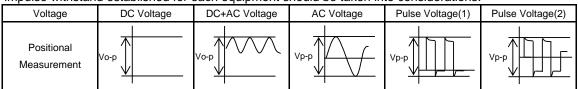


Reference Specification

150°C Operation Leaded MLCC for Automotive with AEC-Q200 RH Series

Product specifications in this catalog are as of Mar. 2022, and are subject to change or obsolescence without notice.


Please consult the approval sheet before ordering. Please read rating and Cautions first.

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

When DC-rated capacitors are to be used in input circuits from commercial power source (AC filter), be sure to use Safety Recognized Capacitors because various regulations on withstand voltage or impulse withstand established for each equipment should be taken into considerations.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the selfgenerated heat due to dielectric-loss. In case of Class 2 capacitors (Temp.Char. : X7R,X7S,X8L, etc.), applied voltage should be the load such as self-generated heat is within 20 °C on <u>the condition of</u> <u>atmosphere temperature 25 °C</u>. Please contact us if self-generated heat is occurred with Class 1 capacitors (Temp.Char. : C0G,U2J,X8G, etc.). When measuring, use a thermocouple of small thermal capacity-K of Φ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.

3. FAIL-SAFE

Be sure to provide an appropriate fail-safe function on your product to prevent a second damage that may be caused by the abnormal function or the failure of our product.

4. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed 5 to 40 °C and 20 to 70%. Use capacitors within 6 months.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

7. BONDING AND RESIN MOLDING, RESIN COAT

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of a bonded or molded product in the intended equipment. In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive or molding resin may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING AND RESIN MOLDING, RESIN COAT

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment

7. Traffic signal equipment

- 5. Medical equipment
- 4. Power plant control equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
 - 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public

10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions. Rinse bath capacity : Output of 20 watts per liter or less. Rinsing time : 5 min maximum. Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. SOLDERING AND MOUNTING

Insertion of the Lead Wire

- When soldering, insert the lead wire into the PCB without mechanically stressing the lead wire.
- Insert the lead wire into the PCB with a distance appropriate to the lead space.

3. CAPACITANCE CHANGE OF CAPACITORS

• Class 2 capacitors (Temp.Char. : X7R,X7S,X8L etc.)

Class 2 capacitors an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

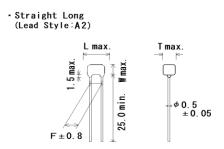
Please contact us if you need a detail information.

- 1. Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

Rating									
•••	maximum ter Maximum ac	•	•	C is within 2000	0 hours.				
	mber Configu								
.) <u>RHE</u>	L8	1E	104 Canaaitanaa	K	0 Dimonoior	A2	-	03	B
Series	Temperature Characteristics	Rated Voltage	Capacitance	Capacitance Tolerance	Dimensior (LxW)	n Lead Style	Individ Specif		Packag
 Series 									
Coc		Cor	ntent						
RH	E Er	oxy coate	d, 150°C max						
• Temper	ature Charac	teristics							
Code	Temp. Ch		np. Range	Cap. Cha	ange	Stand			perating
	X8I -55~		5~125℃	+/-15%	-	Tem			np. Rang
L8	Q		5~125°C 5~150°C	+15/-40		25°	C	-55	5∼150°C
Rated Vo Coo 1E 1H 2A Capacita The firs	de Ra	ted voltage DC25V DC50V DC100V		• the last digit	denotes t	ne multipl	ier of 1	0 in pF	:
Coc 1E 1H 2A • Capacita The firs	de Ra	DC25V DC50V DC100V enote sign	ificant figures	s ; the last digit	denotes ti	ne multipl	ier of 1	0 in pF	:
Coc 1E 1H 2A • Capacita The firs ex.)	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p	ificant figures	; the last digit	denotes ti	ne multipl	ier of 1	0 in pF	: <u>.</u>
Coo 1E 1H 2A • Capacita The firs ex.)	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p ce acitance To	ificant figures	; the last digit	denotes ti	he multipl	ier of 1	0 in pF	Ŧ.
Coc 1E 1H 2A • Capacita The firs ex.) • Capacita Coc	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p ce acitance To +/-10%	olerance	; the last digit	denotes ti	he multipl	ier of 1	0 in pF	. .
Coo 1E 1H 2A • Capacita The firs ex.)	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p ce acitance To	olerance	; the last digit	denotes ti	he multipl	ier of 1	0 in pF	. .
Coo 1E 1H 2A • Capacita The firs ex.) • Capacita Coo K M • Dimensi Plea • Lead Sty	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p ce acitance To +/-10% +/-20%	olerance	; the last digit	denotes ti	he multipl	ier of 1	0 in pF	. .
Coo 1E 1H 2A • Capacita The firs ex.) • Capacita Coo K M • Dimensi Plea • Lead Sty *Lead Sty	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p ce acitance To +/-10% +/-20%	olerance				ier of 1	0 in pF	. .
Coo 1E 1H 2A • Capacita The firs ex.) • Capacita Coo K M • Dimensi Plea • Lead Sty *Lead Sty	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p acitance To +/-10% +/-20% Part number er coated C Lead S	olerance	Lead spa	denotes ti		ier of 1	0 in pF	. .
Coo 1E 1H 2A • Capacita The firs ex.) • Capacita Coo K M • Dimensi Plea • Lead Sty *Lead Sty	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p ce acitance To +/-10% +/-20%	olerance b er list]. CP wire".		cing (mm)		ier of 1	0 in pF	τ.
Coo 1E 1H 2A • Capacita The firs ex.) • Capacita Coo K M • Dimensi Plea • Lead Sty *Lead Sty	de Ra	DC25V DC50V DC100V enote sign 4 = 100000p ce acitance To +/-10% +/-20% Part numbe er coated C Lead s ht type	olerance b b c c c c c c c c c c c c c c c c c	Lead spa 2.5+/-0.8	cing (mm)		ier of 1	0 in pF	. .

Package

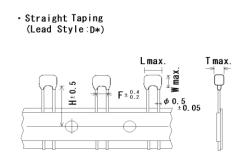
Code	Package
A	Taping type of Ammo
В	Bulk type


3. Marking

Temp. char.		Letter code : 8 (X8L char.)
Capacitance	:	3 digit numbers
Capacitance tolerance	:	Code
Rated voltage	:	Letter code : 2 (DC25V. Except dimension code : 0,1)
		Letter code : 5 (DC50V. Except dimension code : 0,1)
		Letter code : 1 (DC100V. Except dimension code : 0,1)
Company name code	:	Abbreviation : (Except dimension code : 0,1)

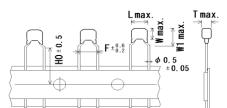
(Ex.)

(Ex.)			
Rated voltage Dimension code	DC25V	DC50V	DC100V
0,1	8 105K	8 102K	8 103K
2	(K ⁴⁷⁵ (K 28	C ²²⁵ K58	C ²²⁴ K18
3,W	(M 106 K28	(M 335 K58	_


4. Part number list

Customer	Murata Part Number	T.C.	DC Rated	Con	Cap.		Dime	ension ((mm)		Dimension	
Part Number	Murata Fait Number	1.0.	Volt. (V)	Cap.	Tol.	L	W	W1	F	Т	(LxW) Lead Style	q (p
	RHEL81E104K0A2H03B	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RHEL81E154K0A2H03B	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RHEL81E224K0A2H03B	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RHEL81E334K1A2H03B	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	5
	RHEL81E474K1A2H03B	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	1A2	5
	RHEL81E684K1A2H03B	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	1A2	Ę
	RHEL81E105K1A2H03B	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	1A2	Ę
	RHEL81E155K2A2H03B	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	5
	RHEL81E225K2A2H03B	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	5
	RHEL81E335K2A2H03B	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	2A2	5
	RHEL81E475K2A2H03B	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	2A2	Ę
	RHEL81E106K3A2H03B	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	3A2	Ę
	RHEL81H221K0A2H03B	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H331K0A2H03B	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H471K0A2H03B	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	ţ
	RHEL81H681K0A2H03B	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	ţ
	RHEL81H102K0A2H03B	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H152K0A2H03B	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H222K0A2H03B	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H332K0A2H03B	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H472K0A2H03B	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	5
	RHEL81H682K0A2H03B	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	ţ
	RHEL81H103K0A2H03B	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	ţ
	RHEL81H153K0A2H03B	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	ţ
	RHEL81H223K0A2H03B	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	ţ
	RHEL81H333K0A2H03B	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H473K0A2H03B	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H683K0A2H03B	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H104K0A2H03B	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ę
	RHEL81H154K1A2H03B	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	1A2	Ę
	RHEL81H224K1A2H03B	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	1A2	Ę
	RHEL81H334K1A2H03B	X8L	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	1A2	Ę
	RHEL81H474K2A2H03B	X8L	50	0.47µF	±10%	5.5	4.0	-	2.5	3.15	2A2	Ę
	RHEL81H684K2A2H03B	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	2A2	Ę
	RHEL81H105K2A2H03B	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15	2A2	Ę
	RHEL81H155K2A2H03B	X8L	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15	2A2	Ę
	RHEL81H225K2A2H03B	X8L	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15	2A2	Ę
	RHEL81H335K3A2H03B	X8L	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0	3A2	Ę
	RHEL81H475K3A2H03B	X8L	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0	3A2	Ę
	RHEL82A221K0A2H03B	X8L	100	220pF	±10%	3.6	3.5		2.5	2.5	0A2	5

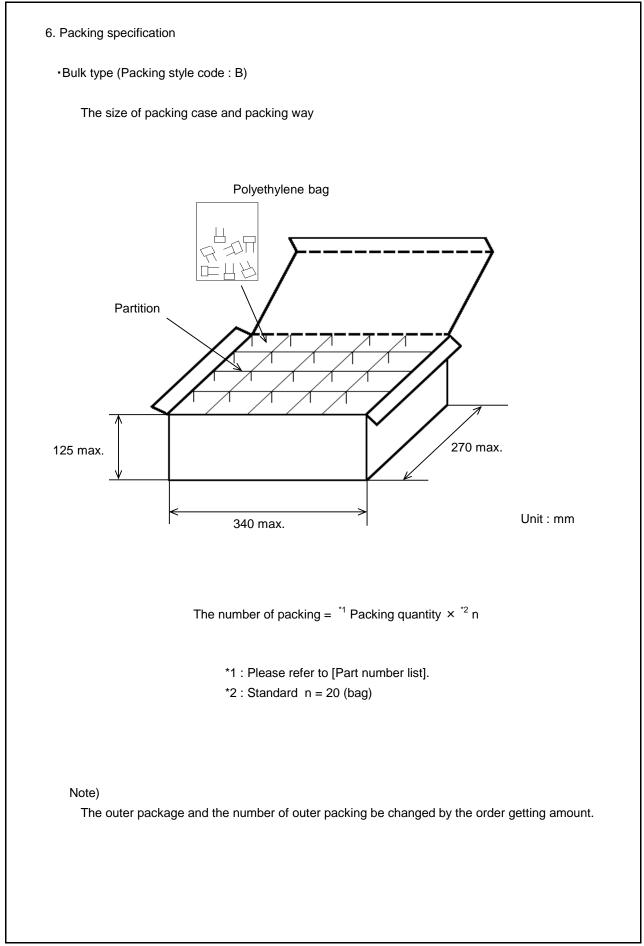
• Straight Lo (Lead Style)				• Inside (Lead S	Crimp tyle∶K*)							
F ±0		5		$F \pm 0$.	ot	25.0 min. W max. ⊼-→ W1 max.	T ma	ax. ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	05			
			DC				Dime	ension (mm)		Unit : mm Dimension	F
Customer Part Number	Murata Part Number	T.C.	Rated Volt. (V)	Cap.	Cap. Tol.	L	W	W1	F	т	(LxW) Lead Style	
	RHEL82A331K0A2H03B	X8L	100	330pF	±10%	3.6	3.5	-	2.5	2.5	0A2	
	RHEL82A471K0A2H03B	X8L	100	470pF	±10%	3.6	3.5	-	2.5	2.5	0A2	1
	RHEL82A681K0A2H03B	X8L	100	680pF	±10%	3.6	3.5	-	2.5	2.5	0A2	!
	RHEL82A102K0A2H03B	X8L	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	
	RHEL82A152K0A2H03B	X8L	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	0A2	Ļ
	RHEL82A222K0A2H03B	X8L	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	0A2	
	RHEL82A332K0A2H03B	X8L	100	3300pF	±10%	3.6	3.5	-	2.5	2.5	0A2	
	RHEL82A472K0A2H03B	X8L	100	4700pF	±10%	3.6	3.5	-	2.5	2.5	0A2	
	RHEL82A682K0A2H03B	X8L	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	0A2	
	RHEL82A103K0A2H03B	X8L X8L	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	0A2	
	RHEL82A153K0A2H03B RHEL82A223K0A2H03B	X8L	100 100	15000pF 22000pF	±10% ±10%	3.6 3.6	3.5 3.5	-	2.5 2.5	2.5 2.5	0A2 0A2	
	RHEL82A333K1A2H03B	X8L	100	22000pF 33000pF	±10%	3.0 4.0	3.5 3.5	-	2.5	2.5	1A2	
	RHEL82A333K1A2H03B	X8L	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	┢
	RHEL82A683K1A2H03B	X8L	100	68000pF	±10%	4.0	3.5	-	2.5	2.5	1A2	
	RHEL82A104K1A2H03B	X8L	100	0.1µF	±10%	4.0	3.5	-	2.5	2.5	1A2	
	RHEL82A154K2A2H03B	X8L	100	0.15µF	±10%	5.5	4.0	-	2.5	3.15	2A2	
	RHEL82A224K2A2H03B	X8L	100	0.22µF	±10%	5.5	4.0	-	2.5	3.15	2A2	
	RHEL81E104K0K1H03B	X8L	25	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	
	RHEL81E154K0K1H03B	X8L	25	0.15µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RHEL81E224K0K1H03B	X8L	25	0.22µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	ł
	RHEL81E334K1K1H03B	X8L	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	!
	RHEL81E474K1K1H03B	X8L	25	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	!
	RHEL81E684K1K1H03B	X8L	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	1
	RHEL81E105K1K1H03B	X8L	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	1
	RHEL81E155K2K1H03B	X8L	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15		
	RHEL81E225K2K1H03B	X8L	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	
	RHEL81E335K2K1H03B RHEL81E475K2K1H03B	X8L X8L	25 25	3.3µF 4.7µF	±10% ±10%	5.5 5.5	4.0 4.0	6.0 6.0	5.0 5.0	3.15 3.15		
	RHEL81E106K3K1H03B	X8L	25	4.7μ 10μF	±10%	5.5	4.0 5.0	7.5	5.0	4.0		
	RHEL81E226MWK1H03B	X8L	25	22µF	±10%	5.5	7.5	10.0	5.0	4.0		
	RHEL81H221K0K1H03B	X8L	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5		
	RHEL81H331K0K1H03B	X8L	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5		
	RHEL81H471K0K1H03B	X8L	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5		
	RHEL81H681K0K1H03B	X8L	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	
	RHEL81H102K0K1H03B	X8L	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	
	RHEL81H152K0K1H03B	X8L	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	1
	RHEL81H222K0K1H03B	X8L	50	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	
	RHEL81H332K0K1H03B	X8L	50	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	ļ
	RHEL81H472K0K1H03B	X8L	50	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	4


e end	Lmax. Tmax.											
Up to the end of crimp												
	52. 0 ± 0.0	15										
F±0.8												
											Unit : mm	1
Customer		т о	DC Rated	0	Cap.		Dime	ension (mm)		Dimension	
Part Number	Murata Part Number	T.C.	Volt.	Cap.	Tol.		W	W1	F	т	(LxW) Lead Style	q (p
			(V)			L	vv	VVI	F	1	2000 01910	١٣
	RHEL81H682K0K1H03B	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL81H103K0K1H03B	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL81H153K0K1H03B	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL81H223K0K1H03B	X8L	50 50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5 2.5	0K1 0K1	5
	RHEL81H333K0K1H03B RHEL81H473K0K1H03B	X8L X8L	50	33000pF 47000pF	±10% ±10%	3.6 3.6	3.5 3.5	6.0 6.0	5.0 5.0	2.5	0K1 0K1	5
	RHEL81H683K0K1H03B	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL81H104K0K1H03B	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL81H154K1K1H03B	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHEL81H224K1K1H03B	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHEL81H334K1K1H03B	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHEL81H474K2K1H03B	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RHEL81H684K2K1H03B	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RHEL81H105K2K1H03B	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RHEL81H155K2K1H03B	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RHEL81H225K2K1H03B	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RHEL81H335K3K1H03B	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	5
	RHEL81H475K3K1H03B	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	3K1	5
	RHEL81H106MWK1H03B	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	WK1	5
	RHEL82A221K0K1H03B	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0		0K1	5
	RHEL82A331K0K1H03B	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL82A471K0K1H03B	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL82A681K0K1H03B RHEL82A102K0K1H03B	X8L X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5 2.5	0K1 0K1	5
	RHEL82A102K0K1H03B	X8L	100 100	1000pF 1500pF	±10% ±10%	3.6 3.6	3.5 3.5	6.0 6.0	5.0 5.0	2.5	0K1 0K1	5 5
	RHEL82A222K0K1H03B	X8L	100	2200pF	±10% ±10%	3.6 3.6	3.5 3.5	6.0	5.0	2.5	0K1 0K1	5
	RHEL82A332K0K1H03B	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL82A472K0K1H03B	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL82A682K0K1H03B	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL82A103K0K1H03B	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL82A153K0K1H03B	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL82A223K0K1H03B	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	0K1	5
	RHEL82A333K1K1H03B	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHEL82A473K1K1H03B	X8L	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHEL82A683K1K1H03B	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHEL82A104K1K1H03B	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	1K1	5
	RHEL82A154K2K1H03B	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5
	RHEL82A224K2K1H03B	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	2K1	5

Customer			DC Rated		Cap.		D	imensi	on (mn	n)		Dimension	Pa
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	т	H/H0	(LxW) Lead Style	qt (po
	RHEL81E104K0DBH03A	X8L	25	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81E154K0DBH03A	X8L	25	0.15µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81E224K0DBH03A	X8L	25	0.22µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81E334K1DBH03A	X8L	25	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL81E474K1DBH03A	X8L	25	0.47µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RHEL81E684K1DBH03A	X8L	25	0.68µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RHEL81E105K1DBH03A	X8L	25	1.0µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL81E155K2DBH03A	X8L	25	1.5µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RHEL81E225K2DBH03A	X8L	25	2.2µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RHEL81E335K2DBH03A	X8L	25	3.3µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RHEL81E475K2DBH03A	X8L	25	4.7µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RHEL81E106K3DBH03A	X8L	25	10µF	±10%	5.5	5.0	-	2.5	4.0	16.0	3DB	1:
	RHEL81H221K0DBH03A	X8L	50	220pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H331K0DBH03A	X8L	50	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H471K0DBH03A	X8L	50	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H681K0DBH03A	X8L	50	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H102K0DBH03A	X8L	50	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H152K0DBH03A	X8L	50	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H222K0DBH03A	X8L	50	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H332K0DBH03A	X8L	50	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H472K0DBH03A	X8L	50	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H682K0DBH03A	X8L	50	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H103K0DBH03A	X8L	50	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H153K0DBH03A	X8L	50	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H223K0DBH03A	X8L	50	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H333K0DBH03A	X8L	50	33000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H473K0DBH03A	X8L	50	47000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	2
	RHEL81H683K0DBH03A	X8L	50	68000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H104K0DBH03A	X8L	50	0.1µF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL81H154K1DBH03A	X8L	50	0.15µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	2
	RHEL81H224K1DBH03A	X8L	50	0.22µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL81H334K1DBH03A	X8L	50	0.33µF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL81H474K2DBH03A	X8L	50	0.47µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RHEL81H684K2DBH03A	X8L	50	0.68µF	±10%	5.5	4.0	-	2.5	3.15	16.0	2DB	20
	RHEL81H105K2DBH03A	X8L	50	1.0µF	±10%	5.5	4.0	-	2.5	3.15		2DB	20
	RHEL81H155K2DBH03A	X8L	50	1.5µF	±10%	5.5	4.0	-	2.5	3.15		2DB	20
	RHEL81H225K2DBH03A	X8L	50	2.2µF	±10%	5.5	4.0	-	2.5	3.15		2DB	20
	RHEL81H335K3DBH03A	X8L	50	3.3µF	±10%	5.5	5.0	-	2.5	4.0		3DB	20
	RHEL81H475K3DBH03A	X8L	50	4.7µF	±10%	5.5	5.0	-	2.5	4.0		3DB	20
	RHEL82A221K0DBH03A	X8L	100	220pF	±10%	3.6	3.5		2.5	2.5		0DB	20

• Straight (Lead Sty					e Crimp Ta Style∶M*								
		T max.	:		H0±0.5	F ±		φ 0. 5	W1 max.)	nax.			
	1		1			1						Unit : mm	1
Customer Part Number	Murata Part Number	T.C.	DC Rated Volt.	Cap.	Cap. Tol.		D	imensi	on (mn	n)		Dimension (LxW)	Pac qty
			(V)		101.	L	W	W1	F	Т	H/H0	Lead Style	(pc
	RHEL82A331K0DBH03A	X8L	100	330pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A471K0DBH03A	X8L	100	470pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	200
	RHEL82A681K0DBH03A	X8L	100	680pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A102K0DBH03A	X8L	100	1000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A152K0DBH03A	X8L	100	1500pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A222K0DBH03A	X8L	100	2200pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A332K0DBH03A	X8L	100	3300pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A472K0DBH03A	X8L	100	4700pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A682K0DBH03A	X8L	100	6800pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A103K0DBH03A	X8L	100	10000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A153K0DBH03A	X8L	100	15000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A223K0DBH03A	X8L	100	22000pF	±10%	3.6	3.5	-	2.5	2.5	16.0	0DB	20
	RHEL82A333K1DBH03A	X8L	100	33000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL82A473K1DBH03A	X8L	100	47000pF	±10%	4.0	3.5	-	2.5	2.5	16.0	1DB	20
	RHEL82A683K1DBH03A	X8L X8L	100 100	68000pF	±10%	4.0 4.0	3.5 3.5	-	2.5 2.5	2.5	16.0	1DB 1DB	20
	RHEL82A104K1DBH03A	X8L	100	0.1µF	±10%	4.0 5.5		-	2.5 2.5	2.5	16.0	2DB	20
	RHEL82A154K2DBH03A RHEL82A224K2DBH03A	X8L	100	0.15µF	±10% ±10%	5.5 5.5	4.0 4.0	-	2.5	3.15 3.15	16.0 16.0	2DB 2DB	20 20
	RHEL82A224K2DBH03A RHEL81E104K0M1H03A	X8L	25	0.22µF 0.1µF	±10% ±10%	5.5 3.6	4.0	6.0	2.5 5.0	3.15	16.0	2DБ 0М1	20
	RHEL81E154K0M1H03A	X8L	25	0.15µF		3.6				-	16.0	-	20
	RHEL81E224K0M1H03A	X8L	25	0.13µF	±10%	3.6	3.5	6.0	5.0	2.5			20
	RHEL81E334K1M1H03A	X8L	25	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5			20
	RHEL81E474K1M1H03A	X8L	25	0.47µF	±10%	4.0	3.5	5.0	5.0	2.5	1		20
	RHEL81E684K1M1H03A	X8L	25	0.68µF	±10%	4.0	3.5	5.0	5.0	2.5			20
	RHEL81E105K1M1H03A	X8L	25	1.0µF	±10%	4.0	3.5	5.0	5.0	2.5			20
	RHEL81E155K2M1H03A	X8L	25	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15			20
	RHEL81E225K2M1H03A	X8L	25	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81E335K2M1H03A	X8L	25	3.3µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81E475K2M1H03A	X8L	25	4.7µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81E106K3M1H03A	X8L	25	10µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	15
	RHEL81E226MWM1H03A	X8L	25	22µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	15
	RHEL81H221K0M1H03A	X8L	50	220pF	±10%	3.6	3.5	6.0	5.0	2.5		0M1	20
	RHEL81H331K0M1H03A	X8L	50	330pF	±10%	3.6	3.5	6.0	5.0	2.5			20
	RHEL81H471K0M1H03A	X8L	50	470pF	±10%	3.6	3.5	6.0	5.0	2.5			20
	RHEL81H681K0M1H03A	X8L	50	680pF	±10%	3.6	3.5	6.0	5.0	2.5		0M1	20
	RHEL81H102K0M1H03A	X8L	50	1000pF	±10%	3.6	3.5	6.0	5.0	2.5		0M1	20
	RHEL81H152K0M1H03A	X8L	50	1500pF	±10%	3.6	3.5	6.0	5.0	2.5			20
	RHEL81H222K0M1H03A	X8L X8L	50 50	2200pF 3300pF	±10% ±10%	3.6 3.6	3.5 3.5	6.0	5.0 5.0	2.5 2.5			20 20
	RHEL81H332K0M1H03A					16		6.0					

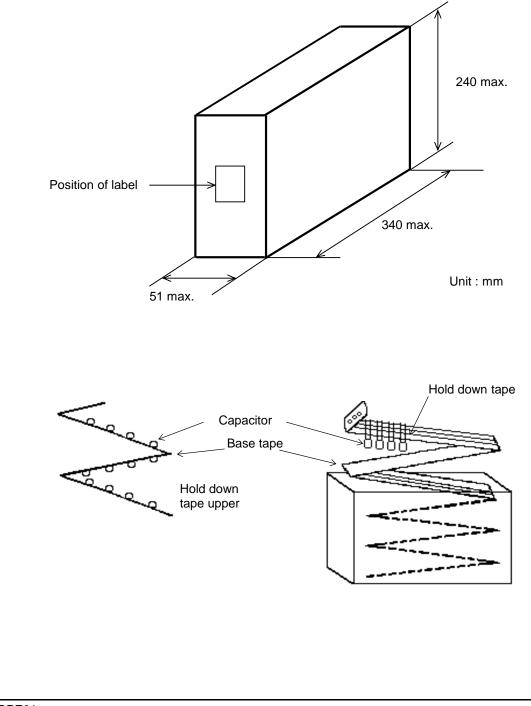
• Inside Crimp Taping (Lead Style:M*)



Customer		τo	DC Rated	0	Cap.		D	imensi	on (mn	ר)		Dimension	
Part Number	Murata Part Number	T.C.	Volt. (V)	Cap.	Tol.	L	W	W1	F	т	H/H0	(LxW) Lead Style	qt (po
	RHEL81H682K0M1H03A	X8L	50	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H103K0M1H03A	X8L	50	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H153K0M1H03A	X8L	50	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H223K0M1H03A	X8L	50	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H333K0M1H03A	X8L	50	33000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H473K0M1H03A	X8L	50	47000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H683K0M1H03A	X8L	50	68000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H104K0M1H03A	X8L	50	0.1µF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL81H154K1M1H03A	X8L	50	0.15µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL81H224K1M1H03A	X8L	50	0.22µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL81H334K1M1H03A	X8L	50	0.33µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL81H474K2M1H03A	X8L	50	0.47µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81H684K2M1H03A	X8L	50	0.68µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81H105K2M1H03A	X8L	50	1.0µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81H155K2M1H03A	X8L	50	1.5µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81H225K2M1H03A	X8L	50	2.2µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL81H335K3M1H03A	X8L	50	3.3µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	15
	RHEL81H475K3M1H03A	X8L	50	4.7µF	±10%	5.5	5.0	7.5	5.0	4.0	16.0	3M1	15
	RHEL81H106MWM1H03A	X8L	50	10µF	±20%	5.5	7.5	10.0	5.0	4.0	16.0	WM1	15
	RHEL82A221K0M1H03A	X8L	100	220pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A331K0M1H03A	X8L	100	330pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A471K0M1H03A	X8L	100	470pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A681K0M1H03A	X8L	100	680pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A102K0M1H03A	X8L	100	1000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A152K0M1H03A	X8L	100	1500pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A222K0M1H03A	X8L	100	2200pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A332K0M1H03A	X8L	100	3300pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A472K0M1H03A	X8L	100	4700pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A682K0M1H03A	X8L	100	6800pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A103K0M1H03A	X8L	100	10000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A153K0M1H03A	X8L	100	15000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A223K0M1H03A	X8L	100	22000pF	±10%	3.6	3.5	6.0	5.0	2.5	16.0	0M1	20
	RHEL82A333K1M1H03A	X8L	100	33000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL82A473K1M1H03A	X8L	100	47000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL82A683K1M1H03A	X8L	100	68000pF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL82A104K1M1H03A	X8L	100	0.1µF	±10%	4.0	3.5	5.0	5.0	2.5	16.0	1M1	20
	RHEL82A154K2M1H03A	X8L	100	0.15µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20
	RHEL82A224K2M1H03A	X8L	100	0.22µF	±10%	5.5	4.0	6.0	5.0	3.15	16.0	2M1	20

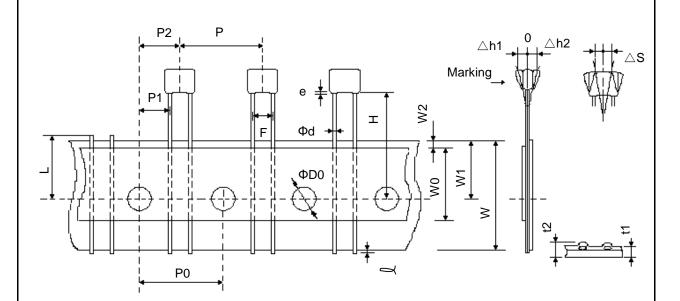
о.		-Q200 t Item	Specification	AEC-Q200 Test Method
1	Pre-and Post-			
	Electrical Test	T		1
2	High	Appearance	No defects or abnormalities.	Sit the capacitor for 1000±12 hours at 150±3°C. Let sit for 24±2 hours
	Temperature	Capacitance	within ±12.5%	at *room condition, then measure.
	Exposure	Change		
	(Storage)	D.F.	0.04 max.	Pretreatment
		I.R.	More than 1,000MΩ or 50MΩ • μF	Perform the heat treatment at 150+0/-10°C for 60±5 min and
			(Whichever is smaller)	then let sit for 24±2 hours at *room condition.
3	Temperature	Appearance	No defects or abnormalities except color	Perform the 1000 cycles according to the four heat treatments listed
	Cycling		change of outer coating.	in the following table. Let sit for 24±2 hours at *room condition, then measure
	, ,	Capacitance	within ±12.5%	Step 1 2 3 4
		Change		Temp. Temp. Room Room
		D.F.	0.05 max.	(°C) -55+0/-3 Temp. 150+3/-0 Temp.
		I.R.		Time
		I.K.	1,000MΩ or 50MΩ•μF min.	(min.) 15±3 1 15±3 1
			(Whichever is smaller)	
				Pretreatment
				Perform the heat treatment at 150+0/-10°C for 60±5 min and
				then let sit for 24±2 hours at *room condition.
1	Moisture	Appearance	No defects or abnormalities.	Apply the 24 hours heat (25 to 65°C) and humidity (80 to 98%)
	Resistance	Capacitance	within ±12.5%	treatment shown below, 10 consecutive times.
		Change		Let sit for 24±2 hours at *room condition, then measure.
		D.F.	0.05 max.	Temperature Humidity Humidity
		I.R.	500MΩ or 25MΩ•μF min.	(°C) Humidity 80~98% Humidity 80~98% Humidity 90~98% ♥ 90~98% ♥ 90~98%
			(Whichever is smaller)	
				g50 g45 g40 g35
				25 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
				20 +10 +10 - 2 °C
				10 Initial measurement
				-5
				-10 One cycle 24 hours
				0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Hours
				•Pretreatment
				Perform the heat treatment at 150+0/-10°C for 60±5 min and
-	Diese d	App	No defecto or objecto di la constituita	then let sit for 24±2 hours at *room condition.
5	Biased	Appearance	No defects or abnormalities.	Apply the rated voltage and DC1.3+0.2/-0V (add 100k Ω resistor)
	Humidity	Capacitance	within ±12.5%	at 85±3°C and 80 to 85% humidity for 1,000±12 hours.
		Change	4	Remove and let sit for 24±2 hours at *room condition, then measure.
		D.F.	0.05 max.	The charge/discharge current is less than 50mA.
		I.R.	500MΩ or 25MΩ•μF min.	Pretreatment
			(Whichever is smaller)	Perform a heat treatment at 150+0/-10°C for one hour.
				and then set at room temperature for 24±2 hours.
6	Operational	Appearance	No defects or abnormalities except color	Apply 150% of the rated voltage for 1,000±12 hours at 150±3°C.
	Life		change of outer coating.	Let sit for 24±2 hours at *room condition, then measure.
		Capacitance	within ±12.5%	The charge/discharge current is less than 50mA.
		Change		•Pretreatment
		D.F.	0.04 max.	Apply test voltage for 60±5 min at test temperature.
		D.F. I.R.	1,000MΩ or 50MΩ•µF min.	Remove and let sit for 24 ± 2 hours at *room condition.
		ых. -		וועוד איז
,	External 11	1	(Whichever is smaller)	Vieual inspection
	External Visua		No defects or abnormalities.	Visual inspection.
}	Physical Dime	nsion	Within the specified dimensions.	Using calipers and micrometers.
)	Marking	r	To be easily legible.	Visual inspection.
0	Resistance	Appearance	No defects or abnormalities.	Per MIL-STD-202 Method 215
	to Solvents	Capacitance	Within the specified tolerance.	Solvent 1 : 1 part (by volume) of isopropyl alcohol
		D.F.	0.025 max.	3 parts (by volume) of mineral spirits
		I.R.	More than 10,000MΩ or 500 MΩ • μF	Solvent 2 : Terpene defluxer
			(Whichever is smaller)	Solvent 3 : 42 parts (by volume) of water
				1part (by volume) of propylene glycol monomethyl ether
				rpart (by volume) or propyrene grycor monometnyr ether
				1 part (by volume) of monoethanolamine

No.	AEC	-Q200	Specification	nce only	Δ	EC-Q200 Tes	t Method	
1 0.		t Item						
11	Mechanical	Appearance	No defects or abnormalities.	Three shocks in				
	Shock	Capacitance	Within the specified tolerance.	mutually perpe				
		D.F.	0.025 max.	The specified to				
	N #1			duration : 0.5m			, ,	
12	Vibration	Appearance	No defects or abnormalities.	The capacitor s				
		Capacitance D.F.	Within the specified tolerance. 0.025 max.	having a total a				
		D.F.	0.025 max.	uniformly betwee The frequency				
				should be trave				
				should be appli		-		
				directions (total				alcular
13-1	Resistance	Appearance	No defects or abnormalities.	The lead wires	,	nersed in the r	melted solder	1.5 to 2.0mm
	to Soldering	Capacitance	Within ±7.5%	from the root of				
	Heat	Change						
	(Non-	Dielectric	No defects.	Pre-treatment				
	Preheat)	Strength		Capacitor shou	ld be stored a	at 150+0/-10°C	C for one hour.	
	,	(Between						I measurement.
		terminals)		Post-treatment	nt			
				Capacitor shou	ld be stored fo	or 24±2 hours	at *room cond	dition.
3-2	Resistance	Appearance	No defects or abnormalities.	First the capac	itor should be	stored at 120-	+0/-5°C for 60	+0/-5 seconds.
	to Soldering	Capacitance	Within ±7.5%	Then, the lead	wires should b	e immersed in	n the melted s	older
	Heat	Change		1.5 to 2.0mm fr	om the root of	terminal at 26	60±5°C for 7.5	+0/-1 seconds.
	(On-	Dielectric	No defects.					
	Preheat)	Strength		 Pre-treatment 				
		(Between		Capacitor shou	ld be stored a	at 150+0/-10°C	for one hour,	
		terminals)		then place at *r	oom condition	for 24±2 hour	rs before initia	l measurement.
				 Post-treatment 	nt			
				Capacitor shou	ld be stored fo	or 24±2 hours	at *room cond	dition.
13-3	Resistance	Appearance	No defects or abnormalities.	Test condition				
	to Soldering	Capacitance	Within ±7.5%	Temperature	of iron-tip : 35	0±10°C		
	Heat	Change		Soldering time	e : 3.5±0.5 sec	conds		
	(soldering	Dielectric	No defects	Soldering posit	ion			
	iron method)	Strength		Straight Lead	: 1.5 to 2.0mn	n from the root	t of terminal.	
		(Between		Crimp Lead :	1.5 to 2.0mm	from the end o	of lead bend.	
		terminals)						
				Pre-treatment				
				Capacitor shou				
						for 24±2 hour	rs before initia	I measurement.
				Post-treatmen		04.01		111
14	Thormol	Annooronoo	No defecto or obnormalitica	Capacitor shou				
14	Thermal Shock	Appearance Capacitance	No defects or abnormalities.			-		ents listed in the
	SHUCK		within ±12.5%	following table Let sit for 24±2				
		Change D.F.	0.05 max.		Step	1	2	1
		D.F. I.R.	0.05 max. 1,000MΩ or 50MΩ•μF min.				<u> </u>	
			(Whichever is smaller)		Temp. (°C)	-55+0/-3	150+3/-0	
		1			Time (min.)	15±3	15±3	
						1	I	1
				•Pretreatment				
				Pretreatment Perform the here	at treatment a	t 150+0/-10°ር	for 60±5 min	and
				•Pretreatment Perform the heather the net sit for 2				and
15	ESD	Appearance	No defects or abnormalities.	Perform the he	4±2 hours at			and
15	ESD	Appearance Capacitance	No defects or abnormalities. Within the specified tolerance.	Perform the heat then let sit for 2	4±2 hours at			and
15	ESD			Perform the heat then let sit for 2	4±2 hours at			and
15	ESD	Capacitance	Within the specified tolerance.	Perform the heat then let sit for 2	4±2 hours at			and
15	ESD	Capacitance D.F.	Within the specified tolerance. 0.025 max.	Perform the heat then let sit for 2	4±2 hours at			and
	ESD Solderability	Capacitance D.F.	Within the specified tolerance. 0.025 max. More than 10,000MΩ or 500MΩ • μF	Perform the heat then let sit for 2	24±2 hours at 1	room conditio	in.	
		Capacitance D.F.	Within the specified tolerance. 0.025 max. More than 10,000MΩ or 500MΩ+μF (Whichever is smaller)	Perform the he then let sit for 2 Per AEC-Q200	-002 a capacitor is	troom conditio	n. solution of eth	nanol
		Capacitance D.F.	Within the specified tolerance. 0.025 max. More than 10,000MΩ or 500MΩ•μF (Whichever is smaller) Lead wire should be soldered with	Perform the he then let sit for 2 Per AEC-Q200 The terminal of (JIS-K-8101) au	24±2 hours at 1 -002 a capacitor is nd rosin (JIS-H	troom conditio	n. solution of eth rosin in weigh	nanol t propotion)
15		Capacitance D.F.	Within the specified tolerance. 0.025 max. More than 10,000MΩ or 500MΩ•μF (Whichever is smaller) Lead wire should be soldered with uniform coating on the axial direction	Perform the he then let sit for 2 Per AEC-Q200 The terminal of (JIS-K-8101) au	24±2 hours at -002 a capacitor is nd rosin (JIS-H nolten solder (-	 troom condition dipped into a (-5902) (25%) JIS-Z-3282) for 	n. solution of ett rosin in weigh r 2±0.5 secon	nanol t propotion) ds. In both cases
		Capacitance D.F.	Within the specified tolerance. 0.025 max. More than 10,000MΩ or 500MΩ•μF (Whichever is smaller) Lead wire should be soldered with uniform coating on the axial direction	Perform the he then let sit for 2 Per AEC-Q200 The terminal of (JIS-K-8101) an and then into m the depth of dip	24±2 hours at -002 a capacitor is nd rosin (JIS-P nolten solder (, opping is up to a	 troom condition dipped into a (-5902) (25%) JIS-Z-3282) for 	n. solution of ett rosin in weigh r 2±0.5 secon	nanol t propotion) ds. In both case
		Capacitance D.F.	Within the specified tolerance. 0.025 max. More than 10,000MΩ or 500MΩ•μF (Whichever is smaller) Lead wire should be soldered with uniform coating on the axial direction	Perform the here then let sit for 2 Per AEC-Q200 The terminal of (JIS-K-8101) an and then into m the depth of dip Temp. of solde	24±2 hours at -002 a capacitor is nd rosin (JIS-P nolten solder (, opping is up to a r :	troom condition dipped into a (-5902) (25% JIS-Z-3282) fo about 1.5 to 2r	solution of eth rosin in weigh ir 2±0.5 secon nm from the te	nanol t propotion) ds. In both cases
		Capacitance D.F.	Within the specified tolerance. 0.025 max. More than 10,000MΩ or 500MΩ•μF (Whichever is smaller) Lead wire should be soldered with uniform coating on the axial direction	Perform the he then let sit for 2 Per AEC-Q200 The terminal of (JIS-K-8101) at and then into m the depth of dip Temp. of solde 245±5°C Lea	24±2 hours at -002 a capacitor is nd rosin (JIS-P nolten solder (, opping is up to a r :	troom conditio dipped into a (-5902) (25% JIS-Z-3282) fo about 1.5 to 2r (Sn-3.0Ag-0.8	solution of eth rosin in weigh ir 2±0.5 secon nm from the te	nanol t propotion) ds. In both cases


Item Appearance Capacitance D.F. Insulation Resistance (I.R.) Dielectric Strength	No defects or a Within the spectrum 0.025 max. Room Temperature High Temperature Between Terminals	abnormalities. cified tolerance. 10,000MΩ or 500MΩ•µF min. (Whichever is smaller) 100MΩ or 5MΩ•µF min. (Whichever is smaller) No defects or abnormalities.	Visual inspection. The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table. Nominal Cap. Frequency Voltage C≤1000pF 1±0.1MHz AC0.5~5V (r.m.s.) 10µF≧C>1000pF 1±0.1kHz AC1±0.2V (r.m.s.) C>10µF 120±24Hz AC0.5±0.1V (r.m.s.) The insulation resistance should be measured at 25±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA.) The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA.) The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA.)		
Capacitance D.F. Insulation Resistance (I.R.) Dielectric	Within the species of	cified tolerance. 10,000MΩ or 500MΩ•μF min. (Whichever is smaller) 100MΩ or 5MΩ•μF min. (Whichever is smaller)	The capacitance/D.F. should be measured at 25°C at the frequency and voltage shown in the table. Nominal Cap. Frequency Voltage $C \leq 1000 \text{pF}$ $1\pm 0.1\text{MHz}$ AC0.5~5V (r.m.s.) $10\mu\text{F} \geq C > 1000 \text{pF}$ $1\pm 0.1\text{MHz}$ AC1±0.2V (r.m.s.) $C \geq 10\mu\text{F}$ $120\pm 24\text{Hz}$ AC0.5±0.1V (r.m.s.) C > 10 μF $120\pm 24\text{Hz}$ AC0.5±0.1V (r.m.s.) C > 10 μF $120\pm 24\text{Hz}$ AC0.5±0.1V (r.m.s.) The insulation resistance should be measured at 25±3 °C with a DC voltage not exceeding the rated voltage at normal temperate and humidity and within 2 min. of charging. (Charge/Discharge current $\leq 50\text{mA.}$) The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperate and humidity and within 2 min. of charging. (Charge/Discharge current $\leq 50\text{mA.}$) (Charge/Discharge current $\leq 50\text{mA.}$)		
D.F. Insulation Resistance (I.R.) Dielectric	0.025 max. Room Temperature High Temperature Between	10,000MΩ or 500MΩ•µF min. (Whichever is smaller) 100MΩ or 5MΩ•µF min. (Whichever is smaller)	frequency and voltage shown in the table.Nominal Cap.FrequencyVoltage $C \leq 1000pF$ $1\pm 0.1MHz$ AC0.5~5V (r.m.s.) $10\mu F \geq C > 100pF$ $1\pm 0.1MHz$ AC1 $\pm 0.2V$ (r.m.s.) $C > 10\mu F$ $120\pm 24Hz$ AC0.5 $\pm 0.1V$ (r.m.s.)C > 10 μF $120\pm 24Hz$ AC0.5 $\pm 0.1V$ (r.m.s.)The insulation resistance should be measured at 25 ± 3 °C witha DC voltage not exceeding the rated voltage at normal temperateand humidity and within 2 min. of charging.(Charge/Discharge current $\leq 50mA.$)The insulation resistance should be measured at 150 ± 3 °C witha DC voltage not exceeding the rated voltage at normal temperateand humidity and within 2 min. of charging.(Charge/Discharge current $\leq 50mA.$)		
Insulation Resistance (I.R.) Dielectric	Room Temperature High Temperature Between	(Whichever is smaller) 100MΩ or 5MΩ•μF min. (Whichever is smaller)	$\label{eq:constraint} \begin{array}{ c c c c c } \hline Nominal Cap. & Frequency & Voltage \\ \hline C \leq 1000 pF & 1\pm 0.1 MHz & AC0.5 \sim 5V (r.m.s.) \\ \hline 10\mu F \geq C > 1000 pF & 1\pm 0.1 kHz & AC1\pm 0.2V (r.m.s.) \\ \hline C > 10\mu F & 120\pm 24 Hz & AC0.5\pm 0.1V (r.m.s.) \\ \hline C > 10\mu F & 120\pm 24 Hz & AC0.5\pm 0.1V (r.m.s.) \\ \hline The insulation resistance should be measured at 25\pm 3 °C with a DC voltage not exceeding the rated voltage at normal temperate and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.) \\ \hline The insulation resistance should be measured at 150\pm 3 °C with a DC voltage not exceeding the rated voltage at normal temperate and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.)$		
Resistance (I.R.) Dielectric	Temperature High Temperature Between	(Whichever is smaller) 100MΩ or 5MΩ•μF min. (Whichever is smaller)	$\begin{tabular}{ c c c c c } \hline C \leq 1000 pF & 1\pm0.1 MHz & AC0.5~5V (r.m.s.) \\ \hline 10 \mu F \geq C > 1000 pF & 1\pm0.1 kHz & AC1\pm0.2V (r.m.s.) \\ \hline C > 10 \mu F & 120\pm24 Hz & AC0.5\pm0.1V (r.m.s.) \\ \hline C > 10 \mu F & 120\pm24 Hz & AC0.5\pm0.1V (r.m.s.) \\ \hline The insulation resistance should be measured at 25\pm3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.) \\ \hline The insulation resistance should be measured at 150\pm3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.) \\ \hline \end{tabular}$		
Resistance (I.R.) Dielectric	Temperature High Temperature Between	(Whichever is smaller) 100MΩ or 5MΩ•μF min. (Whichever is smaller)	10μ F \geq C>1000pF 1 ± 0.1 kHz AC1±0.2V (r.m.s.) C>10 μ F 120±24Hz AC0.5±0.1V (r.m.s.) The insulation resistance should be measured at 25±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.) The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.)		
Resistance (I.R.) Dielectric	Temperature High Temperature Between	(Whichever is smaller) 100MΩ or 5MΩ•μF min. (Whichever is smaller)	C > 10 μ F 120 \pm 24Hz AC0.5 \pm 0.1V (r.m.s.) The insulation resistance should be measured at 25 \pm 3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.) The insulation resistance should be measured at 150 \pm 3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.)		
Resistance (I.R.) Dielectric	Temperature High Temperature Between	(Whichever is smaller) 100MΩ or 5MΩ•μF min. (Whichever is smaller)	The insulation resistance should be measured at 25±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≦ 50mA.) The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≦ 50mA.)		
Resistance (I.R.) Dielectric	Temperature High Temperature Between	(Whichever is smaller) 100MΩ or 5MΩ•μF min. (Whichever is smaller)	 a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA.) The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA.) 		
(I.R.) Dielectric	High Temperature Between	100MΩ or 5MΩ+µF min. (Whichever is smaller)	and humidity and within 2 min. of charging. (Charge/Discharge current ≦ 50mA.) The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≦ 50mA.)		
Dielectric	Temperature Between	(Whichever is smaller)	 (Charge/Discharge current ≤ 50mA.) The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≤ 50mA.) 		
	Temperature Between	(Whichever is smaller)	The insulation resistance should be measured at 150±3 °C with a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current ≦ 50mA.)		
	Temperature Between	(Whichever is smaller)	a DC voltage not exceeding the rated voltage at normal temperat and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.)		
	Between		and humidity and within 2 min. of charging. (Charge/Discharge current \leq 50mA.)		
		No defects or abnormalities.	(Charge/Discharge current \leq 50mA.)		
		No defects or abnormalities.			
Strength	Terminals		The capacitor should not be damaged when DC voltage of 250%		
		1	of the rated voltage is applied between the terminations for		
			1 to 5 seconds. (Charge/Discharge current \leq 50mA.)		
	Body	No defects or abnormalities.	The capacitor is placed in a container with metal		
	Insulation		balls of 1mm diameter so that each terminal,		
			short-circuit is kept approximately 2mm from Approx.		
			impressed for 1 to 5 seconds between capacitor terminals and metal balls.		
			capacitor terminals and metal balls. M (Charge/Discharge current \leq 50mA.)		
Tensile	Termination no	ot to be broken or loosened.	As in the figure, fix the capacitor body, apply the force gradually		
Strength			to each lead in the radial direction of the capacitor until reaching		
Bending	Termination no	ot to be broken or loosened.	Each lead wire should be subjected to a force of 2.5N and then		
Strength			be bent 90° at the point of egress in one direction.		
			Each wire is then returned to the original position and bent 90°		
	Within the sne	cified Tolerance.	in the opposite direction at the rate of one bend per 2 to 3 second The capacitance change should be measured after 5min.		
	-55 to 125°C :		at each specified temperature step.		
		within +15/-40%			
			Step Temperature(°C) 1 25±2		
			1 25±2 2 -55±3		
	1		3 25±2		
	1		4 150±3		
			5 25±2		
	1		The ranges of capacitance change compared with the above		
	1		25°C value over the temperature ranges shown in the table		
	1		should be within the specified ranges.		
			•Pretreatment		
			Perform the heat treatment at $150+0/-10^{\circ}C$ for 60 ± 5 min and		
	1		then let sit for 24 ± 2 hours at *room condition.		
			Perform the initial measurement.		
	perature : 1:	perature : 15 to 35°C, Relativ	perature : 15 to 35°C, Relative humidity : 45 to 75%, Atmosphe		

-Ammo pack taping type (Packing style code : A)

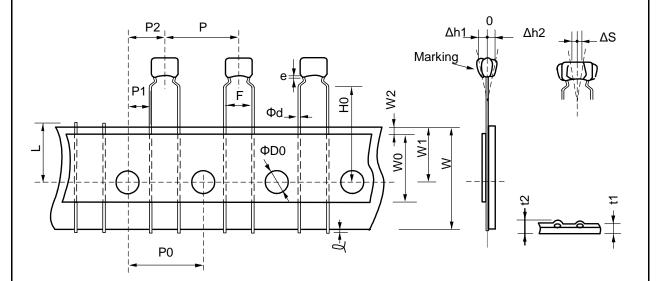
A crease is made every 25 pitches, and the tape with capacitors is packed zigzag into a case. When body of the capacitor is piled on other body under it.


The size of packing case and packing way

7. Taping specification

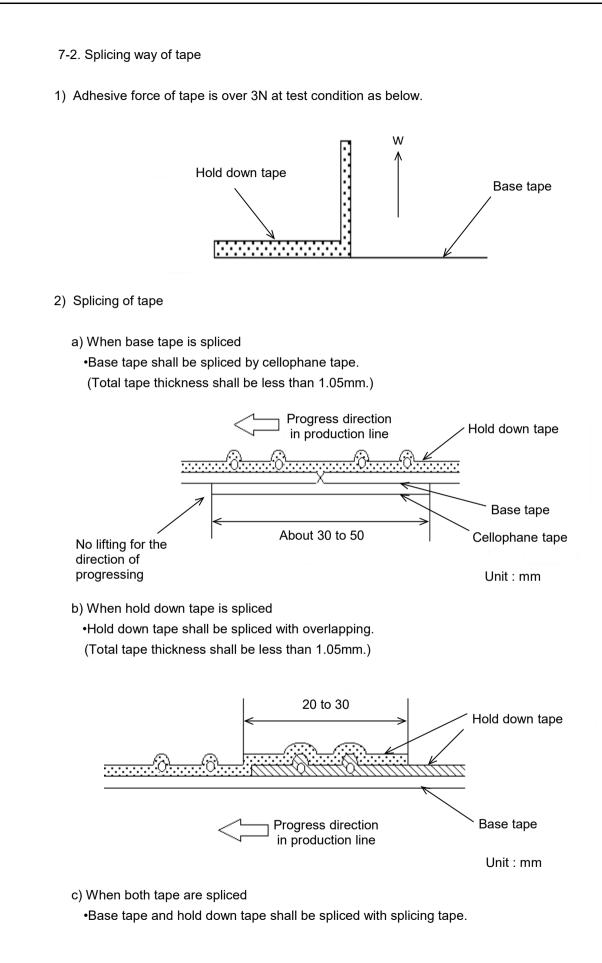
7-1. Dimension of capacitors on tape

Straight taping type < Lead Style : DB > Pitch of component 12.7mm / Lead spacing 2.5mm



Unit : mm

Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	2.5+0.4/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	5.1+/-0.7	7	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	Н	16.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	Φd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape	
Total thickness of tape and lead wire	t2	1.5 max.	thickness	
Doviation across tand	∆h1	1.0 max.	3 They include hold down tape K. thickness	
Deviation across tape	∆h2			
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	1.5 max.		


ETP1DB02A

Inside crimp taping type < Lead Style : M1 > Pitch of component 12.7mm / Lead spacing 5.0mm

Unit : mm

Item	Code	Dimensions	Remarks	
Pitch of component	Р	12.7+/-1.0		
Pitch of sprocket hole	P0	12.7+/-0.2		
Lead spacing	F	5.0+0.6/-0.2		
Length from hole center to component center	P2	6.35+/-1.3	Deviation of progress direction	
Length from hole center to lead	P1	3.85+/-0.7	1	
Deviation along tape, left or right defect	ΔS	0+/-2.0	They include deviation by lead bend	
Carrier tape width	W	18.0+/-0.5		
Position of sprocket hole	W1	9.0+0/-0.5	Deviation of tape width direction	
Lead distance between reference and bottom plane	H0	16.0+/-0.5		
Protrusion length	l	0.5 max.		
Diameter of sprocket hole	ΦD0	4.0+/-0.1		
Lead diameter	Φd	0.5+/-0.05		
Total tape thickness	t1	0.6+/-0.3	They include hold down tape thickness	
Total thickness of tape and lead wire	t2	1.5 max.		
Deviation across tape	∆h1	2.0 max. (Di	imension code : W)	
Deviation across tape	∆h2	1.0 max. (except as above)		
Portion to cut in case of defect	L	11.0+0/-1.0		
Hold down tape width	W0	9.5 min.		
Hold down tape position	W2	1.5+/-1.5		
Coating extension on lead	е	Up to the end of	crimp	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

RHEL81E335K2K1H03B RHEL81E154K0A2H03B RHEL81E106K3K1H03B RHEL81E334K1M	1H03A
RHEL81E684K1A2H03B RHEL81E155K2A2H03B RHEL81E335K2M1H03A RHEL81E155K2K1	H03B
RHEL81E334K1A2H03B RHEL81E225K2DBH03A RHEL81E226MWK1H03B RHEL81E155K2M	1H03A
RHEL81E335K2DBH03A RHEL81E474K1DBH03A RHEL82A683K1K1H03B RHEL82A331K0A2	H03B
RHEL82A102K0M1H03A RHEL82A221K0DBH03A RHEL81H683K0DBH03A RHEL82A332K0DB	BH03A
RHEL82A332K0M1H03A RHEL82A473K1A2H03B RHEL82A103K0M1H03A RHEL82A153K0A2	H03B
RHEL82A223K0DBH03A RHEL82A223K0M1H03A RHEL82A471K0K1H03B RHEL82A681K0M1	H03A
RHEL82A222K0A2H03B RHEL82A471K0M1H03A RHEL82A681K0DBH03A RHEL82A682K0A2	H03B
RHEL81H474K2A2H03B RHEL81H681K0A2H03B RHEL81H474K2K1H03B RHEL82A102K0DB	H03A
RHEL82A103K0A2H03B RHEL82A471K0A2H03B RHEL82A152K0A2H03B RHEL82A152K0M1	H03A
RHEL81H684K2A2H03B RHEL81H225K2K1H03B RHEL81H332K0K1H03B RHEL81H334K1K1	H03B
RHEL81E475K2K1H03B RHEL81E225K2M1H03A RHEL81E224K0DBH03A RHEL81H335K3DE	BH03A
RHEL81H473K0M1H03A RHEL81H681K0DBH03A RHEL81H681K0K1H03B RHEL82A154K2DE	BH03A
RHEL81E104K0A2H03B RHEL81H224K1A2H03B RHEL81H332K0DBH03A RHEL81H471K0M1	H03A
RHEL81H475K3A2H03B RHEL81H682K0A2H03B RHEL82A331K0M1H03A RHEL81E225K2A2	H03B
RHEL82A223K0A2H03B RHEL81H221K0A2H03B RHEL81H155K2A2H03B RHEL81H223K0M1	H03A
RHEL82A152K0DBH03A RHEL81E334K1K1H03B RHEL81E105K1M1H03A RHEL81E104K0K1	H03B
RHEL81E475K2M1H03A RHEL81H155K2DBH03A RHEL81H475K3M1H03A RHEL81H682K0M	1H03A
RHEL82A102K0K1H03B RHEL82A104K1M1H03A RHEL81H223K0K1H03B RHEL81H102K0K1	H03B
RHEL81H104K0DBH03A RHEL81H152K0K1H03B RHEL81H103K0M1H03A RHEL81H223K0DE	BH03A
RHEL81H103K0DBH03A RHEL81H333K0M1H03A RHEL81H335K3M1H03A RHEL81H106MWM	V1H03A
RHEL81H474K2M1H03A RHEL82A682K0DBH03A RHEL82A682K0K1H03B RHEL82A224K2K1	H03B
RHEL82A331K0DBH03A RHEL81H152K0DBH03A RHEL81H331K0M1H03A RHEL81H153K0K1	1H03B
RHEL81H225K2A2H03B RHEL81H331K0DBH03A RHEL82A221K0K1H03B RHEL81H684K2DB	H03A
RHEL82A104K1A2H03B RHEL82A104K1K1H03B RHEL82A472K0DBH03A RHEL82A222K0K1	H03B