ATC Q-BRIDGE THERMALCONDUCTOR

ATC Q-Bridge Thermal Conductor

ATC's new Q-Bridge Thermal Conductor is manufactured with the highest quality materials for reliable and repeatable performance providing a cost effective thermal management solution. These devices are constructed with Aluminum Nitride (AIN) or Beryllium Oxide (BeO) and are available in standard EIA form factors.

Q-Bridge provides the designer with the ability to manage thermal conditions by directing heat to a thermal ground plane, heat sink or any other specific thermal point of interest. The inherently low capacitance makes this device virtually transparent at RF / microwave frequencies. This device has the added benefit of offering additional layers of protection to adjacent components from hot spot thermal loads.

Q-Bridge provides the benefit of increased overall circuit reliability. ATC's Q-Bridge is manufactured using onepiece construction, providing a RoHS compliant SMT package that is fully compatible with high speed automated pick-and-place processing. It is available in various EIA case sizes. Custom configurations are also available.

Features:

- High Thermal Conductivity
- Low Thermal Resistance
- Low Capacitance
- Increases Circuit Reliability
- RoHS Compliant
- More efficient thermal management

Applications:

- GaN Power Amplifiers
- High RF Power Amplifiers
- Filters
- Synthesizers
- Industrial Computers
- Switch Mode Power Supplies
- Pin \& Laser Diodes

Functional Applications:

- Between active device and adjacent ground planes
- Specific contact pad to case
- Contact pad to contact pad
- Direct component contact to via pad or trace
- Edges fully metalized

Termination Materials

ATC Termination Code	Termination Materials
Y	Silver Platinum Non-Magnetic Termination
S	Silver over Magnetic Termination

Note: Non-edge wrapped style in all case sizes is supplied with S termination Edge wrapped style in case sizes 0302 through 1111 is supplied with Y termination Edge wrapped style in case sizes 2010 through 3737 are supplied with S termination

ATC Q-BRIDGE THERMAL CONDUCTOR

Mechanical Configurations

Wrapped

Non-Wrapped

Typical Characteristics

Case Size	Length (L)	Width (W)	Thickness (T)	Terminal (t)	Thermal Resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$)		Thermal Conductivity ($\mathrm{mW} /{ }^{\circ} \mathrm{C}$)		Available Configurations	
					AIN	BeO	AIN	BeO	Style	Termination
0302	$\begin{aligned} & .030 \pm .002 \\ & (.77 \pm .051) \end{aligned}$	$\begin{gathered} .020 \pm .002 \\ (0.51 \pm .051) \end{gathered}$	$\begin{gathered} 20 \\ (0.51 \pm .05) \end{gathered}$	$\begin{gathered} 10 \\ (0.25) \end{gathered}$	19	12	53	81	W	Y
									E	S
0402	$\begin{gathered} .040 \pm .002 \\ (1.02 \pm .051) \end{gathered}$	$\begin{gathered} .020 \pm .002 \\ (0.51 \pm .051) \end{gathered}$	$\begin{gathered} 20 \\ (0.51 \pm .05) \end{gathered}$	$\begin{gathered} 10 \\ (0.25) \end{gathered}$	25	16	40	61	W	Y
									E	S
0505	$\begin{gathered} .050 \pm .002 \\ (1.27 \pm .051) \end{gathered}$	$\begin{gathered} .050 \pm .002 \\ (1.27 \pm .051) \end{gathered}$	$\begin{gathered} 25 \\ (0.64 \pm .05) \end{gathered}$	$\begin{gathered} 15 \\ (0.38) \end{gathered}$	10	7	100	153	W	Y
									E	S
0603	$\begin{gathered} .060 \pm .002 \\ (1.52 \pm .051) \end{gathered}$	$\begin{aligned} & .030 \pm .002 \\ & (.76 \pm .051) \end{aligned}$	$\begin{gathered} 25 \\ (0.64 \pm .05) \end{gathered}$	$\begin{gathered} 15 \\ (0.38) \end{gathered}$	20	13	50	76	W	Y
									E	S
0805	$\begin{gathered} .080 \pm .002 \\ (2.03 \pm .051) \end{gathered}$	$\begin{gathered} .050 \pm .002 \\ (1.27 \pm .051) \end{gathered}$	$\begin{gathered} 40 \\ (1.02 \pm .05) \end{gathered}$	$\begin{gathered} 20 \\ (0.51) \end{gathered}$	10	7	100	153	W	Y
									E	S
1005	$\begin{gathered} .100 \pm .002 \\ (2.54 \pm .051) \end{gathered}$	$\begin{gathered} .050 \pm .002 \\ (1.27 \pm .051) \end{gathered}$	$\begin{gathered} 40 \\ (1.02 \pm .05) \end{gathered}$	$\begin{gathered} 20 \\ (0.51) \end{gathered}$	13	8	77	122	W	Y
									E	S
1020	$\begin{gathered} .100 \pm .002 \\ (2.54 \pm .051) \end{gathered}$	$\begin{gathered} .200 \pm .002 \\ (5.08 \pm .051) \end{gathered}$	$\begin{gathered} 40 \\ (1.02 \pm .05) \end{gathered}$	$\begin{gathered} 20 \\ (0.51) \end{gathered}$	3	2	320	508	W	Y
									E	S
1111	$\begin{gathered} .110 \pm .002 \\ (2.79 \pm .051) \end{gathered}$	$\begin{gathered} .110 \pm .002 \\ (2.79 \pm .051) \end{gathered}$	$\begin{gathered} 40 \\ (1.02 \pm .05) \end{gathered}$	$\begin{gathered} 20 \\ (0.51) \end{gathered}$	7	4	153	240	W	Y
									E	S
2010	$\begin{gathered} .195 \pm .010 \\ (4.95 \pm .254) \end{gathered}$	$\begin{gathered} .095 \pm .010 \\ (2.41 \pm .254) \end{gathered}$	$\begin{gathered} 60 \\ (1.52 \pm .05) \end{gathered}$	$\begin{gathered} 30 \\ (0.77) \end{gathered}$	10	6	100	159	W	S
									E	S
2525	$\begin{gathered} .240 \pm .010 \\ (6.10 \pm .254) \end{gathered}$	$\begin{gathered} .250 \pm .010 \\ (6.35 \pm .254) \end{gathered}$	$\begin{gathered} 60 \\ (1.52 \pm .05) \end{gathered}$	$\begin{gathered} 40 \\ (1.02) \end{gathered}$	4	3	240	380	W	S
									E	S
3725	$\begin{gathered} .370 \pm .010 \\ (9.40 \pm .254) \end{gathered}$	$\begin{gathered} .245 \pm .010 \\ (6.22 \pm .254) \end{gathered}$	$\begin{gathered} 60 \\ (1.52 \pm .05) \end{gathered}$	$\begin{gathered} 50 \\ (1.27) \end{gathered}$	6	4	160	254	W	S
									E	S
3737	$\begin{gathered} .365 \pm .010 \\ (9.27 \pm .254) \end{gathered}$	$\begin{gathered} .375 \pm .010 \\ (9.53 \pm .254) \end{gathered}$	$\begin{gathered} 60 \\ (1.52 \pm .05) \end{gathered}$	$\begin{gathered} 50 \\ (1.27) \end{gathered}$	4	3	240	380	W	S
									E	S

Note: Thermal conductivity is normalized to chip size. All values are approximate. Consult factory for extended thermal conductivity options.

AMERICAN
TECHNICAL
CERAMIC \boldsymbol{S}°
AN AAVKX GROUP COMPANY

Capacitance

Case Size	Part Number	Capacitance (pF)	Case Size	Part Number	Capacitance (pF)
0302	QB0302A20WY	0.039	1020	QB1020A40WY	0.204
	QB0302A20ES	0.011		QB1020A40ES	0.121
	QB0302B20WY	0.028		QB1020B40WY	0.158
	QB0302B20ES	0.006		QB1020B40ES	0.092
0402	QB0402A20WY	0.028	1111	QB1111A40WY	0.096
	QB0402A20ES	0.018		QB1111A40ES	0.042
	QB0402B20WY	0.025		QB1111B40WY	0.078
	QB0402B20ES	0.009		QB1111B40ES	0.031
0505	QB0505A25WY	0.070	2010	QB2010A60WS	0.070
	QB0505A25ES	0.032		QB2010A60ES	0.042
	QB0505B25WY	0.061		QB2010B60WS	0.055
	QB0505B25ES	0.027		QB2010B60ES	0.086
0603	QB0603A25WY	0.035	2525	QB2525A60WS	0.156
	QB0603A25ES	0.007		QB2525A60ES	0.114
	QB0603B25WY	0.029		QB2525B60WS	0.122
	QB0603B25ES	0.007		QB2525B60ES	0.075
0805	QB0805A40WY	0.081	3725	QB3725A60WS	0.105
	QB0805A40ES	0.018		QB3725A60ES	0.076
	QB0805B40WY	0.055		QB3725B60WS	0.080
	QB0805B40ES	0.015		QB3725B60ES	0.058
1005	QB1005A40WY	0.046	3737	QB3737A60WS	0.164
	QB1005A40ES	0.008		QB3737A60ES	0.130
	QB1005B40WY	0.038		QB3737B60WS	0.126
	QB1005B40ES	0.007		QB3737B60ES	0.099

ATC Part Number Code

The above part number refers to a Q-Bridge, (EIA case size 0603), Aluminum Nitride (AIN) substrate, Thickness 25 mils., Style W, Y Termination (Silver Platinum Non-Magnetic Termination), with Tape and Reel Packaging.

Abstract

ATC accepts orders for our parts using designations with or without the "ATC" prefix. Both methods of defining the part number are equivalent, i.e., part numbers referenced with the "ATC" prefix are interchangeable to parts referenced without the "ATC" prefix. Customers are free to use either in specifying or procuring parts from American Technical Ceramics.

For additional information and catalogs contact your ATC representative or call direct at $+1-631-622-4700$.

Consult factory for additional performance data.

Sales of ATC products are subject to the terms and conditions contained in American Technical Ceramics Corp. Terms and Conditions of Sale (ATC document \#001-992). Copies of these terms and conditions will be provided upon request. They may also be viewed on ATC's website at www.atceramics.com/productfinder/default.asp. Click on the link for Terms and Conditions of Sale.
ATC has made every effort to have this information as accurate as possible. However, no responsibility is assumed by ATC for its use, nor for any infringements of rights of third parties which may result from its use. ATC reserves the right to revise the content or modify its product line without prior notice.
© 2015 American Technical Ceramics Corp. All Rights Reserved.
\square
AMERICAN
TECHNICAL
CERAMICS
an AAVA: GROUP COMPANY

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Kyocera AVX:					
QB0805A40WCATD QB0805B40WCATD QB0603A20WCATD QB0603B20WCATD QB0603B25WCATD					
QB0603A25WCATD QB0402A20WCATD QB0402B20WCATD QB0805B25WCATD QB0805A25WCATD					
QB0402B15WCATD QB0402A15WCATD QB0302A20ESTB QB1005B40ESC7 QB0402B20ESS3 QB3725B60WSS3					
QB0402B20ESC7 QB0805A40ESC7 QB1005A40ESTD QB3737B60ESTC QB3725B60ESTB QB0505B25WYC7					
QB0302A20ESS3 QB1020A40ESS3 QB0402B20ESTD QB1020B40ESTD QB1111B40WYTB QB2010B60ESTB					
QB2525A60WSTB QB0302A20ESTD QB0402B20ESTB QB1005A40WYTD QB0402A20WYS3 QB0603A25ESS3					
QB1005A40WYC7 QB0603B25WYS3 QB1005A40ESS3 QB0603A25WYS3 QB2525B60ESS3 QB3737B60WSS3					
QB1020A40WYTD QB0505A25WYTB QB3737B60ESS3 QB1111A40ESC7 QB1005A40ESC7 QB2525A60ESTD					
QB0505B25WYTD QB0603A25WYTB QB1005B40ESS3 QB1005A40WYTB QB0402A20WYTD QB1020B40ESC7					
QB3737A60ESTB QB0302B20WYTB QB1111A40ESTB QB3725A60WSS3 QB0505B25ESS3 QB1111A40WYTD					
QB1005A40WYS3 QB1020A40WYC7 QB3737A60WSTC QB0805B40ESC7 QB2010A60ESTB QB1111B40WY					
QB2525B60ESTD QB0603B25WYTD QB0505B25ESTD QB0302A20ESC7 QB0805A40WYTD QB0805A40ESTB					
QB3737A60ESS3 QB0402B20WYS3 QB0302A20WYS3 QB0805B40ESTB QB1005B40WYTD QB3725B60ESS3					
QB3725B60WSTC QB1020B40ESTB QB2010B60WSTD QB0603A25WYTD QB1111B40ESS3 QB0505A25ESTB					
QB0603A25ESTD QB0505A25ESC7 QB2010A60WSC7 QB0805B40WYTB QB3737A60ESTC QB0402A20WYC7					
QB2010A60ESTD QB1020B40WYTD QB2010B60WSS3 QB0805A40WYC7 QB0402A20ESS3 QB1111A40WYS3					
QB1020B40WYC7 QB2525A60WSTD QB0402B20WYTD QB0302B20ESTD QB0402B20WYC7 QB1111A40WYC7					

