Product Specification

PE42920

UltraCMOS ${ }^{\circledR}$ Passive DDSPDT High-Isolation RF Switch 10 kHz-6 GHz

Product Description

The PE42920 is a dual differential single pole double throw (DDSPDT) RF switch developed on Peregrine's UltraCMOS ${ }^{\circledR}$ process technology. It is a broadband and low loss device enabling the switching of two independent differential signals. This device consumes less power than active differential switches and offers 2 kV HBM ESD protection. It has high isolation between same channel inputs as well as opposite active channels. It has been designed for low phase mismatch between matched paths.

The PE42920 is manufactured on Peregrine's UltraCMOS process, a patented variation of silicon-oninsulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of conventional CMOS.

Features

- Dual differential single pole double throw switd
- Broadband 10 kHz fo 6 GHz
- Low requency insertion loss: 0.7 dB typ

Figure 2. Package Type 16 -lead $3 \times 3 \mathrm{~mm}$ QFN

Figure 1. Functional Diagran

Note: Differential pairs B1/B2 and Y1/Y2 must be switched simultaneously to pairs C1/C2 and Z1/Z2. See Table 5, Truth Table.

Table 1. Typical Specifications $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$, Temp $=+25^{\circ} \mathrm{C}\left(Z_{\mathrm{S}}=Z_{\mathrm{L}}=100 \Omega\right.$ differential $)$ Min/Max Specifications $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \pm 10 \%,-40^{\circ} \mathrm{C} \leq$ Temp $\leq+85^{\circ} \mathrm{C},\left(\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=100 \Omega\right.$ differential)

AC coupled - external DC blocking caps

Figure 3. Pin Configuration (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	C2	C-channel [Logic Low] RF Port -
2	C1	C-channel [Logic Low] RF Port+
3	B2	B-channel [Logic High] $\mathrm{FF}^{\text {P Pott }}$
4	B1	B-channel [Logic High] RF Port +
5	VDDA	A-channel Supply
6	A1	A-channel RF Common Port +
7	A2	-channel RF Common Por
8	GND	Ground
9	VSEL	Simultaneous Logic Select
10		X-channel RF Common Port +
11	X2	X-channel RF Common Port -
12	VDDX	X-channel Supply
13	Y2	channel [Logic High] RF Port -
14		Y-channel [Logic High] RF Port +
15	Z2	Z-channel [Logic Low] RF Port -
16	Z1	Z-channel [Logic Low] RF Port +
Paddle	GND	Exposed solder pad: Ground for proper operation

Table 3. Operating Ranges ${ }^{2}$

Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{DD}}{ }^{1}$ Power Supply Voltage	2.97	3.3	3.63	V
IDD Supply Current		100	500	$\mu \mathrm{A}$
$\mathrm{T}_{\text {OP }}$ Operating Temperature	-40		85	${ }^{\circ} \mathrm{C}$
PDC DC Power Consumption			2	mW
$\mathrm{V}_{\text {IH }} \mathrm{V}_{\text {SEL }}$ Control Voltage High			$V_{D D}$	V
$\mathrm{V}_{\text {IL }} \mathrm{V}_{\text {SEL }}$ Control Voltage Loy			$3 \times y_{\text {D }}$	V
$I_{\text {IH/IIL }} I_{\text {SEL }}$ Control Curre Input High/Low				$\mu \mathrm{A}$
$\mathrm{P}_{\text {max }}$ Max. Input Rower (100 Differential, Active Po			10	dBm
$\mathrm{P}_{\text {max }}$ Max. Input Power (50Ω Single Ended Active Port)			7	dBm
Differential (100Ω) single Ended (50Ω)			$\begin{aligned} & 2.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & V_{P P} \\ & V_{P P} \end{aligned}$

Notes: 1. Operating below min. V_{DD} results in degraded performance.
2. Operation should be restricted to the limits in the Operating Ranges table.

Parameter/Condition	Min	Max	Unit
$\mathrm{P}_{\text {MAX }}$ Max. Input Power (100Ω Differential, Active Port)		10	dBm
$P_{\text {max Max. Input Power }}$ (50 ת Single Ended, Active Port)		7	dBm
$\mathrm{V}_{\text {SEL }}$ Control Voltage		4	V
$I_{\text {sw }}$ DC Current on RF Path		5	mA
$\mathrm{T}_{\text {ST }}$ Storage Temperature	-65	+150	${ }^{\circ} \mathrm{C}$
$V_{\text {ESD }}$ HBM ESD Voltage ${ }^{1}$		2000	V
$\mathrm{V}_{\text {ESD }}$ MM ESD Voltage ${ }^{2}$		100	V
$\mathrm{V}_{\text {PEAK-TO-PEAK }}$ Max Input Differential (100 $\Omega^{\text {) }}$ Single Ended (50Ω)		$\begin{aligned} & 2.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Pp}} \\ & \mathrm{~V}_{\mathrm{PP}} \end{aligned}$

Notes: 1. HBM ESD Voltage (HBM, MIL_STD 883, Method 3015.7).
2. MM ESD Voltage (JESD22-A115-A).

Exceeding absolute maximum ratings may cause permanent damage. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability.

Electrostatic Discharge (ESD) Precautions

When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the specified rating.

Latch-Up Avoidance

Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up.

Moisture Sensitivity Level

The Moisture Sensitivity Level rating for the PE42920 in the 16 -lead $3 \times 3 \mathrm{~mm}$ QFN package is MSL1.

Typical Performance Data @ 3.3 V and $+25^{\circ} \mathrm{C}$, unless otherwise specified

Figure 4. Differential Insertion Loss over $V_{D D}$

Figure 5. Differential Insertion Loss over Temp

Figure 7. Differential Active Port (B, C, Y, or Z) Return Loss over Temp

Typical Performance Data @ 3.3 V and $+25^{\circ} \mathrm{C}$, unless otherwise specified

Figure 8. Differential Common Port (A or X) Return Loss over V_{DD}

Figure 10. Single-Ended Active Port (B1, B2, C1, C2, Y1, Y2) Return Loss over V_{DD}

Figure 9. Differential Common Port (A or X) Return Loss over Temp

Figure 11. Single-Ended Active Port (B1, B2, C1, C2, Y1, Y2) Return Loss over Temp

Typical Performance Data @ 3.3 V and $+25^{\circ} \mathrm{C}$, unless otherwise specified (cont.)

Figure 12. Single-Ended Common Port
(A1, A2, X1, X2)
Return Loss over $V_{D D}$

Figure 13. Single-Ended Common Port
(A1, A2, X1, X2)
Return Loss over Temp

Figure 14. Opposite Channel (A to X) Isolation over V_{DD}

Figure 15. Opposite Channel (A to X) Isolation over Temp

Typical Performance Data @ 3.3 V and $+25^{\circ} \mathrm{C}$, unless otherwise specified (cont.)

Figure 16. Same Channel (A to B / C and X to Y / Z) Isolation over V_{DD}

Figure 18. Switching Time (10/90\% RF)

Figure 17. Same Channel (A to B / C and X to Y / Z) Isolation over Temp

Figure 19. IIP3 (Single Ended)

Figure 20. Phase Delta Matched Paths
(6 GHz and $+25^{\circ} \mathrm{C}$)
Stability Across VD

Figure 21. Phase Delta Matched Paths (6 GHz and 3.3V) Stability Across Temp

Stability Across Temp

Figure 22. Phase Delta Un-matched Paths (6 GHz and $+25^{\circ} \mathrm{C}$) Stability Across $V_{D D}$

Evaluation board

The DDSPDT switch evaluation kit board was designed to ease customer evaluation of the PE42920 DDSPDT switch.

Calibration structures are available on the bottom side of the PCB. As an alternate connector option, a through transmission line connects connectors J14 and J13. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated.

J20 provides a means for applying $V_{D D}$ and controlling the logic of the device. A jumper can be used to set $A U X=V_{D D}$ or $A U X=G N D$,* to toggle the logic state.
Proper PCB design is essential for full isolation performance. This evaluation board demonstrates good trace and ground management for minimum coupling and radiation.
DC blocking capacitors (external or on board) are required to prevent interaction with external te equipment. They can be used as external broadband DC blocks or replace 0Ω resistor
 board with the desired capacitance value on operation frequency.
Note: *
 on J 20 header is equivalent to the $\mathrm{V}_{\text {SEL }}$ control in the block diagram.
$\mathrm{V}_{\text {GEL }}$ jumper pin on J 20 header is a no connect.

Figure 24. Evaluation Board Layouts

Figure 25. Evaluation Board Schematic ${ }^{1,2,3}$

Figure 26. Package Drawing

Figure 28. Tape and Reel Specifications

Order Code		Package	Shipping Method
PE42920MLAA-Z	PE42220 DDSPDT RF Switch	Green 16-lead $3 \times 3 \mathrm{~mm}$ QFN	3000 units T/R
EK42920-01	PE42920 Evaluation Board	Evaluation Kit	$1 / \mathrm{box}$

Sales Contact and Information

For sales and contact information please visit www.psemi.com.

[^0]
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:
pSemi:
PE42920MLAA-Z EK42920-01 PE46140A-X EK46140-01

[^0]: Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form)
 The information in this datasheet is believed to be reliable. However, Peregrine assumes no liability for the use The information in this datasheet is believed to be reliable. Ho
 of this information. Use shall be entirely at the user's own risk.

 No patent rights or licenses to any circuits described in this datasheet are implied or granted to any third party. Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.
 The Peregrine name, logo, UltraCMOS and UTSi are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Peregrine products are protected under one or more of the following U.S. Patents: http://patents.psemi.com.

