SILICON LABS

C8051T630/1/2/3/4/5

Analog Peripherals

- 10-Bit ADC ('T630/2/4 only)

- Up to 500 ksps
- Up to 16 external inputs
- VREF from on-chip VREF, external pin, Internal Regulator or V_{DD}
- Internal or external start of conversion source
- Built-in temperature sensor
- 10-Bit Current Output DAC ('T630/2/4 only)
- Comparator
- Programmable hysteresis and response time
- Configurable as interrupt or reset source
- Low current (<0.5 $\mu \mathrm{A}$)

On-Chip Debug

- C8051F336 can be used as code development platform; Complete development kit available
- On-chip debug circuitry facilitates full speed, non-intrusive in-system debug
- Provides breakpoints, single stepping, inspect/modify memory and registers
Supply Voltage 1.8 to 3.6 V
- On-chip LDO for internal core supply
- Built-in voltage supply monitor

Temperature Range: -40 to $+85{ }^{\circ} \mathrm{C}$

High-Speed 8051μ C Core

- Pipelined instruction architecture; executes 70\% of instructions in 1 or 2 system clocks
- Up to 25 MIPS throughput with 25 MHz clock

Expanded interrupt handler
Memory

- 768 Bytes internal data RAM $(256+512)$
- 8,4 , or 2 kB byte-programmable EPROM code memory
Digital Peripherals
- 17 Port I/O with high sink current capability
- Hardware enhanced UART, SMBus ${ }^{\text {TM }}$, and enhanced SPI ${ }^{\text {TM }}$ serial ports
- Four general purpose 16-bit counter/timers - Timer 3 supports real-time clock using external clock source
- 16-Bit programmable counter array (PCA) with three capture/compare modules and enhanced PWM functionality

Clock Sources

- Two internal oscillators:
- $\quad 24.5 \mathrm{MHz}$ with $\pm 2 \%$ accuracy supports crystal-less UART operation and low-power suspend mode with fast wake time
80/40/20/10 kHz low frequency, low power operation
- External oscillator: RC, C, or CMOS Clock
- Can switch between clock sources on-the-fly; useful in power saving modes
20-Pin QFN Package (4x4 mm)

C8051T630/1/2/3/4/5

C8051T630/1/2/3/4/5

Table of Contents

1. System Overview152. Ordering Information 17
3. Pin Definitions 18
4. QFN-20 Package Specifications 21
5. Electrical Characteristics 23
5.1. Absolute Maximum Specifications 23
5.2. Electrical Characteristics 24
5.3. Typical Performance Curves 32
6. 10-Bit ADC (ADC0, C8051T630/2/4 only) 33
6.1. Output Code Formatting 34
6.2. 8-Bit Mode 34
6.3. Modes of Operation 34
6.3.1. Starting a Conversion 34
6.3.2. Tracking Modes 35
6.3.3. Settling Time Requirements 36
6.4. Programmable Window Detector 40
6.4.1. Window Detector Example 42
6.5. ADC0 Analog Multiplexer (C8051T630/2/4 only) 43
7. Temperature Sensor (C8051T630/2/4 only) 45
7.1. Calibration 45
8. 10-Bit Current Mode DAC (IDA0, C8051T630/2/4 only) 48
8.1. IDAO Output Scheduling 48
8.1.1. Update Output On-Demand 48
8.1.2. Update Output Based on Timer Overflow 49
8.1.3. Update Output Based on CNVSTR Edge 49
8.2. IDAC Output Mapping 49
9. Voltage Reference Options 52
10. Voltage Regulator (REG0) 55
11. Comparator0. 57
11.1. Comparator Multiplexer 61
12. CIP-51 Microcontroller 63
12.1. Instruction Set. 64
12.1.1. Instruction and CPU Timing 64
12.2. CIP-51 Register Descriptions 69
13. Memory Organization 72
13.1. Program Memory 73
13.2. Data Memory 73
13.2.1. Internal RAM 73
13.2.1.1. General Purpose Registers 74
13.2.1.2. Bit Addressable Locations 74
13.2.1.3. Stack 74
13.2.2. External RAM 74
14. Special Function Registers. 76

C8051T630/1/2/3/4/5

15. Interrupts 80
15.1. MCU Interrupt Sources and Vectors 81
15.1.1. Interrupt Priorities 81
15.1.2. Interrupt Latency 81
15.2. Interrupt Register Descriptions 82
15.3. INT0 and INT1 External Interrupts 87
16. EPROM Memory 89
16.1. Programming and Reading the EPROM Memory 89
16.1.1. EPROM Write Procedure 89
16.1.2. EPROM Read Procedure 90
16.2. Security Options 90
16.3. Program Memory CRC 91
16.3.1. Performing 32-bit CRCs on Full EPROM Content 91
16.3.2. Performing 16-bit CRCs on 256-Byte EPROM Blocks 91
17. Power Management Modes 92
17.1. Idle Mode 92
17.2. Stop Mode 93
17.3. Suspend Mode 93
18. Reset Sources 95
18.1. Power-On Reset 96
18.2. Power-Fail Reset/VDD Monitor 97
18.3. External Reset 98
18.4. Missing Clock Detector Reset 98
18.5. Comparator0 Reset 99
18.6. PCA Watchdog Timer Reset 99
18.7. EPROM Error Reset 99
18.8. Software Reset 99
19. Oscillators and Clock Selection 101
19.1. System Clock Selection 101
19.2. Programmable Internal High-Frequency (H-F) Oscillator 103
19.2.1. Internal Oscillator Suspend Mode 103
19.3. Programmable Internal Low-Frequency (L-F) Oscillator 105
19.3.1. Calibrating the Internal L-F Oscillator 105
19.4. External Oscillator Drive Circuit 106
19.4.1. External RC Example 108
19.4.2. External Capacitor Example 108
20. Port Input/Output 109
20.1. Port I/O Modes of Operation 110
20.1.1. Port Pins Configured for Analog I/O 110
20.1.2. Port Pins Configured For Digital I/O 110
20.1.3. Interfacing Port I/O to 5V Logic 111
20.2. Assigning Port I/O Pins to Analog and Digital Functions 112
20.2.1. Assigning Port I/O Pins to Analog Functions 112
20.2.2. Assigning Port I/O Pins to Digital Functions 112
20.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions 113

C8051T630/1/2/3/4/5

20.3. Priority Crossbar Decoder 114
20.4. Port I/O Initialization 116
20.5. Port Match 118
20.6. Special Function Registers for Accessing and Configuring Port I/O 121
21. SMBus 127
21.1. Supporting Documents 128
21.2. SMBus Configuration. 128
21.3. SMBus Operation 128
21.3.1. Transmitter Vs. Receiver 129
21.3.2. Arbitration 129
21.3.3. Clock Low Extension 129
21.3.4. SCL Low Timeout 129
21.3.5. SCL High (SMBus Free) Timeout 130
21.4. Using the SMBus 130
21.4.1. SMBus Configuration Register 130
21.4.2. SMB0CN Control Register 134
21.4.2.1. Software ACK Generation 134
21.4.2.2. Hardware ACK Generation 134
21.4.3. Hardware Slave Address Recognition 136
21.4.4. Data Register 139
21.5. SMBus Transfer Modes 140
21.5.1. Write Sequence (Master) 140
21.5.2. Read Sequence (Master) 141
21.5.3. Write Sequence (Slave) 142
21.5.4. Read Sequence (Slave) 143
21.6. SMBus Status Decoding 143
22. UARTO 148
22.1. Enhanced Baud Rate Generation 149
22.2. Operational Modes 150
22.2.1. 8-Bit UART 150
22.2.2. 9-Bit UART 151
22.3. Multiprocessor Communications 152
23. Enhanced Serial Peripheral Interface (SPI0) 156
23.1. Signal Descriptions 157
23.1.1. Master Out, Slave In (MOSI) 157
23.1.2. Master In, Slave Out (MISO) 157
23.1.3. Serial Clock (SCK) 157
23.1.4. Slave Select (NSS) 157
23.2. SPIO Master Mode Operation 158
23.3. SPIO Slave Mode Operation 159
23.4. SPIO Interrupt Sources 160
23.5. Serial Clock Phase and Polarity 160
23.6. SPI Special Function Registers 162
24. Timers 169
24.1. Timer 0 and Timer 1 171

C8051T630/1/2/3/4/5

24.1.1. Mode 0: 13-bit Counter/Timer 171
24.1.2. Mode 1: 16 -bit Counter/Timer 172
24.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload 173
24.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only) 174
24.2. Timer 2 179
24.2.1. 16-bit Timer with Auto-Reload 179
24.2.2. 8-bit Timers with Auto-Reload 180
24.2.3. Low-Frequency Oscillator (LFO) Capture Mode 181
24.3. Timer 3 185
24.3.1. 16-bit Timer with Auto-Reload 185
24.3.2. 8-bit Timers with Auto-Reload 186
24.3.3. Low-Frequency Oscillator (LFO) Capture Mode 187
25. Programmable Counter Array 191
25.1. PCA Counter/Timer 192
25.2. PCAO Interrupt Sources 193
25.3. Capture/Compare Modules 194
25.3.1. Edge-triggered Capture Mode 195
25.3.2. Software Timer (Compare) Mode 196
25.3.3. High-Speed Output Mode 197
25.3.4. Frequency Output Mode 198
25.3.5. 8-bit, 9-bit, 10 -bit and 11-bit Pulse Width Modulator Modes 198
25.3.5.1. 8-bit Pulse Width Modulator Mode 199
25.3.5.2. 9/10/11-bit Pulse Width Modulator Mode 200
25.3.6. 16-Bit Pulse Width Modulator Mode 201
25.4. Watchdog Timer Mode 202
25.4.1. Watchdog Timer Operation 202
25.4.2. Watchdog Timer Usage 203
25.5. Register Descriptions for PCAO 204
26. C2 Interface 210
26.1. C2 Interface Registers 210
26.2. C2 Pin Sharing 217
Document Change List 218
Contact Information 220

C8051T630/1/2/3/4/5

List of Figures

1. System Overview
Figure 1.1. C8051T630/1/2/3/4/5 Block Diagram 16
2. Pin Definitions
Figure 3.1. QFN-20 Pinout Diagram (Top View) 20
3. QFN-20 Package Specifications
Figure 4.1. QFN-20 Package Drawing 21
Figure 4.2. QFN-20 Recommended PCB Land Pattern 22
4. Electrical Characteristics
Figure 5.1. Normal Mode Digital Supply Current vs. Frequency (MPCE =1) 32
Figure 5.2. Idle Mode Digital Supply Current vs. Frequency (MPCE = 1) 32
5. 10-Bit ADC (ADC0, C8051T630/2/4 only)
Figure 6.1. ADC0 Functional Block Diagram 33
Figure 6.2. 10-Bit ADC Track and Conversion Example Timing 35
Figure 6.3. ADC0 Equivalent Input Circuits 36
Figure 6.4. ADC Window Compare Example: Right-Justified Data 42
Figure 6.5. ADC Window Compare Example: Left-Justified Data 42
Figure 6.6. ADCO Multiplexer Block Diagram 43
6. Temperature Sensor (C8051T630/2/4 only)
Figure 7.1. Temperature Sensor Transfer Function 45
Figure 7.2. Temperature Sensor Error with 1-Point Calibration at 0 Celsius 46
7. 10-Bit Current Mode DAC (IDA0, C8051T630/2/4 only)
Figure 8.1. IDAO Functional Block Diagram 48
Figure 8.2. IDA0 Data Word Mapping 49
8. Voltage Reference Options
Figure 9.1. Voltage Reference Functional Block Diagram 53
9. Comparator0
Figure 11.1. Comparator0 Functional Block Diagram 57
Figure 11.2. Comparator Hysteresis Plot 58
Figure 11.3. Comparator Input Multiplexer Block Diagram 61
10. CIP-51 Microcontroller
Figure 12.1. CIP-51 Block Diagram 63
11. Memory Organization
Figure 13.1. Memory Map 72
Figure 13.2. Program Memory Map 73
12. Reset Sources
Figure 18.1. Reset Sources 95
Figure 18.2. Power-On and VDD Monitor Reset Timing 96
13. Oscillators and Clock Selection
Figure 19.1. Oscillator Options 101
14. Port Input/Output
Figure 20.1. Port I/O Functional Block Diagram 109
Figure 20.2. Port I/O Cell Block Diagram 111
Figure 20.3. Crossbar Priority Decoder with No Pins Skipped 114

C8051T630/1/2/3/4/5

Figure 20.4. Crossbar Priority Decoder with Crystal Pins Skipped 115
21. SMBus
Figure 21.1. SMBus Block Diagram 127
Figure 21.2. Typical SMBus Configuration 128
Figure 21.3. SMBus Transaction 129
Figure 21.4. Typical SMBus SCL Generation 131
Figure 21.5. Typical Master Write Sequence 140
Figure 21.6. Typical Master Read Sequence 141
Figure 21.7. Typical Slave Write Sequence 142
Figure 21.8. Typical Slave Read Sequence 143
22. UARTO
Figure 22.1. UARTO Block Diagram 148
Figure 22.2. UARTO Baud Rate Logic 149
Figure 22.3. UART Interconnect Diagram 150
Figure 22.4. 8-Bit UART Timing Diagram 150
Figure 22.5. 9-Bit UART Timing Diagram 151
Figure 22.6. UART Multi-Processor Mode Interconnect Diagram 152
23. Enhanced Serial Peripheral Interface (SPIO)
Figure 23.1. SPI Block Diagram 156
Figure 23.2. Multiple-Master Mode Connection Diagram 158
Figure 23.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram 159
Figure 23.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram 159
Figure 23.5. Master Mode Data/Clock Timing 161
Figure 23.6. Slave Mode Data/Clock Timing (CKPHA = 0) 161
Figure 23.7. Slave Mode Data/Clock Timing (CKPHA = 1) 162
Figure 23.8. SPI Master Timing (CKPHA = 0) 166
Figure 23.9. SPI Master Timing (CKPHA = 1) 166
Figure 23.10. SPI Slave Timing (CKPHA = 0) 167
Figure 23.11. SPI Slave Timing (CKPHA = 1) 167
24. Timers
Figure 24.1. T0 Mode 0 Block Diagram 172
Figure 24.2. TO Mode 2 Block Diagram 173
Figure 24.3. TO Mode 3 Block Diagram 174
Figure 24.4. Timer 2 16-Bit Mode Block Diagram 179
Figure 24.5. Timer 2 8-Bit Mode Block Diagram 180
Figure 24.6. Timer 2 Low-Frequency Oscillation Capture Mode Block Diagram 181
Figure 24.7. Timer 3 16-Bit Mode Block Diagram 185
Figure 24.8. Timer 3 8-Bit Mode Block Diagram 186
Figure 24.9. Timer 3 Low-Frequency Oscillation Capture Mode Block Diagram 187
25. Programmable Counter Array
Figure 25.1. PCA Block Diagram 191
Figure 25.2. PCA Counter/Timer Block Diagram 192
Figure 25.3. PCA Interrupt Block Diagram 193

C8051T630/1/2/3/4/5

Figure 25.4. PCA Capture Mode Diagram 195
Figure 25.5. PCA Software Timer Mode Diagram 196
Figure 25.6. PCA High-Speed Output Mode Diagram 197
Figure 25.7. PCA Frequency Output Mode 198
Figure 25.8. PCA 8-Bit PWM Mode Diagram 199
Figure 25.9. PCA 9, 10 and 11-Bit PWM Mode Diagram 200
Figure 25.10. PCA 16-Bit PWM Mode 201
Figure 25.11. PCA Module 2 with Watchdog Timer Enabled 202
26. C2 Interface
Figure 26.1. Typical C2 Pin Sharing 217

C8051T630/1/2/3/4/5

List of Tables
2. Ordering Information
Table 2.1. Product Selection Guide 17
3. Pin Definitions
Table 3.1. Pin Definitions for the C8051T630/1/2/3/4/5 18
4. QFN-20 Package Specifications
Table 4.1. QFN-20 Package Dimensions 21
Table 4.2. QFN-20 PCB Land Pattern Dimesions 22
5. Electrical Characteristics
Table 5.1. Absolute Maximum Ratings 23
Table 5.2. Global Electrical Characteristics 24
Table 5.3. Port I/O DC Electrical Characteristics 25
Table 5.4. Reset Electrical Characteristics 26
Table 5.5. Internal Voltage Regulator Electrical Characteristics 26
Table 5.6. EPROM Electrical Characteristics 26
Table 5.7. Internal High-Frequency Oscillator Electrical Characteristics 27
Table 5.8. Internal Low-Frequency Oscillator Electrical Characteristics 27
Table 5.9. ADCO Electrical Characteristics 28
Table 5.10. Temperature Sensor Electrical Characteristics 29
Table 5.11. Voltage Reference Electrical Characteristics 29
Table 5.12. IDAC Electrical Characteristics 30
Table 5.13. Comparator Electrical Characteristics 31
6. 12. CIP-51 Microcontroller
Table 12.1. CIP-51 Instruction Set Summary 65
14. Special Function Registers
Table 14.1. Special Function Register (SFR) Memory Map 76
Table 14.2. Special Function Registers 77
15. Interrupts
Table 15.1. Interrupt Summary 82
16. EPROM Memory
Table 16.1. Security Byte Decoding 90
20. Port Input/Output
Table 20.1. Port I/O Assignment for Analog Functions 112
Table 20.2. Port I/O Assignment for Digital Functions 112
Table 20.3. Port I/O Assignment for External Digital Event Capture Functions 113
21. SMBus
Table 21.1. SMBus Clock Source Selection 131
Table 21.2. Minimum SDA Setup and Hold Times 132
Table 21.3. Sources for Hardware Changes to SMBOCN 136
Table 21.4. Hardware Address Recognition Examples (EHACK = 1) 137
Table 21.5. SMBus Status Decoding With Hardware ACK Generation Disabled (EHACK = 0) 144
Table 21.6. SMBus Status Decoding With Hardware ACK Generation Enabled (EHACK = 1) 146

C8051T630/1/2/3/4/5

22. UARTOTable 22.1. Timer Settings for Standard Baud RatesUsing The Internal 24.5 MHz Oscillator155Table 22.2. Timer Settings for Standard Baud Rates Using an External 22.1184 MHz Oscillator 155
23. Enhanced Serial Peripheral Interface (SPIO)
Table 23.1. SPI Slave Timing Parameters 168
25. Programmable Counter Array
Table 25.1. PCA Timebase Input Options 192
Table 25.2. PCAOCPM and PCAOPWM Bit Settings
for PCA Capture/Compare Modules 194
Table 25.3. Watchdog Timer Timeout Intervals1 203

C8051T630/1/2/3/4/5

List of Registers
SFR Definition 6.1. ADC0CF: ADC0 Configuration 37
SFR Definition 6.2. ADCOH: ADC0 Data Word MSB 38
SFR Definition 6.3. ADCOL: ADCO Data Word LSB 38
SFR Definition 6.4. ADCOCN: ADCO Control 39
SFR Definition 6.5. ADCOGTH: ADC0 Greater-Than Data High Byte 40
SFR Definition 6.6. ADC0GTL: ADC0 Greater-Than Data Low Byte 40
SFR Definition 6.7. ADCOLTH: ADC0 Less-Than Data High Byte 41
SFR Definition 6.8. ADCOLTL: ADC0 Less-Than Data Low Byte 41
SFR Definition 6.9. AMXOP: AMUXO Positive Channel Select 44
SFR Definition 7.1. TOFFH: Temperature Offset Measurement High Byte 47
SFR Definition 7.2. TOFFL: Temperature Offset Measurement Low Byte 47
SFR Definition 8.1. IDAOCN: IDA0 Control 50
SFR Definition 8.2. IDAOH: IDAO Data Word MSB 51
SFR Definition 8.3. IDAOL: IDA0 Data Word LSB 51
SFR Definition 9.1. REFOCN: Reference Control 54
SFR Definition 10.1. REG0CN: Voltage Regulator Control 56
SFR Definition 11.1. CPTOCN: Comparator0 Control 59
SFR Definition 11.2. CPTOMD: Comparator0 Mode Selection 60
SFR Definition 11.3. CPTOMX: Comparator0 MUX Selection 62
SFR Definition 12.1. DPL: Data Pointer Low Byte 69
SFR Definition 12.2. DPH: Data Pointer High Byte 69
SFR Definition 12.3. SP: Stack Pointer 70
SFR Definition 12.4. ACC: Accumulator 70
SFR Definition 12.5. B: B Register 70
SFR Definition 12.6. PSW: Program Status Word 71
SFR Definition 13.1. EMIOCN: External Memory Interface Control 75
SFR Definition 15.1. IE: Interrupt Enable 83
SFR Definition 15.2. IP: Interrupt Priority 84
SFR Definition 15.3. EIE1: Extended Interrupt Enable 1 85
SFR Definition 15.4. EIP1: Extended Interrupt Priority 1 86
SFR Definition 15.5. IT01CF: INT0/INT1 Configuration 88
SFR Definition 17.1. PCON: Power Control 94
SFR Definition 18.1. VDMOCN: VDD Monitor Control 98
SFR Definition 18.2. RSTSRC: Reset Source 100
SFR Definition 19.1. CLKSEL: Clock Select 102
SFR Definition 19.2. OSCICL: Internal H-F Oscillator Calibration 103
SFR Definition 19.3. OSCICN: Internal H-F Oscillator Control 104
SFR Definition 19.4. OSCLCN: Internal L-F Oscillator Control 105
SFR Definition 19.5. OSCXCN: External Oscillator Control 107
SFR Definition 20.1. XBRO: Port I/O Crossbar Register 0 117
SFR Definition 20.2. XBR1: Port I/O Crossbar Register 1 118
SFR Definition 20.3. POMASK: Port 0 Mask Register 119
SFR Definition 20.4. POMAT: Port 0 Match Register 119

C8051T630/1/2/3/4/5

SFR Definition 20.5. P1MASK: Port 1 Mask Register 120
SFR Definition 20.6. P1MAT: Port 1 Match Register 120
SFR Definition 20.7. PO: Port 0 121
SFR Definition 20.8. POMDIN: Port 0 Input Mode 122
SFR Definition 20.9. POMDOUT: Port 0 Output Mode 122
SFR Definition 20.10. POSKIP: Port 0 Skip 123
SFR Definition 20.11. P1: Port 1 123
SFR Definition 20.12. P1MDIN: Port 1 Input Mode 124
SFR Definition 20.13. P1MDOUT: Port 1 Output Mode 124
SFR Definition 20.14. P1SKIP: Port 1 Skip 125
SFR Definition 20.15. P2: Port 2 125
SFR Definition 20.16. P2MDOUT: Port 2 Output Mode 126
SFR Definition 21.1. SMB0CF: SMBus Clock/Configuration 133
SFR Definition 21.2. SMB0CN: SMBus Control 135
SFR Definition 21.3. SMB0ADR: SMBus Slave Address 137
SFR Definition 21.4. SMB0ADM: SMBus Slave Address Mask 138
SFR Definition 21.5. SMB0DAT: SMBus Data 139
SFR Definition 22.1. SCONO: Serial Port 0 Control 153
SFR Definition 22.2. SBUFO: Serial (UART0) Port Data Buffer 154
SFR Definition 23.1. SPIOCFG: SPIO Configuration 163
SFR Definition 23.2. SPIOCN: SPIO Control 164
SFR Definition 23.3. SPIOCKR: SPIO Clock Rate 165
SFR Definition 23.4. SPIODAT: SPIO Data 165
SFR Definition 24.1. CKCON: Clock Control 170
SFR Definition 24.2. TCON: Timer Control 175
SFR Definition 24.3. TMOD: Timer Mode 176
SFR Definition 24.4. TLO: Timer 0 Low Byte 177
SFR Definition 24.5. TL1: Timer 1 Low Byte 177
SFR Definition 24.6. TH0: Timer 0 High Byte 178
SFR Definition 24.7. TH1: Timer 1 High Byte 178
SFR Definition 24.8. TMR2CN: Timer 2 Control 182
SFR Definition 24.9. TMR2RLL: Timer 2 Reload Register Low Byte 183
SFR Definition 24.10. TMR2RLH: Timer 2 Reload Register High Byte 183
SFR Definition 24.11. TMR2L: Timer 2 Low Byte 183
SFR Definition 24.12. TMR2H Timer 2 High Byte 184
SFR Definition 24.13. TMR3CN: Timer 3 Control 188
SFR Definition 24.14. TMR3RLL: Timer 3 Reload Register Low Byte 189
SFR Definition 24.15. TMR3RLH: Timer 3 Reload Register High Byte 189
SFR Definition 24.16. TMR3L: Timer 3 Low Byte 189
SFR Definition 24.17. TMR3H Timer 3 High Byte 190
SFR Definition 25.1. PCA0CN: PCA Control 204
SFR Definition 25.2. PCAOMD: PCA Mode 205
SFR Definition 25.3. PCAOPWM: PCA PWM Configuration 206
SFR Definition 25.4. PCA0CPMn: PCA Capture/Compare Mode 207
SFR Definition 25.5. PCA0L: PCA Counter/Timer Low Byte 208

C8051T630/1/2/3/4/5

SFR Definition 25.6. PCAOH: PCA Counter/Timer High Byte 208
SFR Definition 25.7. PCA0CPLn: PCA Capture Module Low Byte 209
SFR Definition 25.8. PCA0CPHn: PCA Capture Module High Byte 209
C2 Register Definition 26.1. C2ADD: C2 Address 210
C2 Register Definition 26.2. DEVICEID: C2 Device ID 211
C2 Register Definition 26.3. REVID: C2 Revision ID 211
C2 Register Definition 26.4. DEVCTL: C2 Device Control 212
C2 Register Definition 26.5. EPCTL: EPROM Programming Control Register 212
C2 Register Definition 26.6. EPDAT: C2 EPROM Data 213
C2 Register Definition 26.7. EPSTAT: C2 EPROM Status 213
C2 Register Definition 26.8. EPADDRH: C2 EPROM Address High Byte 214
C2 Register Definition 26.9. EPADDRL: C2 EPROM Address Low Byte 214
C2 Register Definition 26.10. CRC0: CRC Byte 0 215
C2 Register Definition 26.11. CRC1: CRC Byte 1 215
C2 Register Definition 26.12. CRC2: CRC Byte 2 216
C2 Register Definition 26.13. CRC3: CRC Byte 3 216

C8051T630/1/2/3/4/5

1. System Overview

C8051T630/1/2/3/4/5 devices are fully integrated, mixed-signal, system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 2.1 for specific product feature selection and part ordering numbers.

■ High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)

- In-system, full-speed, non-intrusive debug interface (on-chip)

■ C8051F336 ISP Flash device is available for quick in-system code development

- 10-bit 500 ksps Single-ended ADC with analog multiplexer and integrated temperature sensor
- 10-bit Current Output DAC

■ Precision calibrated 24.5 MHz internal oscillator

- 8/4/2 kB of on-chip Byte-Programmable EPROM-(512 bytes are reserved on 8 k version)
- 768 bytes of on-chip RAM
- SMBus/I2C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable Counter/Timer Array (PCA) with three capture/compare modules and Watchdog Timer function
- On-chip Power-On Reset, V_{DD} Monitor, and Temperature Sensor
- On-chip Voltage Comparator
- 17 Port I/O

With on-chip power-on reset, V_{DD} monitor, watchdog timer, and clock oscillator, the C8051T630/1/2/3/4/5 devices are truly stand-alone, system-on-a-chip solutions. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

Code written for the C8051T630/1/2/3/4/5 family of processors will run on the C8051F336 Mixed-Signal ISP Flash microcontroller, providing a quick, cost-effective way to develop code without requiring special emulator circuitry. The C8051T630/1/2/3/4/5 processors include Silicon Laboratories' 2-Wire C2 Debug and Programming interface, which allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection of memory, viewing and modification of special function registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for $1.8-3.6 \mathrm{~V}$ operation over the industrial temperature range (-45 to $+85{ }^{\circ} \mathrm{C}$). An internal LDO is used to supply the processor core voltage at 1.8 V . The Port I/O and $\overline{\mathrm{RST}}$ pins are tolerant of input signals up to 5 V . The C8051T630/1/2/3/4/5 are available in 20-pin QFN RoHS compliant packaging. See Table 2.1 for ordering information. A block diagram is shown in Figure 1.1.

C8051T630/1/2/3/4/5

Figure 1.1. C8051T630/1/2/3/4/5 Block Diagram

C8051T630/1/2/3/4/5

2. Ordering Information

Table 2.1. Product Selection Guide

						$\begin{aligned} & u \\ & \frac{v}{n} \\ & \tilde{n} \\ & \sum_{n}^{n} \end{aligned}$		$\stackrel{\leftarrow}{\underset{\alpha}{\alpha}}$											
C8051T630-GM	25	$8 \mathrm{k}^{*}$	768	Y	Y	Y	Y	Y	4	Y	1		Y	Y	Y	Y	Y	Y	QFN-20
C8051T631-GM	25	8k*	768	Y	Y	Y	Y	Y	4	Y	1		-	-	-	-	Y	Y	QFN-20
C8051T632-GM	25	4k	768	Y	Y	Y	Y	Y	4	Y	1		Y	Y	Y	Y	Y	Y	QFN-20
C8051T633-GM	25	4k	768	Y	Y	Y	Y	Y	4	Y	1		-	-	-	-	Y	Y	QFN-20
C8051T634-GM	25	2k	768	Y	Y	Y	Y	Y	4	Y	1		Y	Y	Y	Y	Y	Y	QFN-20
C8051T635-GM	25	2k	768	Y	Y	Y	Y	Y	4	Y	1		-	-	-	-	Y	Y	QFN-20
* 512 Bytes Reserved for Factory Use																			

C8051T630/1/2/3/4/5

3. Pin Definitions

Table 3.1. Pin Definitions for the C8051T630/1/2/3/4/5

Name	Pin	Type	Description
$V_{D D}$	3		Power Supply Voltage.
GND	2		Ground.
$\overline{\mathrm{RST}} /$ C2CK	4	D I/O D I/O	Device Reset. Open-drain output of internal POR or V_{DD} monitor. An external source can initiate a system reset by driving this pin low for at least $10 \mu \mathrm{~s}$. Clock signal for the C2 Debug Interface.
$\begin{aligned} & \text { P2.0/ } \\ & \text { C2D } \end{aligned}$	5	$\begin{aligned} & \text { D I/O } \\ & \text { D I/O } \end{aligned}$	Port 2.0. Bi-directional data signal for the C2 Debug Interface
P0.0/ VREF	1	D I/O or A In A In	Port 0.0. External VREF input.
P0.1 IDAO	20	D I/O or A In AOut	Port 0.1. IDAO Output.
$\mathrm{P} 0.21$ $V_{P P}$	19	$\begin{aligned} & \text { D I/O or } \\ & \text { A In } \\ & \text { A In } \end{aligned}$	Port 0.2. V_{PP} Programming Supply Voltage
P0.3/ EXTCLK	18	D I/O or A In A I/O or D In	Port 0.3. External Clock Pin. This pin can be used as the external clock input for CMOS, capacitor, or RC oscillator configurations.
P0.4	17	D I/O or A In	Port 0.4.
P0.5	16	$\begin{aligned} & \text { D I/O or } \\ & \text { A In } \end{aligned}$	Port 0.5.
P0.6/ CNVSTR	15	D I/O or A In D In	Port 0.6. ADCO External Convert Start or IDAO Update Source Input.

C8051T630/1/2/3/4/5

Table 3.1. Pin Definitions for the C8051T630/1/2/3/4/5 (Continued)

Name	Pin	Type	Description
P0.7	14	D I/O or A In	Port 0.7.
P1.0	13	D I/O or A In	Port 1.0.
P1.1	12	D I/O or A In	Port 1.1.
P1.2	11	D I/O or A In	Port 1.2.
P1.3	10	D In or A I/O or	Port 1.3.
P1.4 1.4.	9	D I/O or A In	Port 1.5.
P1.5	8	D I/O or A In	Port 1.6.
P1.6	7	D I/O or A In	Port 1.7.
P1.7	6		

Figure 3.1. QFN-20 Pinout Diagram (Top View)

4. QFN-20 Package Specifications

Figure 4.1. QFN-20 Package Drawing

Table 4.1. QFN-20 Package Dimensions

Dimension	Min	Typ	Max	Dimension	Min	Typ	Max
A	0.80	0.90	1.00	L	0.45	0.55	0.65
A1	0.00	0.02	0.05	L1	0.00	-	0.15
b	0.18	0.25	0.30	aaa	-	-	0.15
D	4.00 BSC .			bbb	-	-	0.10
D2	2.00	2.15	2.25	ddd	-	-	0.05
e	0.50 BSC.			eee	-	-	0.08
E	4.00 BSC.			Z	-	0.43	-
E2	2.00	2.15	2.25	Y	-	0.18	-

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-220, variation VGGD except for custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

C8051T630/1/2/3/4/5

Figure 4.2. QFN-20 Recommended PCB Land Pattern

Table 4.2. QFN-20 PCB Land Pattern Dimesions

Dimension	Min	Max				
C1	3.70					
C2	3.70					
E	0.50					
X1	0.20	0.30	\quad	Dimension	Min	Max
:---:	:---:	:---:				
X2	2.15	2.25				
Y1	0.90	1.00				
		2.15				

Notes:

General

1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
3. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \mu \mathrm{~m}$ minimum, all the way around the pad.

Stencil Design
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
6. The stencil thickness should be 0.125 mm (5 mils).
7. The ratio of stencil aperture to land pad size should be $1: 1$ for all perimeter pins.
8. A 2×2 array of 0.95 mm openings on a 1.1 mm pitch should be used for the center pad to assure the proper paste volume (71\% Paste Coverage).

Card Assembly
9. A No-Clean, Type-3 solder paste is recommended.
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

C8051T630/1/2/3/4/5

5. Electrical Characteristics

5.1. Absolute Maximum Specifications

Table 5.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Typ	Max	Units
Ambient temperature under bias		-55	-	125	${ }^{\circ} \mathrm{C}$
Storage Temperature		-65	-	150	${ }^{\circ} \mathrm{C}$
Voltage on $\overline{\mathrm{RST}}$ or any Port I/O Pin (except V_{PP} during programming) with respect to GND	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}} \geq 2.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}<2.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -0.3 \\ & -0.3 \end{aligned}$		$\begin{gathered} 5.8 \\ \mathrm{~V}_{\mathrm{DD}}+3.6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{v} \end{aligned}$
Voltage on $V_{\text {Pp }}$ with respect to GND during a programming operation	VDD $>2.4 \mathrm{~V}$	-0.3	-	7.0	V
Duration of High-voltage on V_{PP} pin (cumulative)	$\mathrm{V}_{\mathrm{PP}}>\left(\mathrm{V}_{\mathrm{DD}}+3.6 \mathrm{~V}\right)$	-	-	10	s
Voltage on V_{DD} with respect to GND	Regulator in Normal Mode Regulator in Bypass Mode	$\begin{aligned} & -0.3 \\ & -0.3 \end{aligned}$	-	$\begin{gathered} 4.2 \\ 1.98 \end{gathered}$	$\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$
Maximum Total current through V_{DD} and GND		-	-	500	mA
Maximum output current sunk by $\overline{\text { RST }}$ or any Port pin		-	-	100	mA
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.					

C8051T630/1/2/3/4/5

5.2. Electrical Characteristics

Table 5.2. Global Electrical Characteristics
-40 to $+85{ }^{\circ} \mathrm{C}, 25 \mathrm{MHz}$ system clock unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Supply Voltage (Note 1)	Regulator in Normal Mode Regulator in Bypass Mode	$\begin{aligned} & 1.8 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 1.8 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 1.9 \end{aligned}$	$\begin{aligned} & \mathrm{v} \\ & \mathrm{v} \end{aligned}$
Digital Supply Current with CPU Active	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \text { Clock }=25 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \text { Clock }=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \text { Clock }=25 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \text { Clock }=1 \mathrm{MHz} \end{aligned}$	-	$\begin{gathered} 6.2 \\ 2.7 \\ 7 \\ 2.9 \end{gathered}$	$\begin{aligned} & 8.8 \\ & \hline 8.9 \\ & - \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Digital Supply Current with CPU Inactive (not accessing EPROM)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \text { Clock }=25 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V}, \text { Clock }=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \text { Clock }=25 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \text { Clock }=1 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 2.2 \\ 0.41 \\ 2.3 \\ 0.42 \end{gathered}$	$\begin{gathered} 3 \\ \frac{3}{3.1} \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
Digital Supply Current (shutdown)	Oscillator not running (stop mode), Internal Regulator Off	-	0.2	2	$\mu \mathrm{A}$
	Oscillator not running (stop or suspend mode), Internal Regulator On	-	350	400	$\mu \mathrm{A}$
Digital Supply RAM Data Retention Voltage		-	1.5	-	V
Specified Operating Temperature Range		-40	-	+85	${ }^{\circ} \mathrm{C}$
SYSCLK (system clock frequency)	(Note 2)	0	-	25	MHz
Tsysl (SYSCLK low time)		18	-	-	ns
Tsysh (SYSCLK high time)		18	-	-	ns

Notes:

1. Analog performance is not guaranteed when V_{DD} is below 1.8 V .
2. SYSCLK must be at least 32 kHz to enable debugging.

C8051T630/1/2/3/4/5

Table 5.3. Port I/O DC Electrical Characteristics
$V_{D D}=1.8$ to $3.6 \mathrm{~V},-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameters	Conditions	Min	Typ	Max	Units
Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$, Port I/O push-pull	$\mathrm{V}_{\mathrm{DD}}-0.2$	-	-	V
	$\mathrm{I}_{\mathrm{OH}}=-10 \mu \mathrm{~A}$, Port I/O push-pull	$\mathrm{V}_{\mathrm{DD}}-0.1$	-	-	V
	$\mathrm{I}_{\mathrm{OH}}=-10 \mathrm{~mA}$, Port I/O push-pull	-	$\mathrm{V}_{\mathrm{DD}}-0.4$	-	V
Output Low Voltage	$\mathrm{I}_{\mathrm{OL}}=8.5 \mathrm{~mA}$	-	-	0.4	V
	$\mathrm{I}_{\mathrm{OL}}=10 \mu \mathrm{~A}$	-	-	0.1	V
	$\mathrm{I}_{\mathrm{OL}}=25 \mathrm{~mA}$	-	0.6	-	V
		$0.7 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
		-	-	0.6	V
	Weak Pullup Off	-1	-	1	$\mu \mathrm{~A}$
Current	Weak Pullup On, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	-	25	50	$\mu \mathrm{~A}$

C8051T630/1/2/3/4/5

Table 5.4. Reset Electrical Characteristics
-40 to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
$\overline{\text { RST }}$ Output Low Voltage	$\begin{aligned} & \mathrm{I} \mathrm{I}_{\mathrm{OL}}=8.5 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{DD}}=1.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	0.6	V
$\overline{\text { RST }}$ Input High Voltage		$0.75 \times \mathrm{V}_{\mathrm{DD}}$	-	-	V
$\overline{\mathrm{RST}}$ Input Low Voltage		-	-	0.6	V_{DD}
$\overline{\mathrm{RST}}$ Input Pullup Current	$\overline{\mathrm{RST}}=0.0 \mathrm{~V}$	-	25	50	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DD }}$ POR Ramp Time		-	-	1	ms
V_{DD} Monitor Threshold ($\mathrm{V}_{\mathrm{RST}}$)		1.7	1.75	1.8	V
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	500	625	750	$\mu \mathrm{s}$
Reset Time Delay	Delay between release of any reset source and code execution at location 0×0000	-	-	60	$\mu \mathrm{s}$
Minimum $\overline{\mathrm{RST}}$ Low Time to Generate a System Reset		15	-	-	$\mu \mathrm{s}$
$\mathrm{V}_{\text {DD }}$ Monitor Turn-on Time	$\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{RST}}-0.1 \mathrm{~V}$	-	50	-	$\mu \mathrm{s}$
$\mathrm{V}_{\text {DD }}$ Monitor Supply Current		-	20	30	$\mu \mathrm{A}$

Table 5.5. Internal Voltage Regulator Electrical Characteristics
-40 to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Input Voltage Range		1.8	-	3.6	V
Bias Current	Normal Mode	-	30	50	$\mu \mathrm{~A}$

Table 5.6. EPROM Electrical Characteristics

Parameter	Conditions	Min	Typ	Max	Units
EPROM Size	C8051T630/1	8192^{1}	-	-	bytes
EPROM Size	C8051T632/3	4096	-	-	bytes
EPROM Size	C8051T634/5	2048	-	-	bytes
Write Cycle Time (per Byte $)$		105	155	205	$\mu \mathrm{~s}$
	Date Code 0935 and later	5.75	6.0	6.25	V
	Date Code prior to 0935	6.25	6.375	6.5	V

Notes:

1. 512 bytes at location $0 \times 1 E 00$ to 0×1 FFF are not available for program storage.
2. Refer to device errata for details.

C8051T630/1/2/3/4/5

Table 5.7. Internal High-Frequency Oscillator Electrical Characteristics
$V_{D D}=1.8$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Typ	Max	Units
Oscillator Frequency	IFCN = 11b	24	24.5	25	MHz
Oscillator Supply Current (from V_{DD})	$25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, OSCICN.7 $=1,^{\text {OCSICN. }=0}$	-	450	700	$\mu \mathrm{~A}$
Power Supply Variance	Constant Temperature	-	± 0.02	-	$\% / \mathrm{V}$
Temperature Variance	Constant Supply	-	± 20	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Table 5.8. Internal Low-Frequency Oscillator Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=1.8$ to $3.6 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$ unless otherwise specified. Use factory-calibrated settings.

Parameter	Conditions	Min	Typ	Max	Units
Oscillator Frequency	OSCLD $=11 \mathrm{~b}$	72	80	88	kHz
Oscillator Supply Current (from V_{DD})	$25{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$, OSCLCN.7 $=1$	-	3	6	$\mu \mathrm{~A}$
Power Supply Variance	Constant Temperature	-	± 0.02	-	$\% / \mathrm{V}$
Temperature Variance	Constant Supply	-	± 50	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

C8051T630/1/2/3/4/5

Table 5.9. ADCO Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{VREF}=2.40 \mathrm{~V}($ REFSL=0 $),-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units	
DC Accuracy						
Resolution		10				bits
Integral Nonlinearity	Guaranteed Monotonic	-	± 0.5	± 1	LSB	
Differential Nonlinearity		-2	± 0.5	± 1	LSB	
Offset Error		-2	0	2	LSB	
Full Scale Error	-	45	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$		
Offset Temperature Coefficient		-				

Dynamic performance (10 kHz sine-wave single-ended input, 1 dB below Full Scale, 200 ksps)

Signal-to-Noise Plus Distortion		56	60	-	dB
Total Harmonic Distortion	Up to the 5th harmonic	-	72	-	dB
Spurious-Free Dynamic Range		-	-75	-	dB

Conversion Rate

SAR Conversion Clock		-	-	8.33	MHz
Conversion Time in SAR Clocks	10 -bit Mode	13	-	-	clocks
	8 -bit Mode	11	-	-	clocks
Track/Hold Acquisition Time	$\mathrm{V}_{\mathrm{DD}}>=2.0 \mathrm{~V}$	300	-	-	ns
	$\mathrm{V}_{\mathrm{DD}}<2.0 \mathrm{~V}$	2.0	-	-	$\mu \mathrm{s}$
Throughput Rate		-	-	500	ksps

Analog Inputs

ADC Input Voltage Range		0	-	VREF	V
Sampling Capacitance	1x Gain	-	5	-	pF
	0.5x Gain	-	3	-	pF
Input Multiplexer Impedance		-	5	-	k Ω
Power Specifications					
Power Supply Current ($V_{\text {DD }}$ supplied to ADC0)	Operating Mode, 200 ksps	-	600	900	$\mu \mathrm{A}$
Power Supply Rejection		-	-70	-	dB

C8051T630/1/2/3/4/5

Table 5.10. Temperature Sensor Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V},-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Linearity		-	± 0.5	-	${ }^{\circ} \mathrm{C}$
Slope		-	3.49	-	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Slope Error*		-	± 40	-	$\mu \mathrm{C} /{ }^{\circ} \mathrm{C}$
Offset	$\mathrm{Temp}=0^{\circ} \mathrm{C}$	-	930	-	mV
Offset Error*	$\mathrm{Temp}=0^{\circ} \mathrm{C}$	-	± 12	-	mV

Note: Represents one standard deviation from the mean.
Table 5.11. Voltage Reference Electrical Characteristics
$V_{D D}=3.0 \mathrm{~V} ;-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
On-Chip Reference (REFBE = 1)					
Output Voltage	1.2 V Setting, $25^{\circ} \mathrm{C}$ ambient 2.4 V Setting $25^{\circ} \mathrm{C}$ ambient	$\begin{gathered} 1.195 \\ 2.3 \end{gathered}$	$\begin{gathered} \hline 1.2 \\ 2.35 \end{gathered}$	$\begin{gathered} 1.205 \\ 2.4 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
VREF Short-Circuit Current		-	4.5	6	mA
VREF Temperature Coefficient		-	± 15	-	ppm $/{ }^{\circ} \mathrm{C}$
Load Regulation	Load $=0$ to $200 \mu \mathrm{~A}$ to GND, 1.2 V setting Load $=0$ to $200 \mu \mathrm{~A}$ to GND, 2.4 V setting	-	$\begin{aligned} & \hline 3.7 \\ & 5.0 \end{aligned}$	-	$\mu \mathrm{V} / \mu \mathrm{A}$ $\mu \mathrm{V} / \mu \mathrm{A}$
VREF Turn-On Time (1.2 V setting)	$4.7 \mu \mathrm{~F}$ tantalum, $0.1 \mu \mathrm{~F}$ ceramic bypass	-	1.2	-	ms
	$0.1 \mu \mathrm{~F}$ ceramic bypass	-	25	-	$\mu \mathrm{s}$
VREF Turn-On Time (2.4 V setting)	$4.7 \mu \mathrm{~F}$ tantalum, $0.1 \mu \mathrm{~F}$ ceramic bypass	-	4.3	-	ms
	$0.1 \mu \mathrm{~F}$ ceramic bypass	-	90	-	$\mu \mathrm{s}$
Power Supply Rejection	1.2 V setting	-	120	-	$\mu \mathrm{V} / \mathrm{V}$
	2.4 V setting	-	360	-	$\mu \mathrm{V} / \mathrm{V}$
External Reference (REFBE = 0)					
Input Voltage Range		0	-	V_{DD}	V
Input Current	Sample Rate $=500 \mathrm{ksps}$; VREF $=2.5 \mathrm{~V}$	-	12	-	$\mu \mathrm{A}$
Power Specifications					
Reference Bias Generator	REFBE $=1,2.4 \mathrm{~V}$ setting	-	75	100	$\mu \mathrm{A}$

C8051T630/1/2/3/4/5

Table 5.12. IDAC Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V},-40$ to $+85^{\circ} \mathrm{C}$ Full-scale output current set to 2 mA unless otherwise specified.

Parameter	Conditions	Min	Typ	Max	Units
Static Performance					
Resolution		10			bits
Integral Nonlinearity		-	± 1	± 2.5	LSB
Differential Nonlinearity	Guaranteed Monotonic	-	± 0.5	± 1	LSB
Output Compliance Range		-	-	$\mathrm{V}_{\mathrm{DD}}-1.2$	V
Offset Error		-1	0	1	$\mu \mathrm{A}$
Full Scale Error	2 mA Full-Scale Output Current $25^{\circ} \mathrm{C}$	-30	0	30	$\mu \mathrm{A}$
Full Scale Error Tempco		-	50	-	ppm $/{ }^{\circ} \mathrm{C}$
$V_{D D}$ Power Supply Rejection Ratio	2 mA Full-Scale Output Current $25^{\circ} \mathrm{C}$	-	1	-	$\mu \mathrm{A} / \mathrm{V}$
Dynamic Performance					
Output Settling Time to $1 / 2$ LSB	IDAOH:L = 0x3FF to 0x000	-	5	-	$\mu \mathrm{s}$
Startup Time		-	5	-	$\mu \mathrm{s}$
Gain Variation	1 mA Full Scale Output Current 0.5 mA Full Scale Output Current	$-$	$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	-	$\begin{aligned} & \% \\ & \% \end{aligned}$
Power Specifications					
Power Supply Current (V_{DD} supplied to IDAC)	2 mA Full Scale Output Current 1 mA Full Scale Output Current 0.5 mA Full Scale Output Current	-	$\begin{gathered} \hline 2100 \\ 1100 \\ 600 \end{gathered}$	2500 1500 1000	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$

C8051T630/1/2/3/4/5

Table 5.13. Comparator Electrical Characteristics
$\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V},-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Conditions	Min	Typ	Max	Units
Response Time: Mode 0, $\mathrm{Vcm}^{*}=1.5 \mathrm{~V}$	CP0+ - CP0- = 100 mV	-	240	-	ns
	CP0+ - CPO- = -100 mV	-	240	-	ns
Response Time: Mode 1, $\mathrm{Vcm}^{*}=1.5 \mathrm{~V}$	CP0+ - CP0- = 100 mV	-	400	-	ns
	CPO+ - CPO- = -100 mV	-	400	-	ns
Response Time: Mode 2, $\mathrm{Vcm}^{*}=1.5 \mathrm{~V}$	CP0+ - CP0- = 100 mV	-	650	-	ns
	CPO+ - CPO- = -100 mV	-	1100	-	ns
Response Time: Mode 3, $\mathrm{Vcm}^{*}=1.5 \mathrm{~V}$	CP0+ - CPO- = 100 mV	-	2000	-	ns
	CP0+ - CPO- = - 100 mV	-	5500	-	ns
Common-Mode Rejection Ratio		-	1	4	mV / V
Positive Hysteresis 1	CPOHYP1-0 $=00$	-	0	1	mV
Positive Hysteresis 2	CPOHYP1-0 $=01$	2	5	8	mV
Positive Hysteresis 3	CPOHYP1-0 $=10$	6	10	14	mV
Positive Hysteresis 4	CPOHYP1-0 = 11	12	20	28	mV
Negative Hysteresis 1	CPOHYN1-0 $=00$	-	0	1	mV
Negative Hysteresis 2	CPOHYN1-0 $=01$	2	5	8	mV
Negative Hysteresis 3	CPOHYN1-0 = 10	6	10	14	mV
Negative Hysteresis 4	CPOHYN1-0 = 11	12	20	28	mV
Inverting or Non-Inverting Input Voltage Range		-0.25	-	$\mathrm{V}_{\mathrm{DD}}+0.25$	V
Input Offset Voltage		-7.5	-	7.5	mV
Power Specifications					
Power Supply Rejection		-	0.5	-	mV/V
Powerup Time		-	10	-	$\mu \mathrm{s}$
Supply Current at DC	Mode 0	-	26	50	$\mu \mathrm{A}$
	Mode 1	-	10	20	$\mu \mathrm{A}$
	Mode 2	-	3	6	$\mu \mathrm{A}$
	Mode 3	-	0.5	2	$\mu \mathrm{A}$

Note: Vcm is the common-mode voltage on CPO+ and CPO-.

C8051T630/1/2/3/4/5

5.3. Typical Performance Curves

Figure 5.1. Normal Mode Digital Supply Current vs. Frequency (MPCE = 1)

Figure 5.2. Idle Mode Digital Supply Current vs. Frequency (MPCE = 1)

C8051T630/1/2/3/4/5

6. 10-Bit ADC (ADC0, C8051T630/2/4 only)

ADC0 on the C8051T630/2/4 is a 500 ksps , 10-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, a gain stage programmable to $1 x$ or $0.5 x$, and a programmable window detector. The ADC is fully configurable under software control via Special Function Registers. The ADC may be configured to measure various different signals using the analog multiplexer described in Section "6.5. ADC0 Analog Multiplexer (C8051T630/2/4 only)" on page 43. The voltage reference for the ADC is selected as described in Section " 9 . Voltage Reference Options" on page 52. The ADC0 subsystem is enabled only when the ADOEN bit in the ADCO Control register (ADCOCN) is set to logic 1 . The ADCO subsystem is in low power shutdown when this bit is logic 0 .

Figure 6.1. ADCO Functional Block Diagram

C8051T630/1/2/3/4/5

6.1. Output Code Formatting

The ADC measures the input voltage with reference to GND. The registers ADCOH and ADCOL contain the high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-justified or left-justified, depending on the setting of the ADOLJST bit. Conversion codes are represented as 10 -bit unsigned integers. Inputs are measured from 0 to VREF x 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADCOH and ADCOL registers are set to 0 .

Input Voltage	Right-Justified ADCOH:ADCOL $($ ADOLJST = 0)	Left-Justified ADCOH:ADCOL $($ ADOLJST = 1)
VREF $\times 1023 / 1024$	$0 \times 03 F F$	$0 \times F F C 0$
VREF $\times 512 / 1024$	0×0200	0×8000
VREF $\times 256 / 1024$	0×0100	0×4000
0	0×0000	0×0000

6.2. 8-Bit Mode

Setting the ADC08BE bit in register ADC0CF to 1 will put the ADC in 8-bit mode. In 8-bit mode, only the 8 MSBs of data are converted, and the ADCOH register holds the results. The ADOLJST bit is ignored for 8bit mode. 8-bit conversions take two fewer SAR clock cycles than 10-bit conversions, so the conversion is completed faster, and a 500 ksps sampling rate can be achieved with a slower SAR clock.

6.3. Modes of Operation

ADC0 has a maximum conversion speed of 500 ksps . The ADCO conversion clock is a divided version of the system clock, determined by the ADOSC bits in the ADCOCF register.

6.3.1. Starting a Conversion

A conversion can be initiated in one of six ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (ADOCM2-0) in register ADCOCN. Conversions may be initiated by one of the following:

1. Writing a 1 to the ADOBUSY bit of register ADCOCN
2. A Timer 0 overflow (i.e., timed continuous conversions)
3. A Timer 2 overflow
4. A Timer 1 overflow
5. A rising edge on the CNVSTR input signal
6. A Timer 3 overflow

Writing a 1 to ADOBUSY provides software control of ADCO whereby conversions are performed "ondemand". During conversion, the ADOBUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of ADOBUSY triggers an interrupt (when enabled) and sets the ADCO interrupt flag (ADOINT). Note: When polling for ADC conversion completions, the ADC0 interrupt flag (ADOINT) should be used. Converted data is available in the ADC0 data registers, ADCOH:ADCOL, when bit ADOINT is logic 1. Note that when Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer $2 / 3$ is in 8 -bit mode; High byte overflows are used if Timer $2 / 3$ is in 16 -bit mode. See Section "24. Timers" on page 169 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as a Port I/O pin. When the CNVSTR input is used as the ADC0 conversion source, the associated pin should be skipped by the Digital Crossbar. See Section "20. Port Input/Output" on page 109 for details on Port I/O configuration.

C8051T630/1/2/3/4/5

6.3.2. Tracking Modes

The ADOTM bit in register ADCOCN enables "delayed conversions", and will delay the actual conversion start by three SAR clock cycles, during which time the ADC will continue to track the input. If ADOTM is left at logic 0 , a conversion will begin immediately, without the extra tracking time. For internal start-of-conversion sources, the ADC will track anytime it is not performing a conversion. When the CNVSTR signal is used to initiate conversions, ADC0 will track either when ADOTM is logic 1 , or when ADOTM is logic 0 and CNVSTR is held low. See Figure 6.2 for track and convert timing details. Delayed conversion mode is useful when AMUX settings are frequently changed, due to the settling time requirements described in Section "6.3.3. Settling Time Requirements" on page 36.

*Conversion Ends at rising edge of $12^{\text {th }}$ clock in 8-bit Mode

B. ADC Timing for Internal Trigger Source

Write ' 1 ' to ADOBUSY, Timer 0, Timer 2, Timer 1 Overflow (ADOCM[2:0]=000, 001, 010, 011)

*Conversion Ends at rising edge of $12^{\text {th }}$ clock in 8 -bit Mode
Figure 6.2. 10-Bit ADC Track and Conversion Example Timing

C8051T630/1/2/3/4/5

6.3.3. Settling Time Requirements

A minimum tracking time is required before each conversion to ensure that an accurate conversion is performed. This tracking time is determined by any series impedance, including the AMUXO resistance, the the ADC0 sampling capacitance, and the accuracy required for the conversion. Note that in delayed tracking mode, three SAR clocks are used for tracking at the start of every conversion. For many applications, these three SAR clocks will meet the minimum tracking time requirements.

Figure 6.3 shows the equivalent ADC0 input circuit. The required ADC0 settling time for a given settling accuracy (SA) may be approximated by Equation 6.1. See Table 5.9 for ADC0 minimum settling time requirements as well as the mux impedance and sampling capacitor values.

$$
t=\ln \left(\frac{2^{n}}{S A}\right) \times R_{\text {TOTAL }} C_{\text {SAMPLE }}
$$

Equation 6.1. ADCO Settling Time Requirements

Where:
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB) t is the required settling time in seconds
$R_{\text {TOTAL }}$ is the sum of the AMUXO resistance and any external source resistance.
n is the ADC resolution in bits (10).

Note: See electrical specification tables for $R_{\text {MUX }}$ and $C_{\text {SAMPLE }}$ parameters.
Figure 6.3. ADCO Equivalent Input Circuits

C8051T630/1/2/3/4/5

SFR Definition 6.1. ADC0CF: ADC0 Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	AD0SC[4:0]							
Type	R/W							
Reset	1	1	1	1	1	ADOLJST	AD08BE	AMP0GN0

SFR Address $=0 \times B C$

Bit	Name	Function
7:3	ADOSC[4:0]	$\begin{array}{l}\text { ADC0 SAR Conversion Clock Period Bits. } \\ \text { SAR Conversion clock is derived from system clock by the following equation, where } \\ \text { ADOSC refers to the 5-bit value held in bits ADOSC4-0. SAR Conversion clock } \\ \text { requirements are given in the ADC specification table. }\end{array}$
AD0SC $=\frac{\text { SYSCLK }}{\text { CLK }_{\text {SAR }}}-1$		
Note: If the Memory Power Controller is enabled (MPCE = '1'), ADOSC must be set to at least		
"00001" for proper ADC operation.		

C8051T630/1/2/3/4/5

SFR Definition 6.2. ADCOH: ADCO Data Word MSB

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADCOH[7:0]							
Type	R / W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times B E$

Bit	Name	Function
7:0	ADCOH[7:0]	ADC0 Data Word High-Order Bits. For ADOLJST $=0:$ Bits 7-2 will read 000000b. Bits 1-0 are the upper 2 bits of the 10- bit ADC0 Data Word. For ADOLJST = 1: Bits 7-0 are the most-significant bits of the 10-bit ADC0 Data Word. Note: In 8-bit mode ADOLJST is ignored, and ADC0H holds the 8-bit data word.

SFR Definition 6.3. ADCOL: ADCO Data Word LSB

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name	ADCOL[7:0]								
Type									
Reset	0	0	0	0	0	0	0	0	

SFR Address $=0 \times B D$

Bit	Name	Function
7:0	ADC0L[7:0]	ADC0 Data Word Low-Order Bits. For ADOLJST $=0$: Bits 7-0 are the lower 8 bits of the 10-bit Data Word. For ADOLJST = 1: Bits 7-6 are the lower 2 bits of the 10-bit Data Word. Bits 5-0 will read 000000b. Note: In 8-bit mode ADOLJST is ignored, and ADC0L will read back 00000000b.

C8051T630/1/2/3/4/5

SFR Definition 6.4. ADCOCN: ADCO Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADOEN	ADOTM	ADOINT	ADOBUSY	ADOWINT	ADOCM[2:0]		
Type	R/W	R/W	R/W	R/W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE8; Bit-Addressable

Bit	Name	Function
7	AD0EN	ADCO Enable Bit. 0 : ADC0 Disabled. ADC0 is in low-power shutdown. 1: ADCO Enabled. ADCO is active and ready for data conversions.
6	AD0TM	ADCO Track Mode Bit. 0 : Normal Track Mode: When ADC0 is enabled, tracking is continuous unless a conversion is in progress. Conversion begins immediately on start-of-conversion event, as defined by ADOCM[2:0]. 1: Delayed Track Mode: When ADCO is enabled, input is tracked when a conversion is not in progress. A start-of-conversion signal initiates three SAR clocks of additional tracking, and then begins the conversion.
5	ADOINT	ADC0 Conversion Complete Interrupt Flag. 0: ADCO has not completed a data conversion since ADOINT was last cleared. 1: ADCO has completed a data conversion.
4	ADOBUSY	ADC0 Busy Bit. Read: Write: $0:$ ADC0 conversion is not in $0:$ No Effect. progress. 1: Initiates ADC0 Conversion if 1: ADC0 conversion is in prog- ADOCM[2:0] = 000b ress.
3	ADOWINT	ADC0 Window Compare Interrupt Flag. 0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared. 1: ADCO Window Comparison Data match has occurred.
2:0	AD0CM[2:0]	ADC0 Start of Conversion Mode Select. 000: ADC0 start-of-conversion source is write of 1 to ADOBUSY. 001: ADC0 start-of-conversion source is overflow of Timer 0. 010: ADC0 start-of-conversion source is overflow of Timer 2. 011: ADC0 start-of-conversion source is overflow of Timer 1. 100: ADC0 start-of-conversion source is rising edge of external CNVSTR. 101: ADC0 start-of-conversion source is overflow of Timer 3. 11x: Reserved.

C8051T630/1/2/3/4/5

6.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADOWINT in register ADCOCN) can also be used in polled mode. The ADC0 Greater-Than (ADCOGTH, ADC0GTL) and Less-Than (ADCOLTH, ADCOLTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADCO Less-Than and ADC0 Greater-Than registers.

SFR Definition 6.5. ADCOGTH: ADC0 Greater-Than Data High Byte

Bit	7	6	5	4	3	2	1	0
Name	ADC0GTH[7:0]							
Type	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address $=0 \times C 4$

Bit	Name	Function
$7: 0$	ADC0GTH[7:0]	ADC0 Greater-Than Data Word High-Order Bits.

SFR Definition 6.6. ADCOGTL: ADC0 Greater-Than Data Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADC0GTL[7:0]							
Type	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address $=0 \times C 3$

Bit	Name	Function
7:0	ADC0GTL[7:0]	ADC0 Greater-Than Data Word Low-Order Bits.

C8051T630/1/2/3/4/5

SFR Definition 6.7. ADCOLTH: ADCO Less-Than Data High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ADCOLTH[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 6$

Bit	Name	Function
7:0	ADCOLTH[7:0]	ADC0 Less-Than Data Word High-Order Bits.

SFR Definition 6.8. ADCOLTL: ADCO Less-Than Data Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name	ADCOLTL[7:0]								
Type	R/W								
Reset	0	0	0	0	0	0	0	0	

SFR Address = 0xC5

Bit	Name	Function
$7: 0$	ADCOLTL[7:0]	ADC0 Less-Than Data Word Low-Order Bits.

C8051T630/1/2/3/4/5

6.4.1. Window Detector Example

Figure 6.4 shows two example window comparisons for right-justified data, with ADCOLTH:ADCOLTL $=0 \times 0080$ (128d) and ADC0GTH:ADCOGTL $=0 \times 0040$ (64d). The input voltage can range from 0 to VREF $\times(1023 / 1024)$ with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an ADOWINT interrupt will be generated if the ADCO conversion word (ADCOH:ADCOL) is within the range defined by ADCOGTH:ADCOGTL and ADCOLTH:ADCOLTL (if 0×0040 < ADCOH:ADCOL < $0 x 0080$). In the right example, and ADOWINT interrupt will be generated if the ADCO conversion word is outside of the range defined by the ADCOGT and ADCOLT registers (if ADCOH:ADCOL < 0x0040 or ADCOH:ADCOL > 0x0080). Figure 6.5 shows an example using left-justified data with the same comparison values.

Figure 6.4. ADC Window Compare Example: Right-Justified Data

Figure 6.5. ADC Window Compare Example: Left-Justified Data

C8051T630/1/2/3/4/5

6.5. ADC0 Analog Multiplexer (C8051T630/2/4 only)

ADC0 on the C8051T630/2/4 uses an analog input multiplexer to select the positive input to the ADC. Any of the following may be selected as the positive input: Port 0 and 1 I/O pins, the on-chip temperature sensor, or the positive power supply (V_{DD}). The ADC0 input channel is selected in the AMXOP register described in SFR Definition 6.9.

Figure 6.6. ADCO Multiplexer Block Diagram
Important Note About ADCO Input Configuration: Port pins selected as ADCO inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to 0 the corresponding bit in register PnMDIN. To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register PnSKIP. See Section "20. Port Input/Output" on page 109 for more Port I/O configuration details.

C8051T630/1/2/3/4/5

SFR Definition 6.9. AMXOP: AMUXO Positive Channel Select

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name				$\operatorname{AMXOP}[4: 0]$				
Type	R	R	R		R / W			
Reset	0	0	0	1	1	1	1	1

SFR Address $=0 \times B B$

Bit	Name	Function
7:5	Unused	Unused. Read = 000b; Write = Don't Care.
4:0	AMXOP[4:0]	AMUX0 Positive Input Selection. 00000: P0.0 $00001:$ P 0.1 $00010:$ P 0.2 $00011:$ P 0.3 $00100:$ P 0.4 $00101:$ P 0.5 $00110:$ P 0.6 $00111:$ P 0.7 $01000:$ P 1.0 $01001:$ P 1.1 $01010:$ P 1.2 $01011:$ P 1.3 $01100:$ P 1.4 $01101:$ P 1.5 $01110:$ P 1.6 $01111:$ P 1.7 $10000:$ Temp Sensor $10001:$ V_{DD} 10010 - 11111: no input selected

C8051T630/1/2/3/4/5

7. Temperature Sensor (C8051T630/2/4 only)

An on-chip temperature sensor is included on the C8051T630/2/4 which can be directly accessed via the ADC multiplexer. To use the ADC to measure the temperature sensor, the ADC mux channel should be configured to connect to the temperature sensor. The temperature sensor transfer function is shown in Figure 7.1. The output voltage ($\mathrm{V}_{\mathrm{TEMP}}$) is the positive ADC input when the ADC multiplexer is set correctly. The TEMPE bit in register REFOCN enables/disables the temperature sensor, as described in SFR Definition 9.1. While disabled, the temperature sensor defaults to a high impedance state and any ADC measurements performed on the sensor will result in meaningless data. Refer to Table 5.10 for the slope and offset parameters of the temperature sensor.

Temperature
Figure 7.1. Temperature Sensor Transfer Function

7.1. Calibration

The uncalibrated temperature sensor output is extremely linear and suitable for relative temperature measurements (see Table 5.10 on page 29 for specifications). For absolute temperature measurements, offset and/or gain calibration is recommended. A single-point offset measurement of the temperature sensor is performed on each device during production test. The registers TOFFH and TOFFL, shown in SFR Definition 7.1 and SFR Definition 7.2 represent the output of the ADC when reading the temperature sensor at 0 degrees Celsius, and using the internal regulator as a voltage reference.

Figure 7.2 shows the typical temperature sensor error assuming a 1-point calibration at $0^{\circ} \mathrm{C}$. Parameters that affect ADC measurement, in particular the voltage reference value, will also affect temperature measurement.

C8051T630/1/2/3/4/5

Figure 7.2. Temperature Sensor Error with 1-Point Calibration at 0 Celsius

C8051T630/1/2/3/4/5

SFR Definition 7.1. TOFFH: Temperature Offset Measurement High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TOFF[9:2]							
Type	R/W							
Reset	Varies							

SFR Address $=0 \times 86$

Bit	Name	Function
7:0	TOFF[9:2]	Temperature Sensor Offset High Order Bits. The temperature sensor offset registers represent the output of the ADC when mea- suring the temperature sensor at $0^{\circ} \mathrm{C}$, with the voltage reference set to the internal regulator. The temperature sensor offset information is left-justified. One LSB of this measurement is equivalent to one LSB of the ADC output under the measurement conditions.

SFR Definition 7.2. TOFFL: Temperature Offset Measurement Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\operatorname{TOFF}[1: 0]$							
Type	R / W		R	R	R	R	R	R
Reset	Varies	Varies	0	0	0	0	0	0

SFR Address $=0 \times 85$

Bit	Name	Function
7:6	TOFF[1:0]	Temperature Sensor Offset Low Order Bits. The temperature sensor offset registers represent the output of the ADC when mea- suring the temperature sensor at $0^{\circ} \mathrm{C}$, with the voltage reference set to the internal regulator. The temperature sensor offset information is left-justified. One LSB of this measurement is equivalent to one LSB of the ADC output under the measurement conditions.
5:0	Unused	Unused. Read $=000000 \mathrm{~b}$; Write = Don't Care.

C8051T630/1/2/3/4/5

8. 10-Bit Current Mode DAC (IDA0, C8051T630/2/4 only)

The C8051T630/2/4 device includes a 10 -bit current-mode Digital-to-Analog Converter (IDAC). The maximum current output of the IDAC can be adjusted for three different current settings; $0.5 \mathrm{~mA}, 1 \mathrm{~mA}$, and 2 mA . The IDAC is enabled or disabled with the IDAOEN bit in the IDAO Control Register (see SFR Definition 8.1). When IDAOEN is set to 0 , the IDAC port pin (P0.1) behaves as a normal GPIO pin. When IDAOEN is set to 1 , the digital output drivers and weak pullup for the IDAC pin are automatically disabled, and the pin is connected to the IDAC output. An internal bandgap bias generator is used to generate a reference current for the IDAC whenever it is enabled. When using the IDAC, bit 1 in the POSKIP register should be set to 1 , to force the Crossbar to skip the IDAC pin.

8.1. IDAO Output Scheduling

IDAO features a flexible output update mechanism which allows for seamless full-scale changes and supports jitter-free updates for waveform generation. Three update modes are provided, allowing IDAC output updates on a write to IDAOH, on a Timer overflow, or on an external pin edge.

8.1.1. Update Output On-Demand

In its default mode (IDAOCN.[6:4] = 111) the IDAO output is updated "on-demand" on a write to the highbyte of the IDAO data register (IDAOH). It is important to note that writes to IDAOL are held in this mode, and have no effect on the IDAO output until a write to IDAOH takes place. If writing a full 10-bit word to the IDAC data registers, the 10-bit data word is written to the low byte (IDAOL) and high byte (IDAOH) data registers. Data is latched into IDAO after a write to the IDAOH register, so the write sequence should be IDAOL followed by IDAOH if the full 10-bit resolution is required. The IDAC can be used in 8 -bit mode by initializing IDAOL to the desired value (typically 0x00), and writing data to only IDAOH (see Section 8.2 for information on the format of the 10 -bit IDAC data word within the 16 -bit SFR space).

Figure 8.1. IDAO Functional Block Diagram

C8051T630/1/2/3/4/5

8.1.2. Update Output Based on Timer Overflow

Similar to the ADC operation, in which an ADC conversion can be initiated by a timer overflow independently of the processor, the IDAC outputs can use a Timer overflow to schedule an output update event. This feature is useful in systems where the IDAC is used to generate a waveform of a defined sampling rate by eliminating the effects of variable interrupt latency and instruction execution on the timing of the IDAC output. When the IDA0CM bits (IDAOCN.[6:4]) are set to 000, 001,010 or 011, writes to both IDAC data registers (IDAOL and IDAOH) are held until an associated Timer overflow event (Timer 0, Timer 1, Timer 2 or Timer 3, respectively) occurs, at which time the IDAOH:IDAOL contents are copied to the IDAC input latches, allowing the IDAC output to change to the new value.

8.1.3. Update Output Based on CNVSTR Edge

The IDAC output can also be configured to update on a rising edge, falling edge, or both edges of the external CNVSTR signal. When the IDAOCM bits (IDAOCN.[6:4]) are set to 100, 101, or 110, writes to both IDAC data registers (IDAOL and IDAOH) are held until an edge occurs on the CNVSTR input pin. The particular setting of the IDAOCM bits determines whether IDAC outputs are updated on rising, falling, or both edges of CNVSTR. When a corresponding edge occurs, the IDAOH:IDAOL contents are copied to the IDAC input latches, allowing the IDAC output to change to the new value.

8.2. IDAC Output Mapping

The IDAC data registers (IDAOH and IDAOL) are left-justified, meaning that the eight MSBs of the IDAC output word are mapped to bits $7-0$ of the IDAOH register, and the two LSBs of the IDAC output word are mapped to bits 7 and 6 of the IDAOL register. The data word mapping for the IDAC is shown in Figure 8.2.

Figure 8.2. IDAO Data Word Mapping
The full-scale output current of the IDAC is selected using the IDA0OMD bits (IDA0CN[1:0]). By default, the IDAC is set to a full-scale output current of 2 mA . The IDAOOMD bits can also be configured to provide full-scale output currents of 1 mA or 0.5 mA , as shown in SFR Definition 8.1.

C8051T630/1/2/3/4/5

SFR Definition 8.1. IDAOCN: IDAO Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	IDAOEN	IDA0CM[2:0]					IDA0OMD[1:0]	
Type	R/W	R/W			R	R	R/W	
Reset	0	1	1	1	0	0	1	0

SFR Address $=0 \times B 9$

Bit	Name	Function
7	IDAOEN	IDAO Enable. 0: IDAO Disabled. 1: IDA0 Enabled.
6:4	IDA0CM[2:0]	IDAO Update Source Select bits. 000: DAC output updates on Timer 0 overflow. 001: DAC output updates on Timer 1 overflow. 010: DAC output updates on Timer 2 overflow. 011: DAC output updates on Timer 3 overflow. 100: DAC output updates on rising edge of CNVSTR. 101: DAC output updates on falling edge of CNVSTR. 110: DAC output updates on any edge of CNVSTR. 111: DAC output updates on write to IDAOH.
3:2	Unused	Unused. Read = 00b. Write = Don't care.
1:0	IDA00MD[1:0]	IDAO Output Mode Select bits. 00: 0.5 mA full-scale output current. 01: 1.0 mA full-scale output current. 1x: 2.0 mA full-scale output current.

C8051T630/1/2/3/4/5

SFR Definition 8.2. IDAOH: IDAO Data Word MSB

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	IDAO[9:2]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times 97$

Bit	Name	Function
$7: 0$	IDA0[9:2]	IDA0 Data Word High-Order Bits. Upper 8 bits of the 10-bit IDA0 Data Word.

SFR Definition 8.3. IDA0L: IDAO Data Word LSB

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	IDAO[1:0]							
Type	R / W		R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 96$

Bit	Name	Function
$7: 6$	IDA0[1:0]	IDA0 Data Word Low-Order Bits. Lower 2 bits of the 10-bit IDA0 Data Word.
$5: 0$	Unused	Unused. Read $=000000 \mathrm{~b}$. Write = Don't care.

C8051T630/1/2/3/4/5

9. Voltage Reference Options

The Voltage reference multiplexer for the ADC is configurable to use an externally connected voltage reference, the on-chip reference voltage generator routed to the VREF pin, the unregulated power supply voltage (V_{DD}), or the regulated 1.8 V internal supply (see Figure 9.1). The REFSL bit in the Reference Control register (REFOCN, SFR Definition 9.1) selects the reference source for the ADC. For an external source or the on-chip reference, REFSL should be set to 0 to select the VREF pin. To use V_{DD} as the reference source, REFSL should be set to 1 . To override this selection and use the internal regulator as the reference source, the REGOVR bit can be set to 1 .

The BIASE bit enables the internal voltage bias generator, which is used by many of the analog peripherals on the device. This bias is automatically enabled when any peripheral which requires it is enabled, and it does not need to be enabled manually. The bias generator may be enabled manually by writing a 1 to the BIASE bit in register REFOCN. The electrical specifications for the voltage reference circuit are given in Table 5.11.

The C8051T630/2/4 devices also include an on-chip voltage reference circuit which consists of a 1.2 V , temperature stable bandgap voltage reference generator and a selectable-gain output buffer amplifier. The buffer is configured for $1 x$ or $2 x$ gain using the REFBGS bit in register REFOCN. On the $1 x$ gain setting the output voltage is nominally 1.2 V , and on the 2 x gain setting the output voltage is nominally 2.4 V . The onchip voltage reference can be driven on the VREF pin by setting the REFBE bit in register REFOCN to a 1. The maximum load seen by the VREF pin must be less than $200 \mu \mathrm{~A}$ to GND. Bypass capacitors of $0.1 \mu \mathrm{~F}$ and $4.7 \mu \mathrm{~F}$ are recommended from the VREF pin to GND, and a minimum of 0.1 uF is required. If the onchip reference is not used, the REFBE bit should be cleared to 0 . Electrical specifications for the on-chip voltage reference are given in Table 5.11.

Important Note about the VREF Pin: When using either an external voltage reference or the on-chip reference circuitry, the VREF pin should be configured as an analog pin and skipped by the Digital Crossbar. Refer to Section "20. Port Input/Output" on page 109 for the location of the VREF pin, as well as details of how to configure the pin in analog mode and to be skipped by the crossbar.

Figure 9.1. Voltage Reference Functional Block Diagram

C8051T630/1/2/3/4/5

SFR Definition 9.1. REFOCN: Reference Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	REFBGS			REGOVR	REFSL	TEMPE	BIASE	REFBE
Type	R/W	R	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD1

Bit	Name	Function
7	REFBGS	Reference Buffer Gain Select. This bit selects between $1 x$ and $2 x$ gain for the on-chip voltage reference buffer. 0: $2 x$ Gain 1: $1 \times$ Gain
$6: 5$	Unused	Unused. Read = 00b; Write = don't care.
4	REGOVR	Regulator Reference Override. This bit "overrides" the REFSL bit, and allows the internal regulator to be used as a ref- erence source. 0: The voltage reference source is selected by the REFSL bit. 1: The internal regulator is used as the voltage reference.
3	REFSL	Voltage Reference Select. This bit selects the ADCs voltage reference. 0: $V_{\text {REF }}$ pin used as voltage reference. 1: VDD used as voltage reference.
2	TEMPE	Temperature Sensor Enable Bit. 0: Internal Temperature Sensor off. 1: Internal Temperature Sensor on.
1	BIASE	Internal Analog Bias Generator Enable Bit. 0: Internal Bias Generator off. 1: Internal Bias Generator on.
0	REFBE	On-chip Reference Buffer Enable Bit. 0: On-chip Reference Buffer off. 1: On-chip Reference Buffer on. Internal voltage reference driven on the VREF

C8051T630/1/2/3/4/5

10. Voltage Regulator (REG0)

C8051T630/1/2/3/4/5 devices include an internal voltage regulator (REGO) to regulate the internal core supply to 1.8 V from a V_{DD} supply of 1.8 to 3.6 V . Two power-saving modes are built into the regulator to help reduce current consumption in low-power applications. These modes are accessed through the REGOCN register (SFR Definition 10.1). Electrical characteristics for the on-chip regulator are specified in Table 5.5 on page 26

If an external regulator is used to power the device, the internal regulator may be put into bypass mode using the BYPASS bit. The internal regulator should never be placed in bypass mode unless an external 1.8 V regulator is used to supply V_{DD}. Doing so could cause permanent damage to the device.

Under default conditions, when the device enters STOP mode the internal regulator will remain on. This allows any enabled reset source to generate a reset for the device and bring the device out of STOP mode. For additional power savings, the STOPCF bit can be used to shut down the regulator and the internal power network of the device when the part enters STOP mode. When STOPCF is set to 1 , the $\overline{\mathrm{RST}}$ pin or a full power cycle of the device are the only methods of generating a reset.

C8051T630/1/2/3/4/5

SFR Definition 10.1. REG0CN: Voltage Regulator Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	STOPCF	BYPASS						MPCE
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 7$

Bit	Name	Function
7	STOPCF	Stop Mode Configuration. This bit configures the regulator's behavior when the device enters STOP mode. 0: Regulator is still active in STOP mode. Any enabled reset source will reset the device. 1: Regulator is shut down in STOP mode. Only the RST pin or power cycle can reset the device.
6	BYPASS	Bypass Internal Regulator. This bit places the regulator in bypass mode, turning off the regulator, and allowing the core to run directly from the VDD supply pin. 0: Normal Mode—Regulator is on. 1: Bypass Mode—Regulator is off, and the microcontroller core operates directly from the VDD supply voltage. IMPORTANT: Bypass mode is for use with an external regulator as the supply voltage only. Never place the regulator in bypass mode when the VDD supply voltage is greater than the specifications given in Table 5.1 on page 23. Doing so may cause permanent damage to the device.
$5: 1$	Reserved	Reserved. Must Write 00000b
0	MPCE	Memory Power Controller Enable. This bit can help the system save power at slower system clock frequencies (about 2.0 MHz or less) by automatically shutting down the EPROM memory between clocks when information is not being fetched from the EPROM memory. 0: Normal Mode—Memory power controller disabled (EPROM memory is always on). $1:$ Low Power Mode—Memory power controller enabled (EPROM memory turns on/off as needed). Note: If an external clock source is used with the Memory Power Controller enabled, and the clock frequency changes from slow (<2.0 MHz) to fast (> 2.0 MHz), the EPROM power will turn on, and up to 20 clocks may be "skipped" to ensure that the EPROM power is stable before reading memory.

C8051T630/1/2/3/4/5

11. Comparator0

C8051T630/1/2/3/4/5 devices include an on-chip programmable voltage comparator, Comparator0, shown in Figure 11.1.

The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a synchronous "latched" output (CPO), or an asynchronous "raw" output (CPOA). The asynchronous CPOA signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output with the device in STOP mode. When assigned to a Port pin, the Comparator output may be configured as open drain or push-pull (see Section "20.4. Port I/O Initialization" on page 116). Comparator0 may also be used as a reset source (see Section "18.5. Comparator0 Reset" on page 99).

The Comparator0 inputs are selected by the comparator input multiplexer, as detailed in Section "11.1. Comparator Multiplexer" on page 61.

Figure 11.1. Comparator0 Functional Block Diagram
The Comparator output can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator output is available asynchronous or synchronous to the system clock; the asynchronous output is available even in STOP mode (with no system clock active). When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic low state, and the power supply to the comparator is turned off. See Section "20.3. Priority Crossbar Decoder" on page 114 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to $\left(\mathrm{V}_{\mathrm{DD}}\right)+0.25 \mathrm{~V}$ without damage or upset. The complete Comparator electrical specifications are given in Section " 5 . Electrical Characteristics" on page 23.

C8051T630/1/2/3/4/5

The Comparator response time may be configured in software via the CPTOMD register (see SFR Definition 11.2). Selecting a longer response time reduces the Comparator supply current.

Figure 11.2. Comparator Hysteresis Plot
The Comparator hysteresis is software-programmable via its Comparator Control register CPTOCN. The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTOCN (shown in SFR Definition 11.1). The amount of negative hysteresis voltage is determined by the settings of the CPOHYN bits. As shown in Figure 11.2, settings of 20,10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CPOHYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section "15.1. MCU Interrupt Sources and Vectors" on page 81). The CPOFIF flag is set to logic 1 upon a Comparator falling-edge occurrence, and the CPORIF flag is set to logic 1 upon the Comparator rising-edge occurrence. Once set, these bits remain set until cleared by software. The Comparator rising-edge interrupt mask is enabled by setting CPORIE to a logic 1. The Comparator0 falling-edge interrupt mask is enabled by setting CPOFIE to a logic 1.

The output state of the Comparator can be obtained at any time by reading the CPOOUT bit. The Comparator is enabled by setting the CPOEN bit to logic 1 , and is disabled by clearing this bit to logic 0 .

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic 0 a short time after the comparator is enabled or its mode bits have been changed.

C8051T630/1/2/3/4/5

SFR Definition 11.1. CPTOCN: Comparator0 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CP0EN	CP0OUT	CP0RIF	CPOFIF	CPOHYP[1:0]	CPOHYN[1:0]		
Type	R/W	R	R/W	R/W	R/W		R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x9B

Bit	Name	Function
7	CPOEN	Comparator0 Enable Bit. 0: Comparator0 Disabled. 1: Comparator0 Enabled.
6	CP0OUT	Comparator0 Output State Flag. 0: Voltage on CP0+ < CP0-. 1: Voltage on CP0+ > CP0-.
5	CPORIF	Comparator0 Rising-Edge Flag. Must be cleared by software. 0: No Comparator0 Rising Edge has occurred since this flag was last cleared. 1: Comparator0 Rising Edge has occurred.
4	CPOFIF	Comparator0 Falling-Edge Flag. Must be cleared by software. 0: No Comparator0 Falling-Edge has occurred since this flag was last cleared. 1: Comparator0 Falling-Edge has occurred.
$3: 2$	CPOHYP[1:0]	Comparator0 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 11: Positive Hysteresis = 20 mV.
$1: 0$	CPOHYN[1:0]	Comparator0 Negative Hysteresis Control Bits. 00: Negative Hysteresis Disabled. 01: Negative Hysteresis = 5 mV. 10: Negative Hysteresis = 10 mV. 11: Negative Hysteresis = 20 mV.

C8051T630/1/2/3/4/5

SFR Definition 11.2. CPTOMD: Comparator0 Mode Selection

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name			CPORIE	CPOFIE			CPOMD[1:0]	
Type	R	R	R / W	R / W	R	R	R / W	
Reset	0	0	0	0	0	0	1	0

SFR Address = 0x9D

Bit	Name	Function
$7: 6$	Unused	Unused. Read = 00b, Write = Don't Care.
5	CPORIE	Comparator0 Rising-Edge Interrupt Enable. 0: Comparator0 Rising-edge interrupt disabled. 1: Comparator0 Rising-edge interrupt enabled.
4	CPOFIE	Comparator0 Falling-Edge Interrupt Enable. 0: Comparator0 Falling-edge interrupt disabled. 1: Comparator0 Falling-edge interrupt enabled.
3:2	Unused	Unused. Read = 00b, Write = don't care.
1:0	CP0MD[1:0]	Comparator0 Mode Select. These bits affect the response time and power consumption for Comparator0. 00: Mode 0 (Fastest Response Time, Highest Power Consumption) 01: Mode 1 10: Mode 2 11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

C8051T630/1/2/3/4/5

11.1. Comparator Multiplexer

C8051T630/1/2/3/4/5 devices include an analog input multiplexer to connect Port I/O pins to the comparator inputs. The Comparator0 inputs are selected in the CPTOMX register (SFR Definition 11.3). The CMX-OP3-CMXOPO bits select the Comparator0 positive input; the CMXON3-CMXONO bits select the Comparator0 negative input. Important Note About Comparator Inputs: The Port pins selected as comparator inputs should be configured as analog inputs in their associated Port configuration register, and configured to be skipped by the Crossbar (for details on Port configuration, see Section "20.6. Special Function Registers for Accessing and Configuring Port I/O" on page 121).

Figure 11.3. Comparator Input Multiplexer Block Diagram

C8051T630/1/2/3/4/5

SFR Definition 11.3. CPTOMX: Comparator0 MUX Selection

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{CMXON}[3: 0]$							
Type	CM / W							
Reset	1	1	1	1	1	1	1	1

SFR Address $=0 \times 9$ F

Bit	Name	Function
7:4	CMX0N[3:0]	Comparator0 Negative Input MUX Selection.
3:0	CMXOP[3:0]	Comparator0 Positive Input MUX Selection.

C8051T630/1/2/3/4/5

12. CIP-51 Microcontroller

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51 ${ }^{\text {TM }}$ instruction set; standard $803 x / 805 x$ assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. The CIP-51 also includes on-chip debug hardware (see description in Section 26), and interfaces directly with the analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 12.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25 MHz Clock
- 0 to 25 MHz Clock Frequency
- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz . By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

Figure 12.1. CIP-51 Block Diagram

C8051T630/1/2/3/4/5

With the CIP-51's maximum system clock at 25 MHz , it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	$2 / 3$	3	$3 / 4$	4	$4 / 5$	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

12.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51 ${ }^{\text {TM }}$ instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51 ${ }^{\text {TM }}$ counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

12.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 12.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

C8051T630/1/2/3/4/5

Table 12.1. CIP-51 Instruction Set Summary

Mnemonic	Description	Bytes	Clock Cycles
Arithmetic Operations			
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, \#data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, \#data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, \#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
Logical Operations			
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, \#data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, \#data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, \#data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, \#data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, \#data	Exclusive-OR immediate to A	2	2
XRL direct, A	Exclusive-OR A to direct byte	2	2

C8051T630/1/2/3/4/5

Table 12.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
XRL direct, \#data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer			
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, \#data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, \#data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, \#data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, \#data	Move immediate to indirect RAM	2	2
MOV DPTR, \#data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
Boolean Manipulation			
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2

C8051T630/1/2/3/4/5

Table 12.1. CIP-51 Instruction Set Summary (Continued)

Mnemonic	Description	Bytes	Clock Cycles
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
Program Branching			
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, \#data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, \#data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, \#data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

C8051T630/1/2/3/4/5

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.
@Ri - Data RAM location addressed indirectly through R0 or R1.
rel - 8-bit, signed (twos complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.
direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x000x7F) or an SFR (0x80-0xFF).
\#data-8-bit constant
\#data16-16-bit constant
bit - Direct-accessed bit in Data RAM or SFR
addr11-11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.
addr16-16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP.
All mnemonics copyrighted © Intel Corporation 1980.

C8051T630/1/2/3/4/5

12.2. CIP-51 Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should always be written to the value indicated in the SFR description. Future product versions may use these bits to implement new features in which case the reset value of the bit will be the indicated value, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the data sheet associated with their corresponding system function.

SFR Definition 12.1. DPL: Data Pointer Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{DPL}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address = 0x82

Bit	Name	Function
$7: 0$	DPL[7:0]	Data Pointer Low. The DPL register is the low byte of the 16-bit DPTR.

SFR Definition 12.2. DPH: Data Pointer High Byte

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | $\mathrm{DPH}[7: 0]$ | | | | | | | |
| Type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reset | 0 | R/W | | | | | | |

SFR Address $=0 \times 83$

Bit	Name	Function
$7: 0$	DPH[7:0]	Data Pointer High. The DPH register is the high byte of the 16-bit DPTR.

C8051T630/1/2/3/4/5

SFR Definition 12.3. SP: Stack Pointer

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{SP}[7: 0]$							
Type	R / W							
Reset	0	0	0	0	0	1	1	1

SFR Address $=0 \times 81$

Bit	Name	Function
$7: 0$	SP[7:0]	Stack Pointer. The Stack Pointer holds the location of the top of the stack. The stack pointer is incre- mented before every PUSH operation. The SP register defaults to 0x07 after reset.

SFR Definition 12.4. ACC: Accumulator

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ACC $[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address = 0xE0; Bit-Addressable

Bit	Name	
$7: 0$	ACC[7:0]	Accumulator. This register is the accumulator for arithmetic operations.

SFR Definition 12.5. B: B Register

Bit	7	6	5	4	3	2	1	0
Name	B[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0
SFR Address $=0 \times F 0$; Bit-Addressable								
Bit	Name	Function						
7:0	B[7:0]	B Register. This register serves as a second accumulator for certain arithmetic operations.						

C8051T630/1/2/3/4/5

SFR Definition 12.6. PSW: Program Status Word

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CY	AC	F 0	$\mathrm{RS}[1: 0]$		OV	F 1	PARITY
Type	R / W	R / W	R / W	R / W		R / W	R / W	R
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times D 0$; Bit-Addressable

Bit	Name	Function
7	CY	Carry Flag. This bit is set when the last arithmetic operation resulted in a carry (addition) or a bor- row (subtraction). It is cleared to logic 0 by all other arithmetic operations.
6	AC	Auxiliary Carry Flag. This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arith- metic operations.
5	F0	User Flag 0. This is a bit-addressable, general purpose flag for use under software control.
$4: 3$	RS[1:0]	Register Bank Select. These bits select which register bank is used during register accesses. 00: Bank 0, Addresses 0x00-0x07 01: Bank 1, Addresses 0x08-0x0F 10: Bank 2, Addresses 0x10-0x17 11: Bank 3, Addresses 0x18-0x1F
2	OV	Overflow Flag. This bit is set to 1 under the following circumstances: • An ADD, ADDC, or SUBB instruction causes a sign-change overflow. • A MUL instruction results in an overflow (result is greater than 255). • A DIV instruction causes a divide-by-zero condition.
1	F1	The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases.
User Flag 1. This is a bit-addressable, general purpose flag for use under software control.		
O PARITY	Parity Flag. This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum is even.	

C8051T630/1/2/3/4/5

13. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization of the C8051T630/1/2/3/4/5 device family is shown in Figure 13.1

Figure 13.1. Memory Map

C8051T630/1/2/3/4/5

13.1. Program Memory

The CIP-51 core has a 64 kB program memory space. The C8051T630/1 implements 8192 bytes of this program memory space as in-system, Byte-Programmable EPROM, organized in a contiguous block from addresses 0×0000 to $0 \times 1 F F F$. Note that 512 bytes (0×1 E00 - 0x1FFF) of this memory are reserved for factory use and are not available for user program storage. The C8051T632/3 implements 4096 bytes of EPROM program memory space; the C8051T634/5 implements 2048 bytes of EPROM program memory space. C2 Register Definition 13.2 shows the program memory maps for C8051T630/1/2/3/4/5 devices.

Figure 13.2. Program Memory Map
Program memory is read-only from within firmware. Individual program memory bytes can be read using the MOVC instruction. This facilitates the use of EPROM space for constant storage.

13.2. Data Memory

The C8051T630/1/2/3/4/5 device family includes 768 bytes of RAM data memory. 256 bytes of this memory is mapped into the internal RAM space of the 8051. 512 bytes of this memory is on-chip "external" memory. The data memory map is shown in Figure 13.1 for reference.

13.2.1. Internal RAM

There are 256 bytes of internal RAM mapped into the data memory space from 0×00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0×00 through $0 \times 1 \mathrm{~F}$ are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0×20 through $0 \times 2 F$, may either be addressed as bytes or as 128 bit locations accessible with the direct addressing mode.
The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 13.1 illustrates the data memory organization of the C8051T630/1/2/3/4/5.

C8051T630/1/2/3/4/5

13.2.1.1. General Purpose Registers

The lower 32 bytes of data memory, locations 0×00 through $0 \times 1 F$, may be addressed as four banks of gen-eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank (see description of the PSW in SFR Definition 12.6). This allows fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

13.2.1.2. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0×20 through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from $0 x 00$ to $0 x 7 F$. Bit 0 of the byte at $0 x 20$ has bit address $0 x 00$ while bit7 of the byte at 0×20 has bit address $0 x 07$. Bit 7 of the byte at $0 \times 2 \mathrm{~F}$ has bit address $0 x 7 \mathrm{~F}$. A bit access is distinguished from a full byte access by the type of instruction used (bit source or destination operands as opposed to a byte source or destination).
The MCS-51 ${ }^{\text {TM }}$ assembly language allows an alternate notation for bit addressing of the form XX .B where $X X$ is the byte address and B is the bit position within the byte. For example, the instruction:
mov C, 22.3h
moves the Boolean value at 0×13 (bit 3 of the byte at location 0×22) into the Carry flag.

13.2.1.3. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location $0 x 07$. Therefore, the first value pushed on the stack is placed at location 0×08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

13.2.2. External RAM

There are 512 bytes of on-chip RAM mapped into the external data memory space. All of these address locations may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using MOVX indirect addressing mode. If the MOVX instruction is used with an 8-bit address operand (such as @R1), then the high byte of the 16-bit address is provided by the External Memory Interface Control Register (EMIOCN as shown in SFR Definition 13.1).
For a 16-bit MOVX operation (@DPTR), the upper 7 bits of the 16-bit external data memory address word are "don't cares". As a result, the 512-byte RAM is mapped modulo style over the entire 64 k external data memory address range. For example, the XRAM byte at address $0 x 0000$ is shadowed at addresses $0 x 0200,0 x 0400,0 x 0600,0 x 0800$, etc. This is a useful feature when performing a linear memory fill, as the address pointer doesn't have to be reset when reaching the RAM block boundary.

SFR Definition 13.1. EMIOCN: External Memory Interface Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name								PGSEL
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A A$

Bit	Name	Function
$7: 1$	Unused	Unused. Read = 0000000b; Write = Don't Care
0	PGSEL	XRAM Page Select. The EMIOCN register provides the high byte of the 16-bit external data memory address when using an 8-bit MOVX command, effectively selecting a 256-byte page of RAM. Since the upper (unused) bits of the register are always zero, the PGSEL determines which page of XRAM is accessed. For Example: If EMIOCN = 0x01, addresses 0x0100 through 0x01FF will be accessed.

C8051T630/1/2/3/4/5

14. Special Function Registers

The direct-access data memory locations from $0 x 80$ to $0 x F F$ constitute the special function registers (SFRs). The SFRs provide control and data exchange with the C8051T630/1/2/3/4/5's resources and peripherals. The CIP-51 controller core duplicates the SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access the sub-systems unique to the C8051T630/1/2/3/4/5. This allows the addition of new functionality while retaining compatibility with the MCS-51 ${ }^{\text {T }}$ instruction set. Table 14.1 lists the SFRs implemented in the C8051T630/1/2/3/4/5 device family.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations from 0×80 to $0 x F F$. SFRs with addresses ending in 0×0 or 0×8 (e.g. P0, TCON, SCONO, IE, etc.) are bitaddressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in Table 14.2, for a detailed description of each register.

Table 14.1. Special Function Register (SFR) Memory Map

F8	SPIOCN	PCAOL	PCAOH	PCA0CPLO	PCAOCPH0	POMAT	POMASK	VDM0CN
F0	B	POMDIN	P1MDIN				EIP1	PCAOPWM
E8	ADCOCN	PCA0CPL1	PCAOCPH1	PCA0CPL2	PCAOCPH2	P1MAT	P1MASK	RSTSRC
E0	ACC	XBR0	XBR1	OSCLCN	IT01CF		EIE1	SMB0ADM
D8	PCAOCN	PCAOMD	PCAOCPM0	PCA0CPM1	PCA0CPM2			
D0	PSW	REFOCN			POSKIP	P1SKIP		SMB0ADR
C8	TMR2CN		TMR2RLL	TMR2RLH	TMR2L	TMR2H		
C0	SMB0CN	SMB0CF	SMB0DAT	ADC0GTL	ADC0GTH	ADCOLTL	ADCOLTH	REG0CN
B8	IP	IDAOCN		AMXOP	ADCOCF	ADCOL	ADCOH	
B0		OSCXCN	OSCICN	OSCICL				
A8	IE	CLKSEL	EMIOCN					
A0	P2	SPIOCFG	SPIOCKR	SPIODAT	POMDOUT	P1MDOUT	P2MDOUT	
98	SCON0	SBUF0		CPTOCN		CPTOMD		CPTOMX
90	P1	TMR3CN	TMR3RLL	TMR3RLH	TMR3L	TMR3H	IDAOL	IDAOH
88	TCON	TMOD	TLO	TL1	TH0	TH1	CKCON	
80	P0	SP	DPL	DPH		TOFFL	TOFFH	PCON
	O(8)	1(9)	2(A)	3(B)	4(C)	5(D)	6(E)	7(F)

C8051T630/1/2/3/4/5

Table 14.2. Special Function Registers

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
ACC	0xE0	Accumulator	70
ADC0CF	0xBC	ADC0 Configuration	37
ADC0CN	0xE8	ADC0 Control	39
ADC0GTH	0xC4	ADC0 Greater-Than Compare High	40
ADC0GTL	0xC3	ADC0 Greater-Than Compare Low	40
ADCOH	0xBE	ADC0 High	38
ADCOL	0xBD	ADC0 Low	38
ADCOLTH	0xC6	ADC0 Less-Than Compare Word High	41
ADCOLTL	0xC5	ADC0 Less-Than Compare Word Low	41
AMXOP	0xBB	AMUX0 Positive Channel Select	44
B	0xF0	B Register	70
CKCON	0x8E	Clock Control	170
CLKSEL	0xA9	Clock Select	102
CPT0CN	0x9B	Comparator0 Control	59
CPTOMD	0x9D	Comparator0 Mode Selection	60
CPT0MX	0x9F	ComparatorO MUX Selection	62
DPH	0x83	Data Pointer High	69
DPL	0x82	Data Pointer Low	69
EIE1	0xE6	Extended Interrupt Enable 1	85
EIP1	0xF6	Extended Interrupt Priority 1	86
EMIOCN	0xAA	External Memory Interface Control	75
IDAOCN	0xB9	Current Mode DAC0 Control	50
IDAOH	0×97	Current Mode DAC0 High	51
IDAOL	0×96	Current Mode DACO Low	51
IE	0xA8	Interrupt Enable	83
IP	0xB8	Interrupt Priority	84
IT01CF	0xE4	INT0/INT1 Configuration	88
OSCICL	0xB3	Internal Oscillator Calibration	103
OSCICN	0xB2	Internal Oscillator Control	104
OSCLCN	0xE3	Low-Frequency Oscillator Control	105
OSCXCN	0xB1	External Oscillator Control	107
P0	0x80	Port 0 Latch	121
POMASK	0xFE	Port 0 Mask Configuration	119

C8051T630/1/2/3/4/5

Table 14.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
POMAT	0xFD	Port 0 Match Configuration	119
POMDIN	0xF1	Port 0 Input Mode Configuration	122
POMDOUT	0xA4	Port 0 Output Mode Configuration	122
P0SKIP	0xD4	Port 0 Skip	123
P1	0x90	Port 1 Latch	123
P1MASK	0xEE	Port 1Mask Configuration	120
P1MAT	0xED	Port 1 Match Configuration	120
P1MDIN	0xF2	Port 1 Input Mode Configuration	124
P1MDOUT	0xA5	Port 1 Output Mode Configuration	124
P1SKIP	0xD5	Port 1 Skip	125
P2	0xA0	Port 2 Latch	125
P2MDOUT	0xA6	Port 2 Output Mode Configuration	126
PCAOCN	0xD8	PCA Control	204
PCAOCPH0	0xFC	PCA Capture 0 High	209
PCA0CPH1	0xEA	PCA Capture 1 High	209
PCAOCPH2	0xEC	PCA Capture 2 High	209
PCAOCPLO	0xFB	PCA Capture 0 Low	209
PCA0CPL1	0xE9	PCA Capture 1 Low	209
PCA0CPL2	0xEB	PCA Capture 2 Low	209
PCAOCPM0	0xDA	PCA Module 0 Mode Register	207
PCA0CPM1	0xDB	PCA Module 1 Mode Register	207
PCAOCPM2	0xDC	PCA Module 2 Mode Register	207
PCAOH	0xFA	PCA Counter High	208
PCAOL	0xF9	PCA Counter Low	208
PCAOMD	0xD9	PCA Mode	205
PCAOPWM	0xF7	PCA PWM Configuration	206
PCON	0x87	Power Control	94
PSW	0xD0	Program Status Word	71
REFOCN	0xD1	Voltage Reference Control	54
REGOCN	0xC7	Voltage Regulator Control	56
RSTSRC	0xEF	Reset Source Configuration/Status	100
SBUF0	0x99	UARTO Data Buffer	154
SCONO	0×98	UARTO Control	153
SMB0ADM	0xE7	SMBus Slave Address Mask	138

C8051T630/1/2/3/4/5

Table 14.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
SMB0ADR	0xD7	SMBus Slave Address	137
SMB0CF	0xC1	SMBus Configuration	133
SMB0CN	0xC0	SMBus Control	135
SMB0DAT	0xC2	SMBus Data	139
SP	0x81	Stack Pointer	70
SPIOCFG	0xA1	SPI Configuration	163
SPIOCKR	0xA2	SPI Clock Rate Control	165
SPIOCN	0xF8	SPI Control	164
SPIODAT	0xA3	SPI Data	165
TCON	0x88	Timer/Counter Control	175
TH0	0x8C	Timer/Counter 0 High	178
TH1	0x8D	Timer/Counter 1 High	178
TLO	0x8A	Timer/Counter 0 Low	177
TL1	0x8B	Timer/Counter 1 Low	177
TMOD	0x89	Timer/Counter Mode	176
TMR2CN	0xC8	Timer/Counter 2 Control	182
TMR2H	OxCD	Timer/Counter 2 High	184
TMR2L	0xCC	Timer/Counter 2 Low	183
TMR2RLH	0xCB	Timer/Counter 2 Reload High	183
TMR2RLL	0xCA	Timer/Counter 2 Reload Low	183
TMR3CN	0x91	Timer/Counter 3Control	188
TMR3H	0x95	Timer/Counter 3 High	190
TMR3L	0x94	Timer/Counter 3Low	189
TMR3RLH	0x93	Timer/Counter 3 Reload High	189
TMR3RLL	0x92	Timer/Counter 3 Reload Low	189
TOFFH	0×86	Temperature Sensor Offset Measurement High	47
TOFFL	0×85	Temperature Sensor Offset Measurement Low	47
VDM0CN	0xFF	$\mathrm{V}_{\text {DD }}$ Monitor Control	98
XBR0	0xE1	Port I/O Crossbar Control 0	117
XBR1	0xE2	Port I/O Crossbar Control 1	118

C8051T630/1/2/3/4/5

15. Interrupts

The C8051T630/1/2/3/4/5 includes an extended interrupt system supporting a total of 14 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE-EIE1). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.
Note: Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruction that has two or more opcode bytes. Using EA (global interrupt enable) as an example:

```
// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.
; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.
```

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. However, a read of the enable bit will return a '0' inside the interrupt service routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

C8051T630/1/2/3/4/5

15.1. MCU Interrupt Sources and Vectors

The C8051T630/1/2/3/4/5 MCUs support 14 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1 . If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 15.1. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

15.1.1. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP or EIP1) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate, given in Table 15.1.

15.1.2. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

C8051T630/1/2/3/4/5

Table 15.1. Interrupt Summary

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag			Enable Flag	Priority Control
Reset	0×0000	Top	None	N/A	N/A	Always Enabled	Always Highest
$\begin{aligned} & \begin{array}{l} \text { External Interrupt } 0 \\ \text { (INTO) } \end{array} \\ & \hline \end{aligned}$	0×0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0×0023	4	$\begin{aligned} & \text { RIO (SCONO.0) } \\ & \text { TIO (SCONO.1) } \\ & \hline \end{aligned}$	Y	N	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPIO	0×0033	6	$\begin{aligned} & \hline \text { SPIF (SPIOCN.7) } \\ & \text { WCOL (SPIOCN.6) } \\ & \text { MODF (SPIOCN.5) } \\ & \text { RXOVRN (SPIOCN.4) } \end{aligned}$	Y	N	$\begin{array}{\|l} \hline \text { ESPIO } \\ \text { (IE.6) } \end{array}$	$\begin{array}{\|l} \hline \text { PSPI0 } \\ \text { (IP.6) } \end{array}$
SMB0	0x003B	7	SI (SMB0CN.0)	Y	N	$\begin{aligned} & \hline \text { ESMB0 } \\ & \text { (EIE1.0) } \end{aligned}$	$\begin{aligned} & \hline \text { PSMB0 } \\ & \text { (EIP1.0) } \end{aligned}$
Port Match	0x0043	8	None	N/A	N/A	EMAT (EIE1.1)	PMAT (EIP1.1)
ADC0 Window Compare	0x004B	9	ADOWINT (ADC0CN.3)	Y	N	EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
ADC0 Conversion Complete	0×0053	10	ADOINT (ADC0CN.5)	Y	N	EADC0 (EIE1.3)	$\begin{array}{\|l\|} \hline \text { PADC0 } \\ \text { (EIP1.3) } \\ \hline \end{array}$
Programmable Counter Array	0x005B	11	$\begin{aligned} & \text { CF (PCAOCN.7) } \\ & \text { CCFn (PCAOCN.n) } \\ & \text { COVF (PCAOPWM.6) } \end{aligned}$	Y	N	$\begin{aligned} & \hline \text { EPCAO } \\ & \text { (EIE1.4) } \end{aligned}$	$\begin{aligned} & \hline \text { PPCAO } \\ & \text { (EIP1.4) } \end{aligned}$
Comparator0	0x0063	12	$\begin{aligned} & \text { CPOFIF (CPTOCN.4) } \\ & \text { CPORIF (CPT0CN.5) } \end{aligned}$	N	N	ECP0 (EIE1.5)	$\begin{array}{\|l} \hline \text { PCP0 } \\ \text { (EIP1.5) } \end{array}$
RESERVED	0x006B	13	N/A	N/A	N/A	N/A	N/A
Timer 3 Overflow	0x0073	14	TF3H (TMR3CN.7) TF3L (TMR3CN.6)	N	N	ET3 (EIE1.7)	$\begin{array}{\|l\|} \hline \text { PT3 } \\ \text { (EIP1.7) } \end{array}$

15.2. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described in this section. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

C8051T630/1/2/3/4/5

SFR Definition 15.1. IE: Interrupt Enable

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	EA	ESPI0	ET2	ES0	ET1	EX1	ET0	EX0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 8$; Bit-Addressable

Bit	Name	Function
7	EA	Enable All Interrupts. Globally enables/disables all interrupts. It overrides individual interrupt mask settings. 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting.
6	ESPIO	Enable Serial Peripheral Interface (SPIO) Interrupt. This bit sets the masking of the SPIO interrupts. 0: Disable all SPIO interrupts. 1: Enable interrupt requests generated by SPIO.
5	ET2	Enable Timer 2 Interrupt. This bit sets the masking of the Timer 2 interrupt. 0: Disable Timer 2 interrupt. 1: Enable interrupt requests generated by the TF2L or TF2H flags.
4	ES0	Enable UART0 Interrupt. This bit sets the masking of the UART0 interrupt. 0: Disable UARTO interrupt. 1: Enable UART0 interrupt.
3	ET1	Enable Timer 1 Interrupt. This bit sets the masking of the Timer 1 interrupt. 0: Disable all Timer 1 interrupt. 1: Enable interrupt requests generated by the TF1 flag.
2	EX1	Enable External Interrupt 1. This bit sets the masking of External Interrupt 1. 0: Disable external interrupt 1. 1: Enable interrupt requests generated by the /INT1 input.
1	ETO	Enable Timer 0 Interrupt. This bit sets the masking of the Timer 0 interrupt. 0: Disable all Timer 0 interrupt. 1: Enable interrupt requests generated by the TFO flag.
0	EX0	Enable External Interrupt 0. This bit sets the masking of External Interrupt 0. 0: Disable external interrupt 0. 1: Enable interrupt requests generated by the INT0 input.

C8051T630/1/2/3/4/5

SFR Definition 15.2. IP: Interrupt Priority

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name		PSPIO	PT2	PSO	PT1	PX1	PT0	PX0
Type	R	R/W						
Reset	1	0	0	0	0	0	0	0

SFR Address $=0 \times B 8$; Bit-Addressable

Bit	Name	Function
7	Unused	Unused. Read = 1, Write = Don't Care.
6	PSPIO	Serial Peripheral Interface (SPIO) Interrupt Priority Control. This bit sets the priority of the SPIO interrupt. 0 : SPIO interrupt set to low priority level. 1: SPIO interrupt set to high priority level.
5	PT2	Timer 2 Interrupt Priority Control. This bit sets the priority of the Timer 2 interrupt. 0 : Timer 2 interrupt set to low priority level. 1: Timer 2 interrupt set to high priority level.
4	PS0	UARTO Interrupt Priority Control. This bit sets the priority of the UARTO interrupt. 0: UARTO interrupt set to low priority level. 1: UARTO interrupt set to high priority level.
3	PT1	Timer 1 Interrupt Priority Control. This bit sets the priority of the Timer 1 interrupt. 0 : Timer 1 interrupt set to low priority level. 1: Timer 1 interrupt set to high priority level.
2	PX1	External Interrupt 1 Priority Control. This bit sets the priority of the External Interrupt 1 interrupt. 0: External Interrupt 1 set to low priority level. 1: External Interrupt 1 set to high priority level.
1	PT0	Timer 0 Interrupt Priority Control. This bit sets the priority of the Timer 0 interrupt. 0 : Timer 0 interrupt set to low priority level. 1: Timer 0 interrupt set to high priority level.
0	PX0	External Interrupt 0 Priority Control. This bit sets the priority of the External Interrupt 0 interrupt. 0 : External Interrupt 0 set to low priority level. 1: External Interrupt 0 set to high priority level.

C8051T630/1/2/3/4/5

SFR Definition 15.3. EIE1: Extended Interrupt Enable 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ET3	Reserved	ECP0	EPCA0	EADC0	EWADC0	EMAT	ESMB0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE6

Bit	Name	Function
7	ET3	Enable Timer 3 Interrupt. This bit sets the masking of the Timer 3 interrupt. 0 : Disable Timer 3 interrupts. 1: Enable interrupt requests generated by the TF3L or TF3H flags.
6	Reserved	Reserved. Must Write 0.
5	ECP0	Enable Comparator0 (CPO) Interrupt. This bit sets the masking of the CPO interrupt. 0: Disable CPO interrupts. 1: Enable interrupt requests generated by the CPORIF or CPOFIF flags.
4	EPCAO	Enable Programmable Counter Array (PCAO) Interrupt. This bit sets the masking of the PCAO interrupts. 0 : Disable all PCAO interrupts. 1: Enable interrupt requests generated by PCAO.
3	EADC0	Enable ADCO Conversion Complete Interrupt. This bit sets the masking of the ADCO Conversion Complete interrupt. 0: Disable ADCO Conversion Complete interrupt. 1: Enable interrupt requests generated by the ADOINT flag.
2	EWADC0	Enable Window Comparison ADCO Interrupt. This bit sets the masking of ADCO Window Comparison interrupt. 0: Disable ADCO Window Comparison interrupt. 1: Enable interrupt requests generated by ADCO Window Compare flag (ADOWINT).
1	EMAT	Enable Port Match Interrupts. This bit sets the masking of the Port Match Event interrupt. 0 : Disable all Port Match interrupts. 1: Enable interrupt requests generated by a Port Match.
0	ESMB0	Enable SMBus (SMBO) Interrupt. This bit sets the masking of the SMBO interrupt. 0: Disable all SMBO interrupts. 1: Enable interrupt requests generated by SMBO.

C8051T630/1/2/3/4/5

SFR Definition 15.4. EIP1: Extended Interrupt Priority 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PT3	Reserved	PCP0	PPCA0	PADC0	PWADC0	PMAT	PSMB0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF6

Bit	Name	Function
7	PT3	Timer 3 Interrupt Priority Control. This bit sets the priority of the Timer 3 interrupt. 0 : Timer 3 interrupts set to low priority level. 1: Timer 3 interrupts set to high priority level.
6	Reserved	Reserved. Must Write 0.
5	PCP0	Comparator0 (CPO) Interrupt Priority Control. This bit sets the priority of the CPO interrupt. 0: CPO interrupt set to low priority level. 1: CPO interrupt set to high priority level.
4	PPCA0	Programmable Counter Array (PCAO) Interrupt Priority Control. This bit sets the priority of the PCAO interrupt. 0 : PCAO interrupt set to low priority level. 1: PCAO interrupt set to high priority level.
3	PADC0	ADC0 Conversion Complete Interrupt Priority Control. This bit sets the priority of the ADCO Conversion Complete interrupt. 0 : ADCO Conversion Complete interrupt set to low priority level. 1: ADCO Conversion Complete interrupt set to high priority level.
2	PWADC0	ADCO Window Comparator Interrupt Priority Control. This bit sets the priority of the ADCO Window interrupt. 0 : ADCO Window interrupt set to low priority level. 1: ADCO Window interrupt set to high priority level.
1	PMAT	Port Match Interrupt Priority Control. This bit sets the priority of the Port Match Event interrupt. 0 : Port Match interrupt set to low priority level. 1: Port Match interrupt set to high priority level.
0	PSMB0	SMBus (SMBO) Interrupt Priority Control. This bit sets the priority of the SMBO interrupt. 0 : SMBO interrupt set to low priority level. 1: SMBO interrupt set to high priority level.

C8051T630/1/2/3/4/5

15.3. INT0 and INT1 External Interrupts

The $\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT1}}$ external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INT0 Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "24.1. Timer 0 and Timer 1" on page 171) select level or edge sensitive. The table below lists the possible configurations.

ITO	INOPL	IINTO Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	IINT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

$\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT1}}$ are assigned to Port pins as defined in the IT01CF register (see SFR Definition 15.5). Note that $\overline{\mathrm{NTO}}$ and $\overline{\mathrm{INTO}}$ Port pin assignments are independent of any Crossbar assignments. $\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT1}}$ will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to $\overline{\mathrm{INTO}}$ and/or $\overline{\mathrm{NT} 1}$, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register XBRO (see Section "20.3. Priority Crossbar Decoder" on page 114 for complete details on configuring the Crossbar).
IEO (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the $\overline{\mathrm{INTO}}$ and $\overline{\mathrm{INT1}}$ external interrupts, respectively. If an $\overline{\mathrm{INTO}}$ or $\overline{\mathrm{INT1}}$ external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (INOPL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

C8051T630/1/2/3/4/5

SFR Definition 15.5. IT01CF: INT0/INT1 Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	IN1PL	IN1SL[2:0]			INOPL	INOSL[2:0]		
Type	R/W	R/W			R/W	R/W		
Reset	0	0	0	0	0	0	0	1

SFR Address = 0xE4

Bit	Name	Function
7	IN1PL	INT1 Polarity. 0 : /INT1 input is active low. 1: /INT1 input is active high.
6:4	IN1SL[2:0]	INT1 Port Pin Selection Bits. These bits select which Port pin is assigned to /INT1. Note that this pin assignment is independent of the Crossbar; /INT1 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P0.0 001: Select P0.1 010: Select P0. 2 011: Select P0. 3 100: Select P0.4 101: Select P0.5 110: Select P0. 6 111: Select P0. 7
3	INOPL	INTO Polarity. 0 : /INTO input is active low. 1: /INTO input is active high.
2:0	INOSL[2:0]	INTO Port Pin Selection Bits. These bits select which Port pin is assigned to /INTO. Note that this pin assignment is independent of the Crossbar; /INT0 will monitor the assigned Port pin without disturbing the peripheral that has been assigned the Port pin via the Crossbar. The Crossbar will not assign the Port pin to a peripheral if it is configured to skip the selected pin. 000: Select P0.0 001: Select P0.1 010: Select P0. 2 011: Select P0. 3 100: Select P0. 4 101: Select P0.5 110: Select P0.6 111: Select P0. 7

C8051T630/1/2/3/4/5

16. EPROM Memory

Electrically programmable read-only memory (EPROM) is included on-chip for program code storage. The EPROM memory can be programmed via the C2 debug and programming interface when a special programming voltage is applied to the V_{PP} pin. Each location in EPROM memory is programmable only once (i.e., non-erasable). Table 5.6 on page 26 shows the EPROM specifications.

16.1. Programming and Reading the EPROM Memory

Reading and writing the EPROM memory is accomplished through the C2 programming and debug interface. When creating hardware to program the EPROM, it is necessary to follow the programming steps listed below. Refer to the "C2 Interface Specification" available at http://www.silabs.com for details on communicating via the C2 interface. Section "26. C2 Interface" on page 210 has information about C2 register addresses for the C8051T630/1/2/3/4/5.

16.1.1. EPROM Write Procedure

1. Reset the device using the $\overline{\mathrm{RST}}$ pin.
2. Wait at least 20μ s before sending the first C2 command.
3. Place the device in core reset: Write 0×04 to the DEVCTL register.
4. Set the device to program mode (1st step): Write 0x40 to the EPCTL register.
5. Set the device to program mode (2nd step): Write 0×58 to the EPCTL register.
6. Apply the VPP programming Voltage.
7. Write the first EPROM address for programming to EPADDRH and EPADDRL.
8. Write a data byte to EPDAT. EPADDRH:L will increment by 1 after this write.
9. Use a C2 Address Read command to poll for write completion.
10. (Optional) Check the ERROR bit in register EPSTAT and abort the programming operation if necessary.
11. If programming is not finished, return to Step 8 to write the next address in sequence, or return to Step 7 to program a new address.
12. Remove the VPP programming Voltage
13. Remove program mode (1st step): Write 0×40 to the EPCTL register.
14. Remove program mode (2nd step): Write 0x00 to the EPCTL register.
15. Reset the device: Write 0×02 and then 0×00 to the DEVCTL register.

Important Note: There is a finite amount of time which $V_{P P}$ can be applied without damaging the device, which is cumulative over the life of the device. Refer to Table 5.1 on page 23 for the V_{PP} timing specification.

C8051T630/1/2/3/4/5

16.1.2. EPROM Read Procedure

1. Reset the device using the /RST pin.
2. Wait at least $20 \mu \mathrm{~s}$ before sending the first C 2 command.
3. Place the device in core reset: Write 0×04 to the DEVCTL register.
4. Write 0×00 to the EPCTL register.
5. Write the first EPROM address for reading to EPADDRH and EPADDRL.
6. Read a data byte from EPDAT. EPADDRH:L will increment by 1 after this read.
7. (Optional) Check the ERROR bit in register EPSTAT and abort the memory read operation if necessary.
8. If reading is not finished, return to Step 6 to read the next address in sequence, or return to Step 5 to select a new address.
9. Remove read mode (1st step): Write 0×40 to the EPCTL register.
10.Remove read mode (2nd step): Write 0x00 to the EPCTL register.
10. Reset the device: Write 0×02 and then 0×00 to the DEVCTL register.

16.2. Security Options

The C8051T630/1/2/3/4/5 devices provide security options to prevent unauthorized viewing of proprietary program code and constants. A security byte in EPROM address space can be used to lock the program memory from being read or written across the C2 interface. When read, the RDLOCK and WRLOCK bits in register EPSTAT will indicate the lock status of the location currently addressed by EPADDR. Table 16.1 shows the security byte decoding. See Section "13. Memory Organization" on page 72 for the security byte location and EPROM memory map.

Important Note: Once the security byte has been written, there are no means of unlocking the device. Locking memory from write access should be performed only after all other code has been successfully programmed to memory.

Table 16.1. Security Byte Decoding

Bits	Description
$7-4$	Write Lock: Clearing any of these bits to logic 0 prevents all code memory from being written across the C2 interface.
$3-0$	Read Lock: Clearing any of these bits to logic 0 prevents all code memory from being read across the C2 interface.

C8051T630/1/2/3/4/5

16.3. Program Memory CRC

A CRC engine is included on-chip which provides a means of verifying EPROM contents once the device has been programmed. The CRC engine is available for EPROM verification even if the device is fully read and write locked, allowing for verification of code contents at any time.

The CRC engine is operated through the C2 debug and programming interface, and performs 16 -bit CRCs on individual 256 -Byte blocks of program memory, or a 32-bit CRC on the entire memory space. To prevent hacking and extrapolation of security-locked source code, the CRC engine will only allow CRCs to be performed on contiguous 256 -Byte blocks beginning on 256 -Byte boundaries (lowest 8 -bits of address are 0×00). For example, the CRC engine can perform a CRC for locations 0×0400 through $0 \times 04 F F$, but it cannot perform a CRC for locations 0×0401 through 0×0500, or on block sizes smaller or larger than 256 bytes.

16.3.1. Performing 32-bit CRCs on Full EPROM Content

A 32-bit CRC on the entire EPROM space is initiated by writing to the CRC1 byte over the C2 interface. The CRC calculation begins at address 0×0000 and ends at the end of user EPROM space. The EPBusy bit in register C2ADD will be set during the CRC operation, and cleared once the operation is complete. The 32-bit results will be available in the CRC3-0 registers. CRC3 is the MSB, and CRCO is the LSB. The polynomial used for the 32 -bit CRC calculation is $0 \times 04 \mathrm{C} 11 \mathrm{DB7}$.

Note: If a 16 -bit CRC has been performed since the last device reset, a device reset should be initiated before performing a 32 -bit CRC operation.

16.3.2. Performing 16-bit CRCs on 256-Byte EPROM Blocks

A 16 -bit CRC of individual 256 -byte blocks of EPROM can be initiated by writing to the CRC0 byte over the C 2 interface. The value written to CRC0 is the high byte of the beginning address for the CRC. For example, if CRCO is written to 0×02, the CRC will be performed on the 256 -bytes beginning at address 0×0200, and ending at address 0x2FF. The EPBusy bit in register C2ADD will be set during the CRC operation, and cleared once the operation is complete. The 16-bit results will be available in the CRC1-0 registers. CRC1 is the MSB, and CRCO is the LSB. The polynomial for the 16 -bit CRC calculation is 0×1021

C8051T630/1/2/3/4/5

17. Power Management Modes

The C8051T630/1/2/3/4/5 devices have three software programmable power management modes: idle, stop, and suspend. Idle mode and stop mode are part of the standard 8051 architecture, while suspend mode is an enhanced power-saving mode implemented by the high-speed oscillator peripheral.

Idle mode halts the CPU while leaving the peripherals and clocks active. In stop mode, the CPU is halted, all interrupts and timers (except the missing clock detector) are inactive, and the internal oscillator is stopped (analog peripherals remain in their selected states; the external oscillator is not affected). Suspend mode is similar to stop mode in that the internal oscillator and CPU are halted, but the device can wake on events such as a port mismatch, comparator low output, or a Timer 3 overflow. Since clocks are running in idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode and Suspend mode consume the least power because the majority of the device is shut down with no clocks active. SFR Definition 17.1 describes the Power Control Register (PCON) used to control the C8051T630/1/2/3/4/5's stop and idle power management modes. Suspend mode is controlled by the SUSPEND bit in the OSCICN register (SFR Definition 19.3).

Although the C8051T630/1/2/3/4/5 has idle, stop, and suspend modes available, more control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers or serial buses, draw little power when they are not in use. Turning off oscillators lowers power consumption considerably, at the expense of reduced functionality.

17.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the hardware to halt the CPU and enter idle mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during idle mode.

Idle mode is terminated when an enabled interrupt is asserted or a reset occurs. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0×0000.

If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from idle mode when a future interrupt occurs. Therefore, instructions that set the IDLE bit should be followed by an instruction that has two or more opcode bytes, for example:

```
// in 'C':
PCON |= 0x01; // set IDLE bit
PCON = PCON; // ... followed by a 3-cycle dummy instruction
; in assembly:
ORL PCON, #O1h ; set IDLE bit
MOV PCON, PCON ; ... followed by a 3-cycle dummy instruction
```

If enabled, the watchdog timer (WDT) will eventually cause an internal watchdog reset and thereby terminate the idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by

C8051T630/1/2/3/4/5

software prior to entering the idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to Section "18.6. PCA Watchdog Timer Reset" on page 99 for more information on the use and configuration of the WDT.

17.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the controller core to enter stop mode as soon as the instruction that sets the bit completes execution. In stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering stop mode. Stop mode can only be terminated by an internal or external reset. On reset, the device performs the normal reset sequence and begins program execution at address 0×0000.

If enabled, the missing clock detector will cause an internal reset and thereby terminate the stop mode. The missing clock detector should be disabled if the CPU is to be put to in stop mode for longer than the MCD timeout.

By default, when in stop mode the internal regulator is still active. However, the regulator can be configured to shut down while in stop mode to save power. To shut down the regulator in stop mode, the STOPCF bit in register REG0CN should be set to 1 prior to setting the STOP bit (see SFR Definition 10.1). If the regulator is shut down using the STOPCF bit, only the RST pin or a full power cycle are capable of resetting the device.

17.3. Suspend Mode

Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the CPU and the high-frequency internal oscillator, and go into suspend mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. Most digital peripherals are not active in suspend mode. The exception to this is the Port Match feature and Timer 3, when it is run from an external oscillator source or the internal low-frequency oscillator.

Suspend mode can be terminated by four types of events, a port match (described in Section "20.5. Port Match" on page 118), a Timer 3 overflow (described in Section "24.3. Timer 3" on page 185), a comparator low output (if enabled), or a device reset event. To run Timer 3 in suspend mode, the timer must be configured to clock from either the external clock source or the internal low-frequency oscillator source. When suspend mode is terminated, the device will continue execution on the instruction following the one that set the SUSPEND bit. If the wake event (port match or Timer 3 overflow) was configured to generate an interrupt, the interrupt will be serviced upon waking the device. If suspend mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

C8051T630/1/2/3/4/5

SFR Definition 17.1. PCON: Power Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	GF[5:0]							
Type	R/W							
Reset	0	0	0	0	0	0	STOP	IDLE

SFR Address $=0 \times 87$

Bit	Name	Function
$7: 2$	GF[5:0]	General Purpose Flags 5-0. These are general purpose flags for use under software control.
1	STOP	Stop Mode Select. Setting this bit will place the CIP-51 in Stop mode. This bit will always be read as 0. 1: CPU goes into Stop mode (internal oscillator stopped).
0	IDLE	Idle Mode Select. Setting this bit will place the CIP-51 in Idle mode. This bit will always be read as 0. 1: CPU goes into Idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, Serial Ports, and Analog Peripherals are still active.)

C8051T630/1/2/3/4/5

18. Reset Sources

Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this reset state, the following occur:

- CIP-51 halts program execution
- Special Function Registers (SFRs) are initialized to their defined reset values
- External Port pins are forced to a known state
- Interrupts and timers are disabled

All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal data memory are unaffected during a reset; any previously stored data is preserved. However, since the stack pointer SFR is reset, the stack is effectively lost, even though the data on the stack is not altered.

The Port I/O latches are reset to 0xFF (all logic ones) in open-drain mode. Weak pullups are enabled during and after the reset. For V_{DD} Monitor and power-on resets, the $\overline{\mathrm{RST}}$ pin is driven low until the device exits the reset state.

On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the internal oscillator. The Watchdog Timer is enabled with the system clock divided by 12 as its clock source. Program execution begins at location 0×0000.

Figure 18.1. Reset Sources

SILICON LABS

C8051T630/1/2/3/4/5

18.1. Power-On Reset

During power-up, the device is held in a reset state and the $\overline{R S T}$ pin is driven low until $V_{D D}$ settles above $\mathrm{V}_{\mathrm{RST}}$. A delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases ($V_{D D}$ ramp time is defined as how fast $V_{D D}$ ramps from $0 V$ to $V_{R S T}$). Figure 18.2. plots the power-on and $V_{D D}$ monitor event timing. The maximum $V_{D D}$ ramp time is 1 ms ; slower ramp times may cause the device to be released from reset before $V_{D D}$ reaches the $V_{R S T}$ level. For ramp times less than 1 ms , the power-on reset delay ($T_{\text {PORDelay }}$) is typically less than 0.3 ms .

On exit from a power-on or $V_{D D}$ monitor reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0×0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} monitor is enabled following a power-on reset.

Figure 18.2. Power-On and V_{DD} Monitor Reset Timing

C8051T630/1/2/3/4/5

18.2. Power-Fail Reset/VDD Monitor

When a power-down transition or power irregularity causes V_{DD} to drop below $\mathrm{V}_{\mathrm{RST}}$, the power supply monitor will drive the $\overline{\mathrm{RST}}$ pin low and hold the CIP-51 in a reset state (see Figure 18.2). When V_{DD} returns to a level above $\mathrm{V}_{\mathrm{RST}}$, the CIP-51 will be released from the reset state. Note that even though internal data memory contents are not altered by the power-fail reset, it is impossible to determine if V_{DD} dropped below the level required for data retention. If the PORSF flag reads 1 , the data may no longer be valid. The $V_{D D}$ monitor is enabled after power-on resets. Its defined state (enabled/disabled) is not altered by any other reset source. For example, if the $V_{D D}$ monitor is disabled by code and a software reset is performed, the $V_{D D}$ monitor will still be disabled after the reset.

Important Note: If the $V_{D D}$ monitor is being turned on from a disabled state, it should be enabled before it is selected as a reset source. Selecting the V_{DD} monitor as a reset source before it is enabled and stabilized may cause a system reset. In some applications, this reset may be undesirable. If this is not desirable in the application, a delay should be introduced between enabling the monitor and selecting it as a reset source. The procedure for enabling the V_{DD} monitor and configuring it as a reset source from a disabled state is shown below:

1. Enable the $V_{D D}$ monitor (VDMEN bit in VDMOCN = 1).
2. If necessary, wait for the $V_{D D}$ monitor to stabilize (see Table 5.4 for the $V_{D D}$ Monitor turn-on time).
3. Select the $V_{D D}$ monitor as a reset source (PORSF bit in RSTSRC $=1$).

See Figure 18.2 for V_{DD} monitor timing; note that the power-on-reset delay is not incurred after a V_{DD} monitor reset. See Table 5.4 for complete electrical characteristics of the $V_{D D}$ monitor.

C8051T630/1/2/3/4/5

SFR Definition 18.1. VDMOCN: V_{DD} Monitor Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	VDMEN	VDDSTAT						
Type	R / W	R	R	R	R	R	R	R
Reset	Varies	Varies	0	0	0	0	0	0

SFR Address = 0xFF

Bit	Name	Function
7	VDMEN	$V_{D D}$ Monitor Enable. This bit turns the $V_{D D}$ monitor circuit on/off. The $V_{D D}$ Monitor cannot generate sys- tem resets until it is also selected as a reset source in register RSTSRC (SFR Defi- nition 18.2). Selecting the $V_{D D}$ monitor as a reset source before it has stabilized may generate a system reset. In systems where this reset would be undesirable, a delay should be introduced between enabling the $V_{D D}$ Monitor and selecting it as a reset source. See Table 5.4 for the minimum $V_{D D}$ Monitor turn-on time. $0: V_{D D}$ Monitor Disabled. $1: V_{D D}$ Monitor Enabled.
6	VDDSTAT	$V_{D D}$ Status. This bit indicates the current power supply status $\left(V_{D D}\right.$ Monitor output). 0: $V_{D D}$ is at or below the $V_{D D}$ monitor threshold. $1: V_{D D}$ is above the $V_{D D}$ monitor threshold.
$5: 0$	Unused	Unused. Read $=000000$; Write $=$ Don't care.

18.3. External Reset

The external $\overline{\text { RST }}$ pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the $\overline{\mathrm{RST}}$ pin generates a reset; an external pullup and/or decoupling of the $\overline{\text { RST }}$ pin may be necessary to avoid erroneous noise-induced resets. See Table 5.4 for complete $\overline{\mathrm{RST}}$ pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

18.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than $100 \mu \mathrm{~s}$, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0 . Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.

C8051T630/1/2/3/4/5

18.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CPO+) is less than the inverting input voltage (on CPO-), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator0 as the reset source; otherwise, this bit reads 0 . The state of the RST pin is unaffected by this reset.

18.6. PCA Watchdog Timer Reset

The programmable watchdog timer (WDT) function of the programmable counter array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "25.4. Watchdog Timer Mode" on page 202; the WDT is enabled and clocked by SYSCLK/12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to 1 . The state of the RST pin is unaffected by this reset.

18.7. EPROM Error Reset

If an EPROM read or write targets an illegal address, a system reset is generated. This may occur due to any of the following:

- Programming hardware attempts to write or read an EPROM location which is above the user code space address limit.
- An EPROM read from firmware is attempted above user code space. This occurs when a MOVC operation is attempted above the user code space address limit.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above the user code space address limit.
The MEMERR bit (RSTSRC.6) is set following an EPROM error reset. The state of the $\overline{\mathrm{RST}}$ pin is unaffected by this reset.

18.8. Software Reset

Software may force a reset by writing a 1 to the SWRSF bit (RSTSRC.4). The SWRSF bit will read 1 following a software forced reset. The state of the $\overline{\text { RST }}$ pin is unaffected by this reset.

C8051T630/1/2/3/4/5

SFR Definition 18.2. RSTSRC: Reset Source

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name		MEMERR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF
Type	R	R	R/W	R/W	R	R/W	R/W	R
Reset	0	Varies						

SFR Address $=0 \times E F$

Bit	Name	Description	Write	Read
7	Unused	Unused.	Don't care.	0
6	MEMERR	EPROM Error Reset Flag.	N/A	Set to 1 if EPROM read/write error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.	Writing a 1 enables Comparator0 as a reset source (active-low).	Set to 1 if Comparatoro caused the last reset.
4	SWRSF	Software Reset Force and Flag.	Writing a 1 forces a system reset.	Set to 1 if last reset was caused by a write to SWRSF.
3	WDTRSF	Watchdog Timer Reset Flag.	N/A	Set to 1 if Watchdog Timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector Enable and Flag.	Writing a 1 enables the Missing Clock Detector. The MCD triggers a reset if a missing clock condition is detected.	Set to 1 if Missing Clock Detector timeout caused the last reset.
1	PORSF	Power-On/V ${ }_{\text {DD }}$ Monitor Reset Flag, and V_{DD} monitor Reset Enable.	Writing a 1 enables the $V_{D D}$ monitor as a reset source. Writing 1 to this bit before the V_{DD} monitor is enabled and stabilized may cause a system reset.	Set to 1 anytime a poweron or $V_{\text {DD }}$ monitor reset occurs. When set to 1 all other RSTSRC flags are indeterminate.
0	PINRSF	HW Pin Reset Flag.	N/A	Set to 1 if RST pin caused the last reset.

Note: Do not use read-modify-write operations on this register

C8051T630/1/2/3/4/5

19. Oscillators and Clock Selection

C8051T630/1/2/3/4/5 devices include a programmable internal high-frequency oscillator, a programmable internal low-frequency oscillator, and an external oscillator drive circuit. The internal high-frequency oscillator can be enabled/disabled and calibrated using the OSCICN and OSCICL registers, as shown in Figure 19.1. The internal low-frequency oscillator can be enabled/disabled and calibrated using the OSCLCN register. The system clock can be sourced by the external oscillator circuit or either internal oscillator. Both internal oscillators offer a selectable post-scaling feature.

Figure 19.1. Oscillator Options

19.1. System Clock Selection

The CLKSL[1:0] bits in register CLKSEL select which oscillator source is used as the system clock. CLKSL[1:0] must be set to 01b for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system clock may be switched on-the-fly between the internal oscillator, external oscillator, and Clock Multiplier so long as the selected clock source is enabled and running.

The internal high-frequency and low-frequency oscillators require little start-up time and may be selected as the system clock immediately following the register write which enables the oscillator. The external RC and C modes also typically require no startup time.

C8051T630/1/2/3/4/5

SFR Definition 19.1. CLKSEL: Clock Select

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name							$\operatorname{CLKSL[1:0]}$	
Type	R	R	R	R	R	R	R / W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 9$

Bit	Name	Function
7:2	Unused	Unused. Read = 000000b; Write = Don't Care
1:0	CLKSL[1:0]	System Clock Source Select Bits. 00: SYSCLK derived from the Internal High-Frequency Oscillator and scaled per the IFCN bits in register OSCICN. 01: SYSCLK derived from the External Oscillator circuit. 10: SYSCLK derived from the Internal Low-Frequency Oscillator and scaled per the OSCLD bits in register OSCLCN. 11: reserved.

C8051T630/1/2/3/4/5

19.2. Programmable Internal High-Frequency (H-F) Oscillator

All C8051T630/1/2/3/4/5 devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period caPara1n be adjusted via the OSCICL register as defined by SFR Definition 19.2.

On C8051T630/1/2/3/4/5 devices, OSCICL is factory calibrated to obtain a 24.5 MHz base frequency.
The system clock may be derived from the programmed internal oscillator divided by $1,2,4$, or 8 , as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

19.2.1. Internal Oscillator Suspend Mode

When software writes a logic 1 to SUSPEND (OSCICN.5), the internal oscillator is suspended. If the system clock is derived from the internal oscillator, the input clock to the peripheral or CIP-51 will be stopped until one of the following events occur:

- Port 0 Match Event.
- Port 1 Match Event.
- Comparator 0 enabled and output is logic 0.
- Timer3 Overflow Event.

When one of the oscillator awakening events occur, the internal oscillator, CIP-51, and affected peripherals resume normal operation, regardless of whether the event also causes an interrupt. The CPU resumes execution at the instruction following the write to SUSPEND.

SFR Definition 19.2. OSCICL: Internal H-F Oscillator Calibration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name		OSCICL[6:0]						
Type	R	R/W						
Reset	0	Varies						

SFR Address $=0 \times B 3$

Bit	Name	Function
7	Unused	Unused. Read = 0; Write = Don't Care
$6: 0$	OSCICL[6:0]	Internal Oscillator Calibration Bits. These bits determine the internal oscillator period. When set to 0000000b, the H-F oscillator operates at its fastest setting. When set to 1111111b, the H-F oscillator operates at its slowest setting. The reset value is factory calibrated to generate an internal oscillator frequency of 24.5 MHz.

C8051T630/1/2/3/4/5

SFR Definition 19.3. OSCICN: Internal H-F Oscillator Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	IOSCEN	IFRDY	SUSPEND	STSYNC			IFCN[1:0]	
Type	R/W	R	R/W	R	R	R	R / W	
Reset	1	1	0	0	0	0	0	0

SFR Address $=0 \times B 2$

Bit	Name	Function
7	IOSCEN	Internal H-F Oscillator Enable Bit. 0: Internal H-F Oscillator Disabled. 1: Internal H-F Oscillator Enabled.
6	IFRDY	Internal H-F Oscillator Frequency Ready Flag. 0 : Internal $\mathrm{H}-\mathrm{F}$ Oscillator is not running at programmed frequency. 1: Internal H-F Oscillator is running at programmed frequency.
5	SUSPEND	Internal Oscillator Suspend Enable Bit. Setting this bit to logic 1 places the internal oscillator in SUSPEND mode. The internal oscillator resumes operation when one of the SUSPEND mode awakening events occurs.
4	STSYNC	Suspend Timer Synchronization Bit. This bit is used to indicate when it is safe to read and write the registers associated with the suspend wake-up timer. If a suspend wake-up source other than the timer has brought the oscillator out of suspend mode, it may take up to three timer clocks before the timer can be read or written. When STSYNC reads ' 1 ', reads and writes of the timer register should not be performed. When STSYNC reads ' 0 ', it is safe to read and write the timer registers.
3:2	Unused	Unused. Read = 00b; Write = Don't Care
1:0	IFCN[1:0]	Internal H-F Oscillator Frequency Divider Control Bits. 00: SYSCLK derived from Internal H-F Oscillator divided by 8. 01: SYSCLK derived from Internal H-F Oscillator divided by 4. 10: SYSCLK derived from Internal H-F Oscillator divided by 2. 11: SYSCLK derived from Internal H-F Oscillator divided by 1.

C8051T630/1/2/3/4/5

19.3. Programmable Internal Low-Frequency (L-F) Oscillator

All C8051T630/1/2/3/4/5 devices include a programmable low-frequency internal oscillator, which is calibrated to a nominal frequency of 80 kHz . The low-frequency oscillator circuit includes a divider that can be changed to divide the clock by $1,2,4$, or 8 , using the OSCLD bits in the OSCLCN register (see SFR Definition 19.4). Additionally, the OSCLF[3:0] bits can be used to adjust the oscillator's output frequency.

19.3.1. Calibrating the Internal L-F Oscillator

Timers 2 and 3 include capture functions that can be used to capture the oscillator frequency, when running from a known time base. When either Timer 2 or Timer 3 is configured for L-F Oscillator Capture Mode, a falling edge (Timer 2) or rising edge (Timer 3) of the low-frequency oscillator's output will cause a capture event on the corresponding timer. As a capture event occurs, the current timer value (TMRnH:TMRnL) is copied into the timer reload registers (TMRnRLH:TMRnRLL). By recording the difference between two successive timer capture values, the low-frequency oscillator's period can be calculated. The OSCLF bits can then be adjusted to produce the desired oscillator frequency.

SFR Definition 19.4. OSCLCN: Internal L-F Oscillator Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	OSCLEN	OSCLRDY	OSCLF[3:0]				OSCLD[1:0]	
Type	R/W	R		R.W	R/W			
Reset	0	0	Varies	Varies	Varies	Varies	0	0

SFR Address = 0xE3

Bit	Name	Function
7	OSCLEN	Internal L-F Oscillator Enable. 0: Internal L-F Oscillator Disabled. $1:$ Internal L-F Oscillator Enabled.
6	OSCLRDY	Internal L-F Oscillator Ready. 0: Internal L-F Oscillator frequency not stabilized. $1:$ Internal L-F Oscillator frequency stabilized. Note: OSCLRDY is only set back to 0 in the event of a device reset or a change to the OSCLD[1:0] bits.
$5: 2$	OSCLF[3:0]	Internal L-F Oscillator Frequency Control Bits. Fine-tune control bits for the Internal L-F oscillator frequency. When set to 0000b, the L-F oscillator operates at its fastest setting. When set to 1111b, the L-F oscillator operates at its slowest setting.
$1: 0$	OSCLD[1:0]	Internal L-F Oscillator Divider Select. 00: Divide by 8 selected. 01: Divide by 4 selected. $10:$ Divide by 2 selected. 11: Divide by 1 selected.

C8051T630/1/2/3/4/5

19.4. External Oscillator Drive Circuit

The external oscillator circuit may drive an external capacitor or RC network. A CMOS clock may also provide a clock input. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the EXTCLK pin as shown in Figure 19.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 19.5).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0. 3 is used as EXTCLK. The Port I/O Crossbar should be configured to skip the Port pin used by the oscillator circuit; see Section "20.3. Priority Crossbar Decoder" on page 114 for Crossbar configuration. Additionally, when using the external oscillator circuit in capacitor or RC mode, the associated Port pin should be configured as an analog input. In CMOS clock mode, the associated pin should be configured as a digital input. See Section "20.4. Port I/O Initialization" on page 116 for details on Port input mode selection.

C8051T630/1/2/3/4/5

SFR Definition 19.5. OSCXCN: External Oscillator Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{XOSCMD}[2: 0]$					$\mathrm{XFCN[2:0]}$		
Type	R	R / W			R	R / W		
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times B 1$

Bit	Name	Function		
7	Unused	Read $=0$; Write $=$ Don't Care		
6:4	XOSCMD[2:0]	External Oscillator Mode Select. 00x: External Oscillator circuit off. 010: External CMOS Clock Mode. 011: External CMOS Clock Mode with divide by 2 stage. 100: RC Oscillator Mode with divide by 2 stage. 101: Capacitor Oscillator Mode with divide by 2 stage. 11x: Reserved.		
3	Unused	Read = 0; Write = Don't Care		
2:0	XFCN[2:0]	External Oscillator Frequency Control Bits. Set according to the desired frequency range for RC mode. Set according to the desired K Factor for C mode.		
		XFCN	RC Mode	C Mode
		000	$\mathrm{f} \leq 25 \mathrm{kHz}$	K Factor $=0.87$
		001	$25 \mathrm{kHz}<\mathrm{f} \leq 50 \mathrm{kHz}$	K Factor $=2.6$
		010	$50 \mathrm{kHz}<\mathrm{f} \leq 100 \mathrm{kHz}$	K Factor = 7.7
		011	$100 \mathrm{kHz}<\mathrm{f} \leq 200 \mathrm{kHz}$	K Factor $=22$
		100	200 kHz < $\mathrm{f} \leq 400 \mathrm{kHz}$	K Factor $=65$
		101	$400 \mathrm{kHz}<\mathrm{f} \leq 800 \mathrm{kHz}$	K Factor $=180$
		110	800 kHz < $\mathrm{f} \leq 1.6 \mathrm{MHz}$	K Factor $=664$
		111	$1.6 \mathrm{MHz}<\mathrm{f} \leq 3.2 \mathrm{MHz}$	K Factor $=1590$

C8051T630/1/2/3/4/5

19.4.1. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as shown in Figure 19.1, "RC Mode". The capacitor should be no greater than 100 pF ; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation, according to Equation 19.1, where $\mathrm{f}=$ the frequency of oscillation in $\mathrm{MHz}, \mathrm{C}=$ the capacitor value in pF , and $\mathrm{R}=$ the pull-up resistor value in $\mathrm{k} \Omega$.

Equation 19.1. RC Mode Oscillator Frequency

$$
f=1.23 \times 10^{3} /(R \times C)
$$

For example: If the frequency desired is 100 kHz , let $\mathrm{R}=246 \mathrm{k} \Omega$ and $\mathrm{C}=50 \mathrm{pF}$:
$\mathrm{f}=1.23\left(10^{3}\right) / \mathrm{RC}=1.23\left(10^{3}\right) /[246 \times 50]=0.1 \mathrm{MHz}=100 \mathrm{kHz}$
Referring to the table in SFR Definition 19.5, the required XFCN setting is 010b.

19.4.2. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 19.1, "C Mode". The capacitor should be no greater than 100 pF ; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation according to Equation 19.2, where $f=$ the frequency of oscillation in $\mathrm{MHz}, \mathrm{C}=$ the capacitor value in pF , and $\mathrm{V}_{\mathrm{DD}}=$ the MCU power supply in Volts.

Equation 19.2. C Mode Oscillator Frequency

$$
f=(K F) /\left(R \times V_{D D}\right)
$$

For example: Assume $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ and $\mathrm{f}=150 \mathrm{kHz}$:
$\mathrm{f}=\mathrm{KF} /(\mathrm{C} \times$ VDD $)$
$0.150 \mathrm{MHz}=\mathrm{KF} /(\mathrm{C} \times 3.0)$
Since the frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 19.5 (OSCXCN) as KF = 22:
$0.150 \mathrm{MHz}=22 /(\mathrm{C} \times 3.0)$
$\mathrm{C} \times 3.0=22 / 0.150 \mathrm{MHz}$
$\mathrm{C}=146.6 / 3.0 \mathrm{pF}=48.8 \mathrm{pF}$
Therefore, the XFCN value to use in this example is 011 b and $\mathrm{C}=50 \mathrm{pF}$.

C8051T630/1/2/3/4/5

20. Port Input/Output

Digital and analog resources are available through 17 I/O pins. Port pins P0.0-P1.7 can be defined as gen-eral-purpose I/O (GPIO), assigned to one of the internal digital resources,Para1 or assigned to an analog function as shown in Figure 20.3. Port pin P2.0 on can be used as GPIO and is shared with the C2 Interface Data signal (C2D). The designer has complete control over which functions are assigned, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. Note that the state of a Port I/O pin can always be read in the corresponding Port latch, regardless of the Crossbar settings.

The Crossbar assigns the selected internal digital resources to the I/O pins based on the Priority Decoder (Figure 20.3 and Figure 20.4). The registers XBR0 and XBR1, defined in SFR Definition 20.1 and SFR Definition 20.2, are used to select internal digital functions.

All Port I/Os are 5 V tolerant (refer to Figure 20.2 for the Port cell circuit). The Port I/O cells are configured as either push-pull or open-drain in the Port Output Mode registers (PnMDOUT, where $\mathrm{n}=0,1$). Complete Electrical Specifications for Port I/O are given in Table 5.3 on page 25.

Figure 20.1. Port I/O Functional Block Diagram

C8051T630/1/2/3/4/5

20.1. Port I/O Modes of Operation

Port pins use the Port I/O cell shown in Figure 20.2. Each Port I/O cell can be configured by software for analog I/O or digital I/O using the PnMDIN registers. On reset, all Port I/O cells default to a high impedance state with weak pull-ups enabled until the Crossbar is enabled (XBARE =1).

20.1.1. Port Pins Configured for Analog I/O

Any pins to be used as Comparator or ADC input, external oscillator input/output, VREF, or IDAC output should be configured for analog I/O (PnMDIN.n = 1). When a pin is configured for analog I/O, its weak pullup, digital driver, and digital receiver are disabled. Port pins configured for analog I/O will always read back a value of 0 .

Configuring pins as analog I/O saves power and isolates the Port pin from digital interference. Port pins configured as digital inputs may still be used by analog peripherals; however, this practice is not recommended and may result in measurement errors.

20.1.2. Port Pins Configured For Digital I/O

Any pins to be used by digital peripherals (UART, SPI, SMBus, etc.), external digital event capture functions, or as GPIO should be configured as digital I/O (PnMDIN.n = 1). For digital I/O pins, one of two output modes (push-pull or open-drain) must be selected using the PnMDOUT registers.

Push-pull outputs (PnMDOUT.n = 1) drive the Port pad to the VDD/DC+ or GND supply rails based on the output logic value of the Port pin. Open-drain outputs have the high side driver disabled; therefore, they only drive the Port pad to GND when the output logic value is 0 and become high impedance inputs (both high low drivers turned off) when the output logic value is 1 .

When a digital I/O cell is placed in the high impedance state, a weak pull-up transistor pulls the Port pad to the VDD supply voltage to ensure the digital input is at a defined logic state. Weak pull-ups are disabled when the I/O cell is driven to GND to minimize power consumption and may be globally disabled by setting WEAKPUD to 1 . The user should ensure that digital I/O are always internally or externally pulled or driven to a valid logic state to minimize power consumption. Port pins configured for digital I/O always read back the logic state of the Port pad, regardless of the output logic value of the Port pin.

Figure 20.2. Port I/O Cell Block Diagram

20.1.3. Interfacing Port I/O to 5V Logic

All Port I/O configured for digital, open-drain operation are capable of interfacing to digital logic operating at a supply voltage higher than VDD and less than 5.25 V . An external pullup resistor to the higher supply voltage is typically required for most systems.

Important Note: In a multi-voltage interface, the external pullup resistor should be sized to allow a current of at least $150 \mu \mathrm{~A}$ to flow into the Port pin when the supply voltage is between (VDD + 0.6 V) and (VDD + 1.0 V). Once the Port pin voltage increases beyond this range, the current flowing into the Port pin is minimal.

C8051T630/1/2/3/4/5

20.2. Assigning Port I/O Pins to Analog and Digital Functions

Port I/O pins can be assigned to various analog, digital, and external interrupt functions. The Port pins assigned to analog functions should be configured for analog I/O, and Port pins assigned to digital or external interrupt functions should be configured for digital I/O.

20.2.1. Assigning Port I/O Pins to Analog Functions

Table 20.1 shows all available analog functions that require Port I/O assignments. Port pins selected for these analog functions should have their corresponding bit in PnSKIP set to 1. This reserves the pin for use by the analog function and does not allow it to be claimed by the Crossbar. Table 20.1 shows the potential mapping of Port I/O to each analog function.

Table 20.1. Port I/O Assignment for Analog Functions

Analog Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
ADC Input	P0.0-P1.7	AMXOP, AMXON, PnSKIP
Comparator0 Input	P0.0-P1.7	CPT0MX, PnSKIP
Voltage Reference (VREF0)	P0.0	REF0CN, PnSKIP
Current DAC Output (IDA0)	P0.1	IDA0CN, PnSKIP
External Oscillator in RC or C Mode (EXTCLK)	P0.3	OSCXCN, PnSKIP

20.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the Crossbar in a manner similar to the analog functions listed above. Port pins used by these digital functions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set to 1. Table 20.2 shows all available digital functions and the potential mapping of Port I/O to each digital function.

Table 20.2. Port I/O Assignment for Digital Functions

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
UART0, SPIO, SMBus, CPO, CPOA, SYSCLK, PCAO (CEX0-2 and ECI), T0 or T1.	Any Port pin available for assignment by the Crossbar. This includes P0.0-P1.7 pins which have their PnSKIP bit set to 0. Note: The Crossbar will always assign UART0 pins to P0.4 and P0.5.	XBR0, XBR1
Any pin used for GPIO	P0.0-P2.0	

C8051T630/1/2/3/4/5

20.2.3. Assigning Port I/O Pins to External Digital Event Capture Functions

External digital event capture functions can be used to trigger an interrupt or wake the device from a low power mode when a transition occurs on a digital I/O pin. The digital event capture functions do not require dedicated pins and will function on both GPIO pins (PnSKIP =1) and pins in use by the Crossbar (PnSKIP $=0$). External digital event capture functions cannot be used on pins configured for analog I/O. Table 20.3 shows all available external digital event capture functions.

Table 20.3. Port I/O Assignment for External Digital Event Capture Functions

Digital Function	Potentially Assignable Port Pins	SFR(s) used for Assignment
External Interrupt 0	P0.0-P0.7	IT01CF
External Interrupt 1	P0.0-P0.7	IT01CF
Port Match	P0.0-P1.7	POMASK, POMAT
		P1MASK, P1MAT

C8051T630/1/2/3/4/5

20.3. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 20.3) assigns a priority to each I/O function, starting at the top with UARTO. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UART0, which is always at pins 4 and 5). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to P0.0 if VREF is used, P0.3 if the external oscillator circuit is enabled, P0.6 if the ADC or IDAC is configured to use the external conversion start signal (CNVSTR), and any selected ADC or Comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 20.3 shows the Crossbar Decoder priority with no Port pins skipped (P0SKIP, P1SKIP = 0x00); Figure 20.4 shows the Crossbar Decoder priority with the $\mathrm{V}_{\mathrm{PP}}(\mathrm{P} 0.2)$ and $\operatorname{EXTCLK}(\mathrm{PO} 0.3)$ pins skipped (POSKIP $\left.=0 \times 0 \mathrm{C}\right)$.

	Port pin potentially available to peripheral
SF Signals	Special Function Signals are not assigned by the crossbar.
	When these signals are enabled, the CrossBar must be
	manually configured to skip their corresponding port pins.

Figure 20.3. Crossbar Priority Decoder with No Pins Skipped

C8051T630/1/2/3/4/5

	Port pin potentially available to peripheral
SF Signals	Special Function Signals are not assigned by the crossbar.
	$\begin{array}{l}\text { When these signals are enabled, the CrossBar must be } \\ \\ \\ \text { manually configured to skip their corresponding port pins. }\end{array}$

Figure 20.4. Crossbar Priority Decoder with Crystal Pins Skipped

Registers XBRO and XBR1 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); when the UART is selected, the Crossbar assigns both pins associated with the UART (TX and RX). UART0 pin assignments are fixed for bootloading purposes: UART TX0 is always assigned to P0.4; UART RX0 is always assigned to P0.5. Standard Port I/Os appear contiguously after the prioritized functions have been assigned.

Important Note: The SPI can be operated in either 3-wire or 4-wire modes, pending the state of the NSS-MD1-NSSMD0 bits in register SPIOCN. According to the SPI mode, the NSS signal may or may not be routed to a Port pin.

C8051T630/1/2/3/4/5

20.4. Port I/O Initialization

Port I/O initialization consists of the following steps:

1. Select the input mode (analog or digital) for all Port pins, using the Port Input Mode register (PnMDIN).
2. Select the output mode (open-drain or push-pull) for all Port pins, using the Port Output Mode register (PnMDOUT).
3. Select any pins to be skipped by the I/O Crossbar using the Port Skip registers (PnSKIP).
4. Assign Port pins to desired peripherals.
5. Enable the Crossbar (XBARE =1).

All Port pins must be configured as either analog or digital inputs. Any pins to be used as Comparator or ADC inputs should be configured as an analog inputs. When a pin is configured as an analog input, its weak pullup, digital driver, and digital receiver are disabled. This process saves power and reduces noise on the analog input. Pins configured as digital inputs may still be used by analog peripherals; however this practice is not recommended.

Additionally, all analog input pins should be configured to be skipped by the Crossbar (accomplished by setting the associated bits in PnSKIP). Port input mode is set in the PnMDIN register, where a 1 indicates a digital input, and a 0 indicates an analog input. All pins default to digital inputs on reset. See SFR Definition 20.8 for the PnMDIN register details.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMDOUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings. When the WEAKPUD bit in XBR1 is 0 , a weak pullup is enabled for all Port I/O configured as open-drain. WEAKPUD does not affect the push-pull Port I/O. Furthermore, the weak pullup is turned off on an output that is driving a 0 to avoid unnecessary power dissipation.

Registers XBRO and XBR1 must be loaded with the appropriate values to select the digital I/O functions required by the design. Setting the XBARE bit in XBR1 to 1 enables the Crossbar. Until the Crossbar is enabled, the external pins remain as standard Port I/O (in input mode), regardless of the XBRn Register settings. For given XBRn Register settings, one can determine the I/O pin-out using the Priority Decode Table; as an alternative, the Configuration Wizard utility of the Silicon Labs IDE software will determine the Port I/O pin-assignments based on the XBRn Register settings.

The Crossbar must be enabled to use Port pins as standard Port I/O in output mode. Port output drivers are disabled while the Crossbar is disabled.

C8051T630/1/2/3/4/5

SFR Definition 20.1. XBR0: Port I/O Crossbar Register 0

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name			CPOAE	CPOE	SYSCKE	SMBOE	SPIOE	URTOE
Type	R	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE1

Bit	Name	Function
7:6	Unused	Unused. Read = 00b; Write = Don't Care.
5	CPOAE	Comparator0 Asynchronous Output Enable. 0: Asynchronous CPO unavailable at Port pin. 1: Asynchronous CPO routed to Port pin.
4	CP0E	Comparator0 Output Enable. 0: CPO unavailable at Port pin. 1: CPO routed to Port pin.
3	SYSCKE	ISYSCLK Output Enable. 0 : /SYSCLK unavailable at Port pin. 1: ISYSCLK output routed to Port pin.
2	SMB0E	SMBus I/O Enable. 0 : SMBus I/O unavailable at Port pins. 1: SMBus I/O routed to Port pins.
1	SPIOE	SPI I/O Enable. 0: SPI I/O unavailable at Port pins. 1: SPI I/O routed to Port pins. Note that the SPI can be assigned either 3 or 4 GPIO pins.
0	URTOE	UART I/O Output Enable. 0: UART I/O unavailable at Port pin. 1: UART TXO, RXO routed to Port pins P0.4 and P0.5.

C8051T630/1/2/3/4/5

SFR Definition 20.2. XBR1: Port I/O Crossbar Register 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	WEAKPUD	XBARE	T1E	TOE	ECIE		PCAOME[1:0]	
Type	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times E 2$

Bit	Name	
7	WEAKPUD	Port I/O Weak Pullup Disable. 0: Weak Pullups enabled (except for Ports whose I/O are configured for analog mode). 1: Weak Pullups disabled.
6	XBARE	Crossbar Enable. 0: Crossbar disabled. 1: Crossbar enabled.
5	T1E	T1 Enable. 0: T1 unavailable at Port pin. 1: T1 routed to Port pin.
4	T0E	T0 Enable. 0: T0 unavailable at Port pin. 1: TO routed to Port pin.
3	ECIE	PCA0 External Counter Input Enable. 0: ECI unavailable at Port pin. 1: ECI routed to Port pin.
2	Unused	Unused. Read = Ob; Write = Don't Care.
$1: 0$	PCAOME[1:0]	PCA Module I/O Enable Bits. 00: All PCA I/O unavailable at Port pins. 01: CEXO routed to Port pin. 10: CEX0, CEX1 routed to Port pins. 11: CEXO, CEX1, CEX2 routed to Port pins.

20.5. Port Match

Port match functionality allows system events to be triggered by a logic value change on P0 or P1. A software controlled value stored in the PnMATCH registers specifies the expected or normal logic values of P0 and P1. A Port mismatch event occurs if the logic levels of the Port's input pins no longer match the software controlled value. This allows Software to be notified if a certain change or pattern occurs on P0 or P1 input pins regardless of the XBRn settings.

The PnMASK registers can be used to individually select which P0 and P1 pins should be compared against the PnMATCH registers. A Port mismatch event is generated if (PO \& POMASK) does not equal (POMATCH \& POMASK) or if (P1 \& P1MASK) does not equal (P1MATCH \& P1MASK).

C8051T630/1/2/3/4/5

A Port mismatch event may be used to generate an interrupt or wake the device from a low power mode, such as IDLE or SUSPEND. See the Interrupts and Power Options chapters for more details on interrupt and wake-up sources.

SFR Definition 20.3. POMASK: Port 0 Mask Register

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | POMASK[7:0] | | | | | | | |
| Type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reset | 0 | R/W | | | | | | |

SFR Address $=0 x F E$

Bit	Name	Function
$7: 0$	POMASK[7:0]	Port 0 Mask Value.
		Selects P0 pins to be compared to the corresponding bits in POMAT. 0: P0.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P0.n pin logic value is compared to POMAT.n.

SFR Definition 20.4. POMAT: Port 0 Match Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POMAT[7:0]							
Type	1	1	1	1	1	1	1	1
Reset	1	R/W						

SFR Address = 0xFD

Bit	Name	Function
$7: 0$	POMAT[7:0]	Port 0 Match Value. Match comparison value used on Port 0 for bits in POMASK which are set to 1. 0: P0.n pin logic value is compared with logic LOW. 1: P0.n pin logic value is compared with logic HIGH.

C8051T630/1/2/3/4/5

SFR Definition 20.5. P1MASK: Port 1 Mask Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P1MASK[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xEE

Bit	Name	Function
7:0	P1MASK[7:0]	Port 1 Mask Value. Selects P1 pins to be compared to the corresponding bits in P1MAT. 0: P1.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P1.n pin logic value is compared to P1MAT.n.

SFR Definition 20.6. P1MAT: Port 1 Match Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Name	P1MAT[7:0]								
Type	R/W								
Reset	1	1	1	1	1	1	1	1	

SFR Address = 0xED

Bit	Name	Function
7:0	P1MAT[7:0]	Port 1 Match Value. Match comparison value used on Port 1 for bits in P1MASK which are set to 1. 0: P1.n pin logic value is compared with logic LOW. 1: P1.n pin logic value is compared with logic HIGH.

C8051T630/1/2/3/4/5

20.6. Special Function Registers for Accessing and Configuring Port I/O

All Port I/O are accessed through corresponding special function registers (SFRs) that are both byte addressable and bit addressable. When writing to a Port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the Port's input pins are returned regardless of the XBRn settings (i.e., even when the pin is assigned to another signal by the Crossbar, the Port register can always read its corresponding Port I/O pin). The exception to this is the execution of the read-modify-write instructions that target a Port Latch register as the destination. The read-modify-write instructions when operating on a Port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a Port SFR. For these instructions, the value of the latch register (not the pin) is read, modified, and written back to the SFR.

Each Port has a corresponding PnSKIP register which allows its individual Port pins to be assigned to digital functions or skipped by the Crossbar. All Port pins used for analog functions, GPIO, or dedicated digital functions such as the EMIF should have their PnSKIP bit set to 1 .

The Port input mode of the I/O pins is defined using the Port Input Mode registers (PnMDIN). Each Port cell can be configured for analog or digital I/O. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is P2.4, which can only be used for digital I/O.

The output driver characteristics of the I/O pins are defined using the Port Output Mode registers (PnMDOUT). Each Port Output driver can be configured as either open drain or push-pull. This selection is required even for the digital resources selected in the XBRn registers, and is not automatic. The only exception to this is the SMBus (SDA, SCL) pins, which are configured as open-drain regardless of the PnMDOUT settings.

SFR Definition 20.7. P0: Port 0

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{PO}[7: 0]$							
Type	1	1	1	1	1	1	1	1
Reset	1		R/W					

SFR Address $=0 \times 80$; Bit-Addressable

Bit	Name	Description	Write	Read
$7: 0$	$\mathrm{PO}[7: 0]$	Port 0 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: PO.n Port pin is logic LOW. 1: PO.n Port pin is logic HIGH.

C8051T630/1/2/3/4/5

SFR Definition 20.8. POMDIN: Port 0 Input Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POMDIN[7:0]							
Type	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address = 0xF1

Bit	Name	Function
7:0	POMDIN[7:0]	Analog Configuration Bits for P0.7-P0.0 (respectively). Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled. 0: Corresponding P0.n pin is configured for analog mode. 1: Corresponding P0.n pin is not configured for analog mode.

SFR Definition 20.9. POMDOUT: Port 0 Output Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POMDOUT[7:0]							
Type	R / W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 4$

Bit	Name	Function
$7: 0$	POMDOUT[7:0]	Output Configuration Bits for P0.7-P0.0 (respectively). These bits are ignored if the corresponding bit in register POMDIN is logic 0. 0: Corresponding P0.n Output is open-drain. 1: Corresponding P0.n Output is push-pull.

C8051T630/1/2/3/4/5

SFR Definition 20.10. P0SKIP: Port 0 Skip

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	POSKIP[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address = 0xD4

Bit	Name	Function
$7: 0$	POSKIP[7:0]	Port 0 Crossbar Skip Enable Bits. These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P0.n pin is not skipped by the Crossbar. 1: Corresponding P0.n pin is skipped by the Crossbar.

SFR Definition 20.11. P1: Port 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{P} 1[7: 0]$							
Type	1	1	1	1	1	1	1	1
Reset	1	1						

SFR Address $=0 \times 90$; Bit-Addressable

Bit	Name	Description	Write	Read
7:0	P1[7:0]	Port 1 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	O: P1.n Port pin is logic LOW. 1: P1.n Port pin is logic HIGH.

C8051T630/1/2/3/4/5

SFR Definition 20.12. P1MDIN: Port 1 Input Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	P1MDIN[7:0]							
Type	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Address $=0 \times F 2$

Bit	Name	Function
7:0	P1MDIN[7:0]	Analog Configuration Bits for P1.7-P1.0 (respectively). Port pins configured for analog mode have their weak pullup, digital driver, and digital receiver disabled. 0: Corresponding P1.n pin is configured for analog mode. 1: Corresponding P1.n pin is not configured for analog mode.

SFR Definition 20.13. P1MDOUT: Port 1 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P1MDOUT[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 5$

Bit	Name	Function
$7: 0$	P1MDOUT[7:0]	Output Configuration Bits for P1.7-P1.0 (respectively). These bits are ignored if the corresponding bit in register P1MDIN is logic 0. 0: Corresponding P1.n Output is open-drain. 1: Corresponding P1.n Output is push-pull.

C8051T630/1/2/3/4/5

SFR Definition 20.14. P1SKIP: Port 1 Skip

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name		R						
Type	R	P1SKIP[6:0]						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD5

Bit	Name	Function
7	Unused	Unused. Read = Ob; Write = Don't Care.
$6: 0$	P1SKIP[6:0]	Port 1 Crossbar Skip Enable Bits. These bits select Port 1 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P1.n pin is not skipped by the Crossbar. 1: Corresponding P1.n pin is skipped by the Crossbar.

SFR Definition 20.15. P2: Port 2

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name								$\mathrm{P} 2[0]$
Type	R	R	R	R	R	R	R	R / W
Reset	0	0	0	0	0	0	0	1

SFR Address = 0xAO; Bit-Addressable

Bit	Name	Description	Write	Read
$7: 1$	Unused	Unused.	Don't Care	000000b
0	P2[0]	Port 2 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P2.0 Port pin is logic LOW. 1: P2.0 Port pin is logic HIGH.

C8051T630/1/2/3/4/5

SFR Definition 20.16. P2MDOUT: Port 2 Output Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name								P2MDOUT[0]
Type	R	R	R	R	R	R	R	R / W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xA6

Bit	Name	
$7: 1$	Unused	Unused. Read = 000000b; Write = Don't Care
0	P2MDOUT[0]	Output Configuration Bits for P2.0. 0: P2.0 Output is open-drain. 1: P2.0 Output is push-pull.

C8051T630/1/2/3/4/5

21. SMBus

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the $I^{2} \mathrm{C}$ serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus interface autonomously controlling the serial transfer of the data. Data can be transferred at up to $1 / 20$ th of the system clock as a master or slave (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

The SMBus interface may operate as a master and/or slave, and may function on a bus with multiple masters. The SMBus provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. The SMBus peripheral can be fully driven by software (i.e., software accepts/rejects slave addresses, and generates ACKs), or hardware slave address recognition and automatic ACK generation can be enabled to minimize software overhead. A block diagram of the SMBus peripheral and the associated SFRs is shown in Figure 21.1.

Figure 21.1. SMBus Block Diagram

C8051T630/1/2/3/4/5

21.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

1. The $I^{2} \mathrm{C}$-Bus and How to Use It (including specifications), Philips Semiconductor.
2. The $I^{2} \mathrm{C}$-Bus Specification-Version 2.0, Philips Semiconductor.
3. System Management Bus Specification-Version 1.1, SBS Implementers Forum.

21.2. SMBus Configuration

Figure 21.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V ; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns , respectively.

Figure 21.2. Typical SMBus Configuration

21.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device who transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7-1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Bytes that are received (by a master or slave) are acknowledged (ACK) with a low SDA during a high SCL (see Figure 21.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

The direction bit (R/W) occupies the least-significant bit position of the address byte. The direction bit is set to logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.

C8051T630/1/2/3/4/5

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 21.3 illustrates a typical SMBus transaction.

Figure 21.3. SMBus Transaction

21.3.1. Transmitter Vs. Receiver

On the SMBus communications interface, a device is the "transmitter" when it is sending an address or data byte to another device on the bus. A device is a "receiver" when an address or data byte is being sent to it from another device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

21.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see Section "21.3.5. SCL High (SMBus Free) Timeout" on page 130). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

21.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

21.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

C8051T630/1/2/3/4/5

When the SMBTOE bit in SMBOCF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to overflow after 25 ms (and SMBTOE set), the Timer 3 interrupt service routine can be used to reset (disable and re-enable) the SMBus in the event of an SCL low timeout.

21.3.5. SCL High (SMBus Free) Timeout

The SMBus specification stipulates that if the SCL and SDA lines remain high for more that $50 \mu \mathrm{~s}$, the bus is designated as free. When the SMBFTE bit in SMBOCF is set, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods (as defined by the timer configured for the SMBus clock source). If the SMBus is waiting to generate a Master START, the START will be generated following this timeout. A clock source is required for free timeout detection, even in a slave-only implementation.

21.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMBOCF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information
- Optional hardware recognition of slave address and automatic acknowledgement of address/data

SMBus interrupts are generated for each data byte or slave address that is transferred. When hardware acknowledgement is disabled, the point at which the interrupt is generated depends on whether the hardware is acting as a data transmitter or receiver. When a transmitter (i.e., sending address/data, receiving an ACK), this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data (i.e., receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. If hardware acknowledgement is enabled, these interrupts are always generated after the ACK cycle. See Section 21.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMBOCN (SMBus Control register) to find the cause of the SMBus interrupt. The SMBOCN register is described in Section 21.4.2; Table 21.5 provides a quick SMBOCN decoding reference.

21.4.1. SMBus Configuration Register

The SMBus Configuration register (SMBOCF) is used to enable the SMBus Master and/or Slave modes, select the SMBus clock source, and select the SMBus timing and timeout options. When the ENSMB bit is set, the SMBus is enabled for all master and slave events. Slave events may be disabled by setting the INH bit. With slave events inhibited, the SMBus interface will still monitor the SCL and SDA pins; however, the interface will NACK all received addresses and will not generate any slave interrupts. When the INH bit is set, all slave events will be inhibited following the next START (interrupts will continue for the duration of the current transfer).

C8051T630/1/2/3/4/5

Table 21.1. SMBus Clock Source Selection

SMBCS1	SMBCS0	SMBus Clock Source
0	0	Timer 0 Overflow
0	1	Timer 1 Overflow
1	0	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow

The SMBCS1-0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 21.1. Note that the selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus and UART baud rates simultaneously. Timer configuration is covered in Section "24. Timers" on page 169.

$$
T_{\text {HighMin }}=T_{\text {LowMin }}=\frac{1}{f_{\text {ClockSourceOverflow }}}
$$

Equation 21.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 21.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 21.2.

$$
\text { BitRate }=\frac{f_{\text {ClockSourceOverflow }}}{3}
$$

Equation 21.2. Typical SMBus Bit Rate

Figure 21.4 shows the typical SCL generation described by Equation 21.2. Notice that $\mathrm{T}_{\text {HIGH }}$ is typically twice as large as $\mathrm{T}_{\text {Low }}$. The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 21.1.

Figure 21.4. Typical SMBus SCL Generation
Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable

C8051T630/1/2/3/4/5

after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns , respectively. Table 21.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz .

Table 21.2. Minimum SDA Setup and Hold Times

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time
0	$\mathrm{T}_{\text {low }}-4$ system clocks or 1 system clock + s/w delay	
1	11 system clocks	3 system clocks
Note:Setup Time for ACK bit transmissions and the MSB of all data transfers. When using software acknowledgement, the s/w delay occurs between the time SMBODAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.		

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "21.3.4. SCL Low Timeout" on page 129). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 21.4).

C8051T630/1/2/3/4/5

SFR Definition 21.1. SMB0CF: SMBus Clock/Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ENSMB	INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS[1:0]	
Type	R/W	R/W	R	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 1$

Bit	Name	Function
7	ENSMB	SMBus Enable. This bit enables the SMBus interface when set to 1. When enabled, the interface constantly monitors the SDA and SCL pins.
6	INH	SMBus Slave Inhibit. When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected.
5	BUSY	SMBus Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free-timeout is sensed.
4	EXTHOLD	SMBus Setup and Hold Time Extension Enable. This bit controls the SDA setup and hold times according to Table 21.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled.
3	SMBTOE	SMBus SCL Timeout Detection Enable. This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces Timer 3 to reload while SCL is high and allows Timer 3 to count when SCL goes low. If Timer 3 is configured to Split Mode, only the High Byte of the timer is held in reload while SCL is high. Timer 3 should be programmed to generate interrupts at 25 ms, and the Timer 3 interrupt service routine should reset SMBus communication.
2	SMBFTE	SMBus Free Timeout Detection Enable. When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods.
1:0	SMBCS[1:0]	SMBus Clock Source Selection. These two bits select the SMBus clock source, which is used to generate the SMBus bit rate. The selected device should be configured according to Equation 21.1. o0: Timer 0 Overflow 01: Timer 1 Overflow 10: Timer 2 High Byte Overflow 11: Timer 2 Low Byte Overflow

C8051T630/1/2/3/4/5

21.4.2. SMB0CN Control Register

SMBOCN is used to control the interface and to provide status information (see SFR Definition 21.2). The higher four bits of SMBOCN (MASTER, TXMODE, STA, and STO) form a status vector that can be used to jump to service routines. MASTER indicates whether a device is the master or slave during the current transfer. TXMODE indicates whether the device is transmitting or receiving data for the current byte.

STA and STO indicate that a START and/or STOP has been detected or generated since the last SMBus interrupt. STA and STO are also used to generate START and STOP conditions when operating as a master. Writing a 1 to STA will cause the SMBus interface to enter Master Mode and generate a START when the bus becomes free (STA is not cleared by hardware after the START is generated). Writing a 1 to STO while in Master Mode will cause the interface to generate a STOP and end the current transfer after the next ACK cycle. If STO and STA are both set (while in Master Mode), a STOP followed by a START will be generated.

The ARBLOST bit indicates that the interface has lost an arbitration. This may occur anytime the interface is transmitting (master or slave). A lost arbitration while operating as a slave indicates a bus error condition. ARBLOST is cleared by hardware each time SI is cleared.

The SI bit (SMBus Interrupt Flag) is set at the beginning and end of each transfer, after each byte frame, or when an arbitration is lost; see Table 21.3 for more details.

Important Note About the SI Bit: The SMBus interface is stalled while SI is set; thus SCL is held low, and the bus is stalled until software clears SI .

21.4.2.1. Software ACK Generation

When the EHACK bit in register SMBOADM is cleared to 0 , the firmware on the device must detect incoming slave addresses and ACK or NACK the slave address and incoming data bytes. As a receiver, writing the ACK bit defines the outgoing ACK value; as a transmitter, reading the ACK bit indicates the value received during the last ACK cycle. ACKRQ is set each time a byte is received, indicating that an outgoing ACK value is needed. When ACKRQ is set, software should write the desired outgoing value to the ACK bit before clearing SI. A NACK will be generated if software does not write the ACK bit before clearing SI. SDA will reflect the defined ACK value immediately following a write to the ACK bit; however SCL will remain low until SI is cleared. If a received slave address is not acknowledged, further slave events will be ignored until the next START is detected.

21.4.2.2. Hardware ACK Generation

When the EHACK bit in register SMBOADM is set to 1, automatic slave address recognition and ACK generation is enabled. More detail about automatic slave address recognition can be found in Section 21.4.3. As a receiver, the value currently specified by the ACK bit will be automatically sent on the bus during the ACK cycle of an incoming data byte. As a transmitter, reading the ACK bit indicates the value received on the last ACK cycle. The ACKRQ bit is not used when hardware ACK generation is enabled. If a received slave address is NACKed by hardware, further slave events will be ignored until the next START is detected, and no interrupt will be generated.

Table 21.3 lists all sources for hardware changes to the SMBOCN bits. Refer to Table 21.5 for SMBus status decoding using the SMB0CN register.

C8051T630/1/2/3/4/5

SFR Definition 21.2. SMBOCN: SMBus Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	MASTER	TXMODE	STA	STO	ACKRQ	ARBLOST	ACK	SI
Type	R	R	R/W	R/W	R	R	R / W	R / W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC0; Bit-Addressable

Bit	Name	Description	Read	Write
7	MASTER	SMBus Master/Slave Indicator. This read-only bit indicates when the SMBus is operating as a master.	0: SMBus operating in slave mode. 1: SMBus operating in master mode.	N/A
6	TXMODE	SMBus Transmit Mode Indicator. This read-only bit indicates when the SMBus is operating as a transmitter.	0: SMBus in Receiver Mode. 1: SMBus in Transmitter Mode.	N/A
5	STA	SMBus Start Flag.	0: No Start or repeated Start detected. 1: Start or repeated Start detected.	0: No Start generated. 1: When Configured as a Master, initiates a START or repeated START.
4	STO	SMBus Stop Flag.	0: No Stop condition detected. 1: Stop condition detected (if in Slave Mode) or pend- ing (if in Master Mode).	0: No STOP condition is transmitted. 1: When configured as a Master, causes a STOP condition to be transmit- ted after the next ACK cycle. Cleared by Hardware.
3	ACKRQ	SMBus Acknowledge Request.	0: No Ack requested 1: ACK requested	N/A
2	ARBLOST	SMBus Arbitration Lost Indicator.	0: No arbitration error. 1: Arbitration Lost	N/A
1	ACK	SMBus Acknowledge.	0: NACK received. 1: ACK received.	N: Send NACK 1: Send ACK
0	SI	SMBus Interrupt Flag. This bit is set by hardware under the conditions listed in Table 15.3. SI must be cleared by software. While SI is set, SCL is held low and the SMBus is stalled.	0: No interrupt pending 1: Interrupt Pending	0: Clear interrupt, and initi- ate next state machine event. 1: Force interrupt.

C8051T630/1/2/3/4/5

Table 21.3. Sources for Hardware Changes to SMBOCN

Bit	Set by Hardware When:	Cleared by Hardware When:
MASTER	- A START is generated.	- A STOP is generated. - Arbitration is lost.
TXMODE	- START is generated. - SMBODAT is written before the start of an SMBus frame.	- A START is detected. - Arbitration is lost. - SMBODAT is not written before the start of an SMBus frame.
STA	A START followed by an address byte is received.	- Must be cleared by software.
STO	- A STOP is detected while addressed as a slave. - Arbitration is lost due to a detected STOP.	- A pending STOP is generated.
ACKRQ	- A byte has been received and an ACK response value is needed (only when hardware ACK is not enabled).	- After each ACK cycle.
ARBLOST	- A repeated START is detected as a MASTER when STA is low (unwanted repeated START). - SCL is sensed low while attempting to generate a STOP or repeated START condition. - SDA is sensed low while transmitting a 1 (excluding ACK bits).	- Each time SI is cleared.
ACK	The incoming ACK value is low (ACKNOWLEDGE).	The incoming ACK value is high (NOT ACKNOWLEDGE).
SI	- A START has been generated. - Lost arbitration. - A byte has been transmitted and an ACK/NACK received. - A byte has been received. - A START or repeated START followed by a slave address + R/W has been received. - A STOP has been received.	- Must be cleared by software.

21.4.3. Hardware Slave Address Recognition

The SMBus hardware has the capability to automatically recognize incoming slave addresses and send an ACK without software intervention. Automatic slave address recognition is enabled by setting the EHACK bit in register SMBOADM to 1 . This will enable both automatic slave address recognition and automatic hardware ACK generation for received bytes (as a master or slave). More detail on automatic hardware ACK generation can be found in Section 21.4.2.2.

The registers used to define which address(es) are recognized by the hardware are the SMBus Slave Address register (SFR Definition 21.3) and the SMBus Slave Address Mask register (SFR Definition 21.4). A single address or range of addresses (including the General Call Address 0x00) can be specified using these two registers. The most-significant seven bits of the two registers are used to define which addresses will be ACKed. A 1 in bit positions of the slave address mask SLVM[6:0] enable a comparison between the received slave address and the hardware's slave address $\operatorname{SLV}[6: 0]$ for those bits. A 0 in a bit

C8051T630/1/2/3/4/5

of the slave address mask means that bit will be treated as a "don't care" for comparison purposes. In this case, either a 1 or a 0 value are acceptable on the incoming slave address. Additionally, if the GC bit in register SMBOADR is set to 1, hardware will recognize the General Call Address (0x00). Table 21.4 shows some example parameter settings and the slave addresses that will be recognized by hardware under those conditions.

Table 21.4. Hardware Address Recognition Examples (EHACK = 1)

Hardware Slave Address SLV[6:0]	Slave Address Mask SLVM[6:0]	GC bit	Slave Addresses Recognized by Hardware
0×34	$0 \times 7 \mathrm{~F}$	0	0×34
0×34	$0 \times 7 \mathrm{~F}$	1	$0 \times 34,0 \times 00$ (General Call)
0×34	$0 \times 7 \mathrm{E}$	0	$0 \times 34,0 \times 35$
0×34	$0 \times 7 \mathrm{E}$	1	$0 \times 34,0 \times 35,0 \times 00$ (General Call)
0×70	0×73	0	$0 \times 70,0 \times 74,0 \times 78,0 \times 7 \mathrm{C}$

SFR Definition 21.3. SMB0ADR: SMBus Slave Address

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SLV[6:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	GC

SFR Address = 0xD7

Bit	Name	Function
$7: 1$	SLV[6:0]	SMBus Hardware Slave Address. Defines the SMBus Slave Address(es) for automatic hardware acknowledgement. Only address bits which have a 1 in the corresponding bit position in SLVM[6:0] are checked against the incoming address. This allows multiple addresses to be recognized.
0	GC	General Call Address Enable. When hardware address recognition is enabled (EHACK $=1)$) this bit will deter- mine whether the General Call Address (0x00) is also recognized by hardware. $0:$ General Call Address is ignored. $1:$ General Call Address is recognized.

C8051T630/1/2/3/4/5

SFR Definition 21.4. SMB0ADM: SMBus Slave Address Mask

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SLVM[6:0]							
Type	R/W							
Reset	1	1	1	1	1	1	1	EHACK

SFR Address $=0 x E 7$

Bit	Name	Function
$7: 1$	SLVM[6:0]	SMBus Slave Address Mask. Defines which bits of register SMB0ADR are compared with an incoming address byte, and which bits are ignored. Any bit set to 1 in SLVM[6:0] enables compari- sons with the corresponding bit in SLV[6:0]. Bits set to 0 are ignored (can be either 0 or 1 in the incoming address).
0	EHACK	Hardware Acknowledge Enable. Enables hardware acknowledgement of slave address and received data bytes. $0:$ Firmware must manually acknowledge all incoming address and data bytes. $1:$ Automatic Slave Address Recognition and Hardware Acknowledge is Enabled.

C8051T630/1/2/3/4/5

21.4.4. Data Register

The SMBus Data register SMBODAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMBODAT register when the SMBus is enabled and the SI flag is cleared to logic 0 , as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMBODAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMBODAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMBODAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMB0DAT.

SFR Definition 21.5. SMBODAT: SMBus Data

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | SMBODAT[7:0] | | | | | | | |
| Type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reset | 0 | R/W | | | | | | |

SFR Address = 0xC2

Bit	Name	Function
7:0	SMBODAT[7:0]	SMBus Data. The SMBODAT register contains a byte of data to be transmitted on the SMBus serial interface or a byte that has just been received on the SMBus serial interface. The CPU can read from or write to this register whenever the SI serial interrupt flag (SMBOCN.0) is set to logic 1. The serial data in the register remains stable as long as the SI flag is set. When the SI flag is not set, the system may be in the process of shifting data in/out and the CPU should not attempt to access this register.

C8051T630/1/2/3/4/5

21.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames. Note that the position of the ACK interrupt when operating as a receiver depends on whether hardware ACK generation is enabled. As a receiver, the interrupt for an ACK occurs before the ACK with hardware ACK generation disabled, and after the ACK when hardware ACK generation is enabled. As a transmitter, interrupts occur after the ACK, regardless of whether hardware ACK generation is enabled or not.

21.5.1. Write Sequence (Master)

During a write sequence, an SMBus master writes data to a slave device. The master in this transfer will be a transmitter during the address byte, and a transmitter during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 0 (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMBODAT is not written following a Master Transmitter interrupt. Figure 21.5 shows a typical master write sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 21.5. Typical Master Write Sequence

C8051T630/1/2/3/4/5

21.5.2. Read Sequence (Master)

During a read sequence, an SMBus master reads data from a slave device. The master in this transfer will be a transmitter during the address byte, and a receiver during all data bytes. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic 1 (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

Writing a 1 to the ACK bit generates an ACK; writing a 0 generates a NACK. Software should write a 0 to the ACK bit for the last data transfer, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0DAT is written while an active Master Receiver. Figure 21.6 shows a typical master read sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs before the ACK with hardware ACK generation disabled, and after the ACK when hardware ACK generation is enabled.

Figure 21.6. Typical Master Read Sequence

C8051T630/1/2/3/4/5

21.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMBOADR and SMBOADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave Transmitter Mode if SMBODAT is written while an active Slave Receiver. Figure 21.7 shows a typical slave write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs before the ACK with hardware ACK generation disabled, and after the ACK when hardware ACK generation is enabled.

Figure 21.7. Typical Slave Write Sequence

C8051T630/1/2/3/4/5

21.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled ($\mathrm{INH}=0$), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMBOADR and SMBOADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received slave address is acknowledged, data should be written to SMBODAT to be transmitted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMBODAT should be written with the next data byte. If the acknowledge bit is a NACK, SMBODAT should not be written to before SI is cleared (an error condition may be generated if SMBODAT is written following a received NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP. Note that the interface will switch to slave receiver mode if SMBODAT is not written following a Slave Transmitter interrupt. Figure 21.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 21.8. Typical Slave Read Sequence

21.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMBOCN register. The appropriate actions to take in response to an SMBus event depend on whether hardware slave address recognition and ACK generation is enabled or disabled. Table 21.5 describes the typical actions when hardware slave address recognition and ACK generation is disabled. Table 21.6 describes the typical actions when hardware slave address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four upper bits of SMBOCN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

C8051T630/1/2/3/4/5

Table 21.5. SMBus Status Decoding With Hardware ACK Generation Disabled (EHACK = 0)

	Values Read				Current SMbus State	Typical Response Options	Values to Write			
${ }^{\circ} \mathrm{O}$		$\left\lvert\, \begin{aligned} & \underset{\sim}{\mathbf{x}} \\ & \underset{\sim}{u} \\ & \underset{\sim}{\mathbf{\alpha}} \end{aligned}\right.$		$\begin{array}{\|l\|} \hline \underset{U}{u} \\ \hline \end{array}$			$\stackrel{\mathbb{1}}{\boldsymbol{s}}$	O	¢	
	1110	0	0	X	A master START was generated.	Load slave address + R/W into SMBODAT.	0	0	X	1100
	1100	0	0	0	A master data or address byte was transmitted; NACK received.	Set STA to restart transfer.	1	0	X	1110
						Abort transfer.	0	1	X	-
				1	A master data or address byte was transmitted; ACK received.	Load next data byte into SMBODAT.	0	0	X	1100
		0				End transfer with STOP.	0	1	X	-
			0			End transfer with STOP and start another transfer.	1	1	X	-
						Send repeated START.	1	0	X	1110
						Switch to Master Receiver Mode (clear SI without writing new data to SMBODAT).	0	0	X	1000
	1000	1	0	X	A master data byte was received; ACK requested.	Acknowledge received byte; Read SMBODAT.	0	0	1	1000
						Send NACK to indicate last byte, and send STOP.	0	1	0	-
						Send NACK to indicate last byte, and send STOP followed by START.	1	1	0	1110
						Send ACK followed by repeated START.	1	0	1	1110
						Send NACK to indicate last byte, and send repeated START.	1	0	0	1110
						Send ACK and switch to Master Transmitter Mode (write to SMBODAT before clearing SI).	0	0	1	1100
						Send NACK and switch to Master Transmitter Mode (write to SMBODAT before clearing SI).	0	0	0	1100

C8051T630/1/2/3/4/5

Table 21.5. SMBus Status Decoding With Hardware ACK Generation Disabled (EHACK = 0) (Continued)

	Values Read				Current SMbus State	Typical Response Options	Values to Write			
		$\begin{aligned} & \mathbf{O} \\ & \underset{\sim}{\prime} \\ & \mathbf{Y} \\ & \underset{\mathbb{U}}{ } \end{aligned}$		$$			¢	O	צ	
	0100	0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	X	0001
		0	0	1	A slave byte was transmitted; ACK received.	Load SMBODAT with next data byte to transmit.	0	0	X	0100
		0	1	X	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	X	0001
	0101	0	X	X	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	X	-
	0010	1	0	X	A slave address + R/W was received; ACK requested.	If Write, Acknowledge received address	0	0	1	0000
						If Read, Load SMBODAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	-
		1	1	X	Lost arbitration as master; slave address + R/W received; ACK requested.	If Write, Acknowledge received address	0	0	1	0000
						If Read, Load SMBODAT with data byte; ACK received address	0	0	1	0100
						NACK received address.	0	0	0	-
						Reschedule failed transfer; NACK received address.	1	0	0	1110
	0001	0	0	X	A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	X	-
		1	1	X	Lost arbitration while attempting a STOP.	No action required (transfer complete/aborted).	0	0	0	-
	0000	1	0	X	A slave byte was received; ACK requested.	Acknowledge received byte; Read SMBODAT.	0	0	1	0000
						NACK received byte.	0	0	0	-
	0010	0	1	X	Lost arbitration while attempting a repeated START.	Abort failed transfer.	0	0	X	-
						Reschedule failed transfer.	1	0	X	1110
	0001	0	1	X	Lost arbitration due to a detected STOP.	Abort failed transfer.	0	0	X	-
						Reschedule failed transfer.	1	0	X	1110
	0000	1	1	X	Lost arbitration while transmitting a data byte as master.	Abort failed transfer.	0	0	0	-
						Reschedule failed transfer.	1	0	0	1110

C8051T630/1/2/3/4/5

Table 21.6. SMBus Status Decoding With Hardware ACK Generation Enabled (EHACK = 1)

	Values Read				Current SMbus State	Typical Response Options	Values to Write			
		$\begin{aligned} & \mathbf{O}_{\mathbf{x}}^{\prime} \\ & \stackrel{y}{U} \end{aligned}$		$\underset{\mathbb{U}}{\underset{U}{U}}$			¢	O	¢	
	1110	0	0	X	A master START was generated.	Load slave address + R/W into SMBODAT.	0	0	X	1100
	1100	0	0	0	A master data or address byte was transmitted; NACK received.	Set STA to restart transfer.	1	0	X	1110
						Abort transfer.	0	1	X	-
		0	0	1	A master data or address byte was transmitted; ACK received.	Load next data byte into SMBODAT.	0	0	X	1100
						End transfer with STOP.	0	1	X	-
						End transfer with STOP and start another transfer.	1	1	X	-
						Send repeated START.	1	0	X	1110
						Switch to Master Receiver Mode (clear SI without writing new data to SMBODAT). Set ACK for initial data byte.	0	0	1	1000
	1000	0	0	1	A master data byte was received; ACK sent.	Set ACK for next data byte; Read SMBODAT.	0	0	1	1000
						Set NACK to indicate next data byte as the last data byte; Read SMB0DAT.	0	0	0	1000
						Initiate repeated START.	1	0	0	1110
						Switch to Master Transmitter Mode (write to SMBODAT before clearing SI).	0	0	X	1100
		0	0	0	A master data byte was received; NACK sent (last byte).	Read SMB0DAT; send STOP.	0	1	0	-
						Read SMB0DAT; Send STOP followed by START.	1	1	0	1110
						Initiate repeated START.	1	0	0	1110
						Switch to Master Transmitter Mode (write to SMBODAT before clearing SI).	0	0	X	1100

C8051T630/1/2/3/4/5

Table 21.6. SMBus Status Decoding With Hardware ACK Generation Enabled (EHACK = 1) (Continued)

	Values Read				Current SMbus State	Typical Response Options	Values to Write			
				$$			¢	-	צ	
	0100	0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	X	0001
		0	0	1	A slave byte was transmitted; ACK received.	Load SMBODAT with next data byte to transmit.	0	0	X	0100
		0	1	X	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	X	0001
	0101	0	X	X	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	X	-
	0010	0	0	X	A slave address + R/W was received; ACK sent.	If Write, Set ACK for first data byte.	0	0	1	0000
						If Read, Load SMB0DAT with data byte	0	0	X	0100
		0	1	X	Lost arbitration as master; slave address + R/W received; ACK sent.	If Write, Set ACK for first data byte.	0	0	1	0000
						If Read, Load SMBODAT with data byte	0	0	X	0100
						Reschedule failed transfer	1	0	X	1110
	0001	0	0	X	A STOP was detected while addressed as a Slave Transmitter or Slave Receiver.	Clear STO.	0	0	X	-
		0	1	X	Lost arbitration while attempting a STOP.	No action required (transfer complete/aborted).	0	0	0	-
	0000	0	0	X	A slave byte was received.	Set ACK for next data byte; Read SMBODAT.	0	0	1	0000
						Set NACK for next data byte; Read SMBODAT.	0	0	0	0000
	0010	0	1	X	Lost arbitration while attempting a repeated START.	Abort failed transfer.	0	0	X	-
						Reschedule failed transfer.	1	0	X	1110
	0001	0	1	X	Lost arbitration due to a detected STOP.	Abort failed transfer.	0	0	X	-
						Reschedule failed transfer.	1	0	X	1110
	0000	0	1	X	Lost arbitration while transmitting a data byte as master.	Abort failed transfer.	0	0	X	-
						Reschedule failed transfer.	1	0	X	1110

C8051T630/1/2/3/4/5

22. UARTO

UARTO is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details in Section "22.1. Enhanced Baud Rate Generation" on page 149). Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCONO) and Serial Data Buffer 0 (SBUF0). The single SBUFO location provides access to both transmit and receive registers. Writes to SBUF0 always access the Transmit register. Reads of SBUF0 always access the buffered Receive register; it is not possible to read data from the Transmit register.

With UARTO interrupts enabled, an interrupt is generated each time a transmit is completed (TIO is set in SCONO), or a data byte has been received (RIO is set in SCONO). The UARTO interrupt flags are not cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually by software, allowing software to determine the cause of the UARTO interrupt (transmit complete or receive complete).

Figure 22.1. UARTO Block Diagram

C8051T630/1/2/3/4/5

22.1. Enhanced Baud Rate Generation

The UARTO baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 22.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

Timer 1
UART

Figure 22.2. UARTO Baud Rate Logic
Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "24.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 173). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK/4, SYSCLK/12, SYSCLK/48, the external oscillator clock/8, or an external input T1. For any given Timer 1 clock source, the UARTO baud rate is determined by Equation 22.1-A and Equation 22.1-B.
A) UartBaudRate $=\frac{1}{2} \times$ T1_Overflow_Rate
B) \quad T1_Overflow_Rate $=\frac{\mathrm{T} 1_{\text {CLK }}}{256-\mathrm{TH1}}$

Equation 22.1. UARTO Baud Rate

Where $T 1_{C L K}$ is the frequency of the clock supplied to Timer 1 , and $T 1 H$ is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "24. Timers" on page 169. A quick reference for typical baud rates and system clock frequencies is given in Table 22.1 through Table 22.2. The internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

C8051T630/1/2/3/4/5

22.2. Operational Modes

UARTO provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the SOMODE bit (SCON0.7). Typical UART connection options are shown in Figure 22.3.

Figure 22.3. UART Interconnect Diagram

22.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RXO pin. On receive, the eight data bits are stored in SBUFO and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUFO register. The TIO Transmit Interrupt Flag (SCONO.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the RENO Receive Enable bit (SCONO.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUFO receive register if the following conditions are met: RIO must be logic 0 , and if MCEO is logic 1, the stop bit must be logic 1 . In the event of a receive data overrun, the first received 8 bits are latched into the SBUFO receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RIO flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RIO flag will not be set. An interrupt will occur if enabled when either TIO or RIO is set.

Figure 22.4. 8-Bit UART Timing Diagram

C8051T630/1/2/3/4/5

22.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TIO Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the RENO Receive Enable bit (SCON0.4) is set to 1. After the stop bit is received, the data byte will be loaded into the SBUFO receive register if the following conditions are met: (1) RIO must be logic 0 , and (2) if MCEO is logic 1, the 9 th bit must be logic 1 (when MCEO is logic 0 , the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB80, and the RIO flag is set to 1. If the above conditions are not met, SBUF0 and RB80 will not be loaded and the RIO flag will not be set to 1. A UART0 interrupt will occur if enabled when either TIO or RIO is set to 1.

Figure 22.5. 9-Bit UART Timing Diagram

C8051T630/1/2/3/4/5

22.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1 ; in a data byte, the ninth bit is always set to logic 0.

Setting the MCEO bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 $=1$) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCEO bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCEO bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 22.6. UART Multi-Processor Mode Interconnect Diagram

C8051T630/1/2/3/4/5

SFR Definition 22.1. SCONO: Serial Port 0 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SOMODE		MCE0	REN0	TB80	RB80	TIO	RIO
Type	R/W	R	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	1	0	0	0	0	0	0

SFR Address $=0 \times 98$; Bit-Addressable

Bit	Name	Function
7	SOMODE	Serial Port 0 Operation Mode. Selects the UARTO Operation Mode. 0: 8-bit UART with Variable Baud Rate. 1: 9-bit UART with Variable Baud Rate.
6	Unused	Unused. Read = 1b, Write = Don't Care.
5	MCEO	Multiprocessor Communication Enable. The function of this bit is dependent on the Serial Port 0 Operation Mode: Mode 0: Checks for valid stop bit. 0 : Logic level of stop bit is ignored. 1: RIO will only be activated if stop bit is logic level 1. Mode 1: Multiprocessor Communications Enable. 0 : Logic level of ninth bit is ignored. 1: RIO is set and an interrupt is generated only when the ninth bit is logic 1 .
4	RENO	Receive Enable. 0 : UARTO reception disabled. 1: UARTO reception enabled.
3	TB80	Ninth Transmission Bit. The logic level of this bit will be sent as the ninth transmission bit in 9-bit UART Mode (Mode 1). Unused in 8-bit mode (Mode 0).
2	RB80	Ninth Receive Bit. RB80 is assigned the value of the STOP bit in Mode 0 ; it is assigned the value of the 9th data bit in Mode 1.
1	TIO	Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by UARTO (after the 8th bit in 8-bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UARTO interrupt is enabled, setting this bit causes the CPU to vector to the UARTO interrupt service routine. This bit must be cleared manually by software.
0	RIO	Receive Interrupt Flag. Set to 1 by hardware when a byte of data has been received by UART0 (set at the STOP bit sampling time). When the UARTO interrupt is enabled, setting this bit to 1 causes the CPU to vector to the UARTO interrupt service routine. This bit must be cleared manually by software.

C8051T630/1/2/3/4/5

SFR Definition 22.2. SBUF0: Serial (UART0) Port Data Buffer

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SBUFO[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

SFR Address $=0 \times 99$

Bit	Name	Function
7:0	SBUF0[7:0]	Serial Data Buffer Bits 7-0 (MSB-LSB). This SFR accesses two registers; a transmit shift register and a receive latch register. When data is written to SBUF0, it goes to the transmit shift register and is held for serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of SBUF0 returns the contents of the receive latch.

C8051T630/1/2/3/4/5

Table 22.1. Timer Settings for Standard Baud Rates Using The Internal 24.5 MHz Oscillator

	Frequency: 24.5 MHz						
	Target Baud Rate (bps)	Baud Rate \% Error	Oscillator Divide Factor	Timer Clock Source	$\begin{gathered} \text { SCA1-SCA0 } \\ \text { (pre-scale } \\ \text { select) } \end{gathered}$	T1M ${ }^{1}$	Timer 1 Reload Value (hex)
	230400	-0.32\%	106	SYSCLK	XX ${ }^{2}$	1	0xCB
	115200	-0.32\%	212	SYSCLK	XX	1	0x96
	57600	0.15\%	426	SYSCLK	XX	1	0x2B
	28800	-0.32\%	848	SYSCLK/4	01	0	0×96
	14400	0.15\%	1704	SYSCLK/12	00	0	0xB9
	9600	-0.32\%	2544	SYSCLK/12	00	0	0x96
	2400	-0.32\%	10176	SYSCLK/48	10	0	0x96
	1200	0.15\%	20448	SYSCLK/48	10	0	0x2B
Notes: 1. SCA1-SCA0 and T1M bit definitions can be found in Section 24.1. 2. $X=$ Don't care.							

Table 22.2. Timer Settings for Standard Baud Rates
Using an External 22.1184 MHz Oscillator Using an External 22.1184 MHz Oscillator

	Frequency: 22.1184 MHz						
	Target Baud Rate (bps)	Baud Rate \% Error	Oscillator Divide Factor	Timer Clock Source	$\begin{gathered} \text { SCA1-SCA0 } \\ \text { (pre-scale } \\ \text { select) }^{1} \end{gathered}$	T1M ${ }^{1}$	Timer 1 Reload Value (hex)
	230400	0.00\%	96	SYSCLK	XX ${ }^{2}$	1	0xD0
	115200	0.00\%	192	SYSCLK	XX	1	0xA0
	57600	0.00\%	384	SYSCLK	XX	1	0x40
	28800	0.00\%	768	SYSCLK / 12	00	0	0xE0
	14400	0.00\%	1536	SYSCLK / 12	00	0	OxC0
	9600	0.00\%	2304	SYSCLK / 12	00	0	0xA0
	2400	0.00\%	9216	SYSCLK / 48	10	0	OxA0
	1200	0.00\%	18432	SYSCLK / 48	10	0	0x40
	230400	0.00\%	96	EXTCLK / 8	11	0	0xFA
	115200	0.00\%	192	EXTCLK / 8	11	0	0xF4
	57600	0.00\%	384	EXTCLK / 8	11	0	0xE8
	28800	0.00\%	768	EXTCLK / 8	11	0	0xD0
	14400	0.00\%	1536	EXTCLK / 8	11	0	0xA0
	9600	0.00\%	2304	EXTCLK / 8	11	0	0x70
Notes: 1. SCA1-SCA0 and T1M bit definitions can be found in Section 24.1. 2. $X=$ Don't care.							

C8051T630/1/2/3/4/5

23. Enhanced Serial Peripheral Interface (SPIO)

The Enhanced Serial Peripheral Interface (SPIO) provides access to a flexible, full-duplex synchronous serial bus. SPIO can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPIO in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

Figure 23.1. SPI Block Diagram

C8051T630/1/2/3/4/5

23.1. Signal Descriptions

The four signals used by SPIO (MOSI, MISO, SCK, NSS) are described below.

23.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. This signal is an output when SPIO is operating as a master and an input when SPIO is operating as a slave. Data is transferred most-significant bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire mode.

23.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. This signal is an input when SPIO is operating as a master and an output when SPIO is operating as a slave. Data is transferred most-significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI operates in 4 -wire mode as a slave that is not selected. When acting as a slave in 3 -wire mode, MISO is always driven by the MSB of the shift register.

23.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPIO generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is not selected (NSS = 1) in 4-wire slave mode.

23.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMDO bits in the SPIOCN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3 -Wire Master or 3-Wire Slave Mode: SPIO operates in 3 -wire mode, and NSS is disabled. When operating as a slave device, SPIO is always selected in 3 -wire mode. Since no select signal is present, SPIO must be the only slave on the bus in 3 -wire mode. This is intended for point-topoint communication between a master and one slave.
2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPIO operates in 4 -wire mode, and NSS is enabled as an input. When operating as a slave, NSS selects the SPIO device. When operating as a master, a 1-to-0 transition of the NSS signal disables the master function of SPIO so that multiple master devices can be used on the same SPI bus.
3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPIO operates in 4 -wire mode, and NSS is enabled as an output. The setting of NSSMDO determines what logic level the NSS pin will output. This configuration should only be used when operating SPIO as a master device.

See Figure 23.2, Figure 23.3, and Figure 23.4 for typical connection diagrams of the various operational modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3 -wire master or 3 -wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will be mapped to a pin on the device. See Section "20. Port Input/Output" on page 109 for general purpose port I/O and crossbar information.

C8051T630/1/2/3/4/5

23.2. SPIO Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPIO is placed in master mode by setting the Master Enable flag (MSTEN, SPIOCN.6). Writing a byte of data to the SPIO data register (SPIODAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPIO master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPIOCN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPIO master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPIODAT.

When configured as a master, SPIO can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMD0 $($ SPIOCN. 2$)=1$. In this mode, NSS is an input to the device, and is used to disable the master SPIO when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPIOCN.6) and SPIEN (SPIOCN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPIOCN. 5 = 1). Mode Fault will generate an interrupt if enabled. SPIO must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose l/O pins. Figure 23.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPIOCN.3) = 0 and NSSMD0 (SPIOCN.2) $=0$. In this mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 23.3 shows a connection diagram between a master device in 3 -wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPIOCN.3) $=1$. In this mode, NSS is configured as an output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMDO (SPIOCN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 23.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

Figure 23.2. Multiple-Master Mode Connection Diagram

C8051T630/1/2/3/4/5

Figure 23.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram

Figure 23.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diagram

23.3. SPIO Slave Mode Operation

When SPIO is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK signal. A bit counter in the SPIO logic counts SCK edges. When 8 bits have been shifted through the shift register, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the receive buffer by reading SPIODAT. A slave device cannot initiate transfers. Data to be transferred to the master device is pre-loaded into the shift register by writing to SPIODAT. Writes to SPIODAT are doublebuffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit buffer will immediately be transferred into the shift register. When the shift register already contains data, the SPI will load the shift register with the transmit buffer's contents after the last SCK edge of the next (or current) SPI transfer.

When configured as a slave, SPIO can be configured for 4 -wire or 3 -wire operation. The default, 4-wire slave mode, is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=1$. In 4-wire mode, the NSS signal is routed to a port pin and configured as a digital input. SPIO is enabled when NSS is logic 0 , and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS signal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer. Figure 23.4 shows a connection diagram between two slave devices in 4 -wire slave mode and a master device.

C8051T630/1/2/3/4/5

3-wire slave mode is active when NSSMD1 (SPIOCN.3) $=0$ and NSSMDO (SPIOCN.2) $=0$. NSS is not used in this mode, and is not mapped to an external port pin through the crossbar. Since there is no way of uniquely addressing the device in 3-wire slave mode, SPIO must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and reenabling SPIO with the SPIEN bit. Figure 23.3 shows a connection diagram between a slave device in 3wire slave mode and a master device.

23.4. SPIO Interrupt Sources

When SPIO interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

All of the following bits must be cleared by software.

- The SPI Interrupt Flag, SPIF (SPIOCN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPIO modes.
■ The Write Collision Flag, WCOL (SPIOCN.6) is set to logic 1 if a write to SPIODAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPIODAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPIO modes.
- The Mode Fault Flag MODF (SPIOCN.5) is set to logic 1 when SPIO is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPIOCN are set to logic 0 to disable SPIO and allow another master device to access the bus.
- The Receive Overrun Flag RXOVRN (SPIOCN.4) is set to logic 1 when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

23.5. Serial Clock Phase and Polarity

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPIO Configuration Register (SPIOCFG). The CKPHA bit (SPIOCFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPIOCFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPIO should be disabled (by clearing the SPIEN bit, SPIOCN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 23.5. For slave mode, the clock and data relationships are shown in Figure 23.6 and Figure 23.7. Note that CKPHA should be set to 0 on both the master and slave SPI when communicating between two Silicon Labs C8051 devices.

The SPIO Clock Rate Register (SPIOCKR) as shown in SFR Definition 23.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz , whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is $1 / 10$ the system clock frequency, provided that the master issues SCK, NSS (in 4wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than $1 / 10$ the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of $1 / 4$ the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock.

C8051T630/1/2/3/4/5

Figure 23.5. Master Mode Data/Clock Timing

Figure 23.6. Slave Mode Data/Clock Timing (CKPHA = 0)

C8051T630/1/2/3/4/5

Figure 23.7. Slave Mode Data/Clock Timing (CKPHA = 1)

23.6. SPI Special Function Registers

SPIO is accessed and controlled through four special function registers in the system controller: SPIOCN Control Register, SPIODAT Data Register, SPIOCFG Configuration Register, and SPIOCKR Clock Rate Register. The four special function registers related to the operation of the SPIO Bus are described in the following figures.

C8051T630/1/2/3/4/5

SFR Definition 23.1. SPIOCFG: SPIO Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Type	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Address = 0xA1

Bit	Name	Function
7	SPIBSY	$\begin{array}{l}\text { SPI Busy. } \\ \text { This bit is set to logic } 1 \text { when a SPI transfer is in progress (master or slave mode). }\end{array}$
6	MSTEN	$\begin{array}{l}\text { Master Mode Enable. } \\ \text { 0: Disable master mode. Operate in slave mode. } \\ \text { 1: Enable master mode. Operate as a master. }\end{array}$
5	CKPHA	$\begin{array}{l}\text { SPI0 Clock Phase. } \\ \text { 0: Data centered on first edge of SCK period. }\end{array}$
1: Data centered on second edge of SCK period.		

Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device. See Table 23.1 for timing parameters.

C8051T630/1/2/3/4/5

SFR Definition 23.2. SPIOCN: SPIO Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SPIF	WCOL	MODF	RXOVRN	NSSMD[1:0]	TXBMT	SPIEN	
Type	R/W	R/W	R/W	R/W	R/W		R	R/W
Reset	0	0	0	0	0	1	1	0

SFR Address = 0xF8; Bit-Addressable

Bit	Name	Function
7	SPIF	SPIO Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
6	WCOL	Write Collision Flag. This bit is set to logic 1 if a write to SPIODAT is attempted when TXBMT is 0 . When this occurs, the write to SPIODAT will be ignored, and the transmit buffer will not be written. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
5	MODF	Mode Fault Flag. This bit is set to logic 1 by hardware when a master mode collision is detected (NSS is low, MSTEN $=1$, and NSSMD[1:0] = 01). If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
4	RXOVRN	Receive Overrun Flag (valid in slave mode only). This bit is set to logic 1 by hardware when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPIO shift register. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
3:2	NSSMD[1:0]	Slave Select Mode. Selects between the following NSS operation modes: (See Section 23.2 and Section 23.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMDO.
1	TXBMT	Transmit Buffer Empty. This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1 , indicating that it is safe to write a new byte to the transmit buffer.
0	SPIEN	SPIO Enable. 0: SPI disabled. 1: SPI enabled.

C8051T630/1/2/3/4/5

SFR Definition 23.3. SPIOCKR: SPIO Clock Rate

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\operatorname{SCR}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address = 0xA2

Bit	Name	Function
$7: 0$	SCR[7:0]	SPIO Clock Rate. These bits determine the frequency of the SCK output when the SPIO module is configured for master mode operation. The SCK clock frequency is a divided ver- sion of the system clock, and is given in the following equation, where SYSCLK is the system clock frequency and SPIOCKR is the 8-bit value held in the SPIOCKR register. $f_{\text {SCK }}=\frac{\text { SYSCLK }}{2 \times(\text { SPIOCKR[7:0] + 1) }}$ for 0 < = SPIOCKR <= 255 Example: If SYSCLK = 2 MHz and SPIOCKR = 0x04,
$\mathrm{f}_{\text {SCK }=\frac{2000000}{2 \times(4+1)}}^{\mathrm{f}_{\text {SCK }}=200 \mathrm{kHz}}$		

SFR Definition 23.4. SPIODAT: SPIO Data

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	SPIODAT[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times A 3$

Bit	Name	Function
7:0	SPIODAT[7:0]	SPIO Transmit and Receive Data. The SPIODAT register is used to transmit and receive SPIO data. Writing data to SPIODAT places the data into the transmit buffer and initiates a transfer when in Master Mode. A read of SPIODAT returns the contents of the receive buffer.

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 23.8. SPI Master Timing (CKPHA = 0)

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 23.9. SPI Master Timing (CKPHA = 1)

SILICON LABS

C8051T630/1/2/3/4/5

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 23.10. SPI Slave Timing $(\mathbf{C K P H A}=0)$

* SCK is shown for CKPOL $=0$. SCK is the opposite polarity for CKPOL $=1$.

Figure 23.11. SPI Slave Timing (CKPHA = 1)

C8051T630/1/2/3/4/5

Table 23.1. SPI Slave Timing Parameters

Parameter	Description	Min	Max	Units	
Master Mode Timing (See Figure 23.8 and Figure 23.9)					
$\mathrm{T}_{\text {MCKH }}$	SCK High Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns	
$\mathrm{T}_{\text {MCKL }}$	SCK Low Time	$1 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns	
$\mathrm{T}_{\text {MIS }}$	MISO Valid to SCK Shift Edge	$1 \times \mathrm{T}_{\text {SYSCLK }}+20$	-	ns	
$\mathrm{T}_{\text {MIH }}$	SCK Shift Edge to MISO Change	0	-	ns	

Slave Mode Timing (See Figure 23.10 and Figure 23.11)

$\mathrm{T}_{\text {SE }}$	NSS Falling to First SCK Edge	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SD }}$	Last SCK Edge to NSS Rising	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SEZ }}$	NSS Falling to MISO Valid	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {SDZ }}$	NSS Rising to MISO High-Z	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {CKH }}$	SCK High Time	$5 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {CKL }}$	SCK Low Time	$5 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SIS }}$	MOSI Valid to SCK Sample Edge	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SIH }}$	SCK Sample Edge to MOSI Change	$2 \times \mathrm{T}_{\text {SYSCLK }}$	-	ns
$\mathrm{T}_{\text {SOH }}$	SCK Shift Edge to MISO Change	-	$4 \times \mathrm{T}_{\text {SYSCLK }}$	ns
$\mathrm{T}_{\text {SLH }}$	LaSt SCK Edge to MISO Change (CKPHA $=1$ ONLY)	$6 \times \mathrm{T}_{\text {SYSCLK }}$	$8 \times \mathrm{T}_{\text {SYSCLK }}$	ns

Note: $\mathrm{T}_{\text {SYSCLK }}$ is equal to one period of the device system clock (SYSCLK).

C8051T630/1/2/3/4/5

24. Timers

Each MCU includes four counter/timers: two are 16-bit counter/timers compatible with those found in the standard 8051, and two are 16-bit auto-reload timer for use with the ADC, SMBus, or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 and Timer 3 offer 16-bit and split 8 -bit timer functionality with auto-reload. Additionally, Timer 3 offers the ability to be clocked from the external oscillator while the device is in Suspend mode, and can be used as a wake-up source. This allows for implementation of a very low-power system, including RTC capability.

Timer 0 and Timer 1 Modes:	Timer 2 Modes:	Timer 3 Modes:
13-bit counter/timer	16-bit timer with auto-reload	16-bit timer with auto-reload
16-bit counter/timer	Two 8-bit timers with auto-reload	Two 8-bit timers with auto-reload
8-bit counter/timer with auto-reload	Two 8-bit counter/timers (Timer 0 only)	

Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1MTOM) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock from which Timer 0 and/or Timer 1 may be clocked (See SFR Definition 24.1 for pre-scaled clock selection).

Timer 0/1 may then be configured to use this pre-scaled clock signal or the system clock. Timer 2 and Timer 3 may be clocked by the system clock, the system clock divided by 12 , or the external oscillator clock source divided by 8 .

Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (T0 or T1). Events with a frequency of up to one-fourth the system clock frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is properly sampled.

C8051T630/1/2/3/4/5

SFR Definition 24.1. CKCON: Clock Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	T 3 MH	T 3 ML	T 2 MH	T 2 ML	T 1 M	TOM	SCA[1:0]	
Type	R / W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 8 \mathrm{E}$

Bit	Name	Function
7	T3MH	Timer 3 High Byte Clock Select. Selects the clock supplied to the Timer 3 high byte (split 8-bit timer mode only). 0 : Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN. 1: Timer 3 high byte uses the system clock.
6	T3ML	Timer 3 Low Byte Clock Select. Selects the clock supplied to Timer 3. Selects the clock supplied to the lower 8-bit timer in split 8-bit timer mode. 0: Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN. 1: Timer 3 low byte uses the system clock.
5	T2MH	Timer 2 High Byte Clock Select. Selects the clock supplied to the Timer 2 high byte (split 8-bit timer mode only). 0 : Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN. 1: Timer 2 high byte uses the system clock.
4	T2ML	Timer 2 Low Byte Clock Select. Selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer mode, this bit selects the clock supplied to the lower 8-bit timer. 0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN. 1: Timer 2 low byte uses the system clock.
3	T1	Timer 1 Clock Select. Selects the clock source supplied to Timer 1 . Ignored when C/T1 is set to 1 . 0 : Timer 1 uses the clock defined by the prescale bits SCA[1:0]. 1: Timer 1 uses the system clock.
2	T0	Timer 0 Clock Select. Selects the clock source supplied to Timer 0 . Ignored when C/TO is set to 1 . 0 : Counter/Timer 0 uses the clock defined by the prescale bits SCA[1:0]. 1: Counter/Timer 0 uses the system clock.
1:0	SCA[1:0]	Timer 0/1 Prescale Bits. These bits control the Timer 0/1 Clock Prescaler: 00: System clock divided by 12 01: System clock divided by 4 10: System clock divided by 48 11: External clock divided by 8 (synchronized with the system clock)

C8051T630/1/2/3/4/5

24.1. Timer 0 and Timer 1

Each timer is implemented as a 16 -bit register accessed as two separate bytes: a low byte (TLO or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ETO bit in the IE register (Section "15.2. Interrupt Register Descriptions" on page 82); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section "15.2. Interrupt Register Descriptions" on page 82). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1-TOM0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

24.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13 -bit counter/timers in Mode 0 . The following describes the configuration and operation of Timer 0 . However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0 .

The THO register holds the eight MSBs of the 13-bit counter/timer. TLO holds the five LSBs in bit positions TLO.4-TLO.O. The three upper bits of TLO (TLO.7-TLO.5) are indeterminate and should be masked out or ignored when reading. As the 13 -bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TFO in TCON is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/T0 bit in the TMOD register selects the counter/timer's clock source. When C/T0 is set to logic 1 , high-to-low transitions at the selected Timer 0 input pin (TO) increment the timer register (Refer to Section "20.3. Priority Crossbar Decoder" on page 114 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the TOM bit in register CKCON. When TOM is set, Timer 0 is clocked by the system clock. When TOM is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 24.1).

Setting the TRO bit (TCON.4) enables the timer when either GATEO in the TMOD register is logic 0 or the input signal $\overline{I N T O}$ is active as defined by bit INOPL in register ITO1CF (see SFR Definition 15.5). Setting GATEO to 1 allows the timer to be controlled by the external input signal INTO (see Section "15.2. Interrupt Register Descriptions" on page 82), facilitating pulse width measurements

TR0	GATE0	INT0	Counter/Timer
0	X	X	Disabled
1	0	X	Enabled
1	1	0	Disabled
1	1	1	Enabled
Note: $X=$ Don't Care			

Setting TRO does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TLO and THO. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0 . The input signal INT0 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register ITO1CF (see SFR Definition 15.5).

C8051T630/1/2/3/4/5

Figure 24.1. TO Mode 0 Block Diagram

24.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

C8051T630/1/2/3/4/5

24.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8 -bit counter/timers with automatic reload of the start value. TLO holds the count and THO holds the reload value. When the counter in TLO overflows from all ones to 0×00, the timer overflow flag TFO in the TCON register is set and the counter in TLO is reloaded from THO. If Timer 0 interrupts are enabled, an interrupt will occur when the TFO flag is set. The reload value in THO is not changed. TLO must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0.

Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the TRO bit (TCON.4) enables the timer when either GATEO in the TMOD register is logic 0 or when the input signal INTO is active as defined by bit INOPL in register IT01CF (see Section "15.3. INT0 and INT1 External Interrupts" on page 87 for details on the external input signals INT0 and INT1).

Figure 24.2. TO Mode 2 Block Diagram

C8051T630/1/2/3/4/5

24.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8 -bit counter/timers held in TLO and THO. The counter/timer in TLO is controlled using the Timer 0 control/status bits in TCON and TMOD: TRO, C/TO, GATEO and TFO. TLO can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2 . To disable Timer 1, configure it for Mode 3.

Figure 24.3. TO Mode 3 Block Diagram

C8051T630/1/2/3/4/5

SFR Definition 24.2. TCON: Timer Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x88; Bit-Addressable

Bit	Name	Function
7	TF1	Timer 1 Overflow Flag. Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.
6	TR1	Timer 1 Run Control. Timer 1 is enabled by setting this bit to 1 .
5	TF0	Timer 0 Overflow Flag. Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.
4	TR0	Timer 0 Run Control. Timer 0 is enabled by setting this bit to 1 .
3	IE1	External Interrupt 1. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine in edge-triggered mode.
2	IT1	Interrupt 1 Type Select. This bit selects whether the configured /INT1 interrupt will be edge or level sensitive. /INT1 is configured active low or high by the IN1PL bit in the IT01CF register (see SFR Definition 15.5). 0 : /INT1 is level triggered. 1: /INT1 is edge triggered.
1	IE0	External Interrupt 0. This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine in edge-triggered mode.
0	IT0	Interrupt 0 Type Select. This bit selects whether the configured $\overline{\mathrm{INTO}}$ interrupt will be edge or level sensitive. $\overline{\text { INTO }}$ is configured active low or high by the INOPL bit in register IT01CF (see SFR Definition 15.5). 0 : $\overline{\mathrm{INTO}}$ is level triggered. 1: $\overline{\mathrm{INTO}}$ is edge triggered.

C8051T630/1/2/3/4/5

SFR Definition 24.3. TMOD: Timer Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	GATE1	C/T1	T1M[1:0]		GATE0	C/T0	TOM[1:0]	
Type	R/W	R/W	R/W		R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 89$

Bit	Name	Function
7	GATE1	Timer 1 Gate Control. 0: Timer 1 enabled when TR1 = 1 irrespective of INT1 logic level. 1: Timer 1 enabled only when TR1 = 1 AND $\overline{\text { INT1 is active as defined by bit IN1PL in }}$ register IT01CF (see SFR Definition 15.5).
6	C/T1	Counter/Timer 1 Select. 0: Timer: Timer 1 incremented by clock defined by T1M bit in register CKCON. 1: Counter: Timer 1 incremented by high-to-low transitions on external pin (T1).
$5: 4$	T1M[1:0]	Timer 1 Mode Select. These bits select the Timer 1 operation mode. 00: Mode 0, 13-bit Counter/Timer 01: Mode 1, 16-bit Counter/Timer 10: Mode 2, 8-bit Counter/Timer with Auto-Reload 11: Mode 3, Timer 1 Inactive
3	GATE0	Timer 0 Gate Control. 0: Timer 0 enabled when TR0 = 1 irrespective of INTO logic level. 1: Timer 0 enabled only when TR0 $=1$ AND $\overline{\text { INT0 is active as defined by bit INOPL in }}$ register IT01CF (see SFR Definition 15.5).
2	C/T0	Counter/Timer 0 Select. 0: Timer: Timer 0 incremented by clock defined by TOM bit in register CKCON. 1: Counter: Timer 0 incremented by high-to-low transitions on external pin (T0).
1:0	T0M[1:0]	Timer 0 Mode Select. These bits select the Timer 0 operation mode. 00: Mode 0, 13-bit Counter/Timer 01: Mode 1, 16-bit Counter/Timer 10: Mode 2, 8-bit Counter/Timer with Auto-Reload 11: Mode 3, Two 8-bit Counter/Timers

C8051T630/1/2/3/4/5

SFR Definition 24.4. TLO: Timer 0 Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TLO[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 8 \mathrm{~A}$

Bit	Name	Function
$7: 0$	TLO[7:0]	Timer 0 Low Byte. The TL0 register is the low byte of the 16-bit Timer 0.

SFR Definition 24.5. TL1: Timer 1 Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TL1[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times 8 \mathrm{~B}$

Bit	Name	Function
$7: 0$	TL1[7:0]	Timer 1 Low Byte. The TL1 register is the low byte of the 16-bit Timer 1.

C8051T630/1/2/3/4/5

SFR Definition 24.6. TH0: Timer 0 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{TH}[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times 8 \mathrm{C}$

Bit	Name	Function
$7: 0$	THO[7:0]	Timer 0 High Byte. The THO register is the high byte of the 16-bit Timer 0.

SFR Definition 24.7. TH1: Timer 1 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TH1[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

SFR Address $=0 \times 8 \mathrm{D}$

Bit	Name	Function
$7: 0$	TH1[7:0]	Timer 1 High Byte. The TH1 register is the high byte of the 16-bit Timer 1.

C8051T630/1/2/3/4/5

24.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8 . The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

24.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12 , or the external oscillator clock source divided by 8 . As the 16 -bit timer register increments and overflows from $0 \times F F F F$ to 0×0000, the 16 -bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 24.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE. 5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0×00.

Figure 24.4. Timer 2 16-Bit Mode Block Diagram

C8051T630/1/2/3/4/5

24.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 24.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	X	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK / 12
0	1	External Clock / 8
1	X	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to $0 x 00$; the TF2L bit is set when TMR2L overflows from $0 x F F$ to $0 x 00$. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 24.5. Timer 2 8-Bit Mode Block Diagram

C8051T630/1/2/3/4/5

24.2.3. Low-Frequency Oscillator (LFO) Capture Mode

The Low-Frequency Oscillator Capture Mode allows the LFO clock to be measured against the system clock or an external oscillator source. Timer 2 can be clocked from the system clock, the system clock divided by 12, or the external oscillator divided by 8, depending on the T2ML (CKCON.4), and T2XCLK settings.

Setting TF2CEN to 1 enables the LFO Capture Mode for Timer 2. In this mode, T2SPLIT should be set to 0 , as the full 16-bit timer is used. Upon a falling edge of the low-frequency oscillator, the contents of Timer 2 (TMR2H:TMR2L) are loaded into the Timer 2 reload registers (TMR2RLH:TMR2RLL) and the TF2H flag is set. By recording the difference between two successive timer capture values, the LFO clock frequency can be determined with respect to the Timer 2 clock. The Timer 2 clock should be much faster than the LFO to achieve an accurate reading.

Figure 24.6. Timer 2 Low-Frequency Oscillation Capture Mode Block Diagram

C8051T630/1/2/3/4/5

SFR Definition 24.8. TMR2CN: Timer 2 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2		T2XCLK
Type	R/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times C 8$; Bit-Addressable

Bit	Name	Function
7	TF2H	Timer 2 High Byte Overflow Flag. Set by hardware when the Timer 2 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 2 overflows from 0xFFFF to Ox0000. When the Timer 2 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF2L	Timer 2 Low Byte Overflow Flag. Set by hardware when the Timer 2 low byte overflows from 0xFF to 0x00. TF2L will be set when the low byte overflows regardless of the Timer 2 mode. This bit is not automatically cleared by hardware.
5	TF2LEN	Timer 2 Low Byte Interrupt Enable. When set to 1, this bit enables Timer 2 Low Byte interrupts. If Timer 2 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 2 overflows.
4	TF2CEN	Timer 2 Low-Frequency Oscillator Capture Enable. When set to 1, this bit enables Timer 2 Low-Frequency Oscillator Capture Mode. If TF2CEN is set and Timer 2 interrupts are enabled, an interrupt will be generated on a falling edge of the low-frequency oscillator output, and the current 16-bit timer value in TMR2H:TMR2L will be copied to TMR2RLH:TMR2RLL.
3	T2SPLIT	Timer 2 Split Mode Enable. When this bit is set, Timer 2 operates as two 8-bit timers with auto-reload. 0: Timer 2 operates in 16-bit auto-reload mode. 1: Timer 2 operates as two 8-bit auto-reload timers.
2	TR2	Timer 2 Run Control. Timer 2 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR2H only; TMR2L is alwass enabled in split mode.
1	Unused	Unused. Read = Ob; Write = Don't Care
0	T2XCLK	Timer 2 External Clock Select. This bit selects the external clock source for Timer 2. If Timer 2 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 2 Clock Select bits (T2MH and T2ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. o: Timer 2 clock is the system clock divided by 12. 1: Timer 2 clock is the external clock divided by 8 (synchronized with SYSCLK).

C8051T630/1/2/3/4/5

SFR Definition 24.9. TMR2RLL: Timer 2 Reload Register Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR2RLL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times C A$

Bit	Name	Function
7:0	TMR2RLL[7:0]	Timer 2 Reload Register Low Byte. TMR2RLL holds the low byte of the reload value for Timer 2.

SFR Definition 24.10. TMR2RLH: Timer 2 Reload Register High Byte

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | TMR2RLH[7:0] | | | | | | | |
| Type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reset | 0 | 0 | 0 | | | | | |

SFR Address $=0 \times C B$

Bit	Name	Function
7:0	TMR2RLH[7:0]	Timer 2 Reload Register High Byte. TMR2RLH holds the high byte of the reload value for Timer 2.

SFR Definition 24.11. TMR2L: Timer 2 Low Byte

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | TMR2L[7:0] | | | | | | | |
| Type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reset | 0 | | 0 | 0 | | | | |

SFR Address $=0 \times C C$

Bit	Name	Function
7:0	TMR2L[7:0]	Timer 2 Low Byte. In 16-bit mode, the TMR2L register contains the low byte of the 16-bit Timer 2. In 8- bit mode, TMR2L contains the 8-bit low byte timer value.

C8051T630/1/2/3/4/5

SFR Definition 24.12. TMR2H Timer 2 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR2H[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times C D$

Bit	Name	Function
7:0	TMR2H[7:0]	Timer 2 Low Byte. In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8- bit mode, TMR2H contains the 8-bit high byte timer value.

C8051T630/1/2/3/4/5

24.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit (TMR3CN.3) defines the Timer 3 operation mode.

Timer 3 may be clocked by the system clock, the system clock divided by 12, the external oscillator source divided by 8 , or the internal low-frequency oscillator divided by 8 . The external clock mode is ideal for realtime clock (RTC) functionality, where the internal high-frequency oscillator drives the system clock while Timer 3 is clocked by an external oscillator source. Note that the external oscillator source divided by 8 and the LFO source divided by 8 are synchronized with the system clock when in all operating modes except suspend. When the internal oscillator is placed in suspend mode, The external clock/8 signal or the LFO/8 output can directly drive the timer. This allows the use of an external clock or the LFO to wake up the device from suspend mode. The timer will continue to run in suspend mode and count up. When the timer overflow occurs, the device will wake from suspend mode, and begin executing code again. The timer value may be set prior to entering suspend, to overflow in the desired amount of time (number of clocks) to wake the device. If a wake-up source other than the timer wakes the device from suspend mode, it may take up to three timer clocks before the timer registers can be read or written. During this time, the STSYNC bit in register OSCICN will be set to 1, to indicate that it is not safe to read or write the timer registers.

Important Note: In internal LFO/8 mode, the divider for the internal LFO must be set to 1 for proper functionality. The timer will not operate if the LFO divider is not set to 1.

24.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8 . As the 16 -bit timer register increments and overflows from 0xFFFF to $0 x 0000$, the 16 -bit value in the Timer 3 reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 24.7, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled (if EIE1.7 is set), an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

Figure 24.7. Timer 3 16-Bit Mode Block Diagram

C8051T630/1/2/3/4/5

24.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 24.8. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, the external oscillator clock source divided by 8, or the internal Low-frequency Oscillator. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bits (T3XCLK[1:0] in TMR3CN), as follows:

T3MH	T3XCLK[1:0]	TMR3H Clock Source
0	00	SYSCLK / 12
0	01	External Clock / 8
0	10	Reserved
0	11	Internal LFO
1	X	SYSCLK

T3ML	T3XCLK[1:0]	TMR3L Clock Source
0	00	SYSCLK / 12
0	01	External Clock / 8
0	10	Reserved
0	11	Internal LFO
1	X	SYSCLK

The TF3H bit is set when TMR3H overflows from 0xFF to 0×00; the TF3L bit is set when TMR3L overflows from $0 x F F$ to $0 x 00$. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 24.8. Timer 3 8-Bit Mode Block Diagram

C8051T630/1/2/3/4/5

24.3.3. Low-Frequency Oscillator (LFO) Capture Mode

The Low-Frequency Oscillator Capture Mode allows the LFO clock to be measured against the system clock or an external oscillator source. Timer 3 can be clocked from the system clock, the system clock divided by 12 , or the external oscillator divided by 8 , depending on the T3ML (CKCON.6), and T3XCLK[1:0] settings.

Setting TF3CEN to 1 enables the LFO Capture Mode for Timer 3. In this mode, T3SPLIT should be set to 0 , as the full 16 -bit timer is used. Upon a falling edge of the low-frequency oscillator, the contents of Timer 3 (TMR3H:TMR3L) are loaded into the Timer 3 reload registers (TMR3RLH:TMR3RLL) and the TF3H flag is set. By recording the difference between two successive timer capture values, the LFO clock frequency can be determined with respect to the Timer 3 clock. The Timer 3 clock should be much faster than the LFO to achieve an accurate reading. This means that the LFO/8 should not be selected as the timer clock source in this mode.

Figure 24.9. Timer 3 Low-Frequency Oscillation Capture Mode Block Diagram

C8051T630/1/2/3/4/5

SFR Definition 24.13. TMR3CN: Timer 3 Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TF3H	TF3L	TF3LEN	TF3CEN	T3SPLIT	TR3	T3XCLK[1:0]	
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times 91$

Bit	Name	Function
7	TF3H	Timer 3 High Byte Overflow Flag. Set by hardware when the Timer 3 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF3L	Timer 3 Low Byte Overflow Flag. Set by hardware when the Timer 3 low byte overflows from 0xFF to 0x00. TF3L will be set when the low byte overflows regardless of the Timer 3 mode. This bit is not automatically cleared by hardware.
5	TF3LEN	Timer 3 Low Byte Interrupt Enable. When set to 1, this bit enables Timer 3 Low Byte interrupts. If Timer 3 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 3 overflows.
4	TF3CEN	Timer 3 Low-Frequency Oscillator Capture Enable. When set to 1, this bit enables Timer 3 Low-Frequency Oscillator Capture Mode. If TF3CEN is set and Timer 3 interrupts are enabled, an interrupt will be generated on a falling edge of the low-frequency oscillator output, and the current 16-bit timer value in TMR3H:TMR3L will be copied to TMR3RLH:TMR3RLL.
3	T3SPLIT	Timer 3 Split Mode Enable. When this bit is set, Timer 3 operates as two 8-bit timers with auto-reload. 0: Timer 3 operates in 16-bit auto-reload mode. 1: Timer 3 operates as two 8-bit auto-reload timers.
2	TR3	Timer 3 Run Control. Timer 3 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR3H only; TMR3L is always enabled in split mode.
$1: 0$	T3XCLK[1:0]	Timer 3 External Clock Select. This bit selects the "external" clock source for Timer 3. If Timer 3 is in 8-bit mode, this bit selects the external oscillator clock source for both timer bytes. However, the Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still be used to select between the external clock and the system clock for either timer. 00: System clock divided by 12. 01: External clock divided by 8 (synchronized with SYSCLK when not in suspend). 10: Reserved. 11: Internal LFO/8 (synchronized with SYSCLK when not in suspend).
TV		

C8051T630/1/2/3/4/5

SFR Definition 24.14. TMR3RLL: Timer 3 Reload Register Low Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR3RLL[7:0]							
Type	R/W							
Reset	t 0	0	0	0	0	0	0	0
SFR Address $=0 \times 92$								
Bit	Name	Function						
7:0	TMR3RLL[7:0]	Timer 3 Reload Register Low Byte. TMR3RLL holds the low byte of the reload value for Timer 3.						

SFR Definition 24.15. TMR3RLH: Timer 3 Reload Register High Byte

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | TMR3RLH[7:0] | | | | | | | |
| Type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reset | 0 | | R/W | | | | | |

SFR Address $=0 \times 93$

Bit	Name	Function
7:0	TMR3RLH[7:0]	Timer 3 Reload Register High Byte. TMR3RLH holds the high byte of the reload value for Timer 3.

SFR Definition 24.16. TMR3L: Timer 3 Low Byte

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | TMR3L[7:0] | | | | | | | |
| Type | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Reset | 0 | 0 | 0 | | | | | |

SFR Address $=0 \times 94$

Bit	Name	Function
7:0	TMR3L[7:0]	Timer 3 Low Byte. In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-bit mode, TMR3L contains the 8-bit low byte timer value.

C8051T630/1/2/3/4/5

SFR Definition 24.17. TMR3H Timer 3 High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	TMR3H[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

SFR Address $=0 \times 95$

Bit	Name	Function
$7: 0$	TMR3H[7:0]	Timer 3 High Byte. In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-bit mode, TMR3H contains the 8-bit high byte timer value.

C8051T630/1/2/3/4/5

25. Programmable Counter Array

The Programmable Counter Array (PCAO) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16 -bit counter/timer and three 16 -bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled. The counter/timer is driven by a programmable timebase that can select between six sources: system clock, system clock divided by four, system clock divided by twelve, the external oscillator clock source divided by 8 , Timer 0 overflows, or an external clock signal on the ECI input pin. Each capture/compare module may be configured to operate independently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency Output, 8 to 11-Bit PWM, or 16-Bit PWM (each mode is described in Section "25.3. Capture/Compare Modules" on page 194). The external oscillator clock option is ideal for real-time clock (RTC) functionality, allowing the PCA to be clocked by a precision external oscillator while the internal oscillator drives the system clock. The PCA is configured and controlled through the system controller's Special Function Registers. The PCA block diagram is shown in Figure 25.1

Important Note: The PCA Module 2 may be used as a watchdog timer (WDT), and is enabled in this mode following a system reset. Access to certain PCA registers is restricted while WDT mode is enabled. See Section 25.4 for details.

Figure 25.1. PCA Block Diagram

C8051T630/1/2/3/4/5

25.1. PCA Counter/Timer

The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCAOL and PCAOH. PCAOH is the high byte (MSB) of the 16-bit counter/timer and PCAOL is the low byte (LSB). Reading PCAOL automatically latches the value of PCAOH into a "snapshot" register; the following PCAOH read accesses this "snapshot" register. Reading the PCAOL Register first guarantees an accurate reading of the entire 16-bit PCA0 counter. Reading PCAOH or PCAOL does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD register select the timebase for the counter/timer as shown in Table 25.1.

When the counter/timer overflows from 0xFFFF to 0×0000, the Counter Overflow Flag (CF) in PCAOMD is set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in PCAOMD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Clearing the CIDL bit in the PCAOMD register allows the PCA to continue normal operation while the CPU is in Idle mode.

Table 25.1. PCA Timebase Input Options

CPS2	CPS1	CPS0	Timebase
0	0	0	System clock divided by 12
0	0	1	System clock divided by 4
0	1	0	Timer 0 overflow
0	1	1	High-to-low transitions on ECI (max rate = system clock divided by 4)
1	0	0	System clock
1	0	1	External oscillator source divided by 8*
1	1	x	Reserved
*Note: External oscillator source divided by 8 is synchronized with the system clock.			

Figure 25.2. PCA Counter/Timer Block Diagram

C8051T630/1/2/3/4/5

25.2. PCAO Interrupt Sources

Figure 25.3 shows a diagram of the PCA interrupt tree. There are five independent event flags that can be used to generate a PCAO interrupt. They are: the main PCA counter overflow flag (CF), which is set upon a 16-bit overflow of the PCAO counter, an intermediate overflow flag (COVF), which can be set on an overflow from the 8th, 9th, 10th, or 11th bit of the PCAO counter, and the individual flags for each PCA channel (CCF0, CCF1, and CCF2), which are set according to the operation mode of that module. These event flags are always set when the trigger condition occurs. Each of these flags can be individually selected to generate a PCAO interrupt, using the corresponding interrupt enable flag (ECF for CF, ECOV for COVF, and ECCFn for each CCFn). PCAO interrupts must be globally enabled before any individual interrupt sources are recognized by the processor. PCAO interrupts are globally enabled by setting the EA bit and the EPCAO bit to logic 1.

Figure 25.3. PCA Interrupt Block Diagram

C8051T630/1/2/3/4/5

25.3. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: edge-triggered capture, software timer, high-speed output, frequency output, 8 to 11 -bit pulse width modulator, or 16 -bit pulse width modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation. Table 25.2 summarizes the bit settings in the PCAOCPMn and PCAOPWM registers used to select the PCA capture/compare module's operating mode. Note that all modules set to use 8, 9, 10, or 11-bit PWM mode must use the same cycle length ($8-11$ bits). Setting the ECCFn bit in a PCAOCPMn register enables the module's CCFn interrupt.

Table 25.2. PCAOCPM and PCAOPWM Bit Settings for PCA Capture/Compare Modules

Operational Mode	PCA0CPMn								PCAOPWM				
Bit Number	7	6	5	4	3	2	1	0	7	6	5	4-2	1-0
Capture triggered by positive edge on CEXn	X	X	1	0	0	0	0	A	0	X	B	XXX	XX
Capture triggered by negative edge on CEXn	X	X	0	1	0	0	0	A	0	X	B	XXX	XX
Capture triggered by any transition on CEXn	X	X	1	1	0	0	0	A	0	X	B	XXX	XX
Software Timer	X	C	0	0	1	0	0	A	0	X	B	XXX	XX
High Speed Output	X	C	0	0	1	1	0	A	0	X	B	XXX	XX
Frequency Output	X	C	0	0	0	1	1	A	0	X	B	XXX	XX
8-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	0	X	B	XXX	00
9-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	D	X	B	XXX	01
10-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	D	X	B	XXX	10
11-Bit Pulse Width Modulator (Note 7)	0	C	0	0	E	0	1	A	D	X	B	XXX	11
16-Bit Pulse Width Modulator	1	C	0	0	E	0	1	A	0	X	B	XXX	XX

Notes:

1. $X=$ Don't Care (no functional difference for individual module if 1 or 0).
2. $A=$ Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).
3. $B=$ Enable 8 th, 9 th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL[1:0]).
4. $C=$ When set to 0 , the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output $=0$).
5. $\mathrm{D}=$ Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresse PCAOCPHn and PCAOCPLn.
6. $E=$ When set, a match event will cause the CCFn flag for the associated channel to be set.
7. All modules set to $8,9,10$ or 11-bit PWM mode use the same cycle length setting.

C8051T630/1/2/3/4/5

25.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCAOCPHn). The CAPPn and CAPNn bits in the PCAOCPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or fall-ing-edge caused the capture.

Figure 25.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

C8051T630/1/2/3/4/5

25.3.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA counter/timer value is compared to the module's 16-bit capture/compare register (PCAOCPHn and PCAOCPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn and MATn bits in the PCAOCPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16 -bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 25.5. PCA Software Timer Mode Diagram

C8051T630/1/2/3/4/5

25.3.3. High-Speed Output Mode

In High-Speed Output mode, a module's associated CEXn pin is toggled each time a match occurs between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and PCAOCPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCAOCN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the TOGn, MATn, and ECOMn bits in the PCAOCPMn register enables the HighSpeed Output mode. If ECOMn is cleared, the associated pin will retain its state, and not toggle on the next match event.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Figure 25.6. PCA High-Speed Output Mode Diagram

C8051T630/1/2/3/4/5

25.3.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 25.1.

$$
F_{C E X n}=\frac{F_{P C A}}{2 \times P C A 0 C P H n}
$$

Note: A value of $0 x 00$ in the PCA0CPHn register is equal to 256 for this equation.

Equation 25.1. Square Wave Frequency Output

Where $F_{P C A}$ is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCAOMD. The lower byte of the capture/compare module is compared to the PCA counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCAOCPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCAOCPMn register. Note that the MATn bit should normally be set to 0 in this mode. If the MATn bit is set to 1 , the CCFn flag for the channel will be set when the 16-bit PCAO counter and the 16-bit capture/compare register for the channel are equal.

Figure 25.7. PCA Frequency Output Mode

25.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes

Each module can be used independently to generate a pulse width modulated (PWM) output on its associated CEXn pin. The frequency of the output is dependent on the timebase for the PCA counter/timer, and the setting of the PWM cycle length (8, 9, 10 or 11-bits). For backwards-compatibility with the 8-bit PWM mode available on other devices, the 8-bit PWM mode operates slightly different than 9, 10 and 11-bit PWM modes. It is important to note that all channels configured for 8/9/10/11-bit PWM mode will use the same cycle length. It is not possible to configure one channel for 8 -bit PWM mode and another for 11bit mode (for example). However, other PCA channels can be configured to Pin Capture, High-Speed Output, Software Timer, Frequency Output, or 16-bit PWM mode independently.

C8051T630/1/2/3/4/5

25.3.5.1. 8-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 8-bit PWM mode is varied using the module's PCA0CPLn capture/compare register. When the value in the low byte of the PCA counter/timer (PCAOL) is equal to the value in PCAOCPLn, the output on the CEXn pin will be set. When the count value in PCAOL overflows, the CEXn output will be reset (see Figure 25.8). Also, when the counter/timer low byte (PCAOL) overflows from $0 x F F$ to 0×00, PCA0CPLn is reloaded automatically with the value stored in the module's capture/compare high byte (PCAOCPHn) without software intervention. Setting the ECOMn and PWMn bits in the PCAOCPMn register, and setting the CLSEL bits in register PCAOPWM to 00b enables 8-Bit Pulse Width Modulator mode. If the MATn bit is set to 1, the CCFn flag for the module will be set each time an 8-bit comparator match (rising edge) occurs. The COVF flag in PCAOPWM can be used to detect the overflow (falling edge), which will occur every 256 PCA clock cycles. The duty cycle for 8-Bit PWM Mode is given in Equation 25.2.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0 ; writing to PCAOCPHn sets ECOMn to 1 .

$$
\text { Duty Cycle }=\frac{(256-P C A 0 C P H n)}{256}
$$

Equation 25.2. 8-Bit PWM Duty Cycle

Using Equation 25.2, the largest duty cycle is 100% ($\mathrm{PCAOCPH}=0$), and the smallest duty cycle is 0.39% ($\mathrm{PCAOCPH}=0 \times F F$). A 0% duty cycle may be generated by clearing the ECOMn bit to 0 .

Figure 25.8. PCA 8-Bit PWM Mode Diagram

C8051T630/1/2/3/4/5

25.3.5.2. 9/10/11-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 9/10/11-bit PWM mode should be varied by writing to an "AutoReload" Register, which is dual-mapped into the PCA0CPHn and PCA0CPLn register locations. The data written to define the duty cycle should be right-justified in the registers. The auto-reload registers are accessed (read or written) when the bit ARSEL in PCAOPWM is set to 1. The capture/compare registers are accessed when ARSEL is set to 0 .

When the least-significant N bits of the PCAO counter match the value in the associated module's capture/compare register (PCA0CPn), the output on CEXn is asserted high. When the counter overflows from the Nth bit, CEXn is asserted low (see Figure 25.9). Upon an overflow from the Nth bit, the COVF flag is set, and the value stored in the module's auto-reload register is loaded into the capture/compare register. The value of N is determined by the CLSEL bits in register PCAOPWM.

The 9,10 or 11 -bit PWM mode is selected by setting the ECOMn and PWMn bits in the PCA0CPMn register, and setting the CLSEL bits in register PCAOPWM to the desired cycle length (other than 8-bits). If the MATn bit is set to 1, the CCFn flag for the module will be set each time a comparator match (rising edge) occurs. The COVF flag in PCAOPWM can be used to detect the overflow (falling edge), which will occur every 512 (9-bit), 1024 (10-bit) or 2048 (11-bit) PCA clock cycles. The duty cycle for 9/10/11-Bit PWM Mode is given in Equation 25.2, where N is the number of bits in the PWM cycle.

Important Note About PCAOCPHn and PCAOCPLn Registers: When writing a 16 -bit value to the PCA0CPn registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to 0; writing to PCA0CPHn sets ECOMn to 1.

$$
\text { Duty Cycle }=\frac{\left(2^{N}-P C A 0 C P n\right)}{2^{N}}
$$

Equation 25.3. 9, 10, and 11-Bit PWM Duty Cycle
A 0% duty cycle may be generated by clearing the ECOMn bit to 0 .

Figure 25.9. PCA 9, 10 and 11-Bit PWM Mode Diagram

C8051T630/1/2/3/4/5

25.3.6. 16-Bit Pulse Width Modulator Mode

A PCA module may also be operated in 16-Bit PWM mode. 16-bit PWM mode is independent of the other (8/9/10/11-bit) PWM modes. In this mode, the 16-bit capture/compare module defines the number of PCA clocks for the low time of the PWM signal. When the PCA counter matches the module contents, the output on CEXn is asserted high; when the 16-bit counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, match interrupts should be enabled (ECCFn = 1 AND MATn $=1$) to help synchronize the capture/compare register writes. If the MATn bit is set to 1, the CCFn flag for the module will be set each time a 16-bit comparator match (rising edge) occurs. The CF flag in PCAOCN can be used to detect the overflow (falling edge). The duty cycle for 16-Bit PWM Mode is given by Equation 25.4.

Important Note About Capture/Compare Registers: When writing a 16 -bit value to the PCAO Capture/Compare registers, the low byte should always be written first. Writing to PCAOCPLn clears the ECOMn bit to 0 ; writing to PCA0CPHn sets ECOMn to 1.

$$
\text { Duty Cycle }=\frac{(65536-P C A 0 C P n)}{65536}
$$

Equation 25.4. 16-Bit PWM Duty Cycle

Using Equation 25.4, the largest duty cycle is 100% ($\mathrm{PCAOCPn}=0$), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0\% duty cycle may be generated by clearing the ECOMn bit to 0 .

Figure 25.10. PCA 16-Bit PWM Mode

C8051T630/1/2/3/4/5

25.4. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 2. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH2) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCAOMD register, Module 2 operates as a watchdog timer (WDT). The Module 2 high byte is compared to the PCA counter high byte; the Module 2 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled. The WDT will generate a reset shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and optionally re-configured and re-enabled if it is used in the system).

25.4.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCAOL and PCAOH are not allowed.
- PCA clock source bits (CPS2-CPSO) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 2 is forced into software timer mode.
- Writes to the Module 2 mode register (PCAOCPM2) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCAOCPH2 and PCAOH while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCAOCPH2. Upon a PCAOCPH2 write, PCAOH plus the offset held in PCAOCPL2 is loaded into PCAOCPH2 (See Figure 25.11).

Figure 25.11. PCA Module 2 with Watchdog Timer Enabled

C8051T630/1/2/3/4/5

The 8-bit offset held in PCA0CPH2 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCAOL overflows before a reset. Up to 256 PCA clocks may pass before the first PCAOL overflow occurs, depending on the value of the PCAOL when the update is performed. The total offset is then given (in PCA clocks) by Equation 25.5, where PCAOL is the value of the PCAOL register at the time of the update.

$$
\text { Offset }=(256 \times P C A 0 C P L 2)+(256-P C A 0 L)
$$

Equation 25.5. Watchdog Timer Offset in PCA Clocks

The WDT reset is generated when PCAOL overflows while there is a match between PCAOCPH2 and PCAOH. Software may force a WDT reset by writing a 1 to the CCF2 flag (PCAOCN.2) while the WDT is enabled.

25.4.2. Watchdog Timer Usage

To configure the WDT, perform the following tasks:

1. Disable the WDT by writing a 0 to the WDTE bit.
2. Select the desired PCA clock source (with the CPS2-CPS0 bits).
3. Load PCAOCPL2 with the desired WDT update offset value.
4. Configure the PCA Idle mode (set CIDL if the WDT should be suspended while the CPU is in Idle mode).
5. Enable the WDT by setting the WDTE bit to 1.
6. Reset the WDT timer by writing to PCAOCPH2.

The PCA clock source and Idle mode select cannot be changed while the WDT is enabled. The watchdog timer is enabled by setting the WDTE or WDLCK bits in the PCAOMD register. When WDLCK is set, the WDT cannot be disabled until the next system reset. If WDLCK is not set, the WDT is disabled by clearing the WDTE bit.

The WDT is enabled following any reset. The PCAO counter clock defaults to the system clock divided by 12, PCAOL defaults to 0x00, and PCA0CPL2 defaults to 0×00. Using Equation 25.5, this results in a WDT timeout interval of 256 PCA clock cycles, or 3072 system clock cycles. Table 25.3 lists some example timeout intervals for typical system clocks.

Table 25.3. Watchdog Timer Timeout Intervals ${ }^{1}$

System Clock (Hz)	PCA0CPL2	Timeout Interval (ms)
$24,500,000$	255	32.1
$24,500,000$	128	16.2
$24,500,000$	32	4.1
$3,062,500^{2}$	255	257
$3,062,500^{2}$	128	129.5
$3,062,500^{2}$	32	33.1
32,000	255	24576
32,000	128	12384
32,000	32	3168

Notes:

1. Assumes SYSCLK/12 as the PCA clock source, and a PCAOL value of 0×00 at the update time.
2. Internal SYSCLK reset frequency = Internal Oscillator divided by 8.

C8051T630/1/2/3/4/5

25.5. Register Descriptions for PCAO

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 25.1. PCA0CN: PCA Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CF	CR				CCF2	CCF1	CCF0
Type	R/W	R/W	R	R	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD8; Bit-Addressable

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag. Set by hardware when the PCA Counter/Timer overflows from OxFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control. This bit enables/disables the PCA Counter/Timer. 0: PCA Counter/Timer disabled. 1: PCA Counter/Timer enabled.
$5: 3$	Unused	Unused. Read = 000b, Write = Don't care.
2	CCF2	PCA Module 2 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF2 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
1	CCF1	PCA Module 1 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCF1 interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.
0	CCF0	PCA Module 0 Capture/Compare Flag. This bit is set by hardware when a match or capture occurs. When the CCFO interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service rou- tine. This bit is not automatically cleared by hardware and must be cleared by software.

C8051T630/1/2/3/4/5

SFR Definition 25.2. PCAOMD: PCA Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CIDL	WDTE	WDLCK		CPS2	CPS1	CPS0	ECF
Type	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W
Reset	0	1	0	0	0	0	0	0

SFR Address = 0xD9

Bit	Name	Function
7	CIDL	PCA Counter/Timer IdIe Control. Specifies PCA behavior when CPU is in Idle Mode. 0 : PCA continues to function normally while the system controller is in Idle Mode. 1: PCA operation is suspended while the system controller is in Idle Mode.
6	WDTE	Watchdog Timer Enable. If this bit is set, PCA Module 2 is used as the watchdog timer. 0 : Watchdog Timer disabled. 1: PCA Module 2 enabled as Watchdog Timer.
5	WDLCK	Watchdog Timer Lock. This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog Timer may not be disabled until the next system reset. 0 : Watchdog Timer Enable unlocked. 1: Watchdog Timer Enable locked.
4	Unused	Unused. Read = 0b, Write = Don't care.
3:1	CPS[2:0]	PCA Counter/Timer Pulse Select. These bits select the timebase source for the PCA counter 000: System clock divided by 12 001: System clock divided by 4 010: Timer 0 overflow 011: High-to-low transitions on ECI (max rate = system clock divided by 4) 100: System clock 101: External clock divided by 8 (synchronized with the system clock) 11x: Reserved
0	ECF	PCA Counter/Timer Overflow Interrupt Enable. This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt. 0 : Disable the CF interrupt. 1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCAOCN.7) is set.

Note: When the WDTE bit is set to 1 , the other bits in the PCAOMD register cannot be modified. To change the contents of the PCAOMD register, the Watchdog Timer must first be disabled.

C8051T630/1/2/3/4/5

SFR Definition 25.3. PCAOPWM: PCA PWM Configuration

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	ARSEL	ECOV	COVF				CLSEL[1:0]	
Type	R/W	R/W	R/W	R	R	R	R / W	
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xF7

Bit	Name	Function
7	ARSEL	Auto-Reload Register Select. This bit selects whether to read and write the normal PCA capture/compare registers (PCAOCPn), or the Auto-Reload registers at the same SFR addresses. This function is used to define the reload value for 9,10 , and 11 -bit PWM modes. In all other modes, the Auto-Reload registers have no function. 0: Read/Write Capture/Compare Registers at PCAOCPHn and PCAOCPLn. 1: Read/Write Auto-Reload Registers at PCAOCPHn and PCAOCPLn.
6	ECOV	Cycle Overflow Interrupt Enable. This bit sets the masking of the Cycle Overflow Flag (COVF) interrupt. 0: COVF will not generate PCA interrupts. 1: A PCA interrupt will be generated when COVF is set.
5	COVF	Cycle Overflow Flag. This bit indicates an overflow of the 8th, 9th, 10th, or 11th bit of the main PCA counter (PCAO). The specific bit used for this flag depends on the setting of the Cycle Length Select bits. The bit can be set by hardware or software, but must be cleared by software. 0: No overflow has occurred since the last time this bit was cleared. 1: An overflow has occurred since the last time this bit was cleared.
4:2	Unused	Unused. Read = 000b; Write = Don't care.
1:0	CLSEL[1:0]	Cycle Length Select. When 16-bit PWM mode is not selected, these bits select the length of the PWM cycle, between $8,9,10$, or 11 bits. This affects all channels configured for PWM which are not using 16-bit PWM mode. These bits are ignored for individual channels configured to16-bit PWM mode. 00: 8 bits. 01: 9 bits. 10: 10 bits. 11: 11 bits.

C8051T630/1/2/3/4/5

SFR Definition 25.4. PCA0CPMn: PCA Capture/Compare Mode

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PWM16n	ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPM0 $=0 x D A$, PCA0CPM1 $=0 x D B$, PCA0CPM2 $=0 x D C$

Bit	Name	Function
7	PWM16n	16-bit Pulse Width Modulation Enable. This bit enables 16-bit mode when Pulse Width Modulation mode is enabled. 0: 8 to 11-bit PWM selected. 1: 16-bit PWM selected.
6	ECOMn	Comparator Function Enable. This bit enables the comparator function for PCA module n when set to 1.
5	CAPPn	Capture Positive Function Enable. This bit enables the positive edge capture for PCA module n when set to 1 .
4	CAPNn	Capture Negative Function Enable. This bit enables the negative edge capture for PCA module n when set to 1 .
3	MATn	Match Function Enable. This bit enables the match function for PCA module n when set to 1 . When enabled, matches of the PCA counter with a module's capture/compare register cause the CCFn bit in PCAOMD register to be set to logic 1.
2	TOGn	Toggle Function Enable. This bit enables the toggle function for PCA module n when set to 1 . When enabled, matches of the PCA counter with a module's capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1 , the module operates in Frequency Output Mode.
1	PWMn	Pulse Width Modulation Mode Enable. This bit enables the PWM function for PCA module n when set to 1 . When enabled, a pulse width modulated signal is output on the CEXn pin. 8 to 11-bit PWM is used if PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module operates in Frequency Output Mode.
0	ECCFn	Capture/Compare Flag Interrupt Enable. This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt. 0 : Disable CCFn interrupts. 1: Enable a Capture/Compare Flag interrupt request when CCFn is set.

Note: When the WDTE bit is set to 1, the PCAOCPM2 register cannot be modified, and module 2 acts as the watchdog timer. To change the contents of the PCAOCPM2 register or the function of module 2, the Watchdog Timer must be disabled.

C8051T630/1/2/3/4/5

SFR Definition 25.5. PCA0L: PCA Counter/Timer Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PCAO[7:0]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address $=0 \times F 9$

Bit	Name	
7:0	PCAO[7:0]	PCA Counter/Timer Low Byte. The PCAOL register holds the low byte (LSB) of the 16-bit PCA Counter/Timer.
Note:		
When the WDTE bit is set to 1, the PCAOL register cannot be modified by software. To change the contents of the PCAOL register, the Watchdog Timer must first be disabled.		

SFR Definition 25.6. PCAOH: PCA Counter/Timer High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	PCAO[15:8]							
Type	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xFA

Bit	Name	
7:0	PCAO[15:8]	PCA Counter/Timer High Byte. The PCA0H register holds the high byte (MSB) of the 16-bit PCA Counter/Timer. Reads of this register will read the contents of a "snapshot" register, whose contents are updated only when the contents of PCAOL are read (see Section 25.1).

Note: When the WDTE bit is set to 1 , the PCAOH register cannot be modified by software. To change the contents of the PCAOH register, the Watchdog Timer must first be disabled.

C8051T630/1/2/3/4/5

SFR Definition 25.7. PCA0CPLn: PCA Capture Module Low Byte

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | PCA0CPn[7:0] | | | | | | | |
| Type | R/W |
| Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

SFR Addresses: PCA0CPL0 $=0 x F B$, PCA0CPL1 $=0 x E 9$, PCA0CPL2 $=0 x E B$

Bit	Name	Function
$7: 0$	PCA0CPn[7:0]	PCA Capture Module Low Byte. The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n. This register address also allows access to the low byte of the corresponding
PCA channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL bit		
in register PCAOPWM controls which register is accessed.		

SFR Definition 25.8. PCAOCPHn: PCA Capture Module High Byte

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | PCA0CPn[15:8] | | | | | | | |
| Type | R/W |
| Reset | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

SFR Addresses: PCA0CPH0 = 0xFC, PCA0CPH1 = 0xEA, PCAOCPH2 = 0xEC

Bit	Name	Function
$7: 0$	PCA0CPn[15:8]	PCA Capture Module High Byte. The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n. This register address also allows access to the high byte of the corresponding PCA channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL bit in register PCAOPWM controls which register is accessed.

Note: A write to this register will set the module's ECOMn bit to a 1.

C8051T630/1/2/3/4/5

26. C2 Interface

C8051T630/1/2/3/4/5 devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow EPROM programming and in-system debugging with the production part installed in the end application. The C2 interface operates using only two pins: a bi-directional data signal (C2D), and a clock input (C2CK). See the C2 Interface Specification for details on the C2 protocol.

26.1. C2 Interface Registers

The following describes the C2 registers necessary to perform EPROM programming functions through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 26.1. C2ADD: C2 Address

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	$\mathrm{C} 2 A D D[7: 0]$							
Type	0	0	0	0	0	0	0	0
Reset	0							

Bit	Name			Function
7:0	C2ADD[7:0]	Write: C2 Address. Selects the target Data register for C2 Data Read and Data Write commands according to the following list.		
		Address	Name	Description
		0x00	DEVICEID	Selects the Device ID Register (read only)
		0x01	REVID	Selects the Revision ID Register (read only)
		0×02	DEVCTL	Selects the C2 Device Control Register
		0xDF	EPCTL	Selects the C2 EPROM Programming Control Register
		0xBF	EPDAT	Selects the C2 EPROM Data Register
		0xB7	EPSTAT	Selects the C2 EPROM Status Register
		0xAF	EPADDRH	Selects the C2 EPROM Address High Byte Register
		0xAE	EPADDRL	Selects the C2 EPROM Address Low Byte Register
		0xA9	CRC0	Selects the CRC0 Register
		0xAA	CRC1	Selects the CRC1 Register
		0xAB	CRC2	Selects the CRC2 Register
		OxAC	CRC3	Selects the CRC3 Register
		Read: C2 Returns st When the bits can be	Status atus informa MSB (bit 7) ignored by	ion on the current programming operation. set to ' 1 ', a read or write operation is in progress. All other he programming tools.

C8051T630/1/2/3/4/5

C2 Register Definition 26.2. DEVICEID: C2 Device ID

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	DEVICEID[7:0]							
Type	0	0	0	1	0	1	1	1
Reset	0	R/W						

C2 Address: 0x00

Bit	Name	Function
7:0	DEVICEID[7:0]	Device ID. This read-only register returns the 8-bit device ID: 0x17 (C8051T630/1/2/3/4/5).

C2 Register Definition 26.3. REVID: C2 Revision ID

| Bit | $\mathbf{7}$ | $\mathbf{6}$ | $\mathbf{5}$ | $\mathbf{4}$ | $\mathbf{3}$ | $\mathbf{2}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Name | REVID[7:0] | | | | | | | |
| Type | R/W | | | | | | | |
| Reset | Varies |

C2 Address: 0x01

Bit	Name	Function
7:0	REVID[7:0]	Revision ID. This read-only register returns the 8-bit revision ID. For example: $0 \times 00=$ Revision A.

C8051T630/1/2/3/4/5

C2 Register Definition 26.4. DEVCTL: C2 Device Control

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	DEVCTL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

C2 Address: 0x02

Bit	Name	Function
$7: 0$	DEVCTL[7:0]	Device Control Register. This register is used to halt the device for EPROM operations via the C2 interface. Refer to the EPROM chapter for more information.

C2 Register Definition 26.5. EPCTL: EPROM Programming Control Register

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	EPCTL[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

C2 Address: 0xDF

Bit	Name	Function
$7: 0$	EPCTL[7:0]	EPROM Programming Control Register. This register is used to enable EPROM programming via the C2 interface. Refer to the EPROM chapter for more information.

C8051T630/1/2/3/4/5

C2 Register Definition 26.6. EPDAT: C2 EPROM Data

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	EPDAT[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0	R/W						

C2 Address: 0xBF

Bit	Name	Function
7:0	EPDAT[7:0]	C2 EPROM Data Register. This register is used to pass EPROM data during C2 EPROM operations.

C2 Register Definition 26.7. EPSTAT: C2 EPROM Status

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	WRLOCK	RDLOCK						ERROR
Type	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

C2 Address: 0xB7

Bit	Name	Function
7	WRLOCK	Write Lock Indicator. Set to '1' if EPADDR currently points to a write-locked address.
6	RDLOCK	Read Lock Indicator. Set to '1' if EPADDR currently points to a read-locked address.
$5: 1$	Unused	Unused. Read = 00000b; Write = don't care.
0	ERROR	Error Indicator. Set to '1' if last EPROM read or write operation failed due to a security restriction.

C8051T630/1/2/3/4/5

C2 Register Definition 26.8. EPADDRH: C2 EPROM Address High Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	EPADDR $[15: 8]$							
Type	0	0	0	0	0	0	0	0
Reset	0							

C2 Address: OxAF

Bit	Name	Function
7:0	EPADDR[15:8]	C2 EPROM Address High Byte. This register is used to set the EPROM address location during C2 EPROM oper- ations.

C2 Register Definition 26.9. EPADDRL: C2 EPROM Address Low Byte

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	EPADDR[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0		R/W					

C2 Address: OxAE

Bit	Name	Function
$7: 0$	EPADDR[15:8]	C2 EPROM Address Low Byte. This register is used to set the EPROM address location during C2 EPROM oper- ations.

C8051T630/1/2/3/4/5

C2 Register Definition 26.10. CRC0: CRC Byte 0

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CRC[7:0]							
Type	0	0	0	0	0	0	0	0
Reset	0							

C2 Address: 0xA9

Bit	Name	Function
7:0	CRC[7:0]	CRC Byte 0. A write to this register initiates a 16-bit CRC of one 256-byte block of EPROM mem- ory. The byte written to CRCO is the upper byte of the 16-bit address where the CRC will begin. The lower byte of the beginning address is always 0x00. When complete, the 16-bit result will be available in CRC1 (MSB) and CRC0 (LSB). See Section "16.3. Program Memory CRC" on page 91.

C2 Register Definition 26.11. CRC1: CRC Byte 1

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CRC[15:8]							
Type		R/W						
Reset	0	0	0	0	0	0	0	0

C2 Address: 0xAA

Bit	Name	Function
$7: 0$	CRC[15:8]	CRC Byte 1. A write to this register initiates a 32-bit CRC on the entire program memory space. The CRC begins at address 0x0000. When complete, the 32-bit result is stored in CRC3 (MSB), CRC2, CRC1, and CRC0 (LSB). See Section "16.3. Program Memory CRC" on page 91.

C8051T630/1/2/3/4/5

C2 Register Definition 26.12. CRC2: CRC Byte 2

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CRC[23:16]							
Type	0	0	0	0	0	0	0	0
Reset	0							

C2 Address: 0xAB

Bit	Name	Function
$7: 0$	CRC[23:16]	CRC Byte 2. See Section "16.3. Program Memory CRC" on page 91.

C2 Register Definition 26.13. CRC3: CRC Byte 3

Bit	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$
Name	CRC[31:24]							
Type	0	0	0	0	0	0	0	0
Reset	0							

C2 Address: 0xAC

Bit	Name	Function
$7: 0$	CRC[31:24]	CRC Byte 3. See Section "16.3. Program Memory CRC" on page 91.

C8051T630/1/2/3/4/5

26.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and EPROM programming functions may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely 'borrow' the C2CK (normally RST) and C2D pins. In most applications, external resistors are required to isolate C 2 interface traffic from the user application when performing debug functions. These external resistors are not necessary for production boards. A typical isolation configuration is shown in Figure 26.1.

Figure 26.1. Typical C2 Pin Sharing

The configuration in Figure 26.1 assumes the following:

1. The user input (b) cannot change state while the target device is halted.
2. The $\overline{\mathrm{RST}}$ pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

C8051T630/1/2/3/4/5

Document Change List

Revision 0.2 to Revision 1.0

- Updated electrical specification tables based on test, characterization, and qualification data.
- Updated figures and text to correct minor typographical errors throughout document.
- Updated package definitions to include all possible vendor information, and JEDEC-standard drawings.

C8051T630/1/2/3/4/5

Notes:

IoT Portfolio www.silabs.com/loT

SWIHW www.silabs.com/simplicity

Quality
www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

 EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®, ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

