ANALOG 1 pC Charge Injection, 100 pA Leakage, **DEVICES** CMOS, ±5 V/+5 V/+3 V, Quad SPST Switches

ADG611/ADG612/ADG613

FEATURES

1 pC charge injection ±2.7 V to ±5.5 V dual-supply operation +2.7 V to ±5.5 V single-supply operation Automotive temperature range: -40°C to +125°C 100 pA maximum at 25°C leakage currents 85 Ω on resistance Rail-to-rail switching operation Fast switching times 16-lead TSSOP and SOIC packages Typical power consumption: <0.1 μW TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment Data acquisition systems Battery-powered systems Communications systems Sample-and-hold systems Audio signal routing Relay replacement Avionics

GENERAL DESCRIPTION

The ADG611/ADG612/ADG613 are monolithic CMOS devices containing four independently selectable switches. These switches offer ultralow charge injection of 1 pC over the full input signal range and typical leakage currents of 10 pA at 25°C.

The devices are fully specified for ± 5 V, ± 5 V, and ± 3 V supplies. Each contains four independent single-pole, single-throw (SPST) switches. The ADG611 and ADG612 differ only in that the digital control logic is inverted. The ADG611 switches are turned on with a logic low on the appropriate control input, whereas a logic high is required to turn on the switches of the ADG612. The ADG613 contains two switches with digital control logic similar to that of the ADG611 and two switches in which the logic is inverted.

FUNCTIONAL BLOCK DIAGRAM

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG613 exhibits break-before-make switching action. The ADG611/ADG612/ADG613 are available in a small, 16-lead TSSOP package, and the ADG611 is also available in a 16-lead SOIC package.

PRODUCT HIGHLIGHTS

- 1. Ultralow charge injection (1 pC typically).
- 2. Dual ± 2.7 V to ± 5.5 V or single ± 2.7 V to ± 5.5 V operation.
- 3. Automotive temperature range: -40° C to $+125^{\circ}$ C.
- 4. Small, 16-lead TSSOP and SOIC packages.

Rev. A

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Dual-Supply Operation	3
Single-Supply Operation	4

REVISION HISTORY

11/09—Rev. 0 to Rev. A

Changes to Analog Signal Range Parameter
and to On Resistance, Ron Parameter, Table 1 3
Change to Digital Input Capacitance, C _{IN} Parameter, Table 2 4
Changes to Table 4 and to Absolute Maximum Ratings Section6
Added Table 5; Renumbered Sequentially7
Updated Outline Dimensions
Changes to Ordering Guide

1/02—Revision 0: Initial Version

SPECIFICATIONS

DUAL-SUPPLY OPERATION

 V_{DD} = +5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	–40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			Vss to VDD	V	
On Resistance, Ron	85			Ωtyp	$V_s = \pm 3 V$, $I_s = -1 mA$; see Figure 14
	115	140	160	Ωmax	$V_s = \pm 3 V$, $I_s = -1 mA$; see Figure 14
On-Resistance Match Between Channels, ΔR _{on}	2			Ωtyp	$V_{s} = \pm 3 V, I_{s} = -1 mA$
	4	5.5	6.5	Ωmax	$V_{s} = \pm 3 V$, $I_{s} = -1 mA$
On-Resistance Flatness, R _{FLAT(ON)}	25			Ωtyp	$V_{s} = \pm 3 V$, $I_{s} = -1 mA$
	40	55	60	Ωmax	$V_{s} = \pm 3 V$, $I_{s} = -1 mA$
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, \text{ V}_{SS} = -5.5 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.01			nA typ	$V_D = \pm 4.5 \text{ V}, \text{VS} = \mp 4.5 \text{ V}; \text{ see Figure 15}$
	±0.1	±0.25	±2	nA max	$V_{D} = \pm 4.5 \text{ V}, \text{VS} = \mp 4.5 \text{ V}; \text{ see Figure 15}$
Drain Off Leakage, ID(OFF)	±0.01			nA typ	$V_D = \pm 4.5 \text{ V}, \text{ V}_S = \mp 4.5 \text{ V}; \text{ see Figure 15}$
3 , 2007	±0.1	±0.25	±2	nA max	$V_D = \pm 4.5 \text{ V}, \text{ V}_S = \mp 4.5 \text{ V}; \text{ see Figure 15}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.01	20.25		nA typ	$V_D = V_S = \pm 4.5$ V; see Figure 16
	±0.01	± 0.25	±6	nA max	$V_{\rm D} = V_{\rm S} = \pm 4.5$ V; see Figure 16
DIGITAL INPUTS	±0.1	± 0.25	± 0	ПА Шах	
Input High Voltage, VINH			2.4	V min	
Input Low Voltage, VINH			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		0.0	μA typ	$V_{\rm IN} = V_{\rm INI}$ or $V_{\rm INH}$
	0.005		±0.1	μΑ τyp μΑ max	$V_{IN} = V_{INL} OI V_{INH}$ $V_{IN} = V_{INL} Or V_{INH}$
Digital Input Capacitance, C _№	2		±0.1	pF typ	
DYNAMIC CHARACTERISTICS ²	2			prtyp	
	45			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_s = 3.0 V$; see Figure 17
ton		75	00		
	65 25	75	90	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_s = 3.0 V$; see Figure 17
t _{off}	25 40	45	50	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_s = 3.0 V$; see Figure 17
Dural Defeue Males Times Delays t	-	45	50	ns max	$R_L = 300 \Omega, C_L = 35 \text{ pF}, V_S = 3.0 \text{ V}; \text{ see Figure 17}$
Break-Before-Make Time Delay, t_{BBM}	15		10	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 18
Charge Injection	0.5		10	ns min	$R_L = 300 \Omega, C_L = 35 \text{ pF}, V_{S1} = V_{S2} = 3.0 \text{ V}; \text{ see Figure 18}$
Charge Injection	-0.5			pC typ	$V_s = 0 V, R_s = 0 \Omega, C_L = 1 nF$; see Figure 19
Off Isolation	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 20
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$ see Figure 21
–3 dB Bandwidth	680			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
C _{S(OFF)}	5			pF typ	f = 1 MHz
C _{D(OFF)}	5			pF typ	f = 1 MHz
C _{D(ON)} , C _{S(ON)}	5			pF typ	f = 1 MHz
					$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
l _{DD}	0.001		1.0	µA typ	Digital inputs = 0 V or 5.5 V
			1.0	μA max	Digital inputs = 0 V or 5.5 V
lss	0.001			μA typ	Digital inputs = 0 V or 5.5 V
			1.0	μA max	Digital inputs = 0 V or 5.5 V

 1 The temperature range for the Y version is $-40^\circ C$ to $+125^\circ C.$ 2 Guaranteed by design; not subject to production test.

SINGLE-SUPPLY OPERATION

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 \text{ to } V_{\text{DD}}$	V	
On Resistance, R _{on}	210			Ωtyp	$V_s = 3.5 V$, $I_s = -1 mA$; see Figure 14
	290	350	380	Ωmax	$V_s = 3.5 V$, $I_s = -1 mA$; see Figure 14
On-Resistance Match Between Channels, ΔR _{on}	3			Ωtyp	$V_s = 3.5 V, I_s = -1 mA$
	10	12	13	Ωmax	$V_s = 3.5 V$, $I_s = -1 mA$
LEAKAGE CURRENTS					$V_{DD} = 5.5 V$
Source Off Leakage, I _{S(OFF)}	±0.01			nA typ	$V_s = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}$; see Figure 15
	±0.1	±0.25	±2	nA max	$V_s = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}$; see Figure 15
Drain Off Leakage, ID(OFF)	±0.01			nA typ	$V_s = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}$; see Figure 15
	±0.1	±0.25	±2	nA max	$V_s = 1 \text{ V}/4.5 \text{ V}, V_D = 4.5 \text{ V}/1 \text{ V}$; see Figure 15
Channel On Leakage, ID(ON), IS(ON)	±0.01			nA typ	$V_s = V_D = 1 V$ or 4.5 V; see Figure 16
-	±0.1	±0.25	±6	nA max	$V_{s} = V_{D} = 1 V \text{ or } 4.5 V; \text{ see Figure 16}$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±0.1	μA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ²					
t _{on}	70			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3.0 V$; see Figure 17
	100	130	150	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3.0 V$; see Figure 17
t _{OFF}	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3.0 V$; see Figure 17
	40	45	50	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3.0 V$; see Figure 17
Break-Before-Make Time Delay, t _{BBM}	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 18
			10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 18
Charge Injection	1			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 19
Off Isolation	-62			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 20
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 21
–3 dB Bandwidth	680			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
C _{S(OFF)}	5			pF typ	f = 1 MHz
C _{D(OFF)}	5			pF typ	f = 1 MHz
C _{D(ON)} , C _{S(ON)}	5			pF typ	f = 1 MHz
POWER REQUIREMENTS					V _{DD} = 5.5 V
I _{DD}	0.001			μA typ	Digital inputs = 0 V or 5.5 V
			1.0	μA max	Digital inputs = 0 V or 5.5 V

 1 The temperature range for the Y version is –40°C to +125°C. 2 Guaranteed by design; not subject to production test.

 V_{DD} = 3 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C ¹	Unit	Test Conditions/Comments	
ANALOG SWITCH						
Analog Signal Range			0 to V _{DD}	V		
On Resistance, R _{ON}	380	420	460	Ωtyp	$V_s = 1.5 V$, $I_s = -1 mA$; see Figure 14	
LEAKAGE CURRENTS					$V_{DD} = 3.3 V$	
Source Off Leakage, I _{S(OFF)}	±0.01			nA typ	$V_s = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}$; see Figure 15	
	±0.1	±0.25	± 2	nA max	$V_s = 1 \text{ V/3 V}$, $V_D = 3 \text{ V/1 V}$; see Figure 15	
Drain Off Leakage, I _{D(OFF)}	±0.01			nA typ	$V_s = 1 \text{ V/3 V}$, $V_D = 3 \text{ V/1 V}$; see Figure 15	
	±0.1	±0.25	±2	nA max	$V_s = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V};$ see Figure 15	
Channel On Leakage, $I_{D(ON)}$, $I_{S(ON)}$	±0.01			nA typ	$V_s = V_D = 1$ V or 3 V; see Figure 16	
	±0.1	±0.25	±6	nA max	$V_s = V_D = 1 V \text{ or } 3 V$; see Figure 16	
DIGITAL INPUTS						
Input High Voltage, V _{INH}			2.0	V min		
Input Low Voltage, V _{INL}			0.8	V max		
Input Current, IINL or IINH	0.005			μA typ	$V_{\text{IN}} = V_{\text{INL}} \text{ or } V_{\text{INH}}$	
			±0.1	µA max	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
Digital Input Capacitance, C _{IN}	2			pF typ		
DYNAMIC CHARACTERISTICS ²						
t _{on}	130			ns typ	$R_{\text{L}}=300~\Omega,C_{\text{L}}=35~\text{pF},V_{\text{S}}=2$ V; see Figure 17	
	185	230	260	ns max	$R_{\text{L}}=300~\Omega,C_{\text{L}}=35~\text{pF},V_{\text{S}}=2$ V; see Figure 17	
toff	40			ns typ	$R_{\text{L}}=300~\Omega,C_{\text{L}}=35~\text{pF},V_{\text{S}}=2$ V; see Figure 17	
	55	60	65	ns max	R_{L} = 300 $\Omega,$ C_{L} = 35 pF, V_{S} = 2 V; see Figure 17	
Break-Before-Make Time Delay, t _{BBM}	50			ns typ	R_L = 300 $\Omega,$ C_L = 35 pF, V_{S1} = V_{S2} = 2 V; see Figure 18	
			10	ns min	R_L = 300 $\Omega,$ C_L = 35 pF, V_{S1} = V_{S2} = 2 V; see Figure 18	
Charge Injection	1.5			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 19	
Off Isolation	-62			dB typ	$R_{\text{\tiny L}}=50~\Omega,C_{\text{\tiny L}}=5~\text{pF},f=10~\text{MHz};\text{see Figure 20}$	
Channel-to-Channel Crosstalk	-90			dB typ	typ $R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 21	
–3 dB Bandwidth	680			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22	
C _{S(OFF)}	5			pF typ	f = 1 MHz	
C _{D(OFF)}	5			pF typ	f = 1 MHz	
C _{D(ON)} , C _{S(ON)}	5			pF typ	f = 1 MHz	
POWER REQUIREMENTS					$V_{DD} = 3.3 \text{ V}$	
lod	0.001			μA typ	Digital inputs = 0 V or 3.3 V	
			1.0	μA max	Digital inputs = 0 V or 3.3 V	

 1 The temperature range for the Y version is $-40^\circ C$ to $+125^\circ C.$ 2 Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted

Table 4.

Parameter	Rating
V _{DD} to V _{SS}	13 V
V _{DD} to GND	–0.3 V to +6.5 V
Vss to GND	+0.3 V to -6.5 V
Analog Inputs ¹	$V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	20 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D	10 mA
3 V operation 85°C to 125°C	7.5 mA
Operating Temperature Range	
Automotive (Y Version)	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
θ_{JA} Thermal Impedance	
16-Lead TSSOP	150.4°C/W
16-Lead SOIC, 4-Layer Board	80.6°C/W
Lead Soldering	
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	220°C
(Pb-Free) Soldering	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec

¹Overvoltages at IN, S, or D are clamped by internal diodes. The current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Switch 1 Digital Control Input.
2	D1	Drain Terminal of Switch 1. Can be an input or output.
3	S1	Source Terminal of Switch 1. Can be an input or output.
4	Vss	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply voltages.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal of Switch 4. Can be an input or output.
7	D4	Drain Terminal of Switch 4. Can be an input or output.
8	IN4	Switch 4 Digital Control Input.
9	IN3	Switch 3 Digital Control Input.
10	D3	Drain Terminal of Switch 3. Can be an input or output.
11	S3	Source Terminal of Switch 3. Can be an input or output.
12	NC	Not Internally Connected.
13	V _{DD}	Most Positive Power Supply Terminal.
14	S2	Source Terminal of Switch 2. Can be an input or output.
15	D2	Drain Terminal of Switch 2. Can be an input or output.
16	IN2	Switch 2 Digital Control Input.

Table 6. ADG611/ADG612 Truth Table

ADG611 Input	ADG612 Input	Switch Condition
0	1	On
1	0	Off

Table 7. ADG613 Truth Table

Logic	Switch 1, Switch 4	Switch 2, Switch 3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. V_D (V_s), Dual Supplies

Figure 5. On Resistance vs. V_D (V_s) for Various Temperatures, Dual Supplies

Figure 6. On Resistance vs. V_D (V_s) for Various Temperatures, Single Supply

Figure 7. Leakage Current vs. Temperature, Dual Supplies

Figure 8. Leakage Current vs. Temperature, Single Supply

TERMINOLOGY

VDD

Most positive power supply potential.

Vss

Most negative power supply potential.

Idd

Positive supply current.

Iss Negative supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or output.

D

Drain terminal. Can be an input or output.

IN

Logic control input.

 $\mathbf{V}_{\mathrm{D}}\left(\mathbf{V}_{\mathrm{S}}\right)$

Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between Terminal D and Terminal S.

$\Delta R_{\rm ON}$

On-resistance match between any two channels, that is, $R_{ONMAX} - R_{ONMIN}$.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

 $I_{S(OFF)}$ Source leakage current with the switch off.

I_{D(OFF)} Drain leakage current with the switch off.

I_{D(ON)}, I_{S(ON)} Channel leakage current with the switch on.

VINL

Maximum input voltage for Logic 0.

V_{INH} Minimum input voltage for Logic 1.

 $I_{\rm INL},\,I_{\rm INH}$ Input current of the digital input.

 $C_{S(OFF)}$ Off switch source capacitance. Measured with reference to ground.

 $C_{D(OFF)} \label{eq:coff}$ Off switch drain capacitance. Measured with reference to ground.

 $C_{D(\text{ON})},\,C_{S(\text{ON})}$ On switch capacitance. Measured with reference to ground.

C_{IN} Digital input capacitance.

ton

Delay between applying the digital control input and the output switching on (see Figure 17).

t_{OFF} Delay between applying the digital control input and the output switching off (see Figure 17).

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

On Response Frequency response of the on switch.

Insertion Loss Loss due to the on resistance of the switch.

APPLICATIONS INFORMATION

Figure 23 illustrates a photodetector circuit with programmable gain. With the resistor values shown in this figure, gains in the range of 2 to 16 can be achieved by using different combinations of switches.

Figure 23. Photodetector Circuit with Programmable Gain

OUTLINE DIMENSIONS

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG611YRUZ ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRUZ-REEL ¹	–40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRUZ-REEL71	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRZ ¹	-40°C to +125°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG612YRUZ ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612YRUZ-REEL ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612YRUZ-REEL71	–40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612WRUZ-REEL ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613YRUZ ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613YRUZ-REEL ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613YRUZ-REEL71	–40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

 1 Z = RoHS Compliant Part.

NOTES

NOTES

©2002–2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D02753-0-11/09(A)

www.analog.com

_