Troyka Cap

Плата расширения Troyka Cap — это хаб для подключения Troyka-модулей через стандартные трёхпроводные шлейфы. Плата избавит вас от рассыпухи из мелких компонентов, пайки и макетной платы.

Подключения и настройка

1. Установите Troyka Cap сверху на Raspberry Pi.

- 2. <u>«Заведите Raspberry Pi»</u>.
- 3. Обновите программные пакеты
- 4. <u>Включите шину I²C</u> и <u>установите I²C сканер</u>
- 5. Просмотрите подключённые І²С-устройства:

<mark>sudo i2cdetect -y 1</mark>

0x2a — это 42, адрес расширителя портов по умолчанию.

g	P p	i@r	aspł	berry	pi: ~															-	_	×	
pi	@ra	asp	bei	rry	pi:	- Ş	su	io :	i2c	det	ect	-y	1									-	^
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	e	f						
00																							
10																							
20												2a											
30																							
40																							
50																							
60																							
70																							
pi	(era	asp	ber	rry	pi:	- Ş																	Y

6. Установите библиотеку wiringpi для Python

pip3 install wiringpi

🗬 pi@raspberrypi: ~	_		×
pi@raspberrypi:~ \$ pip3 install wiringpi			^
Collecting wiringpi			
Downloading https://files.pythonhosted.org/packages/ce/lf/74901a	3c8420	daeb22	447
c07c48826d2c6aeb0d988370792e2aa2221f7a36/wiringpi-2.46.0-cp35-cp35	m-linu	ux_arm	71
.whl (262kB)			
100% 266kB 435kB/s			
Installing collected packages: wiringpi			
Successfully installed wiringpi-2.46.0			
pi@raspberrypi:~ \$			
			\sim

7. Установите библиотеку TroykaCapPython для работы с расширителем портов:

pip3 install git+https://github.com/amperka/TroykaCapPython

🗬 pi@raspberrypi: ~	_		\times
pi@raspberrypi:~ \$ pip3 install git+https://github.com/amper	ka/Troyka0	apPytho	m ^
Collecting git+https://github.com/amperka/TroykaCapPython			
Cloning https://github.com/amperka/TroykaCapPython to /tmp	/pip-a7ksa	tsf-bui	.ld
Installing collected packages: TroykaCapPython			
Running setup.py install for TroykaCapPython done			
Successfully installed TroykaCapPython-1.0			
pi@raspberrypi:~ \$			
			\sim

На этом установка закончена, теперь смело переходите к экспериментам.

Примеры работы

Имена пинов на Troyka Cap относятся к нумерации Wiring Pi, которая отличается от нумерации всм в образовательном наборе малина. Обратите внимание на распиновку Troyka Cap

Маячок

Повторите третий эксперимент из набора малина — маячок. Только вместо облачка, подключите к Troyka Cap светодиод «Пиранья» (Troyka-модуль) через стандартный трёхпроводной шлейф к 7 цифровому пину.

Код для Python

blink.py

```
# библиотека для работы с методами языка Wiring (Arduino)
import wiringpi as wp{{ :продукты:raspberry-troyka-cap:raspberry-
troyka-cap_blink.gif?nolink |}}
# инициализация WiringPi
wp.wiringPiSetup()
# пин 7 в режим выхода
wp.pinMode(7, 1)
while (True):
    # подаём на пин 7 высокий уровень
    wp.digitalWrite(7, 1)
    # ждём пол секунды
    wp.delay(500)
    # подаём на пин 7 низкий уровень
    wp.digitalWrite(7, 0)
    # ждём пол секунды
    wp.delay(500)
```

После запуска скрипта, светодиод начнёт мигать раз в пол секунды.

Кнопочный выключатель

Добавьте к предыдущему эксперименту кнопку (Troyka-модуль) и подключите её к Troyka Cap через стандартный трёхпроводной шлейф к 22 цифровому пину.

Код для Python

switchLamp.py

```
# библиотека для работы с методами языка Wiring (Arduino)
import wiringpi as wp
# инициализация WiringPi
wp.wiringPiSetup()
# пин 22 в режим выхода
wp.pinMode(22, 0)
# пин 7 в режим выхода
wp.pinMode(7, 1)
while (True):
    # если кнопка нажата
    if (not(wp.digitalRead(22))):
        <mark># включаем светодиод</mark>
        wp.digitalWrite(7, 1)
    # если кнопка отжата
    else:
        # выключаем светодиод
        wp.digitalWrite(7, 0)
```

При нажатии на кнопку — светодиод загорится, а отпустить — погаснет.

Светильник с управляемой яркостью

Raspberry Pi обладает всего двумя каналами ШИМ и не имеет аналого-цифрового преобразователя. Troyka Cap решает проблему через встроенный микроконтроллер ARM Cortex M0. Модули подключаются через Troyka-контакты Expandera.

В качестве примера подключим ползунковый потенциометр (Troyka-модуль) и Светодиод 5 мм (Troyka-модуль) к пинам Expandera 3 и 6 соответственно.

Код для Python

brigtnessLamp.py

```
# библиотека для работы с расширителем портов
import gpioexp
# cosgaëm oбъект для работы с расширителем портов
exp = gpioexp.gpioexp()
while True:
    # считываем состояние потенциометра
    pot = exp.analogRead(3)
    # включаем яркость светодиода
    # в зависимости от состояние потенциометра
    exp.analogWrite(6, pot)
```

После запуска скрипта, яркость светодиода будет меняться в зависимости от перемещения

ползунка слайдера.

Аналоговая регулировка громкости

Выйдем за границы светодиодной робототехники. Сделаем ручную регулировку громкости одноплатника Raspberry Pi.

- 1. Подключите ползунковый потенциометр (Troyka-модуль) к пину Expandera 0.
- 2. Установите библиотеку pyalsaaudio для контроля уровня громкости:

pip3 install pyalsaaudio

3. Запустите нижеприведённый скрипт:

Код для Python

controrVolume.py

Громкость в операционной системы будет меняться в зависимости от перемещения ползунка слайдера.

Элементы платы

Troyka-контакты Raspberry Py

Troyka-контакты GPIO-расширителя

Микроконтроллер ARM Cortex M0

Мозгом GPIO-расширителя является мощный 32-разрядный микроконтроллер фирмы STMicroelectronics — STM32F030F4P6 с вычислительном ядром ARM Cortex® M0.

Джампер выбора питания

На линии питания GPIO-расширителя есть возможность выбора питания установкой джампера:

- 5V→V на линии V будет присутствовать напряжение 5 вольт. Это удобно при подключении модулей с рабочим напряжением 5 вольт. Например микросервопривод или ультразвуковой дальномер.
- З∨З→V на линии V 3,3 вольта. Режим полезен при подключении аналоговых сенсоров. Так как диапазон входного напряжения для считывания аналоговых сенсоров от 0 до 3,3 вольт. Например потенциометр или датчик освещённости.

Troyka-контакты SPI

Контакты для подключения устройств, которые общаются с управляющей электроникой по шине <u>SPI</u>.

Troyka-контакты І²С

Контакты для подключения устройств, которые общаются с управляющей электроникой по шине <u>I²C / TWI</u>.

Светодиодная индикация

Имя светодиода	Назначение
L23	Светодиод вывода 23. При подачи высокого уровня — светодиод включается, при низком — выключается.
АСТ	Мигает при обмене данными между одноплатником Raspberry Pi и GPIO- расширителям портов

Разъём внешнего питания

DC-DC преобразователь

Понижающий DC-DC TPS563200 с выходом 5 вольт, обеспечивает питание схемы. Максимальный выходной ток составляет 3 А.

Распиновка

Принципиальная схемы

Характеристики

- Количество Troyka-контактов Raspbery Pi: 21
- Количество Troyka-контактов GPIO-расширителя: 8
- Troyka-контактов SPI: 3
- Troyka-контактов I²C: 2
- Напряжение логических уровней: 3,3 В
- Все пины толеранты к 5 вольтам
- Портов с поддержкой ШИМ: 8
- Разрядность ШИМ: 16 бит
- Портов с АЦП: 8
- Разрядность АЦП: 12 бит
- Максимальный ток контакта питания 5V: 3 А
- Максимальный ток контакта питания V: 1 A
- Допустимое входное напряжение от внешнего источника: 5–15 В

Ресурсы

- Библиотека для Raspberry Pi
- Векторное изображение модуля
- Datasheet на понижающий DC-DC преобразователь