ADG611/ADG612/ADG613

FEATURES

1 pC charge injection

$\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ dual-supply operation
+2.7 V to +5.5 V single-supply operation
Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
100 pA maximum at $25^{\circ} \mathrm{C}$ leakage currents
85Ω on resistance
Rail-to-rail switching operation
Fast switching times
16-lead TSSOP and SOIC packages
Typical power consumption: <0.1 $\boldsymbol{\mu} \mathrm{W}$
TTL-/CMOS-compatible inputs

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Communications systems
Sample-and-hold systems
Audio signal routing
Relay replacement
Avionics

GENERAL DESCRIPTION

The ADG611/ADG612/ADG613 are monolithic CMOS devices containing four independently selectable switches. These switches offer ultralow charge injection of 1 pC over the full input signal range and typical leakage currents of 10 pA at $25^{\circ} \mathrm{C}$.

The devices are fully specified for $\pm 5 \mathrm{~V},+5 \mathrm{~V}$, and +3 V supplies. Each contains four independent single-pole, single-throw (SPST) switches. The ADG611 and ADG612 differ only in that the digital control logic is inverted. The ADG611 switches are turned on with a logic low on the appropriate control input, whereas a logic high is required to turn on the switches of the ADG612. The ADG613 contains two switches with digital control logic similar to that of the ADG611 and two switches in which the logic is inverted.

NOTES

1. SWITCHES SHOWN FOR A LOGIC 1 INPUT.

Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. The ADG613 exhibits break-before-make switching action. The ADG611/ADG612/ADG613 are available in a small, 16-lead TSSOP package, and the ADG611 is also available in a 16 -lead SOIC package.

PRODUCT HIGHLIGHTS

1. Ultralow charge injection (1 pC typically).
2. Dual $\pm 2.7 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$ or single +2.7 V to +5.5 V operation.
3. Automotive temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
4. Small, 16-lead TSSOP and SOIC packages.

Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG611/ADG612/ADG613

TABLE OF CONTENTS

Features1Applications. 1
Functional Block Diagram 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
Dual-Supply Operation 3
Single-Supply Operation 4
REVISION HISTORY
11/09—Rev. 0 to Rev. A
Changes to Analog Signal Range Parameter and to On Resistance, Ron Parameter, Table 1 3
Change to Digital Input Capacitance, C Cin Parameter, Table 2 4
Changes to Table 4 and to Absolute Maximum Ratings Section 6
Added Table 5; Renumbered Sequentially 7
Updated Outline Dimensions 14
Changes to Ordering Guide 14
Absolute Maximum Ratings 6
ESD Caution 6
Pin Configuration and Function Descriptions. 7
Typical Performance Characteristics 8
Terminology 10
Test Circuits 11
Applications Information 13
Outline Dimensions 14
Ordering Guide 14

1/02-Revision 0: Initial Version

SPECIFICATIONS

DUAL-SUPPLY OPERATION

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

${ }^{1}$ The temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design; not subject to production test.

ADG611/ADG612/ADG613

SINGLE-SUPPLY OPERATION

$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}{ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron	$\begin{aligned} & 210 \\ & 290 \\ & 3 \\ & 10 \end{aligned}$	$\begin{aligned} & 350 \\ & 12 \end{aligned}$	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 380 \\ & 13 \end{aligned}$	V Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{s}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {; see Figure } 14 \\ & \mathrm{~V}_{\mathrm{s}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \text {; see Figure } 14 \\ & \mathrm{~V}_{\mathrm{s}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{s}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is(off) Drain Off Leakage, ID(OfF) Channel On Leakage, $\mathrm{I}_{\mathrm{D}(\mathrm{ON}),} \mathrm{I}_{\text {SON }}$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	± 2 ± 2 ± 6	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {; see Figure } 16 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \text {; see Figure } 16 \end{aligned}$
DIGITAL INPUTS Input High Voltage, V_{NH} Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ Input Current, linı or linh Digital Input Capacitance, C_{IN}	0.005		$\begin{gathered} 2.4 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\vee min V max μA typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{\text {IN }}=V_{\text {INL or }} V_{\text {INH }} \\ & V_{\mathbb{I N}}=V_{\mathbb{N L L}} \text { or } V_{\mathbb{I N H}} \end{aligned}$
DYNAMIC CHARACTERISTICS² ton $t_{\text {toff }}$ Break-Before-Make Time Delay, tввм Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth Cs(off) $\mathrm{C}_{\text {D(OFF) }}$ $\mathrm{C}_{\text {don), }} \mathrm{C}_{\text {SION }}$	$\begin{aligned} & 70 \\ & 100 \\ & 25 \\ & 40 \\ & 25 \\ & \\ & 1 \\ & -62 \\ & -90 \\ & 680 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	130 45	150 50 10	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	
POWER REQUIREMENTS ID	0.001		1.0	μA typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

${ }^{1}$ The temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design; not subject to production test.
$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}{ }^{1}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron	380	420	$\begin{aligned} & 0 \text { to } V_{D D} \\ & 460 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \Omega \text { typ } \end{aligned}$	$\mathrm{V}_{\mathrm{s}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-1 \mathrm{~mA}$; see Figure 14
LEAKAGE CURRENTS Source Off Leakage, Is(off) Drain Off Leakage, ID(off) Channel On Leakage, I(OON), Is(ON)	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} \pm 0.25 \\ \pm 0.25 \\ \pm 0.25 \end{gathered}$	± 2 ± 2 ± 6	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} \text {; see Figure } 15 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; see Figure } 16 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; see Figure } 16 \\ & \hline \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\mathbf{N H}}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, $\mathrm{I}_{\mathrm{INL}}$ or I_{NH} Digital Input Capacitance, C_{IN}	$\begin{aligned} & 0.005 \\ & 2 \\ & \hline \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min \vee max μA typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{\text {IN }}=V_{\text {INL or }} V_{\mathbb{I N H}} \\ & V_{\mathbb{I N}}=V_{\mathbb{N L}} \text { or } V_{\mathbb{I N H}} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ ton $t_{\text {off }}$ Break-Before-Make Time Delay, tввм Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth $\mathrm{C}_{\text {s(off) }}$ $\mathrm{C}_{\text {D(OFF) }}$ $\mathrm{Cl}_{\text {donen }}, \mathrm{Csion}$	$\begin{aligned} & 130 \\ & 185 \\ & 40 \\ & 55 \\ & 50 \\ & \\ & 1.5 \\ & -62 \\ & -90 \\ & 680 \\ & 5 \\ & 5 \\ & 5 \end{aligned}$	230 60	260 65 10	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\begin{aligned} & R_{L}=300 \Omega, C_{L}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V} \text {; see Figure } 17 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V} \text {; see Figure } 18 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V} \text {; see Figure } 18 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { see Figure } 19 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \text {; see Figure } 20 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \text {; see Figure } 21 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \text { see Figure } 22 \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS lod	0.001		1.0	μA typ $\mu \mathrm{A}$ max	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ & \text { Digital inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ & \hline \end{aligned}$

[^0]${ }^{2}$ Guaranteed by design; not subject to production test.

ADG611/ADG612/ADG613

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted

Table 4.

Parameter	Rating
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$	13 V
$V_{\text {DD }}$ to GND	-0.3 V to +6.5 V
Vss to GND	+0.3 V to -6.5 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Inputs ${ }^{1}$	GND -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, S or D	20 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, S or D	10 mA
3 V operation $85^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	7.5 mA
Operating Temperature Range Automotive (Y Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$ Thermal Impedance	
16-Lead TSSOP	$150.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead SOIC, 4-Layer Board	$80.6^{\circ} \mathrm{C} / \mathrm{W}$
Lead Soldering	
Lead Temperature, Soldering (10 sec)	$300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (<20 sec)	$220^{\circ} \mathrm{C}$
(Pb-Free) Soldering	
Reflow, Peak Temperature	260(+0/-5) ${ }^{\circ} \mathrm{C}$
Time at Peak Temperature	20 sec to 40 sec

'Overvoltages at IN, S, or D are clamped by internal diodes. The current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

D1							
S1							
$\mathrm{V}_{\text {ss }}$							
GND 5							
5							

Figure 2. Pin Configuration
Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Switch 1 Digital Control Input.
2	D1	Drain Terminal of Switch 1. Can be an input or output.
3	S1	Source Terminal of Switch 1. Can be an input or output.
4	VSS	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply voltages.
5	GND	Ground (0V) Reference.
6	S4	Source Terminal of Switch 4. Can be an input or output.
7	D4	Drain Terminal of Switch 4. Can be an input or output.
8	IN4	Switch 4 Digital Control Input.
9	IN3	Switch 3 Digital Control Input.
10	D3	Drain Terminal of Switch 3. Can be an input or output.
11	S3	Source Terminal of Switch 3. Can be an input or output.
12	NC	Not Internally Connected.
13	VDD	Most Positive Power Supply Terminal.
14	S2	Source Terminal of Switch 2. Can be an input or output.
15	D2	Drain Terminal of Switch 2. Can be an input or output.
16	IN2	Switch 2 Digital Control Input.

Table 6. ADG611/ADG612 Truth Table

ADG611 Input	ADG612 Input	Switch Condition
0	1	On
1	0	Off

Table 7. ADG613 Truth Table

Logic	Switch 1, Switch 4	Switch 2, Switch 3
0	Off	On
1	On	Off

ADG611/ADG612/ADG613

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. On Resistance vs. $V_{D}\left(V_{s}\right)$, Dual Supplies

Figure 4. On Resistance vs. $V_{D}\left(V_{S}\right)$, Single Supply

Figure 5. On Resistance vs. $V_{D}\left(V_{S}\right)$ for Various Temperatures, Dual Supplies

Figure 6. On Resistance vs. $V_{D}\left(V_{s}\right)$ for Various Temperatures, Single Supply

Figure 7. Leakage Current vs. Temperature, Dual Supplies

Figure 8. Leakage Current vs. Temperature, Single Supply

ADG611/ADG612/ADG613

Figure 9. Charge Injection vs. Source Voltage

Figure 10. ton/toff Times vs. Temperature

Figure 11. On Response vs. Frequency

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

ADG611/ADG612/ADG613

TERMINOLOGY

$V_{\text {DD }}$
Most positive power supply potential.
Vss
Most negative power supply potential.
I_{DD}
Positive supply current.
Iss
Negative supply current.
GND
Ground (0 V) reference.
S
Source terminal. Can be an input or output.
D
Drain terminal. Can be an input or output.
IN
Logic control input.
V_{D} (V)
Analog voltage on Terminal D and Terminal S.
Ron
Ohmic resistance between Terminal D and Terminal S.
$\Delta R_{\text {on }}$
On-resistance match between any two channels, that is,
Ronmax - Ronmin.
$\mathbf{R}_{\text {flat(on) }}$
Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$I_{\text {S(OFF) }}$
Source leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$
Drain leakage current with the switch off.
$\mathbf{I}_{\mathrm{D}(\mathrm{ON})}, \mathrm{I}_{\mathrm{S}(\mathrm{ON})}$
Channel leakage current with the switch on.
$V_{\text {INL }}$
Maximum input voltage for Logic 0 .
$V_{\text {INH }}$
Minimum input voltage for Logic 1.
IINL, $\mathbf{I}_{\text {INH }}$
Input current of the digital input.
$\mathrm{C}_{\text {s(off) }}$
Off switch source capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D} \text { (off) }}$
Off switch drain capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}(\mathrm{ON})}, \mathrm{C}_{\mathrm{s}(\mathrm{ON})}$
On switch capacitance. Measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
Digital input capacitance.
ton
Delay between applying the digital control input and the output switching on (see Figure 17).
$t_{\text {Off }}$
Delay between applying the digital control input and the output switching off (see Figure 17).

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

On Response

Frequency response of the on switch.

Insertion Loss

Loss due to the on resistance of the switch.

ADG611/ADG612/ADG613

TEST CIRCUITS

Figure 14. On Resistance

Figure 15. Off Leakage

Figure 16. On Leakage

Figure 17. Switching Times

Figure 18. Break-Before-Make Time Delay

Figure 19. Charge Injection

ADG611/ADG612/ADG613

Figure 20. Off Isolation

Figure 21. Channel-to-Channel Crosstalk

Figure 22. Bandwidth

APPLICATIONS INFORMATION

Figure 23 illustrates a photodetector circuit with programmable gain. With the resistor values shown in this figure, gains in the range of 2 to 16 can be achieved by using different combinations of switches.

Figure 23. Photodetector Circuit with Programmable Gain

ADG611/ADG612/ADG613

OUTLINE DIMENSIONS

Figure 24. 16-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-16$)
Dimensions shown in millimeters

Figure 25, 16-Lead Standard Small Outline Package [SOIC N]
Narrow Body
(R-16)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG611YRUZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRUZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG612YRUZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612YRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612YRUZ-REEL7 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612WRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]
ADG613YRUZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613YRUZ-REEL 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613YRUZ-REEL7 1	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16	

[^1]NOTES

ADG611/ADG612/ADG613

NOTES

[^0]: ${ }^{1}$ The temperature range for the Y version is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

[^1]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

