I	1,95 7	0,28 1	0,76 . 030	0,08 . 003	0,15 . 006	8,38 . 330
Fig. 2	2HM19-5 (MS27216-4)	5 foot (1524mm) long leads	Ι	1,95 7	0,28 1	0,76 . 030	0,08 . 003	0,15 . 006	8,38 . 330
Fig. 3	16HM1-1	High temperature to 500°F (260°C) flat spring	L	1,95 7	0,28 1	0,76 . 030	0,08 . 003	0,15 . 006	8,38 . 330
Fig. 4	15HM2	Operating in temperatures to +500°F (260°C) with weld tab termination.	L	1,95 7	0,28 1	0,76 . 030	0,08 . 003	0,15 . 006	8,38 . 330

HM ORDER GUIDE

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position.

HM MOUNTING

A force spreading plate is recommended to reduce the chance of product damage due to excessive mounting force.

MOUNTING PLATE

19PA137-HM

NOTICE

HM Series

Miniature Hermetically Sealed Switches

AUXILIARY ACTUATORS FOR HM SWITCHES ORDER GUIDE (Switches are not included)

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position; F.P. — Free Position.

				0	perating Cl	haracteristi	cs with Act	uator Mou	nted on a 6HI	VI1-1
	Catalog Listing	Description	Temp. (Max.)	O.F. max. Newtons ounces	R.F. min. Newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches	F.P. mm inches
	JS-254	Leaf	500°F (260°C)	2,50 9	0,56 2	_	0,76 . 030	0,76 . 030	8,64 . 340 approx .	12,2 . 480 approx .
Fig. 5										
ŵ	JS-151	Roller leaf	500°F (260°C)	2,50 9	0,56 2	_	0,76 . 030	0,76 . 030	14 .550 approx.	17,5 . 690 approx .
Fig. 6										
	JS-307	Straight lever	500°F (260°C)	0,42 1.5	0,03 . 11	3,18 . 125 approx.	0,64 . 025	1,42 . 056	10,3 . 406 approx .	
Fig. 7						approx				
	JS-308	Roller lever	500°F (260°C)	0,42 1.5	0,03 . 11	3,18 . 125 approx.	0,64 . 025	1,42 . 056	14,3 . 562 approx .	
Fig. 8										

MOUNTING TORQUE:

JS-254 2.5 inch pounds all others 1.5 inch pounds See optional mounting plate – previous page. All standard JS actuators in the SM Section of Catalog 10 can be used with the HM line. However, hardware, insulator, and oil impregnated roller supplied with these actuators may not provide the required service at temperatures above $250^{\circ}F$ ($121^{\circ}C$).

Miniature Hermetically Sealed Switches

HM MOUNTING DIMENSIONS (For reference only) Pin plunger switches

MOUNTING HOLES WILL ACCEPT PINS OR SCREWS OF 1,9/.08 DIA

Auxiliary actuators

 $74,8/.19 \times 2,3/.09$ WIDE ROLLER

Position Sensors

High Temperature Basic Switches

GENERAL INFORMATION

HT switches will withstand temperatures up to +1000F. The switching element is mounted on a ceramic base within a stainless steel enclosure. HT switches are not classified as sealed switches.

ELECTRICAL RATINGS

Electrical Rating Circuitry Single-Pole UL Ratings: Double-Throw 3 amps, 1/10 HP, 125 vac. £ 3 amps, 1/6 HP, 250 vac. ▲

FEATURES

(538°C)

• UL recognized

• Side and panel mount

• Temperature tolerance up to +1000°F

• Designed to meet military applications

HT ORDER GUIDE

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. - Pretravel; O.T. - Overtravel; O.P. - Operating Position

	Catalog Listing	Description	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	O.P. mm inches
Fig. 1	1HT1	Straight plunger panel mount	2,78-5,56 10-20	1,67 6	1,65 . 065	4,78 . 188	23,7 .935 approx.
Fig. 2	3HT1	Roller plunger panel mount	8,34 30 max .	1,67 6	1,65 . 065	4,78 .188	35,9 1.413 approx.
Fig. 3	2HT1	Pin plunger side mount	2,78-5,56 10-20	1,67 6	1,27 . 050	0,25 . 010	16,8 .66 approx.

HT MOUNTING DIMENSIONS (For reference only)

MT Series

Basic Switches Magnetic Blow-out

FEATURES

- Arc resistant case
- Mechanical life of 100,000 operations — 95% survival
- Temperature tolerance to +180°F (82°C)
- Mounting interchangeability with Z switches
- UL recognized

AVAILABLE TERMINALS

GENERAL INFORMATION

MT (single-pole double-throw) magnetic blow-out switches are designed to switch high capacity (125 and 250 VDC) systems. An integral magnet around the contact gap protects the contacts by deflecting the arc. Vents between the cover and housing allow the hot gas to escape. These switches are designed for the control of DC motors, solenoids, etc.

Solder (No listing designation)

A28 6-32NC × .218" Screws will accept up to #12 wire.

ELECTRICAL RATING

Circuitry		Electrical Data and UL Codes
Single-pole double-throw unless otherwise noted in order guide	к	Rating established with switch non-polarized 10 amps, 125 vac or vdc; 1/4 hp, 125 vac or vdc. UL Code L 168 Non-polarized: 10 amps res. or 1/4 hp, 125 vdc; 3 amps max. res. 250 vdc. Polarized*: 10 amps res. or 1/2 hp, 125 vdc;
achieve the same effect, n	nou	3 amps max. res., 250 vdc. side of line to common terminal. To nt switch with brass screws, using a ¼" thick) between the switch and

ORDER GUIDE

Characteristics: O.F. – Operating Force; R.F. – Release Force; P.T. – Pretravel; O.T. – Overtravel; D.T. – Differential Travel; O.P. – Operating Position.

R.F. min. P.T. max. Flectrical O.F. O.T. min. D.T. max. O.P. Data and newtons newtons mm mm mm mm MICRO SWITCH Catalog Listing Recommended For UL Codes inches inches inches inches ounces ounces MT-4R-A28 Pin plunger 10 Amps 3,34-5,0 1,39 1,02 0,13 0,1-0,18 15,9±0,38 SPDT к 12-18 5 .04 .005 .004-.007 .625±.015

Dim. Dwg. Fig. 1

Magnetic Blow-out

MT Series

ORDER GUIDE

TCH	Catalog Listing	Description	Electrical Data and UL Codes	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P.* mm inches
	MT-4RV-A28	Straight lever	10 Amps K	0,56 2	0,14 0.5	12,7 0.5	1,19 . 047	2,16 . 085	19,1 . 750

MT-4RV2-A28	1.90 inch (48,3mm) lever with hardened steel roller	10 Amps K	0,76 2.75	0,07 0.25	8,89 0.35	0,79 . 031	1,65 . 065	30,2 1.188
MT-4RV22-A28	1.03 inch (26,2mm) lever with hardened steel roller	10 Amps K	1,25 4.5	0,28 1	5,08 .200	0,38 . 015	0,89 . 035	31,3 1.234

Dim. Dwg. Fig. 3

RL-A28 1.95 inch (49,5mm) flexible leaf	10 Amps K	3,34 12	0,28 1	_	1,52 . 060 max.	—	19, . 75	
	ĸ	12	0,28 1	-	.060	_		19,1 . 75 (

Dim. Dwg. Fig. 4

MT-4RL2-A28	1.82 inch (46,2mm) flexible leaf with hardened steel roller	10 Amps K	3,34 12	0,28 1	_	1,52 .060 max.	_	30,2 1.188

Dim. Dwg. Fig. 5

Except where stated * \pm 0,76 mm \pm .030 in.

MT Series

Basic Switches

Magnetic Blow-out

MOUNTING DIMENSIONS (For reference only)

PIN PLUNGER

Fig. 1

ROLLER LEVER

Fig. 3

FLEXIBLE ROLLER LEAF

Fig. 5

Mounting holes accept pins or screws of .139" (3,53 mm) diameter.

STRAIGHT LEVER

FLEXIBLE LEAF

Fig. 4

Basic Switches Miniature

CUT-A-WAY V3 MINIATURE BASIC SWITCH

GENERAL INFORMATION

V3 miniature basic switches feature high electrical capacity and long life. Their size and shape meet design requirements in all types of applications. There is a choice of SPDT, SPNC, and SPNO circuitry. Many lever styles, contact materials, and terminal variations can be furnished. Contact the 800 number for ordering information.

FEATURES

- Low operating force to .53 ounce maximum
- Sensitive differential travel as low as .006 inch maximum
- Power load switching capability up to 25 amperes-silver contacts
- Gold alloy crosspoint, silver cadmium, and other contact material for special applications
- Long mechanical life of 10,000,000 cycles—95% survival for V3-100, V3-1100, V3-2100, V3-3000 Series
- Temperature tolerance up to +180°F (82°C) on standard construction
- High temperature construction for use up to +600°F (316°C)
- 3,1 mm mounting holes available
- UL recognized File #E12252, CSA certified File #LR41370

D8

SOLDER

.188 wide × .020 thick terminals

D9

SHORT SOLDER

QUICK CONNECT

.250 wide imes .032 thick terminals

SCREW

Dimensions shown are for reference only

Key:
$$\frac{0,0 = mm}{0.00 = inches}$$

Mounting torque: 2 inch pounds min. 5 inch pounds max.

This section covers only **60** of our most popular V3 Series catalog listings. If you don't find what you're looking for, it's likely one of the approximately **850** other active V3 listings will meet your needs. Contact the 800 number.

V3 Series

Miniature

Characteristics: O.F. – Operating Force; R.F. – Release Force; P.T. – Pretravel; O.T. – Overtravel; D.T. – Differential Travel; O.P. – Operating Position. ORDER GUIDE by ascending electrical capability

V3 Series

PIN PLUNGERS

Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	0.P .** mm inches
V3-343-D8	General use. Gold alloy crosspoint contacts.	1 Amp X	2,22 8 max.	0,56 2	1,2 . 047	1,02 . 040	0,15-0,41 . 006016	14,7 . 578
V3-2451-D8	Lowest force.	3 Amps VV	0,15 . 53	—	1,2 . 047	1,27 . 050	0,051-0,25 . 002010	14,7 . 578
V3-2401-D8	Lower force.	5 Amps YY	0,24 . 9	-	1,2 . 047	1,27 . 050	0,051-0,25 . 002010	14,7 . 578
V3-70101-D8	Most 5 amp applications.	5 Amps ZZ	2,22 8	0,56 2	1,2 . 047	1,02 . 040	0,15-0,41 . 006016	14,7 . 578
V3-1101-D8	General use.	10 Amps TT	0,72 max. 2.6	0,10 . 35	1,2 . 047	1,27 . 050	0,051-0,25 . 002010	14,7 . 578
V3-2101-D8	Low force.	10 Amps V	0,50 max. 1.8	0,05 . 18	1,2 . 047	1,27 . 050	0,051-0,25 . 002010	14,7 . 578
V3-101-D8	Higher force. Most applications.	11 Amps T	2,22 8 max .	0,56 2	1,2 . 047	1,02 . 040	0,15-0,41 . 006016	14,7 . 578
V3-1-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	1,67-3,89 6-14	1,11 4	1,21 . 047	1,0 . 040	0,15-0,4 . 006016	14,7 . 578
V3-3001-D8	High force. Up to 15.1 amps load handling.	15,1 Amps U	1,47 max. 5.3	0,15 . 53	1,2 . 047	1,27 . 050	0,051-0,25 . 002010	14,7 . 578
V3-2800-D9	Up to 20 amps load handling	20 Amps AA	0,63 - 1,22 2.3 - 4.4	0,20 0.7	1,2 . 047	1,27 . 050	0,25 . 010 max .	14,7 . 578
V3-2900-D9	Up to 25 amps load handling	25 Amps BB	1,22 - 2,20 4.4 - 7.9	0,31 1.1	1,2 . 047	1,27 . 050	0,25 . 010 max	14,7 . 578

V3-1001	MIL-S-8805 application requirements (SPDT)	10 Amps	1,67-3,89	1,11	1,2	1,02	0,15-0,41	14,7
(MS25253-1)		UU	6-14	4	. 047	. 040	. 006016	. 578
V3-1002	MIL-S-8805 application requirements (SPNC)	10 Amps	1,67-3,89	1,11	1,2	1,02	0,15-0,41	14,7
(MS25253-3)		UU	6-14	4	.047	.040	. 006016	. 578
V3-1003	MIL-S-8805 application requirements (SPNO)	10 Amps	1,67-3,89	1,11	1,2	1,02	0,15-0,41	14,7
(MS25253-2)		UU	6-14	4	. 047	. 040	. 006016	. 578
V3-129*	Operating in temperature to +302°F (150°C)	11 Amps T	2,22 8 max.	0,56 2	1,2 . 047	1,02 . 040	0,15-0,41 . 006016	14,7 . 578
V3-245*	Operating in temperature to +400°F (204°C)	10 Amps W	2,78-6,95 10-25	1,67 6	1,2 . 047	1,02 .040	0,15-0,41 . 006016	14,7 . 578

*For actuators, contact MICRO SWITCH Sales Office.

ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data And UL Code Page 20	Length of Lever "A" mm inches	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P.* mm inches
V3L-1123-D8	General use.	10 Amps TT	32,6 1.285	0,39 1.4	0,05 . 18	2,54 . 100	2,03 .080	0,76 .030	18,5 . 730
V3L-2105-D8	Low force.	10 Amps V	32,6 1.285	0,33 1.2	0,02 . 07	2,54 . 100	2,03 . 080	0,76 . 030	18,5 . 730
V3L-121-D8	High force. Most applications.	11 Amps T	32,6 1.285	1,11 4	0,14 . 5	3,18 . 125	1,57 . 062	0,81 . 032	18,5 . 730
V3L-5-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	32,6 1.285	2,22 8	0,28 1	3,18 . 125	1,57 . 062	0,81 .032	18,5 . 730
V3L-3014-D8	High force. Up to 15.1 amps load handling.	15.1 Amps U	32,6 1.285	0,94 3.4	0,07 . 25	2,54 .100	1,90 . 075	0,76 . 030	18,5 . 730
									*±1.5 mm

**Tolerances ±0.38

±0.15

Miniature/ Subminiature

V3 Series

0.P.

Basic Switches

Miniature

Characteristics: O.F. – Operating Force; R.F. – Release Force; P.T. – Pretravel; O.T. – Overtravel; D.T. – Differential Travel; O.P. – Operating Position.

R.F.

min.

P.T.

max.

0.T.

min.

D.T.

max.

STRAIGHT LEVERS

ORDER GUIDE

Dim. Dwg. Fig. 4

Dim. Dwg. Fig. 4

Dim. Dwg. Fig. 4

Listing		UL Code	mm	newtons	newtons	mm	mın. mm	max. mm	mm
	Recommended For	Page 20	inches	ounces	ounces	inches	inches	inches	inche
V3L-1105-D8	General use.	10 Amps TT	21,3 .860	0,72 2.6	0,10 . 35	1,5 .060	1,14 .045	0,33 . 013	15,2±0 . 600 ±.0
V3L-2101-D8	Low force. Added overtravel.	10 Amps V	21,3 .860	0,50 1.8	0,50 . 18	1,5 .060	1,14 .045	0,33 . 013	15,2±0 . 600 ±.0
V3L-101-D8	Higher force. Most applications.	11 Amps T	21,3 .860	2,50 9	0,56 2	1,5 . 060	1,02 . 040	0,41 . 016	15,2±0 . 600 ±.0
V3L-1-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	21,3 .860	3,89 14	0,83 3	1,5 . 060	1,02 . 040	0,41 . 016	15,2±0 . 600 ±.
V3L-3001-D8	High force. Up to 15.1 amps load handling.	15.1 Amps U	21,3 .860	1,47 5.3	0,15 . 53	1,5 . 060	1,02 .040	0,28 .011	15,2±0 . 600 ±.
V3L-1108-D8	General use.	10 Amps TT	35,6 1.40	0,39 1.4	0,04 . 14	2,79 . 110	2,29 .090	0,76 .030	15,2± . 600 ±.
V3L-2102-D8	Low force.	10 Amps V	35,6 1.40	0,31 1.1	0,02 .07	2,79 . 110	2,29 .090	0,76 . 030	15,2± . 600 ±.
V3L-104-D8	Higher force. Most applications.	11 Amps T	35,6 1.40	1,11 4	0,14 . 5	3,18 . 125	2,29 . 090	1,27 . 050	15,2± . 600 ±.
V3L-2-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	35,6 1.40	2,22 8	0,28 1	3,18 . 125	2,29 .090	1,27 .050	15,2± . 600 ±.
V3L-3005-D8	High force. Up to 15.1 amps load handling.	15.1 Amps U	35,6 1.40	.86 3.1	0,06 .21	3,05 . 120	2,29 .090	0,81 .032	15,2± . 600 ±.
V3L-2425-D8	Lower force.	5 Amps YY	59,4 2.34	0,07 . 25	_	5,08 . 200	4,06 . 160	1,4 . 055	
V3L-2425-D8 V3L-1122-D8	Lower force. General use.								15,2± .600±. 15,2± .600±.
		YY 10 Amps	2.34 59,4	. 25 0,22	0,02	. 200 5,08	. 160 4,06	. 055 1,4	.600±. 15,2± .600±. 15,2±
V3L-1122-D8	General use.	YY 10 Amps TT 10 Amps	2.34 59,4 2.34 59,4	.25 0,22 .81 0,16	0,02 . 07 0,01	.200 5,08 .200 5,08	.160 4,06 .160 4,06	.055 1,4 .055 1,4	.600±. 15,2± .600±. 15,2± .600±. 14,7±
V3L-1122-D8 V3L-2106-D8	General use. Low force. Higher force. Most	YY 10 Amps TT 10 Amps V 11 Amps	2.34 59,4 2.34 59,4 2.34 59,4 59,4	.25 0,22 .81 0,16 .56 0,58	0,02 .07 0,01 .04 0,12	.200 5,08 .200 5,08 .200 6,6	.160 4,06 .160 4,06 .160 3,81	.055 1,4 .055 1,4 .055 2,29	.600±. 15,2± .600±. 15,2± .600±. 14,7= .580±. 14,35±
V3L-1122-D8 V3L-2106-D8 V3L-131-D8	General use. Low force. Higher force. Most applications. Highest force. Up to 15.1 amps load handling with	YY 10 Amps TT 10 Amps V 11 Amps T 15.1 Amps	2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 59,4	.25 0,22 .81 0,16 .56 0,58 2.1 1,11	0,02 .07 0,01 .04 0,12 .42 0,14	.200 5,08 .200 5,08 .200 6,6 .260 6,95	.160 4,06 .160 4,06 .160 3,81 .150 3,81	.055 1,4 .055 1,4 .055 2,29 .090 2,29	.600±. 15,2± .600±. 15,2± .600±. 14,7± .580±. 14,35± .565±.
V3L-1122-D8 V3L-2106-D8 V3L-131-D8 V3L-6-D8 V3L-3013-D8	General use. Low force. Higher force. Most applications. Highest force. Up to 15.1 amps load handling with reduced life. High force. Up to 15.1 amps load handling.	YY 10 Amps TT 10 Amps V 11 Amps T 15.1 Amps U 15.1 Amps U	2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 2.34	.25 0,22 .81 0,16 .56 0,58 2.1 1,11 4 0,39 1.4	0,02 .07 0,01 .04 0,12 .42 0,14 .50	.200 5,08 .200 5,08 .200 6,6 .260 6,95 2.60 5,33 .210	.160 4,06 .160 4,06 .160 3,81 .150 3,81 .150 4,06 .160	.055 1,4 .055 1,4 .055 2,29 .090 2,29 .090 2,29 .090 1,52 .060	.600±. 15,2±. 600±. 15,2±. 600±. 14,7±. 580±. 14,35±. 565±. 15,2±. .600±.
V3L-1122-D8 V3L-2106-D8 V3L-131-D8 V3L-6-D8	General use. Low force. Higher force. Most applications. Highest force. Up to 15.1 amps load handling with reduced life. High force. Up to 15.1 amps load handling.	YY 10 Amps TT 10 Amps V 11 Amps T 15.1 Amps U 15.1 Amps U 3 Amps VV	2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 2.34 69,45 2.75	.25 0,22 .81 0,16 .56 0,58 2.1 1,11 4 0,39 1.4 0,03 .11	0,02 .07 0,01 .04 0,12 .42 0,14 .50 0,03 .11	.200 5,08 .200 5,08 .200 6,6 .260 6,95 2.60 5,33 .210 5,97 .235	.160 4,06 .160 4,06 .160 3,81 .150 3,81 .150 4,06 .160 5,08 .200	.055 1,4 .055 1,4 .055 2,29 .090 2,29 .090 2,29 .090 1,52 .060	.600±. 15,2± .600±. 15,2± .600±. 14,7± .580±. 14,35±. .565±. 15,2±2 .600±. 15,2±2
V3L-1122-D8 V3L-2106-D8 V3L-131-D8 V3L-6-D8 V3L-3013-D8	General use. Low force. Higher force. Most applications. Highest force. Up to 15.1 amps load handling with reduced life. High force. Up to 15.1 amps load handling.	YY 10 Amps TT 10 Amps V 11 Amps T 15.1 Amps U 15.1 Amps U 3 Amps	2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 2.34 69,45	.25 0,22 .81 0,16 .56 0,58 2.1 1,11 4 0,39 1.4	0,02 .07 0,01 .04 0,12 .42 0,14 .50 0,03 .11	.200 5,08 .200 5,08 .200 6,6 .260 6,95 2.60 5,33 .210 5,97	.160 4,06 .160 4,06 .160 3,81 .150 3,81 .150 4,06 .160	.055 1,4 .055 1,4 .055 2,29 .090 2,29 .090 2,29 .090	.600±. 15,2± .600±. 15,2± .600±. 14,7± .580±. 14,35± .600±. 15,2± .600±.
V3L-1122-D8 V3L-2106-D8 V3L-131-D8 V3L-6-D8 V3L-3013-D8 V3L-2472-D8	General use. Low force. Higher force. Most applications. Highest force. Up to 15.1 amps load handling with reduced life. High force. Up to 15.1 amps load handling.	YY 10 Amps TT 10 Amps V 11 Amps T 15.1 Amps U 15.1 Amps U 15.1 Amps V 10 Amps VV	2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 2.34 59,4 2.34 69,45 2.75 69,45	.25 0,22 .81 0,16 .56 0,58 2.1 1,11 4 0,39 1.4 0,03 .11 0,19	0,02 .07 0,01 .04 0,12 .42 0,14 .50 0,03 .11	.200 5,08 .200 5,08 .200 6,6 .260 6,95 2.60 5,33 .210 5,97 .235 7,74	.160 4,06 .160 4,06 .160 3,81 .150 3,81 .150 4,06 .160 5,08 .200 3,68	.055 1,4 .055 1,4 .055 2,29 .090 2,29 .090 1,52 .060 1,60 .063 1,65	.600±. 15,2± .600±. 15,2± .600±. 14,7± .580±. 14,35± .565±. 15,2± .600±. 15,2±2 .600±. 15,31±

Electrical

Data And

Length of

Lever "A"

0.F.

max.

ORDER GUIDE

Miniature

ROLLER LEVERS

Dim. Dwg. Fig. 7

Catalog Listing	Recommended For	Electrical Data And UL Codes Page 20	Length of Lever "A" mm inches	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches
V3L-1117-D8	General use.	10 Amps TT	20,6 .81	0,89 3.2	0,10 .35	1,2 .047	1,14 . 045	0,33 .013	20,6±0,76 .810±.030
V3L-2103-D8	Low force.	10 Amps V	20,6 .81	0,58 2.1	0,03 . 11	1,42 . 056	0,86 . 034	0,33 . 013	20,6±0,76 .810±.030
V3L-139-D8	Higher force. Most applications.	11 Amps T	20,6 . 81	2,22 8	0,56 2	1,5 . 060	1,02 . 040	0,41 . 016	20,6±0,76 .810±.030
V3L-3-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	20,6 .81	3,89 14	0,83 3	1,52 . 060	1,02 . 040	0,41 . 016	20,6±0,76 . 810±.030
V3L-3003-D8	High force. Up to 15.1 amps load handling.	15.1 Amps U	20,6 .81	1,89 6.8	0,15 .53	1,2 . 047	1,02 .040	0,05 - 0,25 . 002010	20,6±0,76 .810±.030
V3L-1101-D8	General use.	10 Amps TT	34 1.34	0,44 1.6	0,04 .14	3,18 . 125	2,16 . 085	0,76 .030	20,6±1,5 .810±.060
V3L-2104-D8	Low force.	10 Amps V	34 1.34	0,31 1.1	0,02 . 07	3,18 . 125	2,16 .085	0,76 . 030	20,6±1,5 .810±.060
V3L-111-D8	Higher force. Most applications.	11 Amps T	34 1.34	1,11 4	0,14 . 5	3,18 . 125	2,16 . 085	1,27 . 050	20,6±1,5 . 810±.060
V3L-4-D8	Highest force. Up to 15.1 amps load handling with reduced life.	15.1 Amps U	34 1.34	2,22 8	0,28 1	3,18 . 125	2,16 . 085	1,27 .050	20,6±1,5 .810±.060
V3L-3004-D8	Higher force. Up to 15.1 amps load handling.	15.1 Amps U	34 1.34	0,89 3.2	0,14 .5	3,18 . 125	2,16 . 085	0,76 . 030	20,6±1,5 . 810 ±. 060

Miniature/ ubminiature

Courtesy of Steven Engineering, Inc. • 230 Ryan Way, South San Francisco, CA 94080-6370 • Main Office: (650) 588-9200 • Outside Local Area: (800) 258-9200 • www.stevenengineering.com

Characteristics: O.F. — Operating Force; O.T. — Overtravel; D.T. — Differential Travel; R.F. — Release Force; P.T. — Pretravel; O.P. — Operating Position; F.P. — Free Position.

* Characteristics taken with actuator assembled on Catalog Listing V3-1 switch as shown.

AUXILIARY ACTUATORS

ORDER GUIDE - SWITCHES ARE NOT INCLUDED WITH ACTUATORS

Catalog Listing	Description	Actuator Length "A" mm inches	O.F. max newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches	F.P. max. mm inches
JV-1	Leaf type	21,3 .84	3,34 12	1,11 4	1,19 . 047	0,79 . 031	0,41 . 016	15±0,38 . 590 ±. 015	16,4 . 645

Dim. Dwg. Fig. 11

6									
JV-7	Long leaf	32,3	2,50	1,11	1,57	1,27	0,64	14,5±0,76	17,4
3	Ū	1.27	9	4	.062	.050	.025	.570±.030	.685

Dim. Dwg. Fig. 11

100	JV-5	Roller leaf	20,6	3,34	1,11	1,52	0,79	0,41	20,3±0,64	22,1
0 2 42			.81	12	4	.060	.031	.016	$.800 \pm .025$	
10										

Dim. Dwg. Fig. 11

NOTE: Contact a MICRO SWITCH Sales Office for application assistance when actuators will be used at temperatures above 300°F (149°C).

Miniature

Characteristics: O.F. — Operating Force;

- R.F. Release Force; P.T. Pretravel;
- O.T. Overtravel; D.T. Differential Travel;
- O.P. Operating Positon; F.P. Free Position
 - Characteristics taken with actuator assembled on Catalog Listing V3-100 switch as shown.

AUXILIARY ACTUATORS

Switches are not included with actuators

Catalog Listing	Description	Actuator Length "A" mm inches	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P. mm inches	F.P. max. mm inches
JV-26	Long lever	44,5† 1.75	0,39 1.4	0,06 . 21	8,33 . 328	3,58 .141	4,75 . 187	12,7±3,18 . 500 ±. 125	—

ORDER GUIDE - SWITCHES ARE NOT INCLUDED WITH ACTUATORS

JV-20 Roller lever 19,1† 0,83 0,14 4,78 1,57 1,98 19,5±1,4 23,8 .750 .5 .188 .062 .078 .766±.055 .936 3

Dim. Dwg. Fig. 14

JV-220

Roller lever

17,7†

	.695	3	.5	.188	.062	.078	.766±.045	.936

4,78

1,57

1,98

19,5±1,1

23,8

0,83 0,14

JV-30	One-way roller	20,6	3,34	1,11	2,03	0,51	0,38	25,7±0,76	27,7
	lever	.81	12	4	.080	.020	.015	$1.010 \pm .030$	1.09

Dim. Dwg. Fig. 11

JV-91**	Tandem leaf	20,6	5,00	1,67	1,57	0,89	-	14.9±0.76	16,5
		.81	18	6	.062	.035		.588±.030	

Dim. Dwg. Fig. 17

JV-82**	Tandem roller	20,6	5,00	1,67	1,57	0,89	-	20,5±0,76	21,8
	leaf	.81	18	6	.062	.035		.806±.030	.860

NOTE: Contact the 800 number for application assistance when actuators will be used at temperatures above 300°F (149°C). ** Travel characteristics on tandem actuators vary with actual basic switch characteristics. These shown are typical for the assembly.

"A" measurement is from the pivot point of lever to the point indicated on drawing.

Dim. Dwg. Fig. 17

Miniature

MOUNTING DIMENSIONS (for reference only)

PIN PLUNGERS

NOTE: Operate point dimensions taken

at top of lever/roller.

0,0 = mm

0.00 = inches

Key:

V5 Series **Miniature Basic Switches**

V5 Series Basic Switches are used for simple or precision on/off, end of limit, presence/absence, pressure, temperature and manual operator interface application needs.

Voltage:	250 Vac
Operating tempe	rature:
Standard	-55 °C to 85 °C
	-67 °F to 185 °F
High temperature	-55 °C to 150 °C
35 <u>1</u> 1	-67 °F to 302 °F
Termination:	6,3 mm x 0,8 mm Quick connect
	(QC)
Contact type:	Silver/silver cadmium oxide
Electrical rating:	V5A 20 A
	V5B/P/R 16 A
	V5C/D 10 A
	V5S 22 A
Switching option	s: SPD1
	Single Pole Double Throw

OPTIONS

Top pin plunger

APPROVALS CE, ENEC CE, CSA, ENEC, UL CE, CSA, UL CE, ENEC CE, ENEC CE, ENEC CE, ENEC, UL CE, CSA, ENEC, UL CE, OSA, ENEC, UL CE, OSA, ENEC, UL	4.8 mm x 0,5 mm QC Solder terminals High temperature 4.8 mm x 0,5 mm QC Solder terminals	REFERENCE V5A010CB V5B010CB3 V5B010FB3 V5B010TB V5B210CB V5C010BB V5C010EB3 V5C010TB3 V5C010CB
APPROVALS	SWITCHING OPTIONS	REFERENCE
CE, ENEC	SPNO	V5D030BB
CE, ENEC	SPNO	V5R030CB
CE, BEAB	SPNC	V5S020CB
CE, BEAB	SPNO	V5S030CB

Straight lever Type B

APPROVALS	REFERENCE
CE, CSA, ENEC, UL	V5C010BB3E

the state of the second s		
APPROVALS		REFERENCE
CE, CSA, ENEC, UL	High temperature	V5B210CB3D
CE, CSA, ENEC, UL		V5C010BB3D

Type E

APPROVALS CE, ENEC	High temperature	REFERENCE V5B210CB1C
Type G		

APPROVALS		REFERI
CE, CSA, ENEC, UL	Lever position 2	V5A010
CE, ENEC	High temperature	V5B210

RENCE 10CB4E 10CB1E S

a

0

S o c o s

APPROVALS	REFERENCE
CE. ENEC	V5C010BB10

Honeywell www.honeywell.com/sensing

Miniature

FEATURES

- Quick-connect and printed wiring board termination
- Proven V3 switching mechanism
- Physically interchangeable with existing V3 switches
- All existing V3 lever options available
- UL recognized File # E12252; CSA cer-
- tified File # LR41370
- International listings carry VDE approval
- Power load switching capability up to 21 amps
- Temperature tolerance -40° to 185°F (-40° to 85°C)
- High temperature construction available—350°F

APPLICABLE EUROPEAN SYMBOLS

- μ = microgap construction. (The measurement between open contacts is less than 3mm).**
- alternating current (used with value of voltage source: 250V ~).
- T = maximum rated use temperature; followed by the temperature value in °C (example T 85).
- +++ = switch is rated for at least 50,000 cycles at its rated current. (Sometimes referred to as "frequent" operation.)
- 10(3) = first number represents resistive rating. Second number represents inductive (motor) rating.

CUTAWAY V7 MINIATURE BASIC SWITCH

GENERAL INFORMATION

The V7 Series is available in two versions, the Timesaver series and the International series. The Timesaver series is UL recognized and CSA certified. Timesaver series switches use readily available high-volume components to provide especially responsive delivery performance. The International V7 provides VDE approval in addition to UL recognition and CSA certification.

The V7 offers a choice of four quick-connect and two printed wiring board terminal types. Three quick-connect types are offset to meet international 3mm spacing requirements and one is designed for use with molded connectors. Contact material choice includes gold alloy, silver alloy or silver for handling various electrical loads. There are two mounting hole sizes available. Standard .114" or 3mm to meet European design requirements.

Terminal variations and switch dimensions of the European designed version conform to applicable DIN standards. These V7s mate with both standard domestic and international industry standard receptacles and connectors. The plastic enclosure meets VDE KC250 arc tracking requirement and is approvable under the Refrigeration Industry Taste and Odor test.

requirement.

OPERATING FORCES

175 grams (V rating only) 150 grams (Not applicable to Electrical Rating V)

75 grams (Not applicable to Electrical Rating C or V)

50 grams (Not applicable to Electrical Rating B, C, V)

25 grams (Not applicable to Electrical Rating B, C, E, V)

15 grams (Not applicable to Electrical Rating A, B, C, E, S, V)

Mounting Torque: 2 inch pounds min. 5 inch pounds max.

ELECTRICAL RATINGS

А	В	С*	D	E	F	S	V
5 amps, 125, 250 or 277 VAC; ¼₀ hp, 250 VAC	11 amps and ¹ / ₃ hp, 125, 250 or 277 VAC; ¹ / ₂ amp, 125 VDC; ¹ / ₄ amp, 250 VDC; 4 amps, 125 VAC "L"	15.1 amps and 1/2 hp, 125, 250 or 277 VAC; 1/2 amp, 125 VDC; 1/4 amp, 250 VDC; 5 amps, 120 VAC "L"	1 amp, 125 VAC	10 amps and ¹ / ₃ hp 125 or 250 VAC; ¹ / ₂ amp, 125 VDC; ¹ / ₄ amp, 250 VDC; 4 amps, 125 VAC "L"	3 amps, 125, 250 or 277 VAC; ¼₀ hp, 250 VAC	.1 amp, 125 VAC	21 amps 125, 250 or 277 VAC, 1 HP 125, 250, 277 VAC; 2 HP, 250, 277 VAC
W	Х						
15.1 amps, 125, 250 or 277 VAC	6 amps; ¼ HP 125, 250 or 277 VAC						
International Se	ries Only						
	10 (3) +++ 250V ~ T 85 μ			5 (2) +++ 250V ~ T 85 μ		+++	16 (4) 250V ~ T 85 μ 50E3 SPNO only

* Available only when specifying 150 gram operating force. NOTE: "L" denotes lamp load.

** The microgap construction (M) means contact gap is less than 3mm. Therefore, these products are suitable for secondary circuit use but not primary circuit use which requires a 3mm gap.

SIC SWITCH

Miniature

AVAILABLE TERMINALS

Quick-connect

NOTE: D8 and E8 terminals are European approved when used with electrical ratings B, D, or E. E9 terminals are European approved when used with electrical ratings B, C, D, or E.

Printed Wiring Board

Printed wiring board terminals interface with snap-on receptacles and other components from AMPMODU interconnection system.

	0,0 = mm
Key:	0.00 = inches

* International approving agencies will require that switches with these terminals have insulated receptacles or connector.

This section covers only **48** of our most popular V7 Series catalog listings. If you don't find what you're looking for, it's likely one of the approximately **300** other active V7 listings will meet your needs. Contact the 800 number.

Miniature/ Subminiature

V7 Series

Basic Switches

Miniature

TIMERSAVER SERIES

PIN PLUNGERS

ORDER GUIDE - SPDT* Pretravel; O.T. - Overtravel; D.T. - Differential Travel. Elect. O.F. max. R.F. min. P.T. max. O.T. min. D.T. Rating Catalog grams grams mm mm mm Listing P. 38 ounces ounces inches inches inches 150 1,19 1,27 0,05-0,25 V7-1S17D8 1 Amp 25 S 5.3 .88 .047 .050 .002-.010 V7-3S17E9 1 Amp 50 5 1,19 1,27 0,05-0,25 1.75 .175 .047 .050 .002-.010 S V7-3A17E9 5 Amps 50 5 1,19 1,27 0,05-0,25 А 1.75 .175 .047 .050 .002-.010 11 Amps 75 1,19 1,27 V7-2B17D8 10 0,05-0,25 в 2.63 .35 .047 .050 .002-.010 75 V7-2B17E9 10 1,19 1,27 0,05-0,25 11 Amps в 2.63 .35 .047 .050 .002-.010 V7-1C17D8 15.1 Amps 150 25 1,19 1,27 0,05-0,25 С 5.3 .88 .047 .050 .002-.010 V7-9W1AE9 15.1 Amps 300 25 1,19 1,27 0,25 W (350°F) 10.6 .88 .047 .050 .010 max. V7-1V19E9 21 Amps 175 20 1,19 1,27 0,05-0,25 6.1 .70 .047 .050 .002-.010 v

Characteristics: O.F. - Operating Force; R.F. - Release Force; P.T. -

STRAIGHT LEVERS

Dim. Dwg. Fig. 2

		-	-			
ORDER GUIDE	- SPDT* .87″	LEVER TIME	SAVER SERI	ES		
V7-3S17D8-002	1 Amp	54	3	1,52	0,89	0,33
	S	1.9	.11	.060	.035	. 013
V7-1A17D8-002	5 Amps	160	7	1,52	0.89	0,38
	A	5.6	.25	. 060	. 035	. 015
V7-2B17D8-002	11 Amps	80	5	1,52	0,89	0,38
	B	2.8	1.76	. 060	. 035	. 015
V7-1C17E9-002	15.1 Amps	160	17	1,52	0,89	0,36
	C	5.6	. 60	. 060	. 35	. 014
V7-1V19E9-002	21 Amps	185	13	1,65	0,89	0,38
	V	6.5	.5	. 065	. 035	. 015

1.40" LEVER TIMESAVER SERIES

Dim. Dwg. Fig. 5

V7-3S17D8-022	1 Amp	30	1	3,04	2,16	0,76
	S	1.05	0.035	. 120	. 085	. 030
V7-1A17E9-022	5 Amps	85	8	3,04	1,52	0,76
	A	3	. 28	. 120	. 060	. 030
V7-1X2AD8-022	6 Amps	185	15	1,40	0,76	0,38
	X (350°F)	6.5	. 53	. 055	. 030	. 015
V7-1B17D8-022	11 Amps	82	8	3,04	1,7	0,68
	B	2.9	. 28	. 120	. 067	. 027
V7-1C17E9-022	15.1 Amps	82	8	3,04	1,7	0,76
	C	2.9	. 28	. 120	. 067	. 030
V7-1V19E9-022	21 Amps	95	5	3,3	1,78	0,76
	V	3.3	. 18	. 130	. 070	. 030

2.34" LEVER TIMESAVER SERIES

	-					
V7-3S17D8-048	1 Amp	16	.5	5,97	3,0	1,27
	S	. 56	. 018	. 235	. 118	. 050
V7-2B17D8-048	11 Amps	20	1	5,97	2.92	1,27
	B	. 7	. 035	. 235	. 115	. 050
V7-1C17E9-048	15.1 Amps	85	4	5,97	1,65	1,29
	C	3	.14	. 235	. 065	. 051
V7-9W1AE9-048	15.1 Amps	90	4	6,35	3,15	1,37
	W (350°F)	3.2	.14	. 250	. 124	. 054

* For SPST (N.O. & N.C.) circuitry, contact the 800 number.

NOTE: Catalog listings in V7 Order Guides have standard .114" mounting holes. For 3mm size holes, contact the 800 number.

Miniature

SIMULATED **ROLLER LEVERS**

Dim. Dwg. Fig. 7

1.29" LEVER TIM	ESAVER SEF	RIES			
V7-1S17D8-263	1 Amp	90	9	2,79	1,9
	S	3.15	. 32	. 110	. 075
V7-1B17D8-263	11 Amps	90	9	2,79	1,52
	B	3.15	. 32	. 110	. 060
V7-1C17D8-263	15.1 Amps	91	9	2,79	1,54
	C	3.19	. 32	. 110	. 061
.81" ROLLER LE\	/ER TIMERS/	AVER SERIE	S		
V7-2S17D8-201	1 Amp	90	7	1,19	1,02
	S	3.15	.25	. 047	. 040
V7-2B17D8-201	11 Amps	88	7	1,3	1,04
	B	3 1	25	052	041

O.F. max.

grams

ounces

	S	3.15	.25	.047	.040	.015
V7-2B17D8-201	11 Amps	88	7	1,3	1,04	0,3
	B	3.1	.25	. 052	. 041	. 012
V7-1C17E9-201	15.1 Amps	176	19	1,3	0,81	0,3
	C	6.16	. 67	. 052	. 032	. 012
V7-1V19E9-201	21 Amps	205	15	1,42	0,81	0,33
	V	7.2	. 5	. 056	. 032	. 013

R.F. min.

grams

ounces

1.34" ROLLER LEVER TIMESAVER SERIES

ORDER GUIDE - SPDT*

Catalog Listing

1.29" LEVER TIMESAVER SERIES

Elect.

Rating

P. 38

	V7-3S17D8-207	1 Amp S	35 1.23	2 . 07	2,79 . 110	2,03 . 080	0,76 . 030
•	V7-2A17D8-207	5 Amps A	43 1.51	3 . 105	2,92 . 115	1,52 . 060	0,64 . 025
•	V7-1C17E9-207	15.1 Amps C	86 3	9 .32	2,84 . 112	1,63 . 064	0,64 . 025
	V7-1V19E9-207	21 Amps V	100 3.5	7 .25	3,07 . 121	1,65 . 065	0,76 . 030

* For SPST (N.O. & N.C.) circuitry, contact the 800 number. NOTE: Catalog listing in V7 Order Guides have standard .114" mounting holes. For 3mm size holes, contact the 800 number.

	0,0 = mm
Key:	0.00 = inches

ORDER GUIDE - ACCESSORIES

Catalog Listing	Description	Catalog Listing	Description
15PA176-V7	Connector/Receptacle packet - Includes 25 connectors and 75 receptacles with 18", blue 16 gauge PVC insulated, stranded wire. (To be used with D8 terminals only).	15PA177-V7	Insulator packet (500 pcs.) .018" thick varnished fiberglass. 28,4 1.12 45,9 1.81
15PA260	Plunger boot seal. Elastomer dust and splash resistant plunger seal.		

Dimensions shown are for reference only.

D.T. max.

mm

inches

0,76

.030

0,76

.030

0,61

.024

0,38

Miniature/ Subminiature

Characteristics: O.F. - Operating Force; R.F. -Release Force; P.T. - Pretravel; O.T. - Overtravel; D.T. - Differential Travel.

O.T. min.

mm

inches

P.T. max.

mm

inches

Miniature

INTERNATIONAL SERIES

PIN PLUNGER

INTERNATIONA		ferential Travel.				
Catalog Listing	Elect. Rating P. 38	O.F. max. grams ounces	R.F. min. grams ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches
V7-1B11E9	11 Amps	150	25	1,19	1,27	0,05-0,25
	B	5.3	. 88	. 047	. 050	. 002010
V7-2B11D8	11 Amps	75	10	1,19	1,27	0,05-0,25
	B	2.63	. 35	. 047	. 050	. 002010
V7-2B11PO2	11 Amps	75	10	1,19	1,27	0,05-0,25
	B	2.63	. 35	. 047	. 050	. 002010
V7-3E11D8	10 Amps	50	5	1,19	1,27	0,05-0,25
	E	1.75	. 175	. 047	. 050	. 002010
V7-3E11E9	10 Amps	50	5	1,19	1,27	0,05-0,25
	E	1.75	. 175	. 047	. 050	. 002010

STRAIGHT LEVERS

Dim. Dwg. Fig. 5

SIMULATED ROLLER LEVERS

ROLLER LEVERS

Dim. Dwg. Fig. 4

1.29" LEVER INTERNATIONAL SERIES

1.40" LEVER INTERNATIONAL SERIES

11 Amps

В

11 Amps

в

10 Amps

Ε

V7-1B11E9-022

V7-2B11E9-022

V7-3E11D8-022

ORDER GUIDE - SPDT*

V7-2B11D8-263	11 Amps	50	5	2,54	1,9	0,76
	B	1.75	. 175	.100	. 075	. 030
V7-3E11E9-263	10 Amps	33	2	2,54	1,9	0,76
	E	1.16	. 070	. 100	. 075	. 030

8

.28

4

.14

2

.070

2,79

.110

2,79

.110

2,79

.110

2,28

.090

2,28

.090

2,28

.090

0,76

.030

0,76

.030

0,76

.030

ORDER GUIDE - SPDT* .81" LEVER INTERNATIONAL SERIES

80

2.8

45

1.58

30

1.05

V7-2B11D8-201	11 Amps	90	10	1,19	1,02	0,38
	B	3.15	. 35	. 047	. 040	. 015
V7-3E11D8-201	10 Amps	62	5	1,19	1,02	0,38
	E	2.17	. 175	. 047	. 040	. 015

1.34" LEVER INTERNATIONAL SERIES

V7-2B11E9-207	11 Amps B	45 1.58	5 . 175	2,54 . 100	2,16 . 085	0,76 . 030

NOTE: Catalog listings in V7 Order Guides have standard .114" mounting holes. For 3mm size holes, contact the 800 number.

Characteristics: O.F Operating Force; R.F Re-
lease Force; P.T. – Pretravel; O.T. – Övertravel; D.T. – Dif-
ferential Travel

Miniature

MOUNTING DIMENSIONS (for reference only)

0,0 = mmKey: 0.00 = inches

PIN PLUNGER Fig. 1

OPERATING POSITION

15,2 .60

ŧ

Fig. 3

Simulated Roller

(Style-263)

Roller Lever

(Style-207)

fŧ

20,6 .81 OPERATING POSITION

<u>34,0</u> 1.34

8,1 .32

Roller Lever

Fig. 5 Straight Lever (Style-022)

NOTE: All levers are 0.17" (4,31 mm) wide. Rollers are 0.19" (4,82 mm) wide.

NOTE: Operate point dimensions taken at top of lever/roller.

miniature lure/

Fig. 4

Fig. 7

ZM, ZX, ZV and ZW Series Subminiature **Basic Switches**

ZM, ZX, ZV and ZW Series Subminiature Basic Switches are costeffective devices used for simple on/off applications. These switches combine small size and light weight with ample electrical capability and long life. Plastic lever capability is available on the ZV Series.

Electrical rating: Voltage: Operating temperature: Termination: Contact type: Switching options:

0.1 A, 3 A, 5 A or 10.1 A 125/250 Vac 25 °C to 85 °C [-13 °F to 185 °F] Quick connect, solder, PCB Gold or silver SPDT

ZM Series

Approvals:	UL/CSA
Electrical rating:	0.1 A, 5 A or 10.1 A

OPTIONS

Top pin plunger

0	126 0.154	0:500	
ſ	O FA	===	
29 0.114 25 0.094 1 0.094	\bigcirc	\bigcirc	0.374
0.417	#2.5 #0.098	#0.094-0	0.45
1.6 0.063	8.8 0.346	7.3	0.6

TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE	TERMINATION	ELECTRICAL RATING	CONTACT TYPE
Quick connect	5 A	silver	ZM50E70A01	Quick connect		silver
Solder	5 A	silver	ZM50E10A01	Solder		silver
PCB Solder	10.1 A 0.1 A	silver gold	ZM90G20A01 ZM10B10A01	50061	JA	511781

243 2.5 0.098 2.4 0.094 ΤD Г 3.7 2.8 \$7.4+0.1 0.4 10.6 #0.094-0 0 1.6 0.6 5.1 5.2 0.205 9.5

19.8

TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE	
Quick connect	5 A	silver	ZM50E70D01	-
Solder	5 A	silver	ZM50E10D01	

Simulated roller lever

Straight lever

3.2 0.126

60 Downloaded from Arrow.com.

Honeywell www.honeywell.com/sensing

12.7

PC Sc

Z)

App Ele

0

То

TT

O.

REFERENCE ZM50E70E01 ZM50E10E01 황고.

Simulated roller lever

UL/CSA 0.1 A or 3 A

ZX Series

OPTIONS

Top pin plunger

Straight lever

TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE	
PCB	3 A	silver	ZX40E30E01	
Solder	3 A	silver	ZX40E10E01	

ZV Series

MINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE	
	3 A.	silver	ZX40E30A01	
er	0.1 A	gold	ZX10C10A01	

OPTIONS

Top pin plunger

silver

TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE	
PCB	5 A	silver	ZV50E20A01	
Solder	5 A	silver	ZV50E10A01	
Quick connect	0.1 A	gold	ZV10B70A01	
and statement of the stat		and the second se		_

Honeywell au honovauoll oor loonoing

ZX40E10C01

Downloaded from Arrow.com.

Straight lever

TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE
Solder	5 A	silver	ZV50E10B01
Quick connect	5 A	silver	ZV50E70C01

Roller lever

TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE
PCB	5 A	silver	ZV50E20F01
Quick connect	5 A	silver	ZV50E70F01

ZW Sealed Series

Approvals: Electrical rating:

OPTIONS

Top pin plunger

C R

UL/ENEC

¢2.20

6.4 0.252

80

6.4 0.252

3.2

0.1 A or 5 A

Straight lever

TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE
Solder	0.1 A	gold	ZW10E15CD1

Honeywell www.honeywell.com/sensing

Roller lever

TERMINATION	ELECTRICAL RATING	CONTACT TYPE	REFERENCE
Wire leads	0.1 A	gold	ZW10E90FW1

(

Miniature Double-break

ORDER GUIDE

FEATURES

- Power load switching capability up to 10 amperes
- Motor handling capacity of ½ horsepower, 125 VAC
- Two- and four-circuit double-break
- Several auxiliary actuators
 Choice of terminal styles
- Choice of terminal stylesUL recognized, CSA certified
- Momentary action

GENERAL INFORMATION

TB miniature switches are basic doublebreak units which offer a means of controlling isolated circuits. Each circuit can be driven by independent voltage sources. These switches find many uses in modern control systems because of their circuitry.

The terminals of two- and four-circuit double break switches must be wired to identical voltage sources and the same polarity so that a voltage potential is not set up between adjacent terminals. A voltage potential between adjacent terminals could promote dielectric breakdown at high energy levels. The loads should be on the same sides of the line.

Characteristics: O.F. – Operating Force; R.F. – Release Force; P.T. – Pretravel; O.T. – Overtravel; D.T. – Differential Travel; O.P. – Operating Position.

Catalog Listing	Description	Electrical Data And UL Code Page 20	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	O.P.** mm inches
1TB1-1	Two-circuit, double- break end screw terminals	10 Amps Z	1,95-3,61 7-13	1,11 4	1,52 . 060	0,25 . 010	0,25-0,64 .010025	11,7 .460

Dim. Dwg. Fig. 1

a B	1TB1-2	Two-circuit, double- break end solder terminals	10 Amps Z	1,95-3,61 7-13	1,11 4	1,52 .060	0,25 .010	0,25-0,64 . 010025	11,7 . 460
		terminals							

Dim. Dwg. Fig. 2

1T

TB1-3	Two-circuit, double- break front solder terminals	10 Amps Z	1,95-3,61 7-13	1,11 4	1,52 .060	0,25 .010	0,25-0,64 . 010-0.25	11,7 . 460

Dim. Dwg. Fig. 3

41TB5-3	Four-circuit, double- break front solder terminals	10 Amps Z	5,56-10,0 20-36	2,22 8	1,78 . 070	0,25 .010	0,64-1,14 . 025045	4,70 .185

Dim. Dwg. Fig. 4

±0,38 mm ±.015 in

Basic Switches Miniature Double-break

AUXILIARY ACTUATORS

For use with 1TB1-1 and 1TB1-2 switches

JT-5

ORDER GUIDE

Catalog Listing	Description
JT-1	Leaf actuator
JT-5	Roller leaf actuator

Switches are not included with the actuators.

MOUNTING DIMENSIONS (For reference only)

Fig. 3

Key: $\frac{0,0 = mm}{0.00 = inches}$

Fig. 4

Basic Switches Standard

STANDARD BASIC SWITCH CUT-A-WAY

The cut-a-way shown is representative of the standard basic switches described in this catalog.

GENERAL INFORMATION

MICRO SWITCH standard basic switches are precision snap-action mechanisms enclosed in accurately molded plastic cases. These switches are carefully manufactured and thoroughly inspected. They are industry known for their compactness, light weight, accurate repeatability and long life.

MOUNTING DIMENSIONS

Mounting dimensions are included at the end of each product section. They are shown in English and metric equivalents. These dimensions are for reference only. For exacting layout work, request an engineering layout work, request an engineering drawing from the 800 number.

Mounting holes for Types BZ, BM, BA, BE, DT, MT, and 6AS switches accept pins or screws of .139 inch (3,53 mm) diameter.

RECOMMENDED TORQUE (max.)

Mounting screws 3 in./lbs.*	
Terminal screws	
Panel mount bushing 4-6 in./lbs.	

* Note: Tightening mounting screws above 3 in./lbs. changes operating characteristics and increases the possibility of cracking the case.

UL/CSA

are:

The type BZ switch design meets most applications needs. Modifications of the standard silver contact design and material, spring configuration, and plunger locations give the type BM, BA and BE switches greater electrical load handling capacity. Other changes in materials and switch design provide operating characteristics, temperature tolerances, and sealing to cover a wide range of special requirements.

GENERAL SWITCH IDENTIFICATION

First letter in catalog listing designates:

- B = Single-pole double-throw
- W = Single-pole single-throw (normally closed)
- Y = Single-pole single-throw (normally open)

Second letter in catalog listing designates:

- Z = Standard 15-amp version
- M = 22-amp version
- A = Standard 20-amp version
- E = 25-amp version

FEATURES

- Operating force as low as 4 oz. (113 grams) maximum
- Sensitive differential travel as low as .0002 to .0003 inches (0,005 to 0,008 mm)
- Power load switching capability to 25 amperes
- Motor handling capacity to 2 horsepower at 250 VAC
- Long mechanical life
- High temperature constructions for up to +400°F (204°C)
- Momentary or maintained contact action
- Alloy contacts available for special application needs
- Variety of integral actuators
- Variety of auxiliary actuators
- Variety of terminal designs
- Optional sealed plunger and cover
- Stainless steel snap spring available
- Military standard construction available with over 50 listings on the MIL-S-8805 Qualified products list
- UL recognized, CSA certified

Characteristics as stated are taken at normal room temperature and humidity. These may vary as temperature and humidity conditions differ.

> Standard Basic Switches

This section covers only **over 100** of our most popular BZ/BA type Series catalog listings. If you don't find what you're looking for, it's likely one of the approximately **1800** other active listings will meet your needs. Contact the 800 number.

Our basic switches are Component Recognized by Underwriters' Laboratories, Inc. and certified by Canadian Standards Association. The BA, BZ, and BM line is covered as Special Use Switches to UL Standard 1054; the BE line is covered as an Industrial Motor Controller to UL Standard 508.

Agency File References

BA	UL File E12252, issued 12-09-88
BM	UL File E12252, issued 12-08-88
BZ	UL File E12252, issued 6-29-89
BE-1,2,5	UL File E22779, Vol. 4, Sec. 1
BE-R	UL File E22779, Vol. 4, Sec. 2

Basic Switches Standard

AVAILABLE TERMINALS

Most of the BZ/BA catalog listings have A2 type terminals. Several other terminal styles are shown and others are available. Specific information should be requested from the 800 number or local Authorized Distributor.

ACTUATORS

BA, BE, BM and BZ standard basic

Standard

BZ/BA Series

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position.

	ORDER GUIDE b	y ascending electr	ical capabi						
PIN PLUNGER	Catalog Listing	Recommended For	Electrical Data And UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	O.P.** mm inches
	BZ-2R72-A2	Applications requiring gold alloy contacts	1 Amp P	2,5-3,61 9-13	1,11 4	0,38 . 015	0,13 . 005	0,01-0,05 . 00040020	15,88 . 625
BZ/BA TYPE	BZ-2R725551-A2	Gold alloy contacts Dustproof and splash resistant seal	1 Amp P	2,22-4,17 8-15	1,11 4		0,13 . 005	0,01-0,06 . 00040025	15,88 . 625
MICRO SWITCH	BZ-2R244-A2	Operating in temp. to +400°F (204°C) for 100 hours	5 Amps B	2,5-3,61 9-13	1,11 4	0,38 .015	0,13 . 005	0,01-0,05 . 00040020	15,88 . 625
Dim. Dwg. Fig. 1	BZ-R21-A2	Lower force	10 Amps C	1,11 4	0,7 2.5	0,30 . 012	0,13 . 005	0,005-0,013 .00020005	15,88 . 625
	BZ-2R-A2	Most applications SPDT	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	0,13 . 005	0,01-0,05 . 00040020	15,88 . 625
	WZ-2R-A2	SPST (normally closed)	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	0,13 . 005	0,01-0,05 . 00040020	15,88 . 625
	YZ-2R-A2	SPST (normally open)	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	0,13 . 005	0,01-0,05 . 00040020	15,88 . 625
SEALED TYPE	BZ-R-A2	Less differential travel	15 Amps D	1,95-2,5 7-9	1,11 4	0,30 . 012	0,13 . 005	0,005-0,008 .00020003	15,88 . 625
CON.	BZ-R19-A2	Best repeatability	15 Amps D	1,95-3,34 7-12	1,11 4	0,30 . 012	0,13-0,2 .005008	0,005-0,02 .00020008	16,26 . 640
MICRO	BZ-2R24-A2	Operating in temp. to +250°F (121°C)	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	0,13 . 005	0,01-0,05 . 00040020	15,88 . 625
Dim. Dwg. Fig. 2	BZ-2RT04 (8805/1-004)	MIL-S-8805 application requirements	15 Amps A	2,5-3,61 9-13	1,67 6	0,38 . 015	0,13 . 005	0,01-0,05 . 00040020	15,88 . 625
	BZ-2R05-A2	Best stability under varying humidity	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	0,13 .005	0,01-0,05 . 00040020	15,88 . 625
	BZ-2R5551-A2	Dustproof and splash resistant seal	15 Amp A	2,5-4,17 9-15	1,11 4		0,13 . 005	0,01-0,06 . 00040025	15,88 . 625
BA/BE TYPE	BZ-2R55-A2-S	Best service for sealed construction. Stainless steel internal snap spring.	15 Amps A	2,5-4,17 9-15	1,11 4		0,13 . 005	0,01-0,06 . 00040025	15,88 . 625
MICRO SWITCH	BA-2R-A2	Up to 20 ampere load handling	20 Amps G	3,89-6,12 14-22	2,78 10	1,27 . 050	0,25 . 010	0,05-0,19 . 00200075	16,26 . 640
Dim. Dwg. Fig. 3	BA-2R24-A2	Operating in temperature to +250°F (121°C)	20 Amps G	3,89-6,12 14-22	2,78 10	1,27 .050	0,25 .010	0,05-0,19 . 00200075	16,26 . 640
	BM-1R-A2	Up to 22 ampere load handling	22 Amps F	1,95-2,78 7-10	1,11 4	0,38 . 015	0,13 . 005	0,013-0,025 . 00050010	15,88 . 625
	BE-2R-A4	Up to 25 ampere load handling	25 Amps H	3,89-6,12 14-22	2,78 10	1,27 . 050	0,25 . 010	0,05-0,19 . 00200075	16,26 . 640
A Street and a second	BZ-RX	Manual reset (maintained contact) applications, solder terminals	15 Amps E	1,95-2,5 7-9 0,56-2,78* 2-10		0,30 . 012 —	0,13 . 005 0,38* . 015	I	15,88 . 625
and the second s									

Standard Basic Switche

* Reset characteristics.

WA-1RX-A4

All catalog listings shown are not necessarily stock items. Stocking depends on sales experience.

20 Amps W 5,56

20

6,95* **25**

Manual reset SPST-

NC, A4 terminals

Except where stated ** ±0,38mm ±.015 in.

0,20

.008

_

16,26

.64 27,9*

1.10

Auxiliary actuators see p. 62-63.

0,25

.010

_

MICRO SWITCH

Dim. Dwg. Fig. 4

_

_

_

_

Standard

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel;

O.P. — Operating Position.

OVERTRAVEL PLUNGER	

ORDER GUIDE

LUNGER									
	Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	O.P.* mm inches
MICRO SWITCH	BZ-2RD72-A2	Applications requiring gold alloy contacts	1 Amp P	2,5-3,61 9-13	1,11 4	0,38 . 015	1,52 . 060	0,01-0,05 .0004- . 0020	21,21 . 835
Dim. Dwg. Fig. 11	BZ-2RD-A2	Added overtravel. For manual operation and slow 20° (max) cam rise	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	1,52 . 060	0,01-0,05 . 0004- . 0020	21,21 . 835
	BZ-2RD24-A2	Operating in temperature to +250°F (121°C)	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	1,52 . 060	0,01-0,05 .0004- . 0020	21,21 . 835
	BM-1RD-A2	Up to 22 ampere load handling	22 Amps F	1,95-2,78 7-10	1,11 4	0,38 . 015	1,52 . 060	0,013-0,025 . 0005- . 0010	21,21 . 835
MICTO SWITCH	BZ-2RDS725551-A2	Applications requiring gold alloy contacts plus dustproof and splash resistant seal	1 Amp P	3,61-5,28 13-19	1,11 4	_	1,52 .060	0,01-0,063 .0004- .0025	28,20 1.110
Dim. Dwg. Fig. 12	BZ-2RDS5551-A2	Dustproof and splash resistant seal	15 Amps A	3,61-5,28 13-19	1,11 4	_	1,52 . 060	0,01-0,063 . 0004- . 0025	28,20 1.110
	BA-2RB-A2	Up to 20 ampere load handling	20 Amps G	3,89-6,12 14-22	2,78 10	1,27 . 050	2,39 .094	0,05-0,19 . 0020- . 0075	26,20 1.03
MICRO SWITCH	BE-2RB-A4	Up to 25 ampere load handling	25 Amps H	3,89-6,12 14-22	2,78 10	1,27 . 050	2,39 .094	0,05-0,19 . 0020- . 0075	26,20 1.03
Dim. Dwg. Fig. 13									
	BZ-2RS72-A2	Applications requiring gold alloy contacts	1 Amp P	2,5-3,61 9-13	1,11 4	0,38 . 015	1,52 . 060	0,01-0,05 . 0004- . 0020	28,20 1.110
			1						·

DE-ZIGTZ-AZ	alloy contacts	P	9-13	4	.015	.060	.0004- .0020	1.110
BZ-2RS-A2	Added overtravel. For in-line operation and with JR auxiliary actuators	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	1,52 . 060	0,01-0,063 .0004- .0025	28,20 1.110
BZ-2RS24-A2	Operating in temperature to +250°F (121°C)	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	1,52 . 060	0,01-0,05 . 0004- . 0020	28,20 1.110
BZ-2RST04 [M8805/1-012]	MIL-S-8805 application requirements	15 Amps A	2,5-3,61 9-13	1,67 6	0,38 . 015	1,52 . 060	0,01-0,05 . 0004- . 0020	28,20 1.110
BZ-RSX	Manual reset solder terminals	15 Amps E	1,95-2,64 7-9	_	0,30 . 012	0,64 . 025	_	2,79 1.11
BM-1RS-A2	Up to 22 ampere load handling	22 Amps F	1,95-2,78 7-10	1,11 4	0,38 . 015	1,52 . 060	0,013-0,025 .0005- .0010	28,20 1.110

BZ-2RS5551-A2	resistant seal Dustproof and splash resistant seal	15 Amps A	2,5-4,17 9-15	1,11 4	_	1,52 . 060	0,01-0,063 . 0004- . 0025	28,20 1.110
BZ-2RS7225551-A2	Applications requiring gold alloy contacts plus dustproof and splash	1 Amp P	2,5-4,17 9-15	1,11 4	_	1,52 .060	0,01-0,063 . 0004- . 0025	28,20 1.110

Dim. Dwg. Fig. 15

±0,51 mm ±.020 in.

Standard

OVERTRAVEL PL

	Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	O.P.** mm inches
MICRO SWITCH	BZ-2RQ-A2	Added overtravel. For manual in-line operation and for slow 30° (max) rise cams	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	5,56 . 219	0,01-0,05 . 0004- . 0020	38,10±0,51 1.500±.020
	BZ-2RQ24-A2	Operating in temperature to ±250°F (121°C)	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	5,56 . 219	0,01-0,05 .0004- . 0020	38,10±0,51 1.500 ±. 020
Dim. Dwg. Fig. 16									
	BZ-2RQ172-A2	Applications requiring gold alloy contacts	1 Amp P	2,5-3,61 9-13	1,11 4	0,38 . 015	5,56 . 219	0,01-0,05 . 0004- . 0020	21,82 . 859
BZ/BM TYPE	BZ-2RQ1-A2	BZ-2RQ-A2 type applications with panel mount	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	5,56 . 219	0,01-0,05 . 0004- . 0020	21,82 .859
	BZ-2RQ1T04 M8805/1-020)	MIL-S-8805 application requirements	15 Amps A	2,5-3,61 9-13	1,67 6	0,38 . 015	5,56 . 219	0,01-0,05 . 0004- . 0020	21,82 .859
MICRO SWITCH	BZ-2RQ124-A2	Operating in temperature to ±250°F (121°C)	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	5,56 . 219	0,01-0,05 . 0004- . 0020	21,82 .859
Dim. Dwg. Fig. 17	BZ-2RN702	Furnished with unassembled seal boot.	15 Amps X	2,5-3,61 9-13	1,11 4	0,38 0.15	3,18 . 125	0,01-0,05 .0004- . 0020	48,4±0,50 1.906 ±. 020
BA TYPE	BZ-RQ1X	Manual reset. Solder terminals	15 Amps E	1,67-2,64 6-9.5	-	0,30 0.12	5,56 . 219	-	23,42±1,14 .922±.045 7,14* .281*
	BA-2RQ1-A2	Up to 20 ampere load handling	20 Amps G	3,89-6,12 14-22	2,78 10	1,27 .050	5,56 . 219	0,05-0,19 . 0020- . 0075	21,82 . 859
Dim. Dwg. Fig. 18	BM-1RQ1-A2	Up to 22 ampere load handling	22 Amps F	1,95-2,78 7-10	1,11 4	0,38 . 015	5,56 . 219	0,013- 0,025 . 0005- . 0010	21,82 . 859

BZ-2F	RQ1872-A2	Applications requiring gold alloy contacts	1 Amp P	2,5-3,61 9-13	1,11 4	0,38 . 015	3,56 .140	0,01-0,05 . 0004- . 0020	33,32±1,14 1.312 ±. 045
BZ-2F	RQ18-A2	Added overtravel. Roller plunger for rapid cam (30° max) rise and slide operation. Panel mount	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	3,56 .140	0,01-0,05 .0004- .0020	33,32±1,14 1.312±.045
	RQ1824-A2	Operating in temperature to ±250°F) (121°C)	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 . 015	3,56 . 140	0,01-0,05 . 0004- . 0020	33,32±1,14 1.312±.045
BZ-2A	AQ18T1	Double-break circuitry	15 Amps T	3,89-6,68 14-24	1,11 4	0,51 .020	3,58 .141	0,03-0,10 . 001004	33,35±1,19 1.313±.047
Fig. 19 BM-11	RQ18-A2	Up to 22 ampere load handling	22 Amps F	1,95-2,78 7-10	1,11 4	0,38 .015	3,56 . 140	0,013- 0,025 . 0005- . 0010	33,32±1,14 1.312 ±. 045

BZ-2RQ181-A2	Applications requiring roller plunger 90° to major axis of switch	15 Amps A	2,5-3,61 9-13	1,11 4	0,38 .015	3,56 .140	0,01-0,05 . 0004- . 0020	33,32±1,14 1.312±.045
	axis of switch						.0020	

* Reset characteristics.

Dim. Dwg. Fig. 20

Standard

BZ/BA Series

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position.

ORDER GUIDE

	Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	O.P.** mm inches
BZ/BM TYPE	BZ-2RW8072-A2	Applications requiring gold alloy contacts	1 Amp P	0,7 2.5	0,14 0.5	_	5,56 .219	0,18-1,27 . 007050	19,1 . 750
	BZ-2RW80722555105-A2	Best stability under varying humidity. Gold alloy contacts with seal	1 Amp P	0,7 2.5	0,14 0.5	_	5,56 . 219	0,18-1,27 . 007050	19,1 . 750
MICRO SWITCH	BZ-2RW8244-A2	Operating in temp. to +400°F (204°C) for 100 hours	5 Amps B	0,7 2.5	0,14 0.5	_	5,56 . 219	0,18-1,27 . 007050	19,1 . 750
Dim. Dwg. Fig. 21	BZ-RW8435-A2	Lowest operating force (without external return spring)	10 Amps I	0,07 .25	Ι	6,76 .266	5,56 .219	0,08-0,38 . 003015	19,1 . 750
	BZ-2RW876T	1.25 inch lever requirements	15 Amps A	1,67 6	0,42 1.5	_	0,42 .141	0,10-0,63 . 004025	19,1 . 750
	BZ-2RW80-A2	2.5 inch lever requirements	15 Amps A	0,7 2.5	0,14 0.5	-	5,56 . 219	0,18-1,27 . 007050	19,1 . 750
ВА ТҮРЕ	BZ-2RW84-A2	Lower force (without external return spring)	15 Amps A	0,28 1	0,03 0.125	8,33 . 328	5,56 . 219	0,18-1,27 .007050	19,1 . 750
	BZ-2RW805551-A2	Dustproof and splash resistant seal	15 Amps A	0,7 2.5	0,14 0.5	_	5,56 .219	0,18-1,27 . 007050	19,1 . 750
HICRO SWITCH	BZ-2RWT04 [M8805/1-044]	MIL-S-8805 application requirements	15 Amps A	0,28-0,90 1-3.25	0,21 0.75	7,52 .296	4,37 . 172	2,36 .093	19,1 . 750
	BZ-2RW824-A2	Operating in temperature to +250°F (121°C)	15 Amps A	0,7 2.5	0,14 0.5	_	5,56 .219	0,18-1,27 . 007050	19,1 . 750
Dim. Dwg. Fg. 23	BZ-RW80X	Manual reset solder terminals	15 Amps E	0,63 2.25			5,56 . 219 0,38* . 015	 	19,05 . 750 7,14* . 281
	BZ-2RW863-A2	6 inch lever requirements	15 Amps A	0,28 1	_	_	12,7 . 500	0,46-3,68 . 018145	19,1±1,52 . 750 ±. 060
	BA-2RV-A2	Up to 20 ampere load handling	20 Amps G	0,7 2.5	0,14 0.5	15,88 . 625	1,98 . 078	2,77 .109	19,1 . 750
	BM-1RW84-A2	Up to 22 ampere load handling	22 Amps F	0,28 1	0,03 0.125	7,54 . 297	5,56 .219	0,13-0,84 . 005033	19,1 . 750
	BE-2RV-A4	Up to 25 ampere load handling	25 Amps H	0,7 2.5	0,14 0.5	15,88 . 625	1,98 . 078	2,77 . 109 max.	19,1 . 750
ADJUSTABLE	* Reset characteristics.			•					

15 Amps

Α

15 Amps

Α

C. C.	
1/	
MICRO SWITCH	

Dim. Dwg. Fg. 22

† From^{1<u>7 mm</u> O.P. .670 in.}

Adjustable

operating point (17

mm to 22 mm) .670' to .880"

Reverse acting

actuator (switch

plunger depressed in free position)

BZ-2RW899-A2

BZ-2RM-A2

Except where stated ** ±0.76 mm ±.030 in.

0,10-0,89

.004-.035

0,18-1,27

.007-.050

17,02-22,35

.670-.880

19,1

.750

3,54†

.125

5,56

.219

Dim. Dwg. Fig. 24

0.14

0.5

0,28

1

5,56

.219

0.7

2.5

1,67

6

Standard

SIMULATED ROLLER

ORDER GUIDE

BZ-2RW82272-A2

Electrical O.F. R.F. P.T. O.T. O.P.** Data And max. min. max. min. D.T. Catalog UL Code newtons newtons mm mm mm mm Recommended For inches Listing Page 46 ounces ounces inches inches inches BZ-2RW80147-A2 1.05 inch (26,7 mm) 2,39 0,08-0,51 30,17 15 Amps 1,67 0,42 (simulated roller) 1.5 .094 .003-.020 Α 6 1.188 lever applications BZ-2RW80196-A2 1.90 inch (48,3 mm) 0,97 0,10-1,0 15 Amps 0,21 3,96 30,17±0,76 (simulated roller) Α 3.5 0.75 _ .156 .004-.040 $1.188 {\pm} .030$ lever applications

1,67

6

0,42

1.5

2.39

.094

0,08-0,51

.003-.020

30,17

1.188

1 Amp

Ρ

Applications

requiring gold alloy contacts

ROLLER LEVER

BZ/BM TYPE

Dim. Dwg. Fig. 25

Dim. Dwg. Fig. 28

BA/BE TYPE

Standard Basic Switches

29,77-30,56 1.172-1.203 Adjustable operating BZ-2RW8299-A2 0,97 0,10-1,0 29,2-31,5 15 Amps 0,21 2.16 point. Roller lever 3.5 0.75 А _ .085 .004-.040 1.150-1.24 . 1.90 inch (48,3 mm)

Dim. Dwg. Fig. 26

MICRO SWITCH

Except where stated * ±0,38 mm ±.015 in.

Standard

ROLLER LEVER	O.F. — Operating Force; R.F. — Release Force; P.T. — I O.T. — Overtravel; D.T. — Differential Travel; O.P. — Operating Position.								
BZ/BM TYPE	Catalog Listing	Recommended For	Electrical Data And UL Code Page 46	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	O.P.* mm inches
	BZ-2RW82725551-A2	Applications requiring gold alloy contacts, plus dustproof, and splash resistant seal	1 Amp P	0,97 3.5	0,21 0.75	-	3,96 . 156	0,10-1,0 . 004040	30,17±0,76 1.188±.030
Dim Durg Eig 20	BZ-2RW82-A2	1.90 inch (48,3 mm) (steel roller) lever applications	15 Amps A	0,97 3.5	0,21 0.75	-	3,96 . 156	0,10-1,0 . 004040	30,17±0,76 1.188±.030
Dim. Dwg. Fig. 29	BZ-2RW825551-A2	Dustproof and splash resistant seal	15 Amps A	0,97 3.5	0,21 0.75	_	3,96 . 156	0,10-1,0 . 004040	30,17±0,76 1.188±.030
BA/BE TYPE	BZ-2RW8224-A2	Operating in temperature to +250°F (121°C)	15 Amps A	0,97 3.5	0,21 0.75	_	3,96 . 156	0,10-1,0 . 004040	30,17±0,76 1.188±.030
	BA-2RV2-A2	Up to 20 ampere load handling	20 Amps G	0,97 3.5	0,14 0.5	11,89 . 468	1,52 . 060	2,16 . 085	30,17±0,76 1.188±.030
MICRO SWITCH	BM-1RW82-A2	Up to 22 ampere load handling	22 Amps F	0,97 3.5	0,21 0.75	-	3,96 . 156	0,08-0,56 . 003022	30,17±0,76 1.188±.030
Dim. Dwg. Fig. 30	BE-2RV2-A4	Up to 25 ampere load handling	25 Amps H	0,97 3.5	0,14 0.5	11,89 . 468	1,52 . 060	2,16 .085 max.	30,17±0,76 1.188±.030

Characteristics:

NOTE: For adjustable operate point and simulated roller lever switches, refer to previous page.

BZ-RW922-A2	Best repeatability and O.P. stability	10 Amps I	3,34 12	1,11 4	0,38 . 015	2,54 . 100	0,013-0,025 . 00050010	31,37 1.235

Dim. Dwg. Fig. 32

BZ-2RW826-A2	One-way roller (9,4 mm × 3,8 mm) .37" dia. × .15" wide roller	15 Amps A	1,67 6	0,42 1.5	_	2,39 . 094	0,08-0,51 . 003020	41,34 1.625
BZ-2RW825-A2	One-way roller (4,83 mm × 4,83 mm) .19" dia. × .19" wide roller	15 Amps A	2,22 8	0,42 1.5	-	1,52 . 060	0,38 .015	28,96 1.14

Except where stated * ±0,38 mm ±.015 in.

Standard

FLEXIBLE LEAF

ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P.** mm inches
BZ-2RL-A2	Force and stability of the flexible leaf actuator	15 Amps A	1,39 5	0,14 0.5	-	1,52 . 060	1,27 .050	17,48 . 688
BZ-2RL5551-A2	Dustproof and splash resistant seal	15 Amps A	1,95 7	0,14 0.5	-	1,52 . 060	1,27 .050	17,48 . 688
BZ-2RLT04 (M8805/1-001)	MIL-S-8805 application requirements	15 Amps A	1,39 5	0,14 0.5	-	1,52 . 060	1,27 .050	17,48 . 688
BZ-2RL24-A2	Operating in temperature to +250°F (121°C)	15 Amps A	1,39 5	0,14 0.5	-	1,52 . 060	1,27 .050	17,48 . 688
BZ-RLX	Manual reset. Solder terminals	15 Amps E	0,83 3	-	-	1,57 . 062 0,38* . 015	- - -	17,48 . 688 7,14* .281
BA-2RL-A2	Up to 20 ampere load handling	20 Amps G	2,5 9	0,28 1	-	1,57 . 062	1,57 . 062	17,48 . 688
BE-2RL-A4	Up to 25 ampere load handling	25 Amps H	2,5 9	0,28 1	_	1,57 . 062	1,57 . 062	17,48 . 688

FLEXIBLE ROLLER LEAF

ORDER GUIDE

BZ TYPE
MICEO SWITCH
Dim. Dwg. Fig. 35
BA/BE TYPE
P
MICRO SWITCH

Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P.* mm inches
BZ-RL24-A2	Operating in temp. to +250°F (121°C) for 100 hours	5 Amps B	1,39 5	0,14 0.5	-	1,52 . 060	1,27 .050	28,6 1.125
BZ-2RL2-A2	Force and stability of the flexible leaf with roller	15 Amps A	1,39 5	0,14 0.5	_	1,52 . 060	1,27 .050	28,6 1.125
BZ-2RL25551-A2	Dustproof and splash resistant seal	15 Amps A	1,95 7	0,14 0.5	_	1,52 . 060	1,27 .050	28,6 1.125
BZ-2RL2T04 M8805/1-036)	MIL-S-8805 application requirements	15 Amps A	1,04-1,39 3.75-5	0,14 0.5	-	1,52 . 060	1,27 . 050	28,6 1.125
BA-2RL2-A2	Up to 20 ampere load handling	20 Amps G	2,5 9	0,28 1	_	1,52 . 060	1,65 . 065	28,6 1.125
BE-2RL2-A4	Up to 25 ampere load handling	25 Amps H	2,5 9	0,28 1	-	1,52 . 060	1,65 . 065	28,6 1.125

Dim. Dwg. Fig. 36

* Reset characteristics

** ±0.76 mm ±.030 in.

*±0,38 mm ± .015 in.

Basic Switches Standard

MICRO SWITCH

GENERAL INFORMATION SPECIAL CIRCUITRY SWITCHES

"Special sequence" switches provide unusual circuit control. A make-beforebreak switch provides circuit continuity while switching from N.C. to N.O. In another make-before-make switch, upon actuation, one circuit is made an interval before the second circuit. Another switch provides a single pulse or momentary closure of the contacts with each cycle of operation.

Double break versions can interrupt greater inductive loads and feature shorting bar construction. A split contact version allows control of the two isolated circuits.

Characteristics: O.F. – Operating Force; R.F. – Release Force; P.T. – Pretravel; O.T. – Overtravel; D.T. – Differential Travel; O.P. – Operating Position.

Fully

Released

PIN PLUNGER

Dim

Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches
BZ-2G-A2	Make-before-break contact action	10 Amps C	5,56 20 max .	2,22 8	0,76 . 030	0,13 . 005	0,38 . 015

Fully

Operated

Unoperated

6BS1-B	Make-before-make	10 Amps	9,73	2,78				
	contact action	R	35 max.	10	-	-	-	-

Intermediate

Release

Dim. Dwg. Fig. 6

Intermediate

10BS210	Adjustable differential travel	20 Amps Y	3,10-5,56 11-20	2,78 10	-	0,25 .010 at max. setting	0,04-0,06 .00150025 0,18 .007 at max.	16,3 . 64
							setting	

Dim. Dwg. Fig. 4-A

Standard

PIN PLUNGER -SPECIAL CIRCUITRY

ORDER GUIDE

Catalog Listing	Recommended For	Electrical Data and UL Codes Page 46	O.F. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	O.P.* mm inches
BZ-3AT	Double-break, low voltage DC applications	15 Amps T	4,45-7,23 16-26	1,11 4	0,76 . 030	0,13 . 005	0,051-0,13 . 002005	15,9 . 625
BZ-2AW80T	As above, with 2.5 inch lever	15 Amps T	0,90 3.25	0,14 .25	-	5,56 .219	0,51 2.54	19,05±0,76 . 750 ±. 030
BZ-2AW82T	As above, with 1.9 inch roller lever	15 Amps T	1,25 4.5	0,21 . 75	-	3.96 . 156	0,38-1,91 . 015075	30,18±0,76 1.188±.030
BZ-2AW822T	As above, with 1.05 inch roller lever	15 Amps T	2,36 8.5	0,42 1.5	- -	2,39 . 094	0,20-2,39 . 008030	30,18±0,76 1.188±.030

i.ò2

	BA-3ST	Double-break, low voltage DC applications	25 Amps M	7,23-10,6 26-38	2,78 10	1,65 .065	0,25 .010	0,18-0,38 . 007015	16,3 .640
' !		Tollage B e appliedliene		20.00				1007 1010	1010

Dim. Dwg. Fig. 9

Dim. Dwg. Fig. 10

BZ-3YT (MS25383-1)	MIL-S-8805 application requirements. (split contact)	5 Amps U	4,45-7,23 16-26	1,11 4	0,76 . 030	0,13 . 005	0,025-0,1 . 001004	15,9 . 625
BZ-3YWT80	As above, with 2.50 inch lever	5 Amps U	0,97 3.5	0,14 . 5	-	5,56 .219	0,51-2,54 . 020100	19,05±0,76 . 750 ±. 030
BZ-3YWT82	As above, with 1.9 inch roller lever	5 Amps U	1,25 4.5	0,21 . 75	-	3,96 . 156	0,38-1,91 . 015075	30,18±0,76 1.188±.030
BZ-3YWT822	As above, with 1.05 inch roller lever	5 Amps U	1,95 7	0,42 1.5	-	2,39 . 094	0,20-1,02 . 008040	30,19 . 188

Except where stated * \pm 0,38 mm \pm .015 in.

Standard

MOUNTING DIMENSIONS (For reference only)

PIN PLUNGERS BZ/BM

Fig. 2

Fig. 3

PIN PLUNGERS — SPECIAL CIRCUITRY

Key: $\frac{0,0 = mm}{0.00 = inches}$

Mounting holes accept pins or screws of .139" (3,53 mm) diameter.

Standard

MOUNTING DIMENSIONS (For reference only)

OVERTRAVEL PLUNGERS

0. P.

<u>25,4</u> 1.00

Fig. 11

Fig. 13

Standard Basic Switches

*Fig. 18 * Threaded bushings are 15/32-32ns.

*Fig. 17

Standard

MOUNTING DIMENSIONS (For reference only)

STRAIGHT LEVERS

Fig. 23

Fig. 24

Fig. 25

Fig. 26

FLEXIBLE LEAF ACTUATOR

BZ/BA Series

Standard

MOUNTING DIMENSIONS

ROLLER LEVERS

Fig. 28

Fig. 30

Fig. 31

Fig. 32

Standard Basic Switches

FLEXIBLE ROLLER LEAF

Mounting holes accept pins or screws of .139" (3,53 mm) diameter.

Key:
$$\frac{0.0 = \text{mm}}{0.00 = \text{inches}}$$

BZ/BA Series

FEATURES

- Additional overtravel
- Quick, easy installation
- Corrosion resistance
- MIL-S-8805 listed units

NOTE: Switches shown are not included with the actuator. All actuators are for use with pin plunger types only except catalog listing JR.

GENERAL INFORMATION

Auxiliary actuators adapt the plungertype standard basic switches to many application needs. Auxiliary actuators minimize the need for a large inventory of switch types. Actuators and switches are sold as separate items and must be ordered separately. Mounting hardware is furnished with the actuator.

Characteristics:

O.T. — Overtravel; O.P. — Operating Position; F.P. — Free Position.

ORDER GUIDE

Description	Catalog Listing	Use Only With	O.T. min. mm inches	O.P.* mm inches	F.P. max. mm inches
Roller lever for "S" plunger type BZ and DT switches only. Permits cam operation.	JR	BZ DT	11.1 .437	44,45±3,18 1.75±.125	

NOTE: Bottom width of bracket is 19.1 75

Straight plunger. Panel mount.	MC2711 (8805/59) AN3168-2	BZ BM	4,78 . 188	27,79 . 188	29,4 1.156
	MCA2711	BA BE	3,96 . 156	28,17 1.109	30,18 1.188
	MCD2711	DT MT	3,58 . 141	27,79 1.094	30,18 1.188

Dimensions shown are for reference only.

Except where stated * ±1,14 mm ±.045 in.

Auxiliary Actuators Standard Basics

Description	Catalog Listing	Use Only With	O.T. min. mm Inches	O.P.* mm Inches	F.P. max. mm Inches
Sealed straight plunger. Panel mount. Elastomer seal boot keeps out liquid splash and dirt. Furnished unassembled.	MC2711H	BZ BM	4,78 . 188	28,98 1.141	29,4 1.156
	MCA2711H	BA BE	4,37 . 172	27,38±0,76 1.078±.030	29,56 1.156
	MCD2711H	DT MT	3.58 .141	27,79 1.094	30,18 1.188

	MD3211Q	ΒZ	3,18	35,7	37,69
Roller plunger. Panel mount. Roller parallel to long axis of the switch.		BM	.125	1.406	1.484
			approx.		
	MDA3711Q	BA	3,18	36,12	37,69
		BE	.125	1.422	1.484
	MD3211Q	DT	3,18	35,7	37,69
		MT	.125	1.406	1.484

Fig.	6

0.P. 2006	
<u>51,8</u> 2,43	
0 4	
<u>52,3</u> 2.06	

Cross roller plunger. Panel mount. Roller perpendicular to long axis of the switch.	MD3211Q1	BZ BM	3,18 . 125 approx.	35,7 1.406	37,69 1.484
	MDA3711Q1	BA BE	3,18 . 125	36,12 1.422	37,69 1.484
	MD3211Q1	DT MT	3,18 . 125	35,7 1.406	37,69 1.484

High overtravel plunger. Panel mount.	MC7711 (8805/58) AN3167-1	BZ BM	20,62 . 812	69,1 2.719	70,64 2.781
	MCA7711	BA BE	19,84 . 781	69,44 2.734	71,42 2.812
	MCD7711	DT MT	18,26 . 719	69,1 2.719	71,42 2.812

Except where stated* \pm 1,14 mm \pm .045 in.

Accessories Standard Basics

DIE CAST ZINC ENCLOSURES

Width of opening .74" (18,8 mm)

3PA1

*Width of base is 2.125 inches (54 mm)

inches (41,3 mm) apart.

3PA2*

and mounting hole centers are 1.625 ORDER GUIDE

FEATURES

- Protect switch from physical abuseProtect personnel from contact with exposed terminals
- Provide rugged mounting means
 1/2-14NPT internal thread conduit hub

Catalog Listing	Description
3PA1	Side mount enclosure–Can be mounted from either side through .140" (3,55mm) dia. holes on 1" (25,4mm) centers.
3PA28	Side mount enclosure–Can be mounted from either side through .140" (3,55mm) dia. holes on 1" (25,4mm) centers. 1/2-14 NPSM internal thread conduit hub.
3PA2	Flange mount enclosure—Switch is first secured in enclosure; two 0.172" (4,37mm) dia. holes in the flange accept #8 machine screws for mounting on 1.625 (41,3mm) centers.
3PA6	Side mount enclosure—For use with actuator Fig. 2 page 58.

PLASTIC TERMINAL ENCLOSURES

FEATURES

- Easy to use
- Screw and solder terminal versions
- Protect personnel from contact with exposed terminals

Catalog Listing	Description
5PA1	For solder terminal switches
5PA2	For screw terminal switches
5PA3	For solder or screw terminal switches with auxiliary actuators assembled.

Dimensions shown are for reference only.

Switches are not included with enclosures.

Accessories Standard Basics

ADJUSTABLE MOUNTING BRACKETS

8MA1 WITH SWITCH ASSEMBLED

MOUNTING DIMENSIONS

CONVERSION MOUNTING BRACKET

17MA1-B

17MA1-B WITH SWITCH ASSEMBLED

FEATURES

- Converts standard basic switches from side to top mount
- Corrosion resistant
- Snaps into switch mounting holes without tools

ORDER GUIDE

MOUNTING DIMENSIONS

Switches are not included with bracket.

FEATURES

•

- Sturdy plated steel construction
 - Fast, easy screwdriver adjustment
- Can be used with all standard basic switches

GENERAL INFORMATION

Description

Adjustable mounting bracket, adjustment slot on the left.

Adjustable mounting bracket, adjustment slot on the right.

The operation point of a basic switch can be regulated up to .080' (2 mm) by loosening the locking screw, inserting a screwdriver in the adjusting slot, and twisting.

ORDER GUIDE Catalog Listing

8MA1

8MA2

'A' Dimension for

Double-pole Double-throw

J

250 vdc.

UL Code L59

Ŧ

ŧ.

Ŧ

Ŧ

FEATURES

Electrical Data and UL Codes

10 amps, 125 or 250 vac;

Catalog Listing

DT-2R-A7

MS25008-1

0.3 amp, 125 vdc; 0.15 amp,

- Two independent single-pole doublethrow circuits on one housing
- Design permitting several wiring combinations
- Savings in space and weight
- Mounting interchangeability with type Z switches
- Temperature tolerance to +180°F . (82°C)
- UL recognized, CSA certified •

AVAILABLE TERMINALS

B6 6-32 UNC × .188" (No. 5 pan head screws)

A7 4-40 UNC × .125" Screws with lockwashers. Fiberglas insulator isolates terminals and prevents accidental shorting.

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. — Overtravel; D.T. — Differential Travel;

P.T.

max.

mm

inches

1,91

.075

O.T.

mm

inches

0,13

.005

O.P.*

mm

inches

15,6

.615±.015

D.T. max.

min.

mm

inches

1,02-1,52

.040-.060

DOUBLE-POLE DOUBLE THROW

ELECTRICAL RATING

Circuitry

Double-pole

double-throw

MICRO	SWI	ICH
ă i		NO

Dim. Dwg. Fig. 1

10 Amps J 28,2±0,38 DT-2RS1-A7 3,34-5,56 Straight plunger 0,28 1.91 0,51 1,02-1,52 .075 .040-.060 $1.11 \pm .015$ 12-20 1 .020

O.P. — Operating Position.

Electrical

Data and

UL Code

10 Amps

J

Description

Pin plunger

O.F.

max.

newtons

ounces

3,34-5,56

12-20

R.F.

min.

newtons

ounces

0,56

2

Dim. Dwg. Fig. 9

Dim.	Dwg.	Fig.	3	

DT-2RV3-A7	Straight lever Reversed lever position	10 Amps J	1,11-1,95 4-7	0,14 0.5	6,86 .270	0,25 .010	2,92-4,83 . 115190	18,3 . 719

Dim.	Dwg.	Fig.	2

DT-2RV-A7 Straight lever 10 Amps 0,97-1,67 0,28 25,4 1,57 12,4-19,2 21.8 J 3.5-6 1 1 .062 .490-.755 .859 Except where stated * ±0,76 mm

±.030 in.

ORDER GUIDE

O.P.*

mm

inches

31

1.219

ORDER GUIDE

<u> </u>	Catalog Listing	Recommended For	UL Codes	ounces	ounces	inches	inches
	DT-2RV216-A7	Roller lever (centered steel roller)	10 Amps J	11,1 2.5 lbs .	1,11 4	1,02 .040	0,13 . 005

Electrical O.F. max.

Data and newtons newtons

Dim. Dwg. Fig. 8

DT-2RV22-A7 1.03 inch (26,2mm) roller 10 Amps 2,5-3,89 0,83 0,79 4,95-7,75 30,2±0,38 lever (steel roller) J 9-14 3 .031 .195-.305 1.188±.015

R.F. min.

P.T. max.

mm

O.T. min.

mm

D.T. max.

mm

inches

0,51-0,76

.020-.030

Dim. Dwg. Fig. 5

DT-2RV212-A7	Roller lever	10 Amps	2,5-4,17	0,42	3,3	0,13	1,27-2,16	29,4
	Reversed lever position	J	9-15	1.5	.130	.005	.050085	1.156

Dim. Dwg. Fig. 7

DT-2RV23-A7	Roller lever	10 Amps	1,53-2,64	0,21	4,45	0,25	2,16-3,43	29,4
	Reversed lever position	J	5.5-9.5	.75	.175	.010	.085135	1.156

Dim. Dwg. Fig. 6

		4.3-7.3	1.5	_	.047	.303303	1.230
.90 inch (48,3 mm) roller ever (steel roller)	10 Amps	1,25-2,09 4.5-7.5	0,42 1.5	—	1,19 . 047	9,27-14,4 . 365565	31,8 1.250

76 mm ±.030 in.

Dim. Dwg. Fig. 4

Auxiliary actuators see page 68-69.

Basic Switches Double-pole Double-throw

MOUNTING DIMENSIONS (For reference only)

PIN PLUNGER

Fig. 1

STRAIGHT LEVER

Fig. 3

DT Series

STRAIGHT LEVER

ROLLER LEVER

Key: $\frac{0,0 = mm}{0.00 = inches}$

Basic Switches Double-pole Double-throw

MOUNTING DIMENSIONS (For reference only)

ROLLER LEVER

Fig. 5

ROLLER LEVER

STRAIGHT PLUNGER

Fig. 9

ROLLER LEVER

Fig. 6

ROLLER LEVER

Fig. 8

Standard Basic Switches

DT Series

MT Series

Basic Switches Magnetic Blow-out

FEATURES

- Arc resistant case
- Mechanical life of 100,000 operations — 95% survival
- Temperature tolerance to +180°F (82°C)
- Mounting interchangeability with Z switches
- UL recognized

AVAILABLE TERMINALS

GENERAL INFORMATION

MT (single-pole double-throw) magnetic blow-out switches are designed to switch high capacity (125 and 250 VDC) systems. An integral magnet around the contact gap protects the contacts by deflecting the arc. Vents between the cover and housing allow the hot gas to escape. These switches are designed for the control of DC motors, solenoids, etc.

Solder (No listing designation)

A28 6-32NC × .218" Screws will accept up to #12 wire.

ELECTRICAL RATING

	r	
0		Electrical Data and
Circuitry		UL Codes
Single-pole double-throw unless otherwise noted in order guide	к	Rating established with switch non-polarized 10 amps, 125 vac or vdc; 1/4 hp, 125 vac or vdc. UL Code L 168
		Non-polarized: 10 amps res. or 1/4 hp, 125 vdc; 3 amps max. res. 250 vdc. Polarized*: 10 amps res. or 1/2 hp, 125 vdc; 3 amps max. res., 250 vdc.
achieve the same effect, n	nou	side of line to common terminal. To nt switch with brass screws, using a ¼" thick) between the switch and

ORDER GUIDE

Characteristics: O.F. – Operating Force; R.F. – Release Force; P.T. – Pretravel; O.T. – Overtravel; D.T. – Differential Travel; O.P. – Operating Position.

R.F. min. P.T. max. Flectrical O.F. O.T. min. D.T. max. O.P. Data and newtons newtons mm mm mm mm MICRO SWITCH Catalog Listing Recommended For UL Codes inches inches inches inches ounces ounces MT-4R-A28 Pin plunger 10 Amps 3,34-5,0 1,39 1,02 0,13 0,1-0,18 15,9±0,38 SPDT к 12-18 5 .04 .005 .004-.007 .625±.015

Dim. Dwg. Fig. 1

Magnetic Blow-out

ORDER GUIDE

-	Catalog Listing	Description	Electrical Data and UL Codes	O.F. max. newtons ounces	R.F. min. newtons ounces	P.T. max. mm inches	O.T. min. mm inches	D.T. max. mm inches	O.P.* mm inches
	MT-4RV-A28	Straight lever	10 Amps K	0,56 2	0,14 0.5	12,7 0.5	1,19 .047	2,16 . 085	19,1 . 750

MT-4RV2-A28	1.90 inch (48,3mm) lever	10 Amps	0,76	0,07	8,89	0,79	1,65	30,2
	with hardened steel roller	K	2.75	0.25	0.35	. 031	. 065	1.188
MT-4RV22-A28	1.03 inch (26,2mm) lever	10 Amps	1,25	0,28	5,08	0,38	0,89	31,3
	with hardened steel roller	K	4.5	1	.200	. 015	. 035	1.234

Dim. Dwg. Fig. 3

MT-4RL-A28	1.95 inch (49,5mm) flexible leaf	10 Amps K	3,34 12	0,28 1	_	1,52 . 060 max.	_	19,1 . 750
	flexible leaf	к	12	1	-		_	.75

Dim. Dwg. Fig. 4

MT-4RL2-A28	1.82 inch (46,2mm) flexible leaf with hardened steel roller	10 Amps K	3,34 12	0,28 1	Ι	1,52 . 060 max.	_	30,2 1.188

Dim. Dwg. Fig. 5

Except where stated * \pm 0,76 mm \pm .030 in.

Magnetic Blow-out

MOUNTING DIMENSIONS (For reference only)

PIN PLUNGER

Fig. 1

ROLLER LEVER

Fig. 3

FLEXIBLE ROLLER LEAF

Fig. 5

Mounting holes accept pins or screws of .139" (3,53 mm) diameter.

STRAIGHT LEVER

FLEXIBLE LEAF

Fig. 4

3MN Series

Basic Switches

Double-break

- FEATURES
- .080 inch minimum overtravelPower load switching capability up to
- 15 amperesMotor handling capacity of 1 horse-
- power at 240 vac.
 Long mechanical life of 10,000,000 cycles—95% survival
- Arc resistant plastic
- More space between terminals to reduce possibility of shorting
- #8 Terminal screws
- UL recognized, CSA certified

GENERAL INFORMATION

3MN switches are for use with limit or control mechanisms on machine tools, presses or other industrial equipment.

These switches provide easy gang mounting.

The terminals of double-break switches must be wired to identical voltage sources and the same polarity. The loads should be on the same sides of the lines.

ELECTRICAL RATING

Circuitry	Electrical Data and UL Codes
Two-circuit double-break	V Motor Control 15 amps, 120, 240, 480 or 600 vac; 1/2 hp, 120 vac; 1 hp, 240 vac; 0.8 amp, 115 vdc; 0.4 amp, 230 vdc.

ORDER GUIDE

Characteristics: O.F. — Operating Force; R.F. — Release Force; P.T. — Pretravel; O.T. – Overtravel; D.T. — Differential Travel; O.P. — Operating Position.

MICRO SWITCH	Catalog Listing	Description				P.T. max. mm inches	O.T. min. mm inches	D.T. mm inches	O.P.* max. mm inches	
	3MN1	For most applications	15 Amps V	3,34-5,56 12-20	1,67 6	1,52 . 060	2,03 . 080	0,38-0,63 . 015025	2,16 . 085	
	3MN6	Lower force	15 Amps V	1,95-3,1 7-11	1,11 4	1,52 .060	2,03 . 080	0,38-0,63 . 015025	2,16 . 085	
Dim. Dwg. Fig. 1									* ±0,38 mm ±.015 in.	

Key

0,0 = mm

0.00 = inches

Standard sic Switches

MOUNTING DIMENSIONS (For reference only)

Fig. 1

- FEATURES
- Variety of actuators
- Choice of circuitries and electrical ratings
- Choice of terminations
- Field adjustable operating point on one or both basic switches

GENERAL INFORMATION

6AS switches are two standard basic switches ganged together and actuated by a single actuator. Operating characteristics will depend on the type of individual switches and actuators.

ELECTRICAL RATING

Circuitry	Electrical Data and UL Codes					
Single-pole double-throw unless otherwise noted in order guide	A 15 amps, 125, 250 or 480 vac; 1/8 hp, 125 vac; 1/4 hp, 250 vac; 1/2 amp, 125 vdc; 1/4 amp, 250 vdc. UL Code L96					
Single-pole double-throw unless otherwise noted in order guide	 G 20 amps, 125, 250 or 480 vac; 10 amps, 125 vac "L" (tungsten lamp load); 1 hp, 125 vac; 2 hp, 250 vac; 1/2 amp, 125 vdc; 1/4 amp, 250 vdc. UL Code L23 					

ORDER GUIDE

Characteristics: O.F. – Operating Force; I	R.F. – Release Force; P.T. – Pre-
travel; O.T. – Overtravel; D.T. – Differential T	ravel; O.P. – Operating Position.

	Catalog Listing	Description	Lever Length mm inches	Type Terminals	Electrical Data and UL Codes	O.F. max. newtons ounces	R.F. min. newtons ounces	O.T. min. mm inches	D.T. max. mm inches	O.P.* mm inches
Contra to	6AS32	Centered lever. Adjustment over both switches.	58,72 2.312	Solder	15 Amps A	2,22 8	0,14 0.5	0,51 . 020	2,77 . 109	18,29 . 720 adj .
MICEO SWITCH	6AS54	Short lever. Adjustment over switch D.	20,47 .806	Solder	15 Amps A	3,34 12	0,83 3	0,25 .010	3,96 . 156	18,24 . 718 max .
Dim. Dwg. Fig. 1	6AS25	Centered lever. Adjustment over switch D.	32,26 1.270	A2	20 Amps G	3,89 14	1,11 4	1,02 .040	_	18,67 . 735

Unless otherwise noted * ±0,76 mm

±.030 in.

MICRO SWITC

Ó

Dim. Dwg. Fig. 2

MICRO SW

ORDER GUIDE

Catalog Listing	Description	Lever Length mm inches	Type Terminals	Electrical Data and UL Codes	O.F. max. newtons ounces	R.F. min. newtons ounces	O.T. min. mm inches	D.T. max. mm inches	O.P.* mm inches
6AS13	Centered lever. Adjustment over switch D.	30,56 1.203	Solder	15 Amps A	2,22 8	0,14 0.5	0,51 .020	2,77 . 109	29,77 1.172
6AS18	Centered lever. Adjustment over both switches.	30,56 1.203	Solder	15 Amps A	2,22 8	0,14 0.5	0,51 .020	2,77 . 109	29,77 1.172 adj .
6AS36	Lever over switch C. Adjustment over switch D.	30,56 1.203	A2	15 Amps A	2,22 8	0,14 0.5	0,51 .020	2,77 . 109	29,77 1.172
6AS35	Lever and adjustment over switch D.	30,56 1.203	A2	15 Amps A	2,22 8	0,14 0.5	0,51 . 020	2,77 . 109	29,77 1.172
6AS16	Centered lever. Adjustment over switch D.	30,56 1.203	A2	20 Amps G	3,89 14	1,11 4	1,02 . 040	3,96 . 156	30,96±1,14 1.219±.045
6AS69	Centered lever. Adjustment over switch D.	27,25 1.073	т	25 Amps M	_	_	_	_	30,96±1,14 1.219±.045
6AS112	Centered lever. Adjustment over switch D.	30,56 1.203	A2	25 Amps H	3,89 14	1,11 4	1,02 . 040	3,96 . 156	30,96±1,14 1.219 ±. 045
						· ·			
6AS5	Centered leaf. No adjustment. Switches	38,35 1.51	A2	15 Amps A	_	_	0,76-1,52 .030060	_	

adjustment. Switches operate within .030" of each other. Dim. Dwg. Fig. 3

±0,76 mm ±.030 in. Unless otherwise noted

MOUNTING DIMENSIONS (For reference only)

STRAIGHT LEVER

Fig. 2

LEAF

Fig. 3

0,0 = mmKey: 0.00 = inches

Mounting holes accept pins or screws of .139" (3,53 mm) diameter.